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Abstract
Weaddress the fabrication of nano-architectures by impacting thin layers of amorphousGe deposited
on SiO2with aGa

+ ion beam and investigate the structural and optical properties of the resulting
patterns. By adjusting beam current and scanning parameters, different classes of nano-architectures
can be formed, from elongated and periodic structures to disordered oneswith a footprint of a few
tens of nm. The latter disordered case features a significant suppression of large length scale
fluctuations that are conventionally observed in ordered systems and exhibits a nearly hyperuniform
character, as shownby the analysis of the spectral density at small wave vectors. It deviates from
conventional random fields as accounted for by the analysis ofMinkowski functionals. A proof of
concept for potential applications is given by showing peculiar reflection properties of the resulting
nano-structured films that exhibit colorization and enhanced light absorptionwith respect to theflat
Ge layer counterpart (up to one order ofmagnitude at somewavelength). This fabricationmethod for
disordered hyperuniform structures does not depend on the beam size. Being ion beam technology
widely adopted in semiconductor foundries over 200mmwafers, ourwork provides a viable pathway
for obtaining disordered, nearly-hyperuniformmaterials by self-assemblywith a footprint of tens of
nanometers for electronic and photonic devices, energy storage and sensing.

1. Introduction

Hyperuniform (HU) systems are characterized by the suppression of large-wavelength density fluctuations
owing to a hidden order which is not apparent on short lengthscales [1, 2]. Systems possessing long-range
translational and orientational order, e.g. crystalline structures and periodic fields, represent trivial cases ofHU
structures.More interestingly, aHU charactermay be present in disordered systemswith partial or full
suppression of density fluctuations for small wavevectors (similarly to crystalline solids) and isotropic behaviors
with respect to spatial directions (as for liquids). These features arewell described for point patterns by the
structure factor S(k)with k thewavevector. IdealHU characters corresponds to have a scaling S(k)∼ |k|α for
|k|→ 0 andα> 0. Generalizations have been proposed to account for such a property in systems as, e.g.
heterogeneousmedia as well as scalar and vector fields [2–4]. In experimental settings, quantification of theHU
character (how close a system is to the idealHU case) is typically considered through themetrics

(∣ ∣ ) ( (∣ ∣))= H S Sk k0 max , with conditionH 10−2 andH 10−4 commonly denoting nearly and effective
HU character, respectively [5, 6].
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Materials and architectures possessing a nearly, effective or idealHU character have gained a lot of interest in
recent years. In addition to fundamental physical aspects [2, 7], their importance relies in the novel possibilities
in light [8–18] and carriermanagement with topologically-protected electronic states [19] as well as vortices in
superconductors [20]. A crucial aspect consists offinding a proper fabricationmethod that allows the realization
of aHUmaterial, e.g. small enoughH, at wavelengths of interest for the targeted applications. Design protocols
for the realization ofHUpatterns have been developed [11]. They have usually been combinedwith top-down
approaches. Although powerful, see e.g. [16, 17, 21], such approaches usually showpoor scalability. This
becomes crucial for patternsmeant for large-area applications with features on the nanometer scale, such as
metals and nanostructured semiconductor films for photonics applications.

Devising scalable approaches for the fabrication ofHUmaterials featuring nanostructured architectures
represents then an important goal. Self-assembly paradigms or hybrid bottom-up/top-down approaches have
been exploited for decades to obtain nano- andmicro-structures from film-like settings [22–24]. Self-assembly
based on spinodal-like, solid-state dewetting has also recently proved successful for the fabrication of effectively
HU, SiGe-based nano-architectures with a footprint of about 100 nm [25]. Such an approach can be scaled-up to
large surfaces [26].Moreover, soft nano-imprint lithography of sol-gelmaterials (such as silica and titania)was
also exploited to fabricate nearly-HUmetasurfaces using dewettedmicro-and nano-architectures as hard
masters [18]. Table 1.

A remarkable example of self-assembly in crystalline and amorphousGe semiconductor thin-films consists
of the impact of ion beams, widely investigated both from experimental [27–30] and theoretical point of views
[31–33]. Formation of periodic, ordered [34, 35] and disordered nano-architectures with this approach has been
largely addressed so far, andwe thus refer the reader to the existing literature [28, 31, 36, 37]. Central aspects of
this approach are its versatility, as the features can be tuned by varying the ion beamparameters (e.g. ion species,
energy, and dose [30, 38], incidence angle [39], sample temperature [27] and stochiometry [40]) and processable
surface that can reach 200mmwafers. These structures can also extend over several hundreds of nanometers in
depth, below the surface, resulting in actual three-dimensional, porous nanoarchitectures with an average cavity
radius as small as a few tens of nm [40, 41].

Here we report onGe-based nano-structures obtained by the impact of a high-energy, Ga+ ion beamonGe
layers deposited on silicon on insulator (SOI) resulting in ordered and disordered nano-architectures and
characterize theirmorphological features.We show the formation of strongly anisotropic andwavy structures as
well as isotropic disordered ones, obtained by adjusting ion current, supplied dose, and scanning parameters.
We focus then on the isotropic disordered pattern, being themain target of this study, andwe discuss its features.
The nearly-HU character of the disordered structures is assessed through the analysis of their spectral density
accounting for the formation ofGe-based nearly-HUnano-architectures having a record footprint of about
40 nm. The analysis of theMinkowski functionals of the patterns further assesses their deviations from a
(Gaussian) randomfield and supports the presence of correlations in the patterns. A proof of concept for
potential applications is then given in section 4, showing peculiar reflection properties of the resulting
nanostructured film. For the sake of readibility, we report in themain text themain evidence and results, while
including additionalmaterials in the Supporting Information. Conclusions are summarized in section 5.

2. Results

2.1. Experimentalmethods
Weused several kind of substrates where very similar structures can be obtained.Here, in thanmain text, we
address only three samples, A, B andCdescribed in detail in table 1.On each sample the FIB process has been
changed producingmany different patterns.However, for all the samples, theions and their energy is kept
constant (Ga at 30 keV). For each of them, the FIB dose and scan features are specified in the corresponding
figure and in the corresponding text.

a-Ge deposition on SOI is performed as follows: after chemical cleaning (5 seconds in 10%HF solution in
H2O inN2 atmosphere), amorphousGe is deposited bymolecular beam epitaxy (Riber R32, in ultra-high

Table 1. List of samples, composition of their layers and FIB scanning conditions.We report the beam
energy (keV), angle of incidence (degrees) and scan strategy (individual andmultiple, respectively S
andM).

Sample Composition BuriedOxide FIB energy FIB angle FIB scan

A 50 nm a-Ge/7 nmSOI 2 μm 30 keV 0 deg. S andM

B 50 nma-Ge 30 nm 30 keV 0 deg. M

C 200 nma-Ge 300 nm 30 keV 0 deg. M
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vacuumof∼10−10 torr, at room temperature and growth rate of 10Å/min). a-Ge deposition on SiO2 is
performed as on SOI but without chemical cleaningwithHF.

Weused a dual-beamFEI StrataDB235withGa+ (atomicmass 31 amu) liquid-metal ion source focused ion
beam (FIB) and a SFEG source for the scanning electronmicroscope imaging (SEM).We used ion currents
within 15 and 1000 pA at 30 keV. The samples are kept orthogonal to theGa ion beam. The FIB beammoves
horizontally, from the top left part of thewindow and line-by-line, raster-scans the sample surface, down to the
bottom right point.

Monte Carlo simulation ofGa ion range at 30 keV andnormal incidence in bulkGe shows thatmost of the
ions stopwithin thefirst 50 nmwith a broadening of about 22 nm. This relatively small penetration accounts for
the fact that themorphologies observed onGe samples (bulk and thin films) implantedwithGa obtained for a
defined dose and scanning conditions are very similar.

2.2. Pattern formation for single andmultiple scans
Wenowdiscuss two different scanning conditions: single scans andmultiple scans. For both cases we compare
patterns obtainedwith similar ions doses.

For single scans (sample A,figure 1(a)), the ion beam resolution is set to low (256× 221 pixels), medium
(512× 442 pixels), and high (1024× 884). At 50000×magnification (used for themilling process), thefield of
view has a side of 6080 nm. Thus, each pixel is respectively separated by 24, 12, and 6 nm for low,medium, and
high resolution. The ion current was fixed at 30 pA, corresponding to a beamdiameter of about 15 nm. Thus,
only low-resolutionmodes do not result in a beamoverlapping fromone point to the other. As shown infigure
1(a), different resolution impacts the finalmorphology with different features. For the sake of thoroughness we
mention that in these FIB conditions using thin film of a-Ge on SOI or bulk c-Ge as substrate does not play a role
owing to the high ion dose in use.

The disordered hyperuniformpatterns shown in this work can be obtained in a rather broad range of FIB
parameters. Here, among all the results, we display only those obtained in similar conditions (e.g. ion dose about
1016 ion/cm2 or larger,figures 1, 2 and 3(b)). Only in one case we display a lower dose of about 1015 ion/cm2 in
order to show the early stages of the pattern formation (figure 4(a)). Other conditions (e.g. number of FIB scans,
frame time are provided in the Supplementary Information).

Pattern formation by ion beam impact is a complex phenomenon [42] and its analysis goes beyond the scope
of this paper. Herewe refer the reader to the theory of pattern formation in references [31, 36, 37, 39, 42–44]
where the role of different parameters (e.g. beam energy, ionmass, angle of incidence,mass redistribution and
curvature-depending sputtering) are considered.When the ion beamand the processedmaterials are not
composed of the same element, as in our case, binary compounds theory should be taken into account as

Figure 1. Influence of FIB single scanningmode. Sample A. (a)High-resolution scanning electronmicroscopy (SEM) images of aGe
layer on silicon on insulator (SOI) processed by FIBwith a single scan strategy using low,medium, and high resolution (respectively
256 × 221 pixels, 512 × 442 pixels and 1024 × 884 pixels)with ion beam fluency in the 1015 ions cm−2 range. (b) SEM image of aGe
layer on SOI processed by FIBwith amultiple scan strategy and high resolution. In this condition, high and low resolution exhibit the
same finalmorphologywith a nearly-HU character. (c) Spectral density ( )c k for the samples illustrated in panels (a) and (b). The
white-to-black color scale is saturated at ( ( ))c k0.75 max  .K corresponds to thewavevector length at which the ( ( ))c kmax  is obtained.

3
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showcased in reference [44] andmore specifically forGe in reference [39]. In this latter case that we consider in
ourwork, other phenomena are expected to play amajor role in patter formation, such as vacancy clustering
[29, 30], ion-inducedmelting of the a-Ge layer [45] and swelling by atomdisplacement [41, 43].

Different ions (e.g. Ar+, Xe+, Kr+) can producewavy structures on Si andGewafers [46–48]. However, the
porous structures observed here are very specific ofGe. It is alsoworthmentioning that similar patterns can be
obtained inmetals under strong laser illumination [49] and ion beam impact in [50, 51].

3. Pattern analysis

Global features of the patterns as infigure 1 can be analyzed by looking at their spectral density ( )c k . It provides
the generalization for the information conveyed by the structure factor S(k) for point patterns [2]. The SEM
images collected for the structures (c.f. figure 1 for sample A)well resolve the region occupied by the solid phase
with respect to the surrounding vacuum. Therefore we consider the spectral density ( )c k for a two-phase (solid-
vacuum) system [3]. It is based on an indicator function:

⎧
⎨⎩

( ) ( )( ) =
Î
Ï





r
r
r

1, ,
0, ,

1s s

s

with r äΩ the spatial coordinates and s the regionwith grey-scale values above a given threshold. ( )c k then
corresponds to the Fourier transformof the autocovariance function [3, 52]:

( ) ( ) ( ) ( )( ) ( )c f= -r r , 2s s
2

2

with

( ) ( ) ( ) ( )( ) ( ) ( )= á ¢ ¢ + ñ  r r r r , 3s s s
2

the two-points autocorrelation function and ( )( ) ( )f = á ¢ ñ rs s the volume fraction of the solid phase. The spectral
density can be computed directly as [52]:

Figure 2. Spectral density and assessment of the nearly-HU character. Sample A. (a)Radial distribution of the normalized spectral
density for sample A averaged over 50 images of different location irradiate with the same dose of 8 × 1016 ions cm−2 (see the
Supplementary Information for a composition of all the images). The shaded grey areas displays the variability of the spectral density
measured over all the 50 repetitions of the pattern. (b) Log-log plot for the curve in panel (a) focusing on the region |k|/K � 1 and
showing the decay for |k|→ 0.
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∣ ∣

∣ [ ( ) ]∣ ( )( )c f=
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with  the Fourier transform and |Ω| the area of the images. The decay of ( )c k for k→ 0 conveys similar
information to S(|k|) [2, 3].7

The spectral density for the patterns obtained on sample A infigure 1(a) is shown in thefirst three panels of
figure 1(c). The structures exhibit anisotropic arrangements withmarked periodicity. The characteristic
frequencyK (where the peak of ( )c k is observed) is reported in the figures and points to characteristic length
scales 2π/K. For low resolution, the structures present a higher degree of disorder which is then reduced for
larger resolution. The patterns are also found to exhibit slightly different predominant orientations>83° tilt
with respect to the scan direction,medium resolution 75°–83°, and low resolution 61°–70°. As expected for
(partially-) ordered structures, the corresponding spectral density show an exclusion zone at small wavevectors.
This analysis shows that, depending on how the ions are supplied, different anisotropic structures can be
obtainedwith tuneable disorder.

A behavior similar to the patterns illustrated above in terms of suppression of correlations at large
wavelength (with an exclusion zone at small wavevectors), has been obtained through amultiple scans strategy,
using an overall dose of 9.1× 1015 ions cm−2 (figure 1(b)). However, this time the final structure features a
spectral density ( )c k with isotropic angular distribution (last panel infigure 1(c) for sample A) that corresponds
to a disordered and uniformdistribution of objects. Exploring the three different resolution configurations
always provides the samemorphology featuring connected and disordered structures, evenwhen using an
overall dose comparable to that of a single scan (see Supplementary Information).

Beyond raster scanswith a small spot (as shown infigure 1(b)), sample A), disordered, porous a-Ge can be
obtained also by ion impact on a single large spot (see the Supplementary Information). This demonstrates that

Figure 3.Disorder and correlations of spontaneous patterns. Sample A. (a)Minkowski functionals analysism1,2(m0) for sample A
(50 nm thickGe layer atop 7 nmSOI) exposed tomultiple scans and high resolutionwith an overall dose of 2.7 × 1015 ions cm−2.
Continuous lines represent the trend ofm1,2(m0) for aGaussian randomfield. The insets show SEMmicrographs with details of the
sample’s surface. (b) Same as (a) for 8.02 × 1015 ions cm−2 dose.

7
Interestingly, results similar to the one reported in the following can be obtained by sampling the solid phasewith randomly distributed

points and computed S(k).
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the fabrication process can be scaled tomuch larger surfaces as it does not require a high lateral resolution.
Nonetheless, the possibility of creating these patterns over small andwell-defined areasmay allow to integrate
themwithin other devices.

Figure 4. Light reflection fromporous a-Ge. (a)Reflection fromsampleB (50 nma-Geon30 nmthickSiO2)normalizedby thewhite tungsten
lampused for illumination.Opensymbols correspond toflat samplebeforeFIBprocessing,whereas continuous lines are impactedareaswitha
multiple scanandhigh resolutionapproach.Theoverall doseson the samples are reported in the legend. Spectra are collected inbrightfield
illuminationwitha100×magnificationobjective lens,numerical aperture0.9 (collectionangle about±64degrees, lateral, resolution∼6 μm.
Right inset: fromtop tobottom,bright-field imagesof the impactedareaswithdoses ranging from0to2.3× 1016 ionscm−2.Theareas
highlightedwith squares are those selected for spectroscopy. (b)Sameas (a) for sampleC (200 nmthicka-Geon30 nmSiO2).

6

Phys. Scr. 98 (2023) 115953 J-BClaude et al



Wenow further asses the disorder found in the case of uniform structures.We provide a quantitative
assessment of theHU character of the uniform and disordered pattern infigure 1(b) and address their scalability
by analyzing 50 separate images in different points on sampleA (see a collage in the Supplementary Information).
Infigure 2, we report the normalized radial distribution of ( )c k averaged over all the analyzed images. Grey
areas show the range of variability of the results across the different images. Figure 2(a) shows amarked peak at
about 0.16 nm−1 corresponding to a characteristic length-scale of∼39 nm (±4 nm).We observe a decay of ( )c k
toward zero, sampled up to the limits of the analyzedwindow, well approximated by |k|αwithα≈ 3.5 close to
|k|/K= 1 (see log-log plot infigure 2(b)).

An extrapolation of ( )c 0 through fitting allows to estimate aH-metric value ofH≈ 2 · 10−2 for the averaged
( )c k , andwithin a rangeH ä [8 · 10−3− 3 · 10−2] among the analysed samples. This value is compatible with a

nearly-HU character [5, 6] similarly to other systemswhere correlations andHU character emerge
spontaneously [53, 54].

The features of the disordered structures can be further analyzed byMinkowski functionals. These tools
allow for describing the topological features of patterns [25, 55, 56]. Importantly, they can be used as a test to
determine the deviation toGaussian randomfields. These deviations can be related to underlying short-range
interactions and non-linear dynamics [57, 58]. It is worthmentioning that Gaussian randomfieldsmay be
ideally constructed to be hyperuniform [4]. This analysis, therefore, complements the quantification of the
hyperuniform character, namely the results reported infigure 2 for sample A, with further robust insights on the
mechanismunderlying the pattern formation (see, e.g. the assessment of spinodal-like structures in [25]).

We plot averagedMinkowski functionals ( ¯ ) ( ∣ ∣) ( )¯r = W rm M1i i withMi the non-averaged functionals
and |Ω| the total size of the image. r̄ is an indicator function such that ¯ =r 1 for ¯r r> and ¯ =r 0 for ¯r r<
with ρ ä [0, 255] the grey-scale value in a given position (pixel) and r̄ a threshold that is varied from the
maximumandminimumvalue of ρ [25, 57] (figure 3, sample A). ( ¯ )rm0 is the fraction of |Ω| occupied by the
non-zero region in r̄ ,as ( )r̄M0 represents the area of ¯ =r 1.m1(ρ) is the average of the boundary lengthU
between the areas where ¯ =r 1and ¯ =r 0, as ( )¯p= rU M2 1 .m2(ρ) is the averaged Euler characteristicχ, as

( )¯c p= rM2 .With thismethod, the results are independent of image saturation and contrast [25, 57].
m1,2(m0) assess the deviation from a randomfield (solid lines infigures 4(a) and (b), sample A) and eventual

non-linearity [31, 59] of the underlying pattern formation dynamics [57].We observe significant deviations
from aGaussian random field ofm1(m0) andm2(m0) for porousGe irradiatedwith 8.0× 1016 ions cm−2 (figure
4(b)), which increase with increasing the dose. Other FIB settings (e.g. lower beam energy), as in T. Bottger et al
[30] result in disordered structures very close to aGaussian randomfield (see the Supplementary Information).

Despite the fact that the disordered patterns reported in this paper have already been shown in the past in
manyworks and that it is well known that the dynamics underlying the formation of these patterns is non-linear,
a complete analysis of the topology usingMinkowski functionals had not yet been done [60]. As previously
reported for hyperuniformpatterns obtained by spinodal-like dewetting ofmetals [61], polymers [58] and
semiconductors [25], theMinkowski functionals catch and quantify the deviations of a disordered pattern from
aGaussian randomfield accounting for the presence of non-linearity in the underlying phenomenon. In our
case (and also comparing our results with the literature where beamswith lower energywere used [30], see the
Supplementary Information), it is clear that this theoretical framework accounts for the progressively-increasing
importance of non-linear effects in the pattern formation dynamics.

4.Optical properties

Finally, we address the changes in light reflection from the impacted areas featuring a nearly-HU character for
sample B andC. A spectroscopic characterization of light reflection performed in bright-field illumination
reveals strong changes of optical response in the processed areas with respect to the flat counterpart (figure 4).
SEM images of the impacted areas for the patterns investigated by optical spectroscopy for sample B are provided
in the Supplementary Information.

The 50 nm thick a-Ge layer deposited atop 30 nm thick SiO2 (sample B) shows a drastic reduction in the
reflected light intensity when impactedwith a dose larger than∼5× 1015 cm−2 with amultiple scan strategy and
high resolution. Aminimum in reflection is observed for a dose of 1.2× 1016, that is close the value for the onset
of the dHUpatterns as previously highlighted infigures 1(b) andfigure 3(b). For larger doses, exceeding
1.3× 1016 cm−2, a red colorization appears. From the spectroscopic investigation, we attribute this feature to
enhanced absorption at short wavelength, cutting the blue light reflection (up to about 25 times larger than the
flat counterpart).

Qualitatively similar results are obtainedwith a 200 nm thick a-Ge on 30 nmburied oxide (sample C, figure
4(b)). However, in this case, a reduced reflection at short wavelength is not present (the spectra are less structured
with respect to the previous case of thin a-Ge). Provided the presence of several layers with different optical

7
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constants, the overall response to illumination (e.g. the color) is also determined by etalon effects and by the
disordered network offilaments as also found in similar disordered structures [62, 63].

FromMonteCarlo simulations runwith SRIM software (figure 5)weunderstand that for a 50 nm thick a-Ge
(as in sample B) the full layer is impacts by theGa ions. As such, the optical properties of Ge are heavily affected
by the implant. For the thicker sample, with a-Ge of 200 nm, theGa ions stop in the top layer. Thus, beyond the
etalon effects thatmight impact the optical response, Ga ion implant can be also a potential origin of the
observed difference between thin and thick a-Ge.

Qualitatively similar results in light reflectionwere recently reported for porousGe obtained by ion implant
[64] although the nearly-dHU character of the patterns was not reported. In those cases, at visible frequency, a
reduction of about a factor of 3with respect to the flatGe case was shown, whereas for our patterns an overall
reduction up to a factor of 4 (or larger at somewavelength) can be obtained. This improved performances of our
devices can be ascribed to afiner tuning of the implant conditions.

The typical back-scattering of light fromdHU structures showcases a ring in the far field [15, 18, 65].
However, for structures with such a small footprint as those showed here (K0.16 nm−1, figure 2, sample A) and
in reference [64] the scattering in such a cone cannot couple to the far field and stays trappedwithin the
underlying substrate. This can explain the good anti-reflection properties displayed by the textured a-Ge. Thus,
despite it is not possible to directly link the optical response of these nearly-dHU structures to their the dHU
character our evidence further confirm the relevance of thesematerials for light trapping as also thoroughly
shown in recent reports [15, 65].

5. Conclusions

In conclusion, we showed that impacting a thin layer of Gewith an ion beam results in ordered and disordered
structures with a nearly-HU character. Their typical size is the smallest reported so far for analogousHU systems
[21, 25, 65]. Provided the possibility to change stochiometry by Si alloying [40], tune the size of the pores by
changing ion dose [29, 38] orGefilm thickness [41] and also obtain truly 3D structures [29, 41], this fabrication
approach has considerable potential for overcoming the limitations of conventionalmethods for
nanoarchitectures withHUcharacter [66].
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