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We resort to X-ray constrained wavefunctions in order to
separately analyze crystal field and correlation effects in
ammonia. With this aim in mind, we compare the electron
density and the amount of electron localization in different
molecular regions derived from three different calculations: the
isolated molecule, the solid-state and the X-ray constrained
wavefunctions. While the crystal field effects lead to a
contraction (localization) of electron pairs, the introduction of
correlation as a correction from the experimental density leads
to a compensating effect that diffuses back again the electron

pairs. We have also compared the effect on the most widely
used methods in solid state, HF and DFT, showing that (as in
molecules) correlation has well differenciated effects, with DFT
overdelocalizing. It is now well known that approximate func-
tionals have errors in the density reconstruction and in the
energy estimation. Resorting to experimental densities thus
allows expanding the separation of the errors in the functional
and the density in solid state, where correlated wavefunctions
are not easily available.

1. Introduction

Correlation energy is defined as the difference between the
exact and Hartree-Fock energies. Even though it constitutes a
minimal part of the energy of the system, typically around 1%,
it is responsible for some of the most important chemical
phenomena. As an example, correlation is fundamental to
understand dispersive interactions, which dominate the kinetics
of reactions through the stabilization of transition states.[1]

Within wavefunction approaches, correlation is usually esti-
mated resorting to highly accurate calculations, being CCSD(T)
the gold-standard, but these post-HF calculations are extremely
costly and hence their application is not feasible for big
systems. This is especially the case of solid-state calculations,
where correlation estimates have only recently been imple-
mented in some widespread codes.[2] In general, solid-state
codes are dominated by Density Functional Theory, where the
lack of systematic improvements makes it very difficult to

estimate the effects of correlation. This is especially worrisome
if we consider that correlation dominated behaviors, such as
superconductivity or topological insulators, have become hot
topics within the solid-state community. As an example,
topological insulators have given rise to more than 70,000
citations in 2020 and 470,000 citations over the years (Web of
Science, 2021). Hence, estimating the relevance of correlation in
solid-state has become an unsolved issue, where two opposite
aspects compete: big systems require the use of DFT, but DFT
does not always provide a good estimate of correlation.

An alternative way has recently been developed, which
opens the door for the estimation of correlation in solid-state.
Jayatilaka and Grimwood[3] proposed to couple single-determi-
nant wavefunctions (HF and DFT) with experimental X-ray
diffraction data. More recently some multi-determinant wave
function approaches have been also recently proposed.[4–7]

Within DFT, two errors are usually coupled: those coming from
using incorrect densities, and those due to the lack of the exact
functional. The work by Burke et al.,[8–10] where DFT energetics
was corrected thanks to the use of HF densities, was the first
indicator that electron densities must be properly taken into
account. The final proofs in this direction came in 2017,[11,12]

when some functionals were shown to lead to important errors
in the electron density, in spite of improvement in the energies.
The alternative correction method consists in resorting to the
experimental densities. Once these densities have been cor-
rected for thermal effects, they provide the perfect basis for i)
separating density-functional effects and ii) estimating the
errors coming from the lack of correlated densities. It is
important to recall that both DFT and HF are related to errors in
the electron density that can be collected under the umbrella
of “delocalization error”. Density functionals tend to over-
delocalize and artificially spread electrons in the molecule.[13,14]

Instead, HF tends to localize the charges on the core of the
atoms.[15] Hence, the inclusion of correlation with the Jayatilaka
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and Grimwood approach should directly reflect the effects of
delocalization error, enabling to also narrow down the errors in
the functional.

The X-ray constrained wavefunction (XCW) strategy pro-
posed by Jayatilaka and Grimwood is formally a single
molecule-like technique that consists in finding the wave-
function that not only minimizes the energy of the system
under examination, but that also reproduces collected exper-
imental X-ray structure factors amplitudes within the limit given
by the experimental uncertainties. In other words, the method
aims at minimizing the following functional:

L Y½ � ¼ E Y½ � þ l c2; (1)

where E Y½ � is the electronic energy of the system, χ2 is the
statistical agreement between experimental and calculated
structure factor amplitudes (see below for more details), λ is an
external multiplier that is manually adjusted during the
calculations and that gives the strength of the experimental
constraints. For the sake of precision, it is important to note
that the method does not introduce any constraint on the
single values of the structure factor amplitudes. In fact, the
method should be better renamed as X-ray restrained wave-
function (XRW) technique, as it was actually already proposed
by Ernst et al. in a previous work that mainly aimed at studying
the capability of the Jayatilaka approach in capturing the crystal
field effects on the electron density.[16]

In particular, the χ2 statistical agreement between the
computed and experimental structure factor amplitudes (Fc hð Þ
and Fexp hð Þ, respectively) is given by this expression:

c2 ¼
1

Nr � Np

X

h

½h Fc hð Þ � Fexp hð Þ�2

sðhÞ2
; (2)

with Nr as the total number of unique reflections, Np as the
number of adjustable parameters used (usually only the
external parameter λ), h as the triad of Miller indices which
characterizes the reflection, s hð Þ as the experimental uncer-
tainty associated with the experimental structure factor ampli-
tude Fexp hð Þ, and η as an overall h-independent scale factor that
puts Fc hð Þ on the same scale of Fexp hð Þ. It is worth noting that,
by definition, χ2 is the probability distribution towards which a
distribution of random squared differences tends. In this case,
χ2 is normalized by the number of degrees of freedom
(Nr � Np). Therefore, for an adequate model and proper weights,
the XCW calculations should stop when c2 ¼ 1,[17] which is the
expected value for the normalized sum of weighted squared
differences in equation (2) (i.e, the sum of the squared differ-
ences of the calculated and experimental structure factor
amplitudes divided by the corresponding squared experimental
uncertainties), if they are assumed as uncorrelated Gaussian
random numbers with a mean value of zero.

To cite a few examples of applications, the XCW approach
has been used to carry out the topological analysis of crystal
fragments,[18] to investigate the effect of the crystalline
environment[19] and to analyze non-centrosymmetric crystals.[20]

The respective wavefunctions have also been the aim of in-

depth theoretical chemistry analyses, as the availability of
orbitals from experimentally constrained optimizations enabled
the reconstruction of Electron Localization Indicator (ELI)[21] and
Extremely Localized Molecular Orbitals[22,23] from X-ray diffrac-
tion data. Indeed, having access to the orbitals, enables to
analyze electron localization. Note that the localization concepts
throughout the text refer to real space localization, under-
standing by such the localization of electron pairs as revealed in
non-metallic cases by localized orbitals and localization indexes
such as ELF or LOL. These viewpoints converge in the case of
perfectly localized orbitals.[24] In order to avoid problems of
selection of orbitals, here we will mainly focus on the Electron
Localization Function (ELF). ELF has been shown to provide a
measure of electron pairing by means of kinetic energy
densities.[25] Starting from a monodeterminantal kinetic energy
density, t rð Þ, and taking away the bosonic contribution (second
term in the righthandside of equation 3), we have the so-called
Pauli kinetic energy density, tP:

tP rð Þ ¼ t rð Þ �
1
8
jr1j2

1
(3)

Note that the bosonic contribution is an imaginary refer-
ence where all electrons are placed in the same orbital to yield
the fermionic calculated electron density. This reference allows
to get insight into the increased local speed of electrons due to
their fermionic nature. This quantity is then divided by the
Thomas-Fermi kinetic energy density, tTF, and remapped so that
it runs from 0 to 1:

ELF ¼
1

1þ ð tPtTFÞ
2 (4)

In this way, ELF is close to 1 when electrons are localized
(e.g. atomic shells, bonds and lone pairs) and close to 0 in
between highly localized regions.

The aim of this work is to expand the analysis performed by
Jayatilaka and collaborators in a series of publications related to
localization and the crystal environment of ammonia.[19,20,26] In
those previous reports, the analysis focused on the effects of
the crystal environment on the electron localization. They used
electron localization function and the Fermi hole mobility
function to distinguish the electron localization information
derived from X-ray constrained wavefunctions for crystals of
ammonia, urea and alloxan. They found that the electron
density flows from the lone-pair region to the opposite side of
the nitrogen atom (between the hydrogen atoms) for
ammonia.[26] For the sake of completeness, in this context it is
also worth mentioning two separate studies that aimed at
evaluating the capability of the XCW approach in capturing
electron correlation and crystal field effects on the electron
density, although, in those investigations, only theoretically-
generated structure factors were used.[16,27]

In this work, we would like to focus our attention on the
effects of electron correlation on the electron density, intro-
duced by the use of experimental X-ray data as compared to
correlation-lacking calculations. In addition, we will also
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compare different computational approaches, as a way to
elucidate their effects on the electron density as we go from
the isolated molecule to the crystal.

2. Results and Discussion

We will first analyze the changes in energy and electron density
as λ increases. Results depend on the choice of the (c2; l) pair.
Hence, in the following we will focus on each part of this pair.
First we will focus on a given c2, i. e. a similar agreement with
experimental data. Secondly, we will briefly focus on results for
a given λ, i. e. on the influence of a given weight from the
experimental data constraints.

2.1. Electron Density and Energy

Figure 1 shows the agreement between experimental data and
the XCW and the changes in energy for HF and DFT
calculations, as the λ value increases (DE ¼ El � El¼0). It is easily
noted that as the agreement between theory and experiment
increases (i. e. c2 decreases), the energy of the system increases
as expected from the variational principle. Indeed, for HF(DFT)
the minimal energy is obtained for the converged SCF at l ¼ 0,
so including a constraint (even if it goes towards more “correct”
densities) will increase the calculated energy.

However, different trends are observed for HF and DFT. At
the beginning (l ¼ 0), DFT calculations have better agreement
with experiment than HF: c2 ¼ 9:34 and 10.89, respectively.
However, from l ¼ 0:002 both HF and DFT lead to similar
results with negligible χ2 differences (see Dc2 vs λ in Figure S1).

Nevertheless, from this point on, the changes in
DDE ¼ DEHF � DEDFT increase significantly, with DFT providing
lower energies (see DDE vs λ in Figure S1).

The point where c2 � 1:0 is usually taken as the reference
(green line in Figure 1). In spite of the fact that this occurs at
nearly the same λ value for both methods
(DlHF� DFT ¼ � 0:0011), the DEHF is noticeably larger for HF. This
is in agreement with recent DFT developments, in which HF

densities are found to be closer to the real ones, but the lack of
opposite spin correlation leads to better energy estimates from
DFT.[8] Finally, for large λ values, the changes in energy are
more important than the changes in c2, thus becoming an
unrealistic physical situation. The final c2 obtained with
l ¼ 0:03 was 0.57 for HF and 0.58 for DFT.

The effects of λ on the electron density are subtle at this
level, but can be followed thanks to the topology of the atomic
graph of nitrogen. The atomic graph condenses the information
of the Laplacian of the electron density, r21 rð Þ, in a set of
critical points (CPs) and atomic graph paths. The set of critical
points needs to satisfy Euler’s formula for a polyhedron
V � E þ F ¼ 2, where V corresponds to the vertices (or local
charge concentrations regions, CC), E are the edges and F are
the faces (or local charge depletion regions, CD). Each critical
point is classified with the index w;�sð Þ where ω and �s are
its range and signature of the eigenvalues in the Hessian matrix
of r21 rð Þ. The vertices correspond to 3;þ3ð Þ CPs, the edges are
formed between a pair of flux lines originated from 3;þ1ð Þ CPs,
and every face in the polyhedron has a (3,� 1) CP in the center.
Figure 2 shows the atomic graph of the nitrogen atom in the
ammonia molecule calculated at the point where c2 � 1:0 with
the HF method (similar results are found for DFT, see Figures S2
and S3 in S.I.).

In order to follow the main localization regions, we focus on
the CPs related to the lone pair of the nitrogen atom and the
N� H bond (see Figure 2). Figure 3 shows the behavior of these
CPs as λ increases. It can be seen that λ has an opposite effect
on the lone pair and the N� H bond. Introducing the constrain
to fit experimental data leads to the the delocalization of the
nitrogen lone pair: it moves away from the nitrogen core and
decreases its charge concentration (less negative Laplacian).
Instead, the N� H bond localizes: its charge increases (more
negative Laplacian) and it comes closer to the nitrogen core.
These are the expected results for HF: the most delocalized
unit, the lone pair, was overlocalized with HF, so it delocalizes

Figure 1. Variation of agreement statistic, c2, and changes in total energy,
ΔE, with λ values for HF and DFT (B3LYP) calculations in NH3.

Figure 2. Atomic graph of nitrogen atom in ammonia molecule resulting
from an XCW calculation at HF level with c2 � 1:0. 3;þ3ð Þ CPs, represented
with purple color, are CC critical points, (3,–1) CPs, yellow points, correspond
to CD critical points and red points are 3;þ1ð Þ CPs. The critical points of
charge concentration in the region of the lone pair (LP) and bond between
N� H atoms are indicated.
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as λ increases. On the contrary, for bonds we observe a
localization when correlation effects are introduced.

2.2. Crystal Field and Correlation Effects

This section focuses on results for c2 � 1 with experimentally
constrained HF and DFT calculations (l ¼ 0:0089, c2 ¼ 0:9969
for HF and l ¼ 0:0103, c2 ¼ 0:9980 for DFT) and the def2-TZVP
basis set. It is interesting to analyze the effects of crystal field
and electron correlation described by the XCW wavefunction as
the result of two separate steps: at a first step passing from the
molecular calculation (IM) to the solid-state calculation (Cry)
with the same method (i. e. l ¼ 0) shows the crystal field effects.
At a second stage, comparing the solid-state calculation with
the X-ray constrained wavefunction (XCW, l6¼0) shows the
effect of correlation overestimated by DFT (HF). Figure 4 shows
the effects on the 3D localization of these two progressive
stages thanks to the ELF isosurfaces at ELF ¼ 0:9. In order to
compare the different effects depending on the method, both

HF (Figure 4a) and DFT (Figure 4b) are shown side by side for
the same basis set (def2-TZVP).

If we look at the general image of ELF, we see that a similar
chemical interpretation appears, which is in agreement with
Lewis’ structure: 3 N� H basins and the nitrogen lone pair.
However, when plotted together, we can see slight differences
introduced by the environment and the method. Both within
HF and DFT, the crystal field effects (IM! Cry) lead to a
contraction of the electron pair regions due to Pauli repulsion.
The crystal field effects are thus qualitatively similar for all
basins and methods. However, it is quantitatively different

Figure 3. Changes in the distance between nitrogen atom and charge concentration critical point, DN–CC, and changes in r21 CCð Þ of charge concentration
critical points in the lone pair (LP), (a) and (b), or in the direction of the N� H bond (N� H), (c) and (d), as λ increases for an XCW calculation at HF level. All
quantities in atomic units.

Figure 4. 3D plots of the ELF (isovalue 0.9) for a) HF and b) DFT ammonia
molecule calculations in IM (grey), XCW (blue), and Cry (red).

Figure 5. Plots in 2D and 3D of 1 difference between Cry and IM for a) HF
and b) DFT ammonia molecule calculations (D1 ¼ 1Cry � 1IM). Contours with
the isovalues 0.5 (continuous line) and 0.9 (dotted line) of ELF in Cry.
Isosurfaces with negative values (� 0.005 a.u. for HF and � 0.003 a.u. for DFT)
in blue and positive values (0.005 a.u.) in red.
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between hydrogen and lone pair basins, being the volume
change especially noticeable in the most delocalized unit, i. e.
the lone pair. The lone pair volume contained within the 0.9
isovalue is bigger for the isolated molecule in DFT calculation
and for the XCW in HF calculation. However, as the molecule is
introduced in the crystal, the volume becomes very compact.
This is directly related to the high compressibility of the lone
pair basin.[28] Overall, this behavior is in agreement with the
observations by previous authors who analyzed crystal field
effects from theoretical calculations.[26]

It is interesting to add an extra step thanks to constrained
wavefunctions which enables us to analyze the effect of
correlation on this theoretical ammonia crystal. The effect of
introducing the correlation on the calculation leads to more
differential behaviors. Electron correlation increases the “repul-
sion” between electrons, leading to the breathing of the
localization regions, which regain greater volumes with respect
to the contracted Cry calculation. This is similar to the lowering
of the bond order, reflected in the decrease of the value of the
electron density at the bond critical points, as it was already
observed in molecules.[27,29–32] However, in this case, changes are
very different depending on the nature of the basin. While
changes in the N� H bonds are small, changes in the lone pair
are much bigger. The volume of the lone pair basins goes back
to a volume similar to the one in the isolated molecule so that
crystal field and correlation effects nearly counteract each other.
These observations are extremely relevant from the point of
view of solid-state simulations. Although extended solids will
be rather well reproduced by HF or DFT methods, structures
with voids will be more prone to error due to an incorrect
description of the lone pairs. This can be related to the well-
known failure of functionals to describe low dimensional

structures (chaltrates, layers, rods), which is usually approached
from a dispersion perspective. However, we see here that
electron density errors also underlie.

Slight differences are also observed when we compare HF
and DFT. Since ELF differences are not meaningful due to the
renormalization (equation 4), we will dwell on these differences
in terms of electron density difference maps, D1, from IM to Cry
and from Cry to XCW in Figures 5 and 6, respectively.

In Figure 5 where 1Cry � 1IM is plotted, negative values (blue
color) correspond to regions where the electron density is
larger in the IM than the Cry whereas positive values (red color)
correspond to a larger concentration of the electron density in
the crystal. We can see a flux of the electron density from
externally localized areas in the IM (H atoms and lone pair) to
the internal region of the molecule in the Cry. In other words,
the effect of the crystal field is to compact the delocalized

Figure 6. Plots in 2D and 3D of 1 difference between Cry and XCW for a) HF
and b) DFT ammonia molecule calculations (D1 ¼ 1Cry � 1XCW ). Contours
with the isovalues 0.5 (continuous line) and 0.9 (dotted line) of ELF in Cry.
Isosurfaces with negative values (� 0.005 a.u.) in blue and positive values
(0.005 a.u.) in red.

Figure 7. Plots of the difference in electron density between HF and DFT
methods for a) IM, b) Cry, c) XCWl¼0:001 and d) XCWl¼0:030 for ammonia
molecule (D1 ¼ 1ðrÞHF � 1ðrÞDFT ). Isosurfaces with negative values
(� 0.005 a.u.) in blue and positive values (0.005 a.u.) in red. Contours in plots
with the isovalues 0.5 (continuous black line) and 0.9 (dotted black line) of
the ELF in Cry.
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regions. This is in agreement with the fact that hydrogen bonds
are formed, which takes away charge from the lone pair and
injects it into the N� H bonds, while relaxing the Pauli repulsion
that appears in between electron pairs from different mole-
cules.

For this step, differences between HF and DFT remain very
small: in both methods, the inclusion of the molecule in the
crystal leads to similar electron density deformations, with
slightly larger changes being observed in DFT. This is in
agreement with the localization error.[33] Since DFT tends to
overdelocalize, the localization effect of the crystal field is larger
in DFT.

Correlation is generally expected to decrease the population
of electron pairs, and most specifically, it is known to decrease
the HF bond order. This can be observed by comparing the
electron density distribution associated with the constrained
wavefunction and the solid-state calculation. Figure 6 is the
difference of 1 in Cry and the XCW calculations. Negative values
(blue color) correspond to regions with more electron density
in the XCW and positive regions (red color) indicate bigger
values of the electron density in the Cry. As we observed in the
ELF patterns, overall correlation counteracts the effect of the
crystal field.

In Figure 6 we can observe that the electron density flows
from the localized regions in the molecule (red) to inter-
molecular regions (blue), due to greater delocalization in the
correlated solution. In the case of HF we can also observe a

flow towards the N� H interatomic line (these effects are more
visible in the 3D isosurfaces). For DFT, in addition to the
different shape already observed for the lone pair, we can see
important differences around the nitrogen core at two different
distances, corresponding to the shells, which were not enough
correlated, and hence they lose density. Both for HF and DFT,
the N� H bond electron density needs to be corrected, though
in opposite directions: while correlation increases the electron
density from the HF result, it decreases it from the DFT one.

2.3. Effects of the Method (λ Fixed)

In order to further dwell on the effects of the monodetermi-
nantal method when introducing experimental constraints, we
will now look at the results obtained by fixing the parameter λ
in XCWHF and XCWDFT calculations. Figure 7 shows the electron
density differences between the HF and DFT calculations in the
IM, Cry, and XCW (l ¼ 0:001 and l ¼ 0:03) cases. Negative
values are represented in blue color and correspond to a bigger
electron density with the DFT calculation whereas positive
values in red color imply more electron density when the HF
approach is used. Differences in the IM and Cry cases follow the
general pattern: HF locates more density on the core and bonds
regions, whereas DFT tends to localize electron density close to
the valence shell of the atoms.

Figure 8. a) Unit cell of ammonia. b) Hydrogen bonding in crystalline ammonia.

Figure 9. Schematic representation of the plane used to show the results.
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Let us now focus on the effect of introducing electron
correlation by the XCW procedure. In this case, the main
differences appear around the nitrogen atom, and not the
hydrogen ones. We see again the spherical deformation
appearing as a shell around the N atom, confirming that this is
an effect of the correlation independent of the value of the λ
parameter.

As correlation is progressively introduced by increasing λ,
smaller HF vs DFT differences appear, which signals that both
levels of theory are converging to the same result. In the case
of l ¼ 0:001, the value of c2 is greater for the HF calculation
than the DFT (5.129 and 4.864 respectively). This contrast results
in a greater difference in the electron density distribution
between the two methods. Specifically, a greater localization in
the HF method in the area of N� H bond and in the lone pair of
nitrogen atom (red regions in Figure 7c). On the other hand,
electron localization in DFT is centered around nuclear
positions. When we focus on a larger experiment-theory
admixture (l ¼ 0:030) the values of χ2 are: c2

HF ¼ 0:565 and
c2
DFT ¼ 0:582. This demonstrates that correlation included by

means of the experimental constraints should lead to similar
results in HF and DFT.

3. Conclusions

In this paper, we showed a description of the distribution of the
electron density in the ammonia molecule and crystal. Depend-
ing on the environment in which the molecule is (isolated
molecule or solid-state), the effect of the correlation and the
Pauli repulsion will be more important. In solid-state, the crystal
field is responsible for a localization effect that moves the
electron density from delocalization areas (lone pair and inter-
molecular region) to localization areas (bond N� H). On the
other hand, the XCW calculation is a buffer between the IM and
the Cry governed by a delocalization effect from the bonds to
inter-molecular regions. However, using the same amount of
constraint for XCWHF and XCWDFT calculations, it is possible to
observe a greater localization of electron density in different
regions of the molecule. In HF calculations the electron density
tends to be higher in the bond regions and the lone pair than
for the DFT calculations. In DFT calculations the electron density
is higher in the hydrogen atoms and between the bonds than
for HF calculations. This allows expanding the analysis of errors
in the density induced by approximate functionals (whose
relevance has been highlighted in the last years) to solid state,

where correlated wavefunctions are not easily available. Instead,
experimental densities are taken as the reference, to highlight
the errors in the density introduced by the different approaches
commonly used in the literature.

Experimental Section

XCW Data

NH3 data are taken for a cubic cell,[34] Figure 8a, with space group
P213. The rest of the experimental details are reported in Table 1.
There are three weak hydrogen bonds formed between the lone
pair of the nitrogen atom and 3 hydrogen atoms of 3 different
ammonia molecules, Figure 8b.

The XCWs were obtained using the program Tonto[35] at HF and DFT
(B3LYP)[36,37] levels of theory, and def2-TZVP basis set.[38] The
constraining parameter λ was initially set to zero and increased in
steps of 0.0005, up to 0.03. The choice of the data was guided by
the fact that it lacks high-order reflections, a condition that was
shown to be necessary[27] in order to extract a large amount of
correlation from XCW calculations.

Computational Details

XCWs were compared with those resulting from solid-state and
isolated molecule gas-phase calculations performed with the
CRYSTAL[39] and Tonto[35] programs respectively at the same level of
theory (HF or B3LYP, def2-TZVP). The difference between gas and
solid phases was examined by comparing the distribution or
behavior of the electron density, 1 rð Þ, and the electron localization
function, ELF.[40]

For ammonia, we expect 5 regions of localization (electron pairs):
the nitrogen core, the three N� H bonds and the nitrogen lone pair.
Since we are interested in analyzing the effects of correlation on
the electronic distribution and its localization, we will focus on the
regions of expected high ELF value in NH3. In this sense, the plane
used to show the results in 2D plots contains the bond N� H and
the lone pair of the nitrogen atom, marked in green in Figure 9.

Cube files of the studied scalar fields were obtained for each
calculation. In the case of differences between methods, we used
the operations of cube files in Multiwfn program[41] and the
visualization was performed with Paraview software.[42,43] For a
better appreciation of the isosurfaces in 3D it was necessary to
modify the origin of the cube files. To match the coordinates of the
volumetric data, the Transform tool in Paraview was used. For the
topological analysis of the Laplacian of electron density, the wfn file
was obtained directly from Tonto using the molecular orbitals for
each λ value. The local properties and atomic graphs were
computed and visualized with the AIMALL package.[44]

Table 1. Experimental details for the Ammonia crystal structure. Chemical formula=NH3; space group=P213, Z ¼ 4.

Crystal data Data collection

a (Å) 5.1305 Diffractometer
(Wavelength)

Nicolet R3m/V four-circle
(0.71069 Å)

b (Å) 5.1305 Refinement model multipole
c (Å) 5.1305 No. of collective reflections 334
α (°) 90 R(%)/Rw(%) 1.19/0.95
β (°) 90 GOF 0.91
γ (°) 90 No. of unique reflections 88
V (Å3) 135.05 A criterion for obs. Reflections F hð Þ > 3s hð Þ
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