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Abstract
In this work, we derive a system of Boltzmann-type equations to describe the spread
of contact-based infections, such as SARS-CoV-2 virus, at the microscopic scale, that
is, by modeling the human-to-human mechanisms of transmission. To this end, we
consider two populations, characterized by specific distribution functions, made up
of individuals without symptoms (population 1) and infected people with symptoms
(population 2). The Boltzmann operators model the interactions between individuals
within the same population and among different populations with a probability of tran-
sition from one to the other due to contagion or, vice versa, to recovery. In addition, the
influence of innate and adaptive immune systems is taken into account. Then, starting
from the Boltzmann microscopic description we derive a set of evolution equations
for the size and mean state of each population considered. Mathematical properties
of such macroscopic equations, as equilibria and their stability, are investigated, and
some numerical simulations are performed in order to analyze the ability of our model
to reproduce the characteristic features of Covid-19 type pandemics.

Keywords Boltzmann equation · Kinetic theory · Epidemiological models · Living
systems · Nonlinearity

Mathematics Subject Classification 35Q20 · 82C40 · 92D30

1 Introduction

The history of mathematical models in epidemiology begins with the paper “Essai
d’une nouvelle analyse de la mortalité causée par la petite vérole” written by Daniel
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Bernoulli in 1766 to analyze themortality due to smallpox inEngland (Bernoulli 1766).
In this paper, Bernoulli derived a model showing that inoculation against the virus
would increase the life expectancy. Following the work of Bernoulli, Lambert in 1772
extended themodel by incorporating age-dependent parameters (Lambert 1772).How-
ever, this kind of approach has not been developed systematically until 1911 when the
British medical doctor Ronald Ross published the paper “The prevention of malaria,”
considered the starting point of the modern mathematical epidemiology (Ross 1911).
For the first time, in this work, a set of differential equations were derived to study
the discrete-time dynamics of mosquito-borne malaria. Similar epidemic models were
later developed by Kermack and McKendrick, who founded the deterministic com-
partmental modeling (Kermack and McKendrick 1927, 1932, 1933). These authors
proposed the celebrated SIR model according to which the population is divided into
three groups or compartments: the susceptible (S), who can contract the disease, the
infected (I), who have already contracted the disease and can transmit it, and the recov-
ered (R), who are healed. Within this framework, it is assumed that the probability of
infection of a susceptible is proportional to the number of its contacts with infected
individuals. The resulting mathematical model, based on a deterministic system of
ordinary differential equations, relies on the following hypotheses: (i) a homogeneous
mixing of the contacts; (ii) the conservation of the total population; (iii) relatively low
rates of interaction. Over the years, SIR-type models have been extended to include
age-dependent infection, mortality, and spatial dependence of the epidemic spread
(Siettos and Russo 2013; Zhang et al. 2023; Zhang and Zheng 2023).

However, since the classical epidemiological models are derived at a macroscopic
level, they neglect the heterogeneity of disease transmission due to the microscopic
features of the interactions between individuals. Relying on recent developments of
kinetic models for the description of social and economic phenomena (Dimarco and
Toscani 2019; Pareschi and Toscani 2013; Toscani 2020), in the last few years a num-
ber of works have appeared aimed at connecting the distribution of social contacts with
the spreading of a disease in a multi-agent system. A historical review on the attempts
of modeling social phenomena by means of the laws of statistical physics may be
found in Ball (2002); Patriarca and Chakraborti (2013); more specifically, analogies
and differences between the classical Boltzmann approach to gas dynamics and kinetic
models for socio-economic sciences are discussed in detail in Fraia and Tosin (2021).
Many papers are available on the derivation of macroscopic epidemic models account-
ing also for interrelations between individuals and social features (Bellomo et al. 2020;
Bertaglia and Pareschi 2021; Boscheri et al. 2021; Dimarco et al. 2020, 2021). These
studies have been usually carried out by integrating a classical compartmental model
(typically a SIR-type model) with a statistical part based on Boltzmann-like equations
describing the formation of social contacts. Such an approach allows one to obtain
various sub-classes of macroscopic epidemiological models characterized by nonlin-
ear incidence rates. Within the same mathematical framework of multi-agent systems,
a different procedure has been considered in Della Marca et al. (2022, 2023); Kim and
Quaini (2020), where kinetic evolution equations have been derived for the distribution
functions of the viral load of the individuals that change as a consequence of binary
interactions or interactions with a background. But also in Della Marca et al. (2022,
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2023) a SIR-like compartmental structure has been obtained in order to describe the
evolution of the pandemic.

In the present paper, following the general setting put forward in Delitala (2004);
De Lillo et al. (2009), we derive a system of Boltzmann-type evolution equations for
the distribution function fi (t, ui ) (i = 1, 2) of two interacting populations, where the
index i = 1 refers to individuals without symptoms and i = 2 to infected people with
symptoms. Unlike the kinetic models mentioned above, in our work the microscopic
variable ui ∈ (−∞,+∞) indicates the level of the infection, so that the product
fi (t, ui ) dui gives the number of individuals of the i-th population which at the time
t are in the elementary state [ui , ui + dui ]. Within the population described by the
distribution function f1(t, u1), we can distinguish healthy individuals, when u1 < 0,
and positive asymptomatic, when u1 ≥ 0. Similarly, the population represented by
the distribution function f2(t, u2) is made up of positive symptomatic, when u2 < 0,
and hospitalized individuals, when u2 ≥ 0. Our approach does not rely on one of the
existing classical compartmental models (Buonomo and Giacobbe 2023; Della Marca
et al. 2022, 2023; D’Onofrio and Manfredi 2022), where infected people have been
assigned to a unique compartment, but we tried to emphasize the crucial role played
by positive asymptomatic individuals in the spread of a contact-based infection, as
recently observed in the evolution of Covid-19.

The idea behind our derivation is to treat interactions between individuals in the
same way as those between molecules of chemically reacting gas mixtures. In partic-
ular, the transition from population 1 (made up of individuals without symptoms) to
population 2 (made up of infected individuals with symptoms) is described by using
the same formalism used in classical kinetic theory of gases when two interacting
particles change their nature. The reverse transition in our model is taken into account
when themedical staff (belonging to population 1) interacts with positive symptomatic
or with people hospitalized (belonging to population 2) giving rise to their recovery.
We also consider the action of the immune system modeled in close analogy to the
interaction of a particle (a single person) with a background (the immune system),
typical of the neutron transport description in kinetic theory (Cercignani 1988). The
majormathematical difficulty in ourmodel consists in deriving a systemof fourmacro-
scopic equations for the evolution of the number densities and mean states of healthy
people, positive asymptomatic, positive symptomatic, and hospitalized persons, start-
ing from a set of two Boltzmann equations defined at the microscopic level for the
distribution functions f1 and f2. The closure of such macroscopic system is based on
specific choices of Boltzmann collision kernels and of interaction rules that, as usual
in multi-agent systems involving human beings, also show stochastic effects.

The rest of the paper is organized as follows. In Sect. 2, we present the epidemio-
logical model derived at the microscopic level by setting a system of Boltzmann-like
equations. In Sects. 3 and 4, we obtain the macroscopic equations for the evolution of
the size and mean state, respectively, of each population considered, that is, healthy
individuals, positive asymptomatic, positive symptomatic, and hospitalized individ-
uals. These macroscopic equations are then qualitatively analyzed. In particular, the
equilibrium states and their stability are investigated in Sects. 5 and 6, respectively.
Section7 presents numerical test cases carried out in order to analyze the ability of
our model to reproduce the characteristic features of Covid-19 type pandemics. Some
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concluding remarks, mainly aimed at highlighting the novelty of our approach, are
included in Sect. 8. Finally, in Appendix we introduce some preliminaries on the scat-
tering kernel formulation of the Boltzmann equation used in this paper.

2 Mathematical Formulation

We derive a model describing the spread of contact-based infections such as SARS-
CoV-2 viruswithin the generalmathematical framework of the kinetic theory formulti-
species problems (Rossani and Spiga 1999). The system consists of two populations
of interacting individuals. Each population is denoted by the subscript i (i = 1, 2),
according to the following classification:

{
i = 1 : individuals without symptoms
i = 2 : infected individuals with symptoms.

(1)

Within the same population, each individual is characterized by a microscopic state,
which is a scalar variable ui ∈ (−∞,+∞) (activity) (Delitala 2004; De Lillo et al.
2009). Let us introduce the one-particle distribution function: fi = fi (t, ui ). By
definition, the product

fi (t, ui ) dui

gives the number of individuals of the i-th population which at the time t are in the
elementary state [ui , ui + dui ]. The variable ui depends on the intensity level of a
certain pathological state. We distinguish the following cases:

f1(t, u1) :
{
if u1 < 0 → healthy individuals
if u1 ≥ 0 → positive asymptomatic

(2)

f2(t, u2) :
{
if u2 < 0 → positive symptomatic
if u2 ≥ 0 → hospitalized individuals.

(3)

Specifically, within the same population, the larger is the value of ui , the stronger is
the infection.

The evolution of the system is determined by microscopic interactions between
pairs of individuals, which modify the probability distribution over the state variable
and/or the size of the population. The system is homogeneous in space, and only
binary interactions are taken into account. In addition, we model also the action of
the immune system described by the distribution function φi (v) (i = 1, 2) over the
microscopic variable v ∈ [−M,+M], where M is a constant such that M >> 1. The
values assumed by v are related to different levels of response of the immune system.
Furthermore, we consider a finite range for v only for technical reasons. Indeed, one
has to require the existence of the integrals involving the distribution function φi (v),
which can be modeled as done, for instance, in De Lillo et al. (2009).

We distinguish between two natural actions:
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(i) The innate immunity.
Viruses that enter the body can be stopped right away by the innate immune system.
The effectiveness of this type of action is linked to the possibility that an individual
belonging to population 1 becomes ill or not.

(ii) The adaptive immunity.
The adaptive immune system takes over if the innate immune system is not able
to destroy invaders such as viruses. It is slower to respond than the innate immune
system, but it identifies specific pathogens and it is able to ”remember” them. To
the adaptive immunity can be ascribed the recovery of an individual belonging to
population 2 even in the absence of specific care.

The current knowledge about SARS-CoV-2 infection indicates that the immune system
plays a crucial role in setting the severity of Covid-19. Appropriate immune responses
against SARS-CoV-2 couldmitigate the symptoms of Covid-19 and prevent the occur-
rence of a severe disease, while excessive responses trigger pathogenic cell activation
increasing the risk of death. In a recent study (the first of its kind), carried out by a large
group of researchers, the genome of over 780,000 cells of the immune system was
sequenced and themembrane proteins as well as the receptors present on their surfaces
were analyzed (Stephenson 2021). These samples, taken from 130 patients with vary-
ing severities of Covid-19, revealed a high concentration of B lymphocytes (cells that
produce antibodies) and helper T cells (which activate other immune components) in
the blood of asymptomatic and paucisymptomatic individuals. On the contrary, ana-
lyzing the immune response in patients with critical disease, the researchers identified
much lower levels of these cells and a higher concentration of other cells responsible
for protecting the body from infection, such as monocytes and killer T lymphocytes.
Their uncontrolled increase could be the cause of the excessive inflammatory response
at the lung level, in severe cases of Covid-19 infection: a cytokine storm that attacks
all the patient’s organs, leading to death. Higher concentrations of platelets were also
found in the blood of the most seriously ill patients, responsible for the formation of
thrombi capable of obstructing the blood flow to the tissues. Although it is not yet clear
on what basis the infection triggers different immune responses, this study reveals that
the types of cells that are preferentially activated differ from person to person in an
unpredictable way.

We will consider the following moments of the distribution functions.
(a) The size of the i th population at time t :

ni (t) =
+∞∫

−∞
fi (t, ui ) dui , i = 1, 2 (4)

where n1 = nHE
1 + nA

1 and n2 = nS2 + nHS
2 , with

nHE
1 =

0∫
−∞

f1(t, u1) du1 : number density of healthy individuals (5)
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nA
1 =

+∞∫
0

f1(t, u1) du1 : number density of asymptomatic (6)

nS2 =
0∫

−∞
f2(t, u2) du2 : number density of symptomatic (7)

nHS
2 =

+∞∫
0

f2(t, u2) du2 : number density of hospitalized individuals. (8)

The total number of individuals at time t is given by:

N =
2∑

i=1

ni (t). (9)

Since in this work we are mainly interested in modeling the transmission mechanism
of the disease, wewill neglect changes in the social structure such as the aging process,
births, and deaths. This conservation property implies that N is a constant.

Furthermore, the overall action of the immune system on the individuals of the i th
population is given by

Îi =
+M∫

−M

φi (v) dv, i = 1, 2. (10)

Higher-order moments provide additional information on the (macroscopic)
description of the system.

(b) Progression of the epidemiological state:

Ui (t) =
+∞∫

−∞
ui fi (t, ui ) dui i = 1, 2, (11)

and the mean viral load of population i , defined as

Ûi (t) = Ui (t)

ni (t)
= 1

ni

+∞∫
−∞

ui fi (t, ui ) dui i = 1, 2. (12)

The evolution equations for the distribution functions fi (t, ui ) can be obtained
following the formalism of multi-species Boltzmann equations outlined in Appendix.
In order to derive these equations, we consider the following hypotheses on interaction
processes:

(H.1) the medical staff belongs to the population 1, with u1 ∈ [−∞, 0[, and never
becomes positive asymptomatic or ill when interactingwith sick people belong-
ing to population 2;
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(H.2) the interactions produce a smooth shift toward higher pathological states (e.g.,
a healthy person does not immediately become ill but positive asymptomatic);

(H.3) all positive symptomatic individuals are in isolation and, therefore, they can
only have interactions with family members (also positive symptomatic) and
with the medical staff;

(H.4) hospitalized individuals can only have interactions between themselves and
with the medical staff.
Relying on these assumptions, we describe the interactions within the same
population or between different populations as follows.

• Interactions within the population 1.

(a) Healthy individuals + healthy individuals
−→ both individuals remain healthy (population 1);

(b) Healthy individuals + positive asymptomatic:
besides the interactions in which individuals do not change category, it may
occur the transition healthy individual−→ positive asymptomatic (population
1);

(c) Positive asymptomatic + positive asymptomatic:
it could happen that both remain positive asymptomatic, or that one undergoes
the transition positive asymptomatic−→ positive symptomatic (population 2).

• Interactions within the population 2.

(d) Positive symptomatic + positive symptomatic:
one of them could be subject to the change positive symptomatic −→ hospi-
talized individual (population 2);

(e) Hospitalized individuals + hospitalized individuals: −→ both individuals
remain hospitalized (population 2).

• Interactions between the populations 1 and 2.
Only the medical staff interacts with positive symptomatic or with hospitalized
people. Besides interactions where the ill individuals do not change their category,
we have the following ones giving rise to recovery:

(f) Healthy individual (medical staff) + positive symptomatic −→ healthy indi-
viduals (transition to population 1);

(g) Healthy individual (medical staff) + hospitalized individuals−→ healthy indi-
viduals (transition to population 1).

Therefore, we shall deal with a system of two populations (1, 2) which can also
interact according to the following reversible transition, giving rise to a switch from
one sub-population to the other:

1 + 1 � 2 + 1 (13)

In addition to the interactions between individuals, we consider also those between
an individual and the immune system, modeled in close analogy to the interaction of
a particle with a background, typical of the neutron transport phenomena in kinetic
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theory (Cercignani 1988). In particular, we assume that among the individuals in pop-
ulation 1, only asymptomatic carriers ’interact’ with their innate immune system with
the probability to become positive symptomatic (transition to population 2). Further-
more, we assume that people belonging to population 2 (both positive symptomatic
and hospitalized individuals) interact with their adaptive immune system with a prob-
ability of recovery (transition to population 1 among healthy individuals). While the
interactions between individuals are described by the full nonlinear Boltzmann oper-
ator, those between a person and the immune system give rise to a linear collision
operator.

2.1 Derivation of Boltzmann-Type Equations

In the following, we consider the scattering kernel formulation of the Boltzmann
collision operator (seeAppendix) for both classical interactionswithout transfers (Qik)

and interactions with switches (Q
(r)
i ), or with the immune system (L

(r)
i ). In particular,

the operators Qii (i = 1, 2) describe the interactions between individuals within the
same population i without a transfer to the other population; the operators Q12 and
Q21 model the interactions between the medical staff (belonging to population 1)
and sick people (belonging to population 2) which do not produce any change of

category, while the operators Q
(r)
i account for those interactions between individuals

which give rise to a transition from one population to the other; finally, the operators

L
(r)
i take into account the interactions of persons belonging to population i with the

immune system. The superscript (r) denotes the non-classical Boltzmann operators,
taking into account switches (called “reactions” in gas dynamics) or interactions with
a “background” (immune system).

Thus, we get for population 1:

∂ f1
∂t

(t, u1) = Q11 + Q12 + Q
(r)
1 + L

(r)
1 (14)

where

Q11 =
+∞∫

−∞

+∞∫
−∞

η11(u∗, u∗) A(1)
11 (u∗, u∗; u1) f1(t, u∗) f1(t, u

∗) du∗ du∗

− f1(t, u1)

+∞∫
−∞

η11(u1, u
∗) f1(t, u

∗) du∗ (15)

Q12 =
+∞∫

−∞

+∞∫
−∞

η12(u∗, u∗) A(1)
12 (u∗, u∗; u1) f1(t, u∗) f2(t, u

∗) du∗ du∗

− f1(t, u1)

+∞∫
−∞

η12(u1, u
∗) f2(t, u

∗) du∗ (16)
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Q
(r)
1 =

+∞∫
−∞

+∞∫
−∞

η
(r)
11 (u∗, u∗) Ã(1)

11 (u∗, u∗; u1) f1(t, u∗) f1(t, u
∗) du∗ du∗

−2 f1(t, u1)

+∞∫
−∞

η
(r)
11 (u1, u

∗) f1(t, u
∗) du∗

+2

+∞∫
−∞

du∗
+∞∫

−∞
η

(r)
21 (u∗, u∗) Ã(1)

21 (u∗, u∗; u1) f2(t, u∗) f1(t, u
∗) du∗

− f1(t, u1)

+∞∫
−∞

η
(r)
21 (u1, u

∗) f2(t, u
∗) du∗ (17)

L
(r)
1 =

+∞∫
−∞

du∗
+M∫

−M

μ
(r)
2 (u∗, v∗) B(1)

2 (u∗, v∗; u1) f2(t, u∗) φ2(v
∗) dv∗

− f1(t, u1)

+M∫
−M

μ
(r)
1 (u1, v

∗) φ1(v
∗) dv∗ (18)

Likewise, we can write for population 2:

∂ f2
∂t

(t, u2) = Q22 + Q21 + Q
(r)
2 + L

(r)
2 (19)

where

Q22 =
+∞∫

−∞

+∞∫
−∞

η22(u∗, u∗) A(2)
22 (u∗, u∗; u2) f2(t, u∗) f2(t, u

∗) du∗ du∗

− f2(t, u2)

+∞∫
−∞

η22(u2, u
∗) f2(t, u

∗) du∗ (20)

Q21 =
+∞∫

−∞

+∞∫
−∞

η21(u∗, u∗) A(2)
21 (u∗, u∗; u2) f2(t, u∗) f1(t, u

∗) du∗ du∗

− f2(t, u2)

+∞∫
−∞

η21(u2, u
∗) f1(t, u

∗) du∗ (21)

Q
(r)
2 =

+∞∫
−∞

+∞∫
−∞

η
(r)
11 (u∗, u∗) Ã(2)

11 (u∗, u∗; u2) f1(t, u∗) f1(t, u
∗) du∗ du∗
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− f2(t, u2)

+∞∫
−∞

η
(r)
21 (u2, u

∗) f1(t, u
∗) du∗ (22)

L
(r)
2 =

+∞∫
−∞

du∗
+M∫

−M

μ
(r)
1 (u∗, v∗) B(2)

1 (u∗, v∗; u2) f1(t, u∗) φ1(v
∗) dv∗

− f2(t, u2)

+M∫
−M

μ
(r)
2 (u2, v

∗) φ2(v
∗) dv∗. (23)

In the above equations, ηhk (and η
(r)
hk ) is called encounter rate and it describes

the rate of interactions (that is, the number of encounters per unit time) between
individuals of the h-th population and individuals of the k-th population, while μ

(r)
h

refers to the rate of interaction between individuals of the h-th population and the
immune system. To construct the transition rates, we assume that the interactions
between individuals can be modeled in analogy to the intermolecular potentials acting
between the gas molecules. Since in the framework of kinetic theory of rarefied gases
analytical manipulations can be carried out in closed form forMaxwell molecules (see
Appendix) (Cercignani 1988), we restrict ourselves to this kind of interaction, which
leads to assume ηhk constant. In particular, when the encounters between individuals
belonging to different groups are forbidden, in the framework of our epidemiological
model, the rates ηhk vanish. Thus, for the operator Q11, since all types of interactions
between healthy and positive asymptomatic people are allowed, we set

η11(u∗, u∗) = η̄11 ∀ u∗ ∈ R, u∗ ∈ R.

In the operator Q22, since positive symptomatic individuals cannot interact with hos-
pitalized people, we have

η22(u∗, u∗) =
{

η̄22 if (u∗ < 0, u∗ < 0) or (u∗ > 0, u∗ > 0)
0 otherwise

The interactions between the two populations 1 and 2 describe only the possible
contacts between the ill individuals and the medical staff (healthy); therefore,

η12(u∗, u∗) =
{

η̄12 if u∗ < 0 in f1(t, u∗)
0 otherwise

η21(u∗, u∗) =
{

η̄21 if u∗ < 0 in f1(t, u∗)
0 otherwise

and moreover, since both rates refer to the same type of interactions, we assume

η̄12 = η̄21.
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For the switch 1 + 1 → 2 + 1 that can occur when two positive asymptomatic
individuals interact, we set

η
(r)
11 (u∗, u∗) =

{
η̄

(r)
11 if u∗ > 0 and u∗ > 0

0 otherwise

For the reverse switch 2 + 1 → 1 + 1, taking into account that population 2 may
interact only with the medical staff, we have

η
(r)
21 (u∗, u∗) =

{
η̄

(r)
21 if u∗ < 0 in f1(t, u∗)

0 otherwise

It is worth noting that the rates of interactions η̄12 and η̄
(r)
21 have to take into account

the probability for sick people to find available doctors and, concerning η̄
(r)
21 , also

the probability of recovery, depending both on the available medical staff and on the
severity of the disease. For this reason, a more realistic version of this mathematical
model (but not easily manageable from the analytical point of view) should take η̄

(r)
21

explicitly dependent on the viral load u∗ of the ill interacting individual.
The interactionswith the immune system involve the positive asymptomatic persons

in population 1 and all the individuals in population 2; for this reason, we set

μ
(r)
1 (u∗, v∗) =

{
μ̄

(r)
1 if u∗ > 0 in f1(t, u∗)

0 otherwise

and

μ
(r)
2 (u∗, v∗) = μ̄

(r)
2 ∀ u∗ ∈ R, v∗ ∈ [−M, M]

Themodification of the state of interacting individuals is described by the transition
probability density, A(i)

hk (u∗, u∗; ui ), of individuals which are shifted into the i-th
populationwith state ui due to encounters between an individual of the h-th population
in the state u∗ with an individual of the k-th population in the state u∗. Likewise,
B(i)
h (u∗, v∗; ui ) represents the transition probability density of individuals which are

shifted into the i-th populationwith stateui due to the interaction between an individual
of the h-th population in the state u∗ with the immune system characterized by the
microscopic state v∗. The products ηhk A

(i)
hk and μ

(r)
h B(i)

h give the transition rates.
For stochastic models of interaction between individuals, the transition probability

density A(i)
hk satisfies the following properties:

(i)

A(i)
hk (u∗, u∗; ui ) = A(i)

kh (u
∗, u∗; ui ) (24)

expressing indistinguishability of individuals;
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(ii)

+∞∫
−∞

dui A
(i)
hk (u∗, u∗; ui ) = 1 ∀h, k. (25)

We assume that also the probability density B(i)
h is normalized with respect to all

possible final states:

+∞∫
−∞

dui B
(i)
h (u∗, v∗; ui ) = 1 ∀h. (26)

Stochastic models, describing the interactions within each population, have been pro-
posed in order to give an explicit expression for the transition probabilities A(i)

hk and

B(i)
h in the interaction operators of the Boltzmann equations (Eqs. 14 and 19).
In particular, the interactions within the population 1, taken into account by the term

Q11, can be modeled as follows: If the interacting individuals are both healthy (with
microscopic states u∗, u∗ < 0) or both positive asymptomatic (with u∗, u∗ > 0), one
has

{
u′∗ = u∗
u′∗ = u∗, (27)

while if a healthy individual (with u∗ < 0) interacts with a positive asymptomatic
(with u∗ > 0), the output is

{
u′∗ = (1 − θ)u∗ + θu∗
u′∗ = (1 − θ)u∗ + θu∗ (28)

where θ denotes a Bernoulli random variable taking the value θ = 1 with probability
β ∈ [0, 1] and the value θ = 0 with probability 1 − β. Consequently, the expected
value of both post-interaction states u′∗ and u′∗ is

Eθ [u′∗] = (u′∗)|θ=0Prob(θ = 0) + (u′∗)|θ=1Prob(θ = 1) = (1 − β)u∗ + β u∗

Eθ [u′∗] = (u′∗)|θ=0Prob(θ = 0) + (u′∗)|θ=1Prob(θ = 1) = (1 − β)u∗ + β u∗

(29)

Thus, the parameter β represents the contagious index of the disease: the limiting
option β = 1 describes an extremely contagious disease (pandemic), in which each
healthy individual interacting with a positive asymptomatic becomes infectious, and
a positive asymptomatic individual never recovers in these interactions; the other
limit β = 0 corresponds to a situation in which a healthy individual cannot become
infectious and the positive asymptomatic persons immediately recover; therefore, no
pandemic is ongoing. The intermediate value β = 1/2 provides Eθ [u′∗] = Eθ [u′∗] =
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1
2 (u∗ + u∗); therefore, the probability for a healthy individual to get sick equals the
probability for an asymptomatic person to recover, and this implies (as it will be proved
below) that the total number of healthy and positive asymptomatic individuals does
not change.

Concerning the interactions described by the operator Q12, only a doctor (healthy,
with u∗ < 0) can interact with people of population 2 (with state u∗ ∈ R), providing

{
u′∗ = u∗
u′∗ = u∗. (30)

As regards the rules underlying the transition probabilities in the term Q22, inter-
actions between hospitalized people do not cause changes (u′∗ = u∗ and u′∗ = u∗),
while an interaction between two positive symptomatic leads to a possible aggravation
of the status of one of them, described through a Bernoulli variable θ such that if θ = 1
the status does not change while if θ = 0, the status changes sign and the individual
becomes hospitalized. Post-interaction states are thus provided by

{
u′∗ = θu∗ + (1 − θ)(−u∗)
u′∗ = u∗ (31)

and, denoting with α ∈ [0, 1] the probability that θ = 1, the expected post-interaction
state is

Eθ [u′∗] = (u′∗)|θ=0Prob(θ = 0) + (u′∗)|θ=1Prob(θ = 1) = α u∗ + (1 − α) (− u∗).

Furthermore, encounters between individuals which generate a population transi-
tion can be modeled as follows:

(a) interaction rule for the direct transition 1 + 1 → 2 + 1 with states (u∗ > 0, u∗ >

0) → (u′∗ < 0, u′∗ > 0), respectively:

{
u′∗ = u∗
u′∗ = −u∗ (32)

thus, an asymptomatic individual becomes symptomatic;
(b) interaction rule for the reverse transition 2+1 → 1+1 with states (u∗ ∈ R, u∗ <

0) → (u′∗ < 0, u′∗ < 0), respectively, in which an ill individual recovers due to
interactions with medical staff:

{
u′∗ = u∗
u′∗ = u∗

(33)

Finally, we describe the interactions of the individuals with the immune system as
follows:

(a) interaction rules with the innate immune system described by the distribution
function φ1, where some asymptomatic individuals (u∗ > 0) pass to population 2
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becoming symptomatic (u′∗ < 0):

{
u′∗ = − u∗
v′∗ = v∗ (34)

(b) interaction rules with the adaptive immune system, modeled by the distribution
function φ2, leading people of population 2 to recover:

{
u′∗ = −|u∗|
v′∗ = v∗ (35)

The average action of the immune system on asymptomatic individuals is described
by

Î1 =
+M∫

−M

φ1(v) dv (36)

while the action on the ill people is accounted for by

Î2 =
+M∫

−M

φ2(v) dv. (37)

The term (μ̄
(r)
1 Î1) takes very large values when the innate immune cells of an initially

positive asymptomatic person (who has already contracted the virus) trigger an exac-
erbated inflammatory response (hyperinflammation) leading to a major complication
of Covid-19. Therefore, in this case, a significant fraction of asymptomatic people
become ill and a transition to population 2 occurs. On the contrary, a strong response
of the adaptive immune system (that is, a large value of the term (μ̄

(r)
2 Î2)) allows an

individual, belonging to population 2, to recover without specific treatments. In fact,
adaptive immunity encompasses a set of specific protective mechanisms against cer-
tain pathogens. Adaptive immunity can also be acquired through the administration
of vaccines, which in turn increase the anti-viral activity of some innate immune cells
(Zhu et al. 2022). Therefore, the impact of vaccination can be taken into account in
our model by increasing the term (μ̄

(r)
2 Î2) and, at the same time, decreasing (μ̄

(r)
1 Î1).

Moreover, explicitly modeling the action of the immune system allows us to account
for individuals of different ages since older people (with a weaker immune system) get
sick more easily with a higher probability of an unfavorable outcome of the disease.

By taking into account the interaction rules presented above, the transition proba-
bility densities A(i)

hk and B(i)
h can be explicitly written.

(1) For the operator Q11, we can distinguish between the following cases:

(i)

A(1)
11 (u∗ < 0, u∗ < 0; u1) = δ(u1 − u∗) (38)
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(ii)

A(1)
11 (u∗ > 0, u∗ < 0; u1) = β δ(u1 − u∗) + (1 − β) δ(u1 − u∗) (39)

where β ∈ [0, 1]. The value assumed by β allows us to take into account
different variants of the main virus characterized by different transmission
levels. In fact, as already remarked above, the value β = 1 indicates a highly
contagious variant since all healthy individuals, which interact with positive
asymptomatic persons, change their category. On the contrary, when β = 0,
there is no spread of the contagious disease, since one has the recovery of all
asymptomatic individuals.

(iii)

A(1)
11 (u∗ > 0, u∗ > 0; u1) = δ(u1 − u∗). (40)

(2) For the operator Q12, we have:

A(1)
12 (u∗ < 0, u∗ ∈ R; u1) = δ(u1 − u∗) (41)

with A(1)
12 = A(2)

21 .
(3) For the operator Q22, we can distinguish between the following cases:

(i)

A(2)
22 (u∗ > 0, u∗ > 0; u2) = δ(u2 − u∗) (42)

(ii)

A(2)
22 (u∗ < 0, u∗ < 0; u2) = α δ(u2 − u∗) + (1 − α) δ(u2 + u∗) (43)

where α ∈ [0, 1]. If α = 1, the positive symptomatic individuals remain in the
same infectious state, while if α = 0, they are exposed to a worsening of their
disease and become hospitalized.

(4) Encounters between individuals which generate a population transition, described

by the switch Boltzmann operator Q
(r)
1 , give rise to the following transition prob-

ability densities:

(i)

Ã(1)
11 (u∗ > 0, u∗ > 0; u1) = δ(u1 − u∗) (44)

(ii)

Ã(1)
21 (u∗ ∈ R, u∗ < 0; u1) = δ(u1 − u∗) (45)

while encounters described by the switch operator Q
(r)
2 give:
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(iii)

Ã(2)
11 (u∗ > 0, u∗ > 0; u2) = δ(u2 + u∗). (46)

To conclude, the transition probability density B(2)
1 (u∗ > 0, v∗; u2) of indi-

viduals which are shifted into population 2, with the state u2 < 0, due to the
interaction between an individual of population 1, in the state u∗ > 0, with the

innate immune system, appearing in the term L
(r)
2 , is given by

B(2)
1 (u∗ > 0, v∗; u2) = δ(u2 + u∗). (47)

Furthermore, the transition probability density B(1)
2 (u∗ ∈ R, v∗; u1) of indi-

viduals which are shifted into population 1, with the state u1 < 0, due to the
interaction between an individual of population 2 in the state u∗ ∈ R with the

adaptive immune system, appearing in the term L
(r)
1 , is given by

B(1)
2 (u∗ ∈ R, v∗; u1) = δ(u1 + |u∗|). (48)

Since this last interaction allows a complete recovery of positive symptomatic
or hospitalized individuals (u1 ∈ [−∞, 0[), the following relation holds:

0∫
−∞

du1 B
(1)
2 (u∗, v∗; u1) = 1. (49)

Global existence and uniqueness of the solutions to the Boltzmann-type equations,
based on the scattering kernel formulation of the collision operator, have been proven
in De Lillo et al. (2009).

3 Evolution Equations for the Size of Each Population

In order to derive the macroscopic equations for the evolution of the size of the two
populations,we have to integrateEq. (14)with respect tou1 andEq. (19)with respect to
u2. Taking into account that interactions without switches do not give any contribution
(since they do not change the number of individuals of populations 1 and 2), we get

dn1
dt

=
+∞∫

−∞
Q

(r)
1 (u1) du1 +

+∞∫
−∞

L
(r)
1 (u1) du1, (50)

dn2
dt

=
+∞∫

−∞
Q

(r)
2 (u2) du2 +

+∞∫
−∞

L
(r)
2 (u2) du2. (51)
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Bearing in mind the definitions of the interaction rates η
(r)
hk , μ

(r)
h and the transition

probability densities A(i)
hk , B

(i)
h given above, the equations read:

dn1
dt

= − η̄
(r)
11 (nA

1 )2 + η̄
(r)
21 n2 n

HE
1 + μ̄

(r)
2 n2 Î2 − μ̄

(r)
1 nA

1 Î1 (52)

dn2
dt

= η̄
(r)
11 (nA

1 )2 − η̄
(r)
21 n2 n

HE
1 − μ̄

(r)
2 n2 Î2 + μ̄

(r)
1 nA

1 Î1 (53)

In order to find a closed system of equations, let us rewrite the terms on the right-hand
side of Eq. (14) as follows, taking into account the interaction rules (38)–(48).

Q11 = η11

+∞∫
−∞

du∗ f1(t, u∗)
{ 0∫

−∞
A(1)
11 (u∗, u∗; u1) f1(t, u

∗) du∗

+
+∞∫
0

A(1)
11 (u∗, u∗; u1) f1(t, u

∗) du∗
}

−η11 f1(t, u1)

{ 0∫
−∞

f1(t, u
∗) du∗ +

+∞∫
0

f1(t, u
∗) du∗

}

= η11

{ 0∫
−∞

du∗ f1(t, u∗) +
+∞∫
0

du∗ f1(t, u∗)
}

·
0∫

−∞
A(1)
11 (u∗, u∗; u1) f1(t, u

∗) du∗

+η11

{ 0∫
−∞

du∗ f1(t, u∗) +
+∞∫
0

du∗ f1(t, u∗)
}

·
+∞∫
0

A(1)
11 (u∗, u∗; u1) f1(t, u

∗) du∗

−η11 f1(t, u1)

0∫
−∞

du∗ f1(t, u
∗) − η11 f1(t, u1)

+∞∫
0

du∗ f1(t, u
∗)

= η11

0∫
−∞

du∗ f1(t, u∗)
0∫

−∞
A(1)
11 (u∗, u∗; u1) f1(t, u

∗) du∗

+2 η11

+∞∫
0

du∗ f1(t, u∗)
0∫

−∞
A(1)
11 (u∗, u∗; u1) f1(t, u

∗) du∗

+η11

+∞∫
0

du∗ f1(t, u∗)
+∞∫
0

A(1)
11 (u∗, u∗; u1) f1(t, u

∗) du∗

−η11 f1(t, u1)

0∫
−∞

f1(t, u
∗) du∗ − η11 f1(t, u1)

+∞∫
0

du∗ f1(t, u
∗)

= η11 f1(t, u1 < 0)

0∫
−∞

du∗ f1(t, u
∗) + 2η11 β f1(t, u1 > 0)

0∫
−∞

du∗ f1(t, u
∗)
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+2η11 (1 − β) f1(t, u1 < 0)

+∞∫
0

du∗ f1(t, u∗) + η11 f1(t, u1 > 0)

+∞∫
0

du∗ f1(t, u
∗)

−η11 f1(t, u1)

0∫
−∞

du∗ f1(t, u
∗) − η11 f1(t, u1)

+∞∫
0

du∗ f1(t, u
∗) (54)

Q12 = η12

0∫
−∞

du∗ f1(t, u∗)
+∞∫

−∞
A(1)
12 (u∗, u∗; u1) f2(t, u

∗) du∗

−η12 f1(t, u1 < 0)

+∞∫
−∞

f2(t, u
∗) du∗

= η12 f1(t, u1 < 0)

+∞∫
−∞

f2(t, u
∗) du∗ − η12 f1(t, u1 < 0)

+∞∫
−∞

f2(t, u
∗) du∗ = 0

(55)

Q
(r)
1 = η

(r)
11

+∞∫
0

+∞∫
0

Ã(1)
11 (u∗, u∗; u1) f1(t, u∗) f1(t, u

∗) du∗ du∗

−2η(r)
11 f1(t, u1 > 0)

+∞∫
0

f1(t, u
∗) du∗

+2η(r)
21

0∫
−∞

du∗ f1(t, u
∗)

+∞∫
−∞

Ã(1)
21 (u∗, u∗; u1) f2(t, u∗) du∗

−η
(r)
21 f1(t, u1 < 0)

+∞∫
−∞

f2(t, u
∗) du∗

= −η
(r)
11 f1(t, u1 > 0)

+∞∫
0

f1(t, u
∗) du∗ + η

(r)
21 f1(t, u1 < 0)

+∞∫
−∞

f2(t, u∗) du∗

L
(r)
1 = μ

(r)
2

+∞∫
−∞

du∗
+M∫

−M

B(1)
2 (u∗, v∗; u1) f2(t, u∗) φ2(v

∗) dv∗

−μ
(r)
1 f1(t, u1 > 0)

+M∫
−M

φ1(v
∗) dv∗ (56)

Integrating Eq. (14) first with respect to u1 ∈ (−∞, 0) and then with respect to
u1 ∈ (0,+∞), one obtains

dnHE
1

dt
= (1 − 2 β) η11 n

HE
1 nA

1 + η
(r)
21 nHE

1 n2 + μ
(r)
2 Î2 n2 (57)
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dnA
1

dt
= (2 β − 1)η11 n

HE
1 nA

1 − η
(r)
11 (nA

1 )2 − μ
(r)
1 Î1 n

A
1 (58)

The expressions (57), (58) and (53) form a closed system of equations that can be
solved to give the time evolution of the size of the populations nHE

1 , nA
1 , n2.

In order to investigate separately the time evolution of nS2 and n
HS
2 , analogous com-

putations as those reported above can be performed starting from Eq. (19). Rewriting
the terms on the right-hand side as follows:

Q22 = η22

0∫
−∞

0∫
−∞

A(2)
22 (u∗, u∗; u2) f2(t, u∗) f2(t, u

∗) du∗ du∗

+ η22

+∞∫
0

+∞∫
0

A(2)
22 (u∗, u∗; u2) f2(t, u∗) f2(t, u

∗) du∗ du∗

− η22 f2(t, u2 < 0)

0∫
−∞

f2(t, u
∗) du∗ − η22 f2(t, u2 > 0)

+∞∫
0

f2(t, u
∗) du∗

= η22 α f2(t, u2 < 0)

0∫
−∞

f2(t, u
∗) du∗

+ η22 (1 − α)

0∫
−∞

0∫
−∞

δ(u2 + u∗) f2(t, u∗) f2(t, u
∗) du∗ du∗

− η22 f2(t, u2 < 0)

0∫
−∞

f2(t, u
∗) du∗ (59)

Q21 = η21

0∫
−∞

du∗ f1(t, u
∗)

+∞∫
−∞

A(2)
21 (u∗, u∗; u2) f2(t, u∗) du∗

− η21 f2(t, u2)

0∫
−∞

f1(t, u
∗) du∗

= η21 f2(t, u2)

0∫
−∞

f1(t, u
∗) du∗ − η21 f2(t, u2)

0∫
−∞

f1(t, u
∗) du∗ = 0 (60)

Q
(r)
2 = η

(r)
11

+∞∫
0

+∞∫
0

Ã(2)
11 (u∗, u∗; u2) f1(t, u∗) f1(t, u

∗) du∗ du∗
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− η
(r)
21 f2(t, u2)

0∫
−∞

f1(t, u
∗) du∗

= η
(r)
11

+∞∫
0

+∞∫
0

δ(u2 + u∗) f1(t, u∗) f1(t, u
∗) du∗ du∗

− η
(r)
21 f2(t, u2)

0∫
−∞

f1(t, u
∗) du∗ (61)

L
(r)
2 =μ

(r)
1

+∞∫
0

du∗
+M∫

−M

B(2)
1 (u∗, v∗; u2) f1(t, u∗) φ1(v

∗) dv∗

− μ
(r)
2 f2(t, u2)

+M∫
−M

φ2(v
∗) dv∗ (62)

and integrating Eq. (19) first with respect to u2 ∈ (−∞, 0) and then with respect to
u2 ∈ (0,+∞), we get

dnS2
dt

= −(1 − α) η22 (nS2 )
2 + η

(r)
11 (nA

1 )2 − η
(r)
21 nHE

1 nS2 − μ
(r)
2 Î2 n

S
2 + μ

(r)
1 Î1 n

A
1

(63)

dnHS
2

dt
= (1 − α) η22 (nS2 )

2 − η
(r)
21 nHE

1 nHS
2 − μ

(r)
2 Î2 n

HS
2 (64)

The sum of Eqs. (63) and (64) correctly reproduces Eq. (53) for the total density n2.
Usually, in epidemiological models, the so-called basic reproduction number (R0),

which describes the dynamics of the infectious class, is defined in order to quantify
the contagiousness or transmissibility of a virus. The larger the value of R0, the harder
it is to control the spread of an infectious disease. R0 is rarely measured directly,
and its values, deduced from mathematical models, depend critically on the model
structure, the initial conditions, and several other modeling assumptions (Hethcote
2000). In the framework of the present analysis, we propose the following definition
of time-dependent effective reproduction number:

R0(t) = η
(r)
11 (nA

1 )2 + μ
(r)
1 nA

1 Î1

η
(r)
21 n2 n

HE
1 + μ

(r)
2 n2 Î2

(65)

which characterizes the change in the number of the infected individuals belonging to
population 2 (see Eq. (53)) “Albi et al. (2022)”. In Sect. 7, we assess the reliability of
such a definition (65) as control parameter of the epidemic.
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4 Evolution Equations for theMean State of Each Population

We derive from the Boltzmann model presented in Sect. 2 the evolution equations for
the total values of the internal states

UHE
1 =

0∫
−∞

u1 f1(t, u1) du1, U A
1 =

+∞∫
0

u1 f1(t, u1) du1,

US
2 =

0∫
−∞

u2 f2(t, u2) du2, UHS
2 =

+∞∫
0

u2 f2(t, u2) du2

where the superscripts have the same meaning as those appearing in formulas (5)–(8).
The equation for UHE

1 is provided by

dUHE
1

dt
=

0∫
−∞

u1
[
Q11 + Q12 + Q

(r)
1 + L

(r)
1

]
du1, (66)

and since

0∫
−∞

u1 Q11 du1 = − (2 β − 1)η̄11U
HE
1 nA

1 ,

0∫
−∞

u1 Q12 du1 = 0,

0∫
−∞

u1 Q
(r)
1 du1 = η̄

(r)
21U

HE
1 n2,

0∫
−∞

u1 L
(r)
1 du1 = μ̄

(r)
2 Î2(U

S
2 −UHS

2 ),

it turns out to be

dUHE
1

dt
= − (2 β − 1)η̄11U

HE
1 nA

1 + η̄
(r)
21U

HE
1 n2 + μ̄

(r)
2 Î2 (US

2 −UHS
2 ). (67)

Analogously, the equation for U A
1 reads

dU A
1

dt
=

+∞∫
0

u1
[
Q11 + Q12 + Q

(r)
1 + L

(r)
1

]
du1, (68)
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and since

+∞∫
0

u1 Q11 du1 = (2 β − 1)η̄11U
A
1 n

HE
1 ,

+∞∫
0

u1 Q12 du1 = 0,

+∞∫
0

u1 Q
(r)
1 du1 = − η̄

(r)
11 U

A
1 n

A
1 ,

+∞∫
0

u1 L
(r)
1 du1 = − μ̄

(r)
1 U A

1 Î1,

we get

dU A
1

dt
= (2 β − 1)η̄11U

A
1 n

HE
1 − η̄

(r)
11U

A
1 n

A
1 − μ̄

(r)
1 U A

1 Î1. (69)

On the same ground, we can derive the evolution equations forUS
2 andUHS

2 . Taking
into account the following expressions: On the same ground, we

0∫
−∞

u2 Q22 du2 = −(1 − α)η̄22U
S
2 nS2 ,

0∫
−∞

u2 Q21 du2 = 0,

0∫
−∞

u2 Q
(r)
2 du2 = −η̄

(r)
11 U

A
1 n

A
1 − η̄

(r)
21 U

S
2 n

HE
1 ,

0∫
−∞

u2 L
(r)
2 du2 = −μ̄

(r)
1 U A

1 Î1 − μ̄
(r)
2 US

2 Î2,

and

+∞∫
0

u2 Q22 du2 = −(1 − α)η̄22U
S
2 n

S
2 ,

+∞∫
0

u2 Q21 du2 = 0,

+∞∫
0

u2 Q
(r)
2 du2 = − η̄

(r)
21 U

HS
2 nHE

1 ,

+∞∫
0

u2 L
(r)
2 du2 = − μ̄

(r)
2 UHS

2 Î2

we obtain

dUS
2

dt
= − (1 − α) η̄22U

S
2 nS2 − η̄

(r)
11U

A
1 nA

1 − η̄
(r)
21U

S
2 nHE

1 − μ̄
(r)
1 Î1U

A
1 − μ̄

(r)
2 Î2U

S
2

(70)

dUHS
2

dt
= − (1 − α) η̄22U

S
2 nS2 − η̄

(r)
21U

HS
2 nHE

1 − μ̄
(r)
2 Î2U

HS
2 (71)
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We write down now the evolution equations for the mean state of each population,
defined as

Û HE
1 = UHE

1

nHE
1

, Û A
1 = U A

1

nA
1

, Û S
2 = US

2

nS2
, Û HS

2 = UHS
2

nHS
2

.

Combining the evolution equations for the number densities (57), (58), (63), (64) and
those for the total internal states (67), (69), (70), (71), one has

dÛ HE
1

dt
= 1

nHE
1

dUHE
1

dt
− UHE

1

(nHE
1 )2

dnHE
1

dt
= μ̄

(r)
2 Î2
nHE
1

(
nS2 Û

S
2 − nHS

2 Û HS
2 − n2 Û

HE
1

)

(72)

dÛ A
1

dt
= 1

nA
1

dU A
1

dt
− U A

1

(nA
1 )2

dnA
1

dt
= 0 (73)

dÛ S
2

dt
= 1

nS2

dUS
2

dt
− US

2

(nS2 )
2

dnS2
dt

= − nA
1

nS2

(
η̄

(r)
11 nA

1 + μ̄
(r)
1 Î1

)(
Û A
1 + Û S

2

)
(74)

dÛ HS
2

dt
= 1

nHS
2

dUHS
2

dt
− UHS

2

(nHS
2 )2

dnHS
2

dt
= − (1 − α) η̄22

(nS2 )
2

nHS
2

(
Û S
2 + Û HS

2

)
(75)

5 Equilibrium States

5.1 Size of the Populations

Starting from the evolution equations for the size of the populations (Eqs. (57), (58),
(63), (64)), the equilibrium states are solutions of the following system:

(1 − 2β) η11 n
HE
1 nA

1 + η
(r)
21 nHE

1 n2 + μ
(r)
2 Î2 n2 = 0 (76)

(2β − 1) η11 n
HE
1 nA

1 − η
(r)
11 (nA

1 )2 − μ
(r)
1 Î1 n

A
1 = 0 (77)

−(1 − α) η22 (nS2 )
2 + η

(r)
11 (nA

1 )2 − η
(r)
21 nHE

1 nS2 − μ
(r)
2 Î2 n

S
2 + μ

(r)
1 Î1 n

A
1 = 0

(78)

(1 − α) η22 (nS2 )
2 − η

(r)
21 nHE

1 nHS
2 − μ

(r)
2 Î2 n

HS
2 = 0 (79)

These equations are not independent of each other; therefore, one can find an infinite
family of equilibrium solutions.

(i) The above system admits a trivial solution corresponding to:

nA
1 = nS2 = nHS

2 = 0 (80)

while nHE
1 can take any positive value. Since the total number of individuals N

given by (9) is constant, this equilibrium solution reads as nHE
1 = N . Therefore,

it corresponds to the eradication of the pandemic.
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(ii) The unique non-trivial solution of Eqs. (76)–(79), with nHE
1 > 0, nA

1 > 0, nS2 >

0, nHS
2 > 0, is given by (endemic equilibrium):

nA
1 = (η

(r)
11 )−1[(2β − 1) η11 n

HE
1 − μ

(r)
1 Î1] (81)

nS2 = [2(1 − α)η22]−1
{

− η
(r)
21 nHE

1 − μ
(r)
2 Î2

+
[(

η
(r)
21

2 + 4(1 − α)(2β − 1)2
η211 η22

η
(r)
11

)
(nHE

1 )2

+
(
2 η

(r)
21 μ

(r)
2 Î2 − 4(1 − α) (2β − 1)

η11 η22

η
(r)
11

μ
(r)
1 Î1

)
nHE
1 + μ

(r)
2

2
Î 22

] 1
2
}

(82)

nHS
2 = [η(r)

11 (μ
(r)
2 Î2 + η

(r)
21 nHE

1 )]−1 [(1 − 2β)2 η211 (nHE
1 )2

−(2β − 1) η11 μ
(r)
1 Î1 n

HE
1 ] − nS2 (83)

In order to have nA
1 > 0, the following condition must be fulfilled:

nHE
1 >

μ
(r)
1 Î1

(2β − 1) η11
(84)

with β > 1
2 . Furthermore, nS2 given by Eq. (82) is well defined if α 	= 1.

We note that if

nHE
1 = μ

(r)
1 Î1

(2β − 1) η11

then Eqs.(81)–(83) give nA
1 = nS2 = nHS

2 = 0. Therefore, from Eq. (9) it follows
nHE
1 = N . This means that condition (84) is equivalent to

N >
μ

(r)
1 Î1

(2β − 1) η11
.

5.2 Mean State of the Populations

We analyze also the equilibrium solutions for the mean epidemiological state of each
population. From Eq. (73), it follows:

Û A
1 = const . (85)

Then, setting the left-hand side of Eqs. (72), (74), (75) equal to zero, and imposing
that nHE

1 > 0, nA
1 > 0, nS2 > 0, nHS

2 > 0, α 	= 1, μ(r)
2 	= 0, Î2 	= 0, we get

Û HS
2 = −Û S

2 (86)
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Û A
1 = −Û S

2 (87)

Û HE
1 = Û S

2 (88)

Rearranging the results given by Eqs. (86)–(88), one obtains:

Û HE
1 + Û A

1 = 0 (89)

Û S
2 + Û HS

2 = 0 (90)

Equations (85), (89), (90) allow us to infer that, when the equilibrium is reached, there
is a perfect balance in terms of epidemiological state for the two groups of individuals
within each population.

6 Stability of Equilibrium

In order to study the stability of the non-trivial equilibrium solutions for the population
sizes, let us consider Eqs. (57)–(58) which form a closed system once we substitute
n2 with the following expression:

n2 = N − nHE
1 − nA

1 (91)

where N is the constant total number of individuals. Then, we can rewrite these
equations in the form:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dnHE
1
dt = f (nHE

1 , nA
1 )

dnA
1

dt = g(nHE
1 , nA

1 )

(92)

and apply the following

Theorem 6.1 Let us suppose that (ñH E
1 , ñ A

1 ) is an equilibrium point of the system (92)
(under the hypothesis, f , g ∈ C1) and that the Jacobian matrix:

J =
⎛
⎜⎝

∂ f
∂nHE

1

∂ f
∂nA

1
∂g

∂nHE
1

∂g
∂nA

1

⎞
⎟⎠

evaluated at (ñH E
1 , ñ A

1 ), is not singular (that is, det(J ) 	= 0), then:

(i) The equilibrium point (ñH E
1 , ñ A

1 ) is (locally) asymptotically stable if all the eigen-
values of J have strictly negative real part;

(ii) The equilibrium point (ñH E
1 , ñ A

1 ) is unstable if at least one eigenvalue of J has
strictly positive real part.
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Remark 6.1 Theorem 6.1 holds in general for a system of m equations. Indeed, in our
planar case m = 2, the stability conditions reported in Theorem 6.1 are equivalent
to stating that an equilibrium point is (locally) asymptotically stable if and only if:
Tr(J ) < 0 and det(J ) > 0, where Tr(J ) and det(J ) stand for ’trace’ and ’determi-
nant’ of J , respectively.

Therefore, in order to analyze the stability of the equilibrium solution given in
Sect. 5.1, we need to evaluate the sign of Tr(J ) and det(J ).

Taking into account that:

∂ f

∂nHE
1

(ñH E
1 , ñ A

1 ) = (1 − 2β) η11 ñ
A
1 + η

(r)
21 (N − ñH E

1 − ñ A
1 )

−η
(r)
21 ñH E

1 − μ
(r)
2 Î2 (93)

∂ f

∂nA
1

(ñH E
1 , ñ A

1 ) = (1 − 2β) η11 ñ
H E
1 − η

(r)
21 ñH E

1 − μ
(r)
2 Î2 (94)

∂g

∂nHE
1

(ñH E
1 , ñ A

1 ) = (2β − 1) η11 ñ
A
1 (95)

∂g

∂nA
1

(ñH E
1 , ñ A

1 ) = (2β − 1) η11 ñ
H E
1 − 2 η

(r)
11 ñ A

1 − μ
(r)
1 Î1 (96)

we get

Tr(J ) = ∂ f

∂nHE
1

(ñH E
1 , ñ A

1 ) + ∂g

∂nA
1

(ñH E
1 , ñ A

1 )

= −(2β − 1)
η11

η
(r)
11

[
(2β − 1) η11 ñ

H E
1 − μ

(r)
1 Î1

]

+ (2β − 1) η
(r)
21 η11 ñ

H E
1

η
(r)
11 (η

(r)
21 ñH E

1 + μ
(r)
2 Î2)[

(2β − 1) η11 ñ
H E
1 − μ

(r)
1 Î1

]
− η

(r)
21 ñH E

1 − μ
(r)
2 Î2

−
[
(2β − 1) η11 ñ

H E
1 − μ

(r)
1 Î1

]
(97)

Since in Eq. (97) the terms in the square brackets must be positive in equilibrium
conditions and β > 1

2 , then Tr(J ) < 0 if the following inequality holds:

(2β − 1) η11 μ
(r)
2 Î2 x + (2β − 1) η11 η

(r)
21 ñH E

1 x

+η
(r)
11

(
η

(r)
21 ñH E

1 + μ
(r)
2 Î2

)
x + η

(r)
11

(
η

(r)
21 ñH E

1 + μ
(r)
2 Î2

)2

> (2β − 1) η
(r)
21 η11 ñ

H E
1 x (98)
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where

x = (2β − 1) η11 ñ
H E
1 − μ

(r)
1 Î1 > 0. (99)

By observing that all the terms on the left-hand side are positive and that the second
term is equal to the one on the right-hand side, we can conclude that the inequality
(98) is always verified.

Analogously, we can compute:

det(J ) = ∂ f

∂nHE
1

(ñH E
1 , ñ A

1 )
∂g

∂nA
1

(ñH E
1 , ñ A

1 ) − ∂ f

∂nA
1

(ñH E
1 , ñ A

1 )
∂g

∂nHE
1

(ñH E
1 , ñ A

1 )

=
{

− (2β − 1) η11 ñ
A
1 + η

(r)
21 (N − ñH E

1 − ñ A
1 ) − [η(r)

21 ñH E
1 + μ

(r)
2 Î2]

}

·
{
[(2β − 1) η11 ñ

H E
1 − μ

(r)
1 Î1] − 2 η

(r)
11 ñ A

1

}

+
{
(2β − 1) η11 ñ

H E
1 + [η(r)

21 ñH E
1 + μ

(r)
2 Î2]

}
(2β − 1) η11 ñ

A
1

= T1 + T2 (100)

where

T1 =
{

− (2β − 1) η11 ñ
A
1 + η

(r)
21 (N − ñH E

1 − ñ A
1 ) − [η(r)

21 ñH E
1 + μ

(r)
2 Î2]

}

·
{
[(2β − 1) η11 ñ

H E
1 − μ

(r)
1 Î1] − 2 η

(r)
11 ñ A

1

}
(101)

T2 =
{
(2β − 1) η11 ñ

H E
1 + [η(r)

21 ñH E
1 + μ

(r)
2 Î2]

}
(2β − 1) η11 ñ

A
1 (102)

Since T2 > 0, in order to prove that det(J ) > 0, we have to only evaluate the sign of
T1:

T1 = (2β − 1)
η11

η
(r)
11

x2 − (2β − 1) η
(r)
21 η11 ñ

H E
1

η
(r)
11 (η

(r)
21 ñH E

1 + μ
(r)
2 Î2)

x2 + (η
(r)
21 ñH E

1 + μ
(r)
2 Î2) x

(103)

where x is a positive quantity given by (99). From (103), we deduce that T1 > 0 if

(2β − 1) η11 μ
(r)
2 Î2 x + (2β − 1) η11 η

(r)
21 ñH E

1 x + η
(r)
11

(
η

(r)
21 ñH E

1 + μ
(r)
2 Î2

)2

> (2β − 1) η11 η
(r)
21 ñH E

1 x (104)

Since all the terms on the left-hand side are positive and the second term is equal to
the one on the right-hand side, we infer that the inequality (104) is always verified.
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On the other hand, evaluating the expressions (93)–(96) in correspondence of the
trivial equilibrium solution (nHE

1 , nA
1 ) = (N , 0), we easily get that both eigenvalues

of the Jacobian matrix are negative (the equilibrium is stable) if and only if

N <
μ

(r)
1 Î1

(2β − 1) η11

that is, when the endemic equilibrium does not exist.

7 Numerical Simulations

In the following, we present some numerical test cases in order to assess the ability of
our contact-based model to qualitatively reproduce the main features of recent SARS-
CoV-2 spread. We have numerically integrated Eqs. (57) and (58) until an equilibrium
solution has been obtained. By taking into account that the total number of individuals
N is conserved, we have substituted

n2 = N − nHE
1 − nA

1 (105)

in Eq. (57). Thus, Eqs. (57) and (58) form a closed system of equations that can be
solved to give the temporal evolution of the number densities of healthy individuals
(nHE

1 ) and of asymptomatic carriers (nA
1 ). In all the numerical simulations presented

below we have fixed N = 1. To estimate the numerical error, we have compared the
equilibrium solution obtained by integrating Eqs. (57) and (58) and the one computed
analytically using the formulas reported in Sect. 5.1 (where the terms have been rear-
ranged in order to insert in Eq. (83) the expression (105) with N = 1). The agreement
has proved to be very good in all cases considered with the error always within 0.1%.

We remark that our numerical simulations aim only at providing a qualitative
description of the macroscopic evolution of the pandemic corresponding to our model,
and plots do not refer to real data. We will see in the figures that our model is able
to predict the subsequent waves of a pandemic recently observed in SARS-CoV-2
evolution, and analogous scenarios might occur also in other contact-based infections.
Test case (1).

Here we investigate the impact of an extremely contagious variant by setting β = 1
in the stochastic law modeling the interactions between a healthy individual and an
asymptomatic carrier (formula (29)).

(1.a) First, we consider a situation where social restrictions are not applied. There-
fore, we assume that interactions between individuals without symptoms (described
by the parameter η̄11) are much more probable than others:

η̄11 = 1, η̄
(r)
11 = 0.1, η̄

(r)
21 = 0.1.
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Furthermore, we take into account the action of the immune system by choosing:

μ̄
(r)
1 Î1 = 0.3, μ̄

(r)
2 Î2 = 0.05.

Starting from the initial conditions

(nHE
1 , nA

1 , n2)(t = 0) = (0.8, 0.1, 0.1) (106)

Equations (57) and (58) have been integrated and the time evolution of the number
density of healthy individuals (nHE

1 ), positive asymptomatic (nA
1 ) and ill people (n2)

is reported in Fig. 1a. In the same picture, the profile of the time-dependent effective
reproduction number R0 (Eq. 65) is also shown in order to quantify the effectiveness
of virus containment strategies. Since for the chosen parameters the condition (84)
is fulfilled, our system of equations (57) and (58) admits a non-trivial equilibrium
solution given by

(nHE
1 , nA

1 , n2) = (0.3141, 0.1411, 0.5448). (107)

In the framework of an epidemiological analysis, it is of paramount importance to
also evaluate how an endemic equilibrium is achieved. Therefore, in Fig. 2a the phase
portrait, corresponding to the system (57)–(58), is shown in the three-dimensional
space (nHE

1 , nA
1 , n2). From this picture, a characteristic spiral shape of the curves is

evident with peaks and troughs of infections. This behavior closely resembles the
concept of an epidemic wave. Indeed, the SARS-CoV-2 pandemic developed as a
series of waves: surges of new infections followed by declines. Although there is no
a common idea among researchers of what constitutes an epidemic wave, a useful
working definition has been proposed in Zhang et al. (2021), where this concept has
been linked to the profile of the effective reproduction number R0. If R0 is larger than 1
for a sustained period, one can identify this time as an upward period for the epidemic
wave. On the contrary, if R0 is smaller than 1 for a sustained period, this time can be
identified as a downward period for the epidemic wave. Relying on this definition, one
can infer from Fig. 1a the existence of two pandemic waves as suggested also by the
phase portrait in Fig. 2a.
(1.b) In the following, with respect to the test case (1.a), we consider an epidemic
scenario in which treatments against the disease are more effective. Therefore, leaving
all other parameters unchanged, we increase the value of η̄(r)

21 (which describes the rate
of interaction between the medical staff and the infected individuals with symptoms)
by setting η̄

(r)
21 = 0.4. Indeed, in the context of our model, a large value of this

parameter indicates a high transition rate from population 2 to population 1 (healthy
individuals). Again, starting from the initial conditions

(nHE
1 , nA

1 , n2)(t = 0) = (0.8, 0.1, 0.1),

Equations (57) and (58) have been integrated and the time evolution of the number
densities nHE

1 , nA
1 , n2 is plotted in Fig. 1b along with the profile of the time-dependent
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effective reproduction number R0. For this test case, the non-trivial equilibrium solu-
tion is given by

(nHE
1 , nA

1 , n2) = (0.3241, 0.2412, 0.4347). (108)

As expected, the number of sick people is lower than in the previous case (1.a) (see
expression (107)). To complete the scenario, the phase portrait is shown in Fig. 2b.
From these pictures, we note that the duration of the pandemic is shorter and that
the peak of R0 is lower than in the test case (1.a), while the phase portraits are quite
similar.
(1.c) In this test, we assess the impact of vaccination, which affects the response of
both the innate and adaptive immune system. In particular, with respect to the test
case (1.a), we increase the term (μ̄(r)

2 Î2) (which describes the overall response of the
adaptive immune system on individuals belonging to population 2) and we decrease
the term (μ̄(r)

1 Î1) (which models the average action of the innate immune system on
asymptomatic individuals) by setting

μ̄
(r)
1 Î1 = 0.1, μ̄

(r)
2 Î2 = 0.2.

In the frameworkof themodelwederived, large values of the term (μ̄(r)
2 Î2) indicate that

a significant fraction of sick people recovers without specific treatments, while small
values of the term (μ̄(r)

1 Î1) denote a negligible probability for the hyperinflammation
phenomenon to occur. Starting from the same initial conditions previously considered
in the tests (1.a) and (1.b),

(nHE
1 , nA

1 , n2)(t = 0) = (0.8, 0.1, 0.1),

Equations (57) and (58) have been integrated and the time evolution of the number
densities nHE

1 , nA
1 , n2 along with the trend of the effective reproduction number R0 is

shown in Fig. 1c. For the set of parameters considered, our system of equations admits
a non-trivial equilibrium solution given by

(nHE
1 , nA

1 , n2) = (0.1501, 0.5010, 0.3489). (109)

Compared to previous tests, the number of ill persons belonging to population 2 is
significantly reduced. The large fraction of carriers can be explained by taking into
account that we are analyzing an extremely contagious variant (β = 1) in which
each healthy individual interacting with a positive asymptomatic becomes infectious.
Therefore, due to the large number of healthy people, also the number of positive
asymptomatic persons will be higher than in previous tests. Furthermore, this trend
is perfectly in line with the realistic situation created by the administration of Covid-
19 vaccines, which have reduced the number of ill individuals without, however,
preventing people from contracting the virus. Figure1c shows that the convergence
to equilibrium is faster than in previous tests without subsequent epidemic waves, as
confirmed by the phase portrait given in Fig. 2c.
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Test case (2).
In the following, we analyze the evolution of an epidemic driven by a variant with

a lower transmission rate than in the test case (1). Therefore, we set β = 0.7.
(2.a) Here the parameters we use to integrate Eqs. (57) and (58) along with the

initial conditions are the same as in test (1.a). In this case, the non-trivial equilibrium
solution is given by

(nHE
1 , nA

1 , n2) = (0.7671, 0.0684, 0.1646). (110)

As expected, the number of healthy individuals is much higher than in test (1.a), and
consequently, the number of sick people is much lower. Looking at the time evolution
of the number densities nHE

1 , nA
1 , n2 and of the effective reproduction number R0

shown in Fig. 3a, one infers that there are no epidemic waves and the outbreak dies
out very quickly. These features are also confirmed by the phase portrait reported in
Fig. 4a.
(2.b) For this simulation, we have chosen the same values of the parameters and of the
initial conditions as in test (1.b) in order to integrate Eqs. (57) and (58). The non-trivial
equilibrium solution obtained is

(nHE
1 , nA

1 , n2) = (0.7795, 0.1182, 0.1023). (111)

From the comparison with the previous case (2.a), it can be deduced that, as regards
variants with low transmission rates, the effectiveness of medical treatments is not a
decisive factor in reducing the number of sick people, since the equilibrium values
differ only slightly. Indeed, the time evolution of the number densities nHE

1 , nA
1 , n2

and of the effective reproduction number R0, shown in Fig. 3b, along with the phase
portrait, presented in Fig. 4b, indicates that the duration of the epidemic is shorter than
in the case (2.a).
(2.c) In order to evaluate the effects of vaccination, we choose the same parameters
considered in test (1.c). Starting from the same initial conditions, the integration of
Eqs. (57) and (58) leads to the following endemic equilibrium solution

(nHE
1 , nA

1 , n2) = (0.3516, 0.4063, 0.2422). (112)

The comparison of result (112) with formulas (110) and (111) allows one to conclude
that, for variants with low transmission rates, vaccination is not so effective, in terms
of reducing the number of sick people, as it has been observed in the case of highly
contagious variants (see test (1.c)).However, the time evolution of the number densities
nHE
1 , nA

1 , n2 and of the effective reproduction number R0, shown in Fig. 3c, alongwith
the phase portrait, reported in Fig. 4c, confirms that the epidemic ends very quickly,
as expected.

Beyond the simulations presented above, we have further checked numerically that,
if we introduce lockdown measures decreasing the value of the parameter η̄11 in the
test cases (1.a) and (2.a), that is the rate of interaction between individuals without
symptoms, then thenumber of sickpersons is drastically reduced.As afinal remark, it is
interesting to note how the peaks in the temporal evolution of the effective reproduction
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number R0 are always in correspondence (even if not exactly coinciding) with the
peaks in the number density profile of positive asymptomatic individuals (nA

1 ), while
the maximum value of the number density of sick people (n2) is slightly postponed in
time. This trend reflects what has been observed in the Covid-19 pandemic, where the
peak of the infection has always been followed (during different waves), with a slight
time delay, by the peak in the number of ill persons.

It would be also interesting to simulate the kinetic system (14) and (19), possibly
adapting numerical methods for kinetic equations proposed in Bertaglia and Pareschi
(2021), Boscheri et al. (2021) and Degond et al. (2004), and this is scheduled as future
work.

8 Concluding Remarks

In this work, we have exploited the statistical mechanics methods in order to model the
human-to-human mechanisms of a contact-based infection and in particular of SARS-
CoV-2 transmission. Starting fromadescription of the interactions between individuals
based on the Boltzmann equation, we have derived a set of evolution equations for
the size and mean state of each considered population, that is, healthy people, positive
asymptomatic, positive symptomatic, and hospitalized persons. Unlike the epidemio-
logicalmodels that have been developedwithin the kinetic theory framework in the last
few years, our approach does not rely on one of the existing compartmental models,
but we derive a new system of macroscopic evolution equations, which in particular
aims to account for the characteristics of Covid-19. Indeed, our model focuses on
the role of positive asymptomatic individuals in triggering the spread of SARS-CoV-
2 virus. Asymptomatic transmission has been considered as the “Achilles’ heel” of
Covid-19 control strategies. Actually, several studies have demonstrated that asymp-
tomatic carriers have infected a similar number of people as symptomatic individuals
(Boyton and Altmann 2021;Wilmes et al. 2021). Beyond a trivial equilibrium solution
corresponding to nA

1 = nS2 = nHS
2 = 0 (that is, the eradication of the disease), our

model predicts, under suitable conditions on infection parameters, the existence of an
endemic equilibrium which is always asymptotically stable.

It is worth to highlight that, in the present paper, the study of the spread of an
infectious disease is carried out starting from a system of evolution equations for the
distribution functions of interacting populations, while classical compartmental mod-
els are formulated in terms of densities, that is, the average number of individuals
assigned to different categories (susceptible, infected and recovered, in the case of the
SIR model). This approach allows us to take into account the details of the interaction
between people with different viral loads. In the framework of the Boltzmann equa-
tion, the same binary interaction mechanism responsible for the spread of contagion
is exploited to model the recovery of an infected person thanks to the treatments of the
medical staff. These interactions are described by the quadratic Boltzmann operator.
Only the action of the immune system gives rise to a linear collision operator. Com-
pared to our formulation, the compartmental models assume a similar mechanism for
the disease transmission through a direct contact between a susceptible person and an
infected one, leading to a quadratic term in the evolution equations. But the recov-
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Fig. 1 Time evolution of the
initial data (nHE

1 , nA1 , n2)(t =
0) = (0.8, 0.1, 0.1) and of the
reproduction number R0 with

β = 1, η̄11 = 1, η̄(r)
11 = 0.1.

Panel a: η̄(r)
21 = 0.1,

μ̄
(r)
1 Î1 = 0.3, μ̄(r)

2 Î2 = 0.05.

Panel b: η̄(r)
21 = 0.4,

μ̄
(r)
1 Î1 = 0.3, μ̄(r)

2 Î2 = 0.05.

Panel c: η̄(r)
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Fig. 2 Phase portrait of the
evolution of nHE
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ery of individuals is always supposed to occur at a rate proportional to the number of
infectives, thus giving only a linear contribution to the model. Based on these remarks,
in the following, we will show that the macroscopic equations for the evolution of the
size of the populations considered in this work reduce to the classical SISmodel, under
suitable assumptions. In the SIS model, the population is divided only in two groups:
the susceptible (S) and the infected (I ) (Hethcote 2000). It is called SIS model since
individuals return to the susceptible class when they recover from the infection. Let us
identify in our study the healthy people (nHE

1 ) with the susceptibles, and the positive
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Fig. 3 Time evolution of the
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1 Î1 = 0.3, μ̄(r)
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Fig. 4 Phase portrait of the
evolution of nHE
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variant with contagion rate
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asymptomatic (nA
1 ), the positive symptomatic (nS2 ), and the hospitalized persons (n

HS
2 )

with the infective class, as follows:

{
nHE
1 = S

nA
1 + n2 = I

(113)
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Adding equations (53) and (58), one gets

dI

dt
= (2β − 1) η11 S n

A
1 − η

(r)
21 S n2 − μ

(r)
2 Î2 n2. (114)

Since in the SIS model the recovery of infected individuals gives a linear contribution,
we have to require that the second term on the right-hand side of Eq. (114) (which is
quadratic) vanishes, by putting η

(r)
21 = 0. In our analysis, this is equivalent to assuming

that there are no effective treatments for the disease and that the recovery can only
occur thanks to the action of the immune system. Thus, Eq. (114) with this additional
assumption reads:

dI

dt
= (2β − 1) η11 S n

A
1 − μ

(r)
2 Î2 n2. (115)

Since in the SIS model there is no distinction between infected people with or without
symptoms, the densities nA

1 and n2 can be replaced with the generic infective class I .
Indeed, in our study η11 is the rate of interaction between individuals of population 1,
thus η11 n2 = 0, and we can substitute I , given by the second equation of (113), for nA

1
in the first term on the right-hand side of Eq. (115). In a similar way, since the adaptive
immune system acts only on infected people with symptoms, then μ

(r)
2 nA

1 = 0, and
we can replace n2 with I in the second term on the right-hand side of Eq. (115).
Therefore, Eq. (115) becomes

dI

dt
= [(2β − 1) η11] S I − [μ(r)

2 Î2] I . (116)

Taking advantage of the same assumptions considered above, Eq. (57) can be rewritten
as follows:

dS

dt
= −[(2β − 1) η11] S I + [μ(r)

2 Î2] I . (117)

Equations (116) and (117) have the formal structure of the SIS model.
This comparison is not reductive, since, even taking into account more sophisti-

cated extensions of classical compartmental models, the methodology for reducing
our system of equations to them is the same as illustrated above. As an example,
let us mention the SIDARTHE model recently proposed to describe the COVID-19
epidemic (Giordano et al. 2020). This dynamical system considers eight stages of
disease, discriminating between detected and undetected cases of infection and on the
severity of their symptoms. But, despite the greater complexity compared to classical
compartmental models, themathematical structure is the same: a system of differential
equations where the spread of contagion, due to contacts between an infectious and a
susceptible person, gives rise to quadratic terms, while the recovery and the transition
to classes of individuals with a higher level of infection are modeled as linear con-
tributions. These characteristics make the SIDARTHE system intrinsically different
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from our model where the dynamics of the epidemic can be traced back to the binary
interaction between individuals (except the immune response).

Beyond a rigorous mathematical identification, our model is able to reproduce
some aspects of qualitative dynamics of infectious diseases predicted by classical
compartmental models. In particular, we have proved the existence of an endemic
equilibrium which is also typical of compartmental models allowing for re-infections
(like the SIS model) or models with vital dynamics (which include births and deaths).
Indeed, in a SIR model with vital dynamics it occurs that, after the fraction of infected
has been reduced below a certain threshold, the number of susceptible individuals
slowly starts to increase due to the births of new susceptibles. When the susceptible
fraction gets large enough, a second smaller epidemic arises and so on, as the path
spirals toward the endemic equilibrium point. The existence of epidemicwaves, that is,
surges of new infections followed by declines, has been also predicted by our model.
Actually, Figs. 2 and 4 show that the approach to endemic equilibrium is described by
spiral-shaped curves.

To be more specific, we highlight below how different aspects of an infectious dis-
ease transmission can be addressed by changing the value of some relevant parameters
of our model, with a particular focus on the SARS-CoV-2 spread.

(i) The impact of the contagiousness of new variants. By setting β = 1, in the
stochastic law modeling the interactions between a healthy individual and a
positive asymptomatic, an extremely contagious disease is described,while lower
values of β account for less infectious scenarios.

(ii) The effects of government restrictions aimed at limiting the mobility of indi-
viduals. In particular, assuming a high rate of interaction between individuals
without symptoms (e.g., η11 = 1) means that such limitations are not applied,
while lower values of η11 describe lockdown situations.

(iii) The effectiveness of specificmedical treatments. Thekeyparameter in this respect
is η

(r)
21 , which describes the rate of interaction between the medical staff and the

infected people belonging to population 2. If one takes increasing values of η
(r)
21 ,

our model equations allow to study the efficacy of new drugs in order to control
the spread of the disease until its complete (possibly) eradication.

(iv) The role of the innate and adaptive immunity in setting the severity of Covid-19.
The peculiarity of SARS-CoV-2 infection is traced back to a complex interplay
between the virus and the immune system. It involves pathogenic cell activation
leading to hyperinflammation with a major complication of the disease. This
aspect can be taken into account in the macroscopic equations we derived by
choosing large values of the term (μ(r)

1 Î1), which models the average action of
the innate immune system on asymptomatic individuals (who have already con-
tracted the virus). Furthermore, relying on clinical data, our model provides for
the possibility that ill persons recover without specific treatments, by assuming
large values of the term (μ(r)

2 Î2), which describes the overall response of the
adaptive immune system on individuals belonging to population 2. Since adap-
tive immunity can be acquired through the administration of vaccines, which in
turn increase the anti-viral activity of some innate immune cells, our system of
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equations allows one also to assess the impact of vaccination by increasing the
term (μ(r)

2 Î2) and, at the same time, decreasing (μ(r)
1 Î1).

The numerical test cases presented in Sect. 7 highlight the ability of our model to
reproduce qualitatively the salient features of Covid-19, as experienced in very recent
years. Future research should be aimed at a quantitative comparison of the mathe-
matical results with the medical data collected during the recent pandemic, in order
to organize also them in a more systematic way. Indeed, available data are limited,
incomplete, and often heterogeneous. Therefore, researchers, who aimed to carry out
a detailed comparison between model predictions and a realistic epidemic scenario,
used also optimization techniques and specific numerical methods to take into account
the high degree of data uncertainty (Albi et al. 2022). All these issues that should be
handled with particular care justify the qualitative epidemiological study reported in
this paper, postponing an adequate quantitative analysis to future investigations.

Appendix: Preliminaries on Boltzmann Interaction Operators for
Multi-species Systems

The classical kinetic theory for N interacting populations is based on a system of
evolution equations for the distribution function of each constituent fi (t, x, v), i =
1, . . . , N , typically depending on time t ∈ R+, on space x ∈ R

d (with d = 1, 2, 3),
and on a kinetic variable v ∈ 	, specific of the considered frame. Just as an example,
v ∈ R

3 denotes the molecular velocity in gas dynamics (Cercignani 1988), v ∈ R
+

the individual wealth in kinetic models for a market economy (Cordier et al. 2005),
v ∈ [0, 1] the cellular activity in Ramos et al. (2019), and v ∈ R the individual viral
load in the present paper.

In this Appendix, we consider a system of 4 populations that, besides all classical
binary interactions (without transfers), can also give rise to the following (reversible)
interaction with transfers:

1 + 2 � 3 + 4, (A.1)

where a pair of agents of populations (1, 2) moves to populations (3, 4), respectively,
or vice versa.

In such multi-species frame, the space-homogeneous Boltzmann equation for the
distribution fi reads as

∂ fi
∂t

(t, v) =
4∑
j=1

Qi j + Q
i

i = 1, . . . , 4, (A.2)

where Qi j is the binary operator for interactions without transfers involving a pair of

species (i, j), while Q
i
is an interaction operator describing the effects on species i

due to the transfers (A.1).
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In general form, the operator Qi j can be written as

Qi j =
〈∫

	

I i ji j (v,w, η) [ fi (v′) f j (w′) − fi (v) f j (w)] dw
〉

(A.3)

where (v,w) are the pre-interaction kinetic variables of agents (i, j), and (v′,w′) are
the post-interaction kinetic variables. The function I i ji j (v,w, η) in the kernel of the
Boltzmann operator takes into account the probability that the considered interaction
(v,w) → (v′,w′) occurs. The angular brackets denote the integration over all addi-
tional parameters η appearing in the interaction rule (namely in v′,w′) or in the kernel
I i ji j . For instance, in gas dynamics one has to integrate over the impact angles of the
collision (typically, over the direction of the post-collision relative velocity) (Cercig-
nani 1988; Giovangigli 1999), while in interactions involving human beings one has to
integrate over proper random variables taking into account non-deterministic effects
(Cordier et al. 2005; Pareschi and Toscani 2013).

Transfer operators Q
i
may be cast in a similar form

Q
i =

〈∫
	

I hki j (v,w, η) [ fh(v′) fk(w′) − fi (v) f j (w)] dw
〉

(A.4)

where, according to (A.1), the indices are such that

(i, j, h, k) ∈ {(1, 2, 3, 4), (2, 1, 4, 3), (3, 4, 1, 2), (4, 3, 2, 1)}.

The kernel I hki j could involve also suitable Heaviside functions: In gas dynamics,
they account for the fact that an endothermic reaction cannot occur if the kinetic energy
of the ingoing molecules is not enough (Giovangigli 1999; Rossani and Spiga 1999),
and in socio-economic problems they guarantee that post-interaction kinetic variables
remain in the admissible domain (Cordier et al. 2005).

In the pertinent literature, different collision-like operators have been proposed.
Specifically, for a singlemonatomic gas, one can prove the equivalence of the following
formulations of the Boltzmann collision operator (Boffi et al. 1990).

(a) Kinetic formulation:

Q( f , f )(v) =
∫

R3

dw
∫

S2

g I (g, χ) [ f (v′) f (w′) − f (v) f (w)] d�̂′. (A.5)

In the classical form, the Boltzmann collision term is a quadratic operator provided
by the difference between a gain and a loss contribution (Cercignani 1988). In the
gain term, distributions are depending on pre-collision velocities v′,w′ corresponding
to the post-collision ones v,w. The relative velocity of the interacting particles is
denoted by g = v − w = g �̂. The differential scattering cross section I (g, χ)

depends both on the relative speed and on the deflection angle of the relative motion
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χ = arccos(�̂ · �̂′); in addition, the explicit form of the cross section is determined
by the intermolecular interaction potential of the considered gaseous medium. For
instance, inverse-power intermolecular potentials V (d) = d−p (where d denotes the
intermolecular distance and p > 1) give I (g, χ) = g−4/p Ĩ (χ), so that in the particular
case p = 4 (Maxwell molecules) the collision kernel g I (g, χ) is independent of g.
In case of elastic collisions, preserving momentum and kinetic energy, post-collision
velocities are uniquely determined in terms of the pre-collision ones, once the direction
of the post-collision relative velocity is given.

(b) Waldmann formulation:

Q( f , f )(v) =
∫

R3

∫

R3

∫

R3

W (v′,w′; v,w)[ f (v′) f (w′) − f (v) f (w)] dwdv′dw′.

(A.6)

In this probabilistic formulation, proposed in Waldmann (1958), the kernel W (v′,w′;
v,w) represents the microscopic probability distribution for the collision process
(v,w) → (v′,w′). Notice that in (A.6) the integrals range over all possible values
of the ingoing velocity of the partner moleculew and of the output velocity pair v′,w′.

(c) Scattering kernel formulation:

Q( f , f )(v) =
∫

R3

∫

R3

η(v′,w′) A(v′,w′; v) f (v′) f (w′) dv′ dw′

− f (v)
∫

R3

η(v,w) f (w) dw (A.7)

which is related to the Waldmann one by

η(v,w) =:
∫

R3

∫

R3

W (v′,w′; v,w) dv′ dw′ (A.8)

and

η(v′,w′) A(v′,w′; v) =:
∫

R3

W (v′,w′; v,w) dw. (A.9)

It can be easily checked that the transition probability A(v′,w′; v) satisfies the prop-
erties

A(v′,w′; v) = A(w′, v′; v), (A.10)∫

R3

A(v′,w′; v) dv = 1. (A.11)
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Analogous formulations and equivalence results also hold for mixtures of different
monatomic constituents (Spiga et al. 1985). The scattering kernel formalism remains
valid also with stochastic collisions, occurring for instance in social or economic
problems, as in simple market economies or in epidemic models. For stochastic inter-
actions, in which A(v′,w′; v) satisfies only the relationships (A.10) and (A.11), with
v′,w′, v independent variables, one cannot expect conservation of momentum and
energy. In the literature of kinetic equations for socio-economic sciences, it is shown
the equivalence between the collision-like Boltzmann equation and Markovian jump-
processes, described by transition probabilities related to the Waldmann formulation
of the Boltzmann equation (Loy and Tosin 2020).
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