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Abstract
The field of Quantum Computing has gathered significant popularity in recent years and a large number of papers have
studied its effectiveness in tackling many tasks. We focus in particular on Quantum Annealing (QA), a meta-heuristic solver
for Quadratic Unconstrained Binary Optimization (QUBO) problems. It is known that the effectiveness of QA is dependent
on the task itself, as is the case for classical solvers, but there is not yet a clear understanding of which are the characteristics
of a problem that make it difficult to solve with QA. In this work, we propose a new methodology to study the effectiveness
of QA based on meta-learning models. To do so, we first build a dataset composed of more than five thousand instances of ten
different optimization problems. We define a set of more than a hundred features to describe their characteristics and solve
them with both QA and three classical solvers. We publish this dataset online for future research. Then, we train multiple
meta-models to predict whether QA would solve that instance effectively and use them to probe which features with the
strongest impact on the effectiveness of QA. Our results indicate that it is possible to accurately predict the effectiveness
of QA, validating our methodology. Furthermore, we observe that the distribution of the problem coefficients representing
the bias and coupling terms is very informative in identifying the probability of finding good solutions, while the density of
these coefficients alone is not enough. The methodology we propose allows to open new research directions to further our
understanding of the effectiveness of QA, by probing specific dimensions or by developing new QUBO formulations that are
better suited for the particular nature of QA. Furthermore, the proposed methodology is flexible and can be extended or used
to study other quantum or classical solvers.

Keywords Quantum Computing · Quantum Annealing · Optimization · Meta-learning

1 Introduction

In recent years, the field ofQuantumComputing has gathered
significant popularity, thanks to remarkable advancements
that led to the development of several quantum computers
of different architectures and technologies that can be used
to tackle numerous problems. Although quantum comput-
ers are still limited both by their relatively small size and
by the noise that limits the precision of the computation, the
field is rapidly moving forward. Among the existing Quan-
tum Computing paradigms, Quantum Annealing (QA) is a
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meta-heuristic that can be used to solve Quadratic Uncon-
strained Binary Optimization (QUBO) problems, a family of
NP-hard optimization problems. The key idea of QA is to
represent a QUBO problem as an energy minimization prob-
lem of a real and configurable quantum device. To do so, the
problem variables are mapped onto physical quantum bits or
qubits. The quantum device is steered toward a state of mini-
mal energy, called ground state, with a controlled evolution.
The ground state corresponds to the optimal solution of the
original QUBOproblem. The devices that implement the QA
process are called Quantum Annealers.

The ability of QA to tackle NP-hard optimization prob-
lems and its flexibility to heterogeneous domains is what
makes it an interesting technology for industries and
researchers. Many applications of QA have been proposed in
the fields ofmachine learning (Neukart et al. 2018;Mott et al.
2017;Mandrà et al. 2016; Ferrari Dacrema et al. 2022; Neven
et al. 2009; Willsch et al. 2020; Kumar et al. 2018; Neukart
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et al. 2018; O’Malley et al. 2017; Ottaviani and Amendola
2018; Nembrini et al. 2021), chemistry (Micheletti et al.
2021; Hernandez and Aramon 2017; Streif et al. 2019; Xia
et al. 2018) and logistics (Ikeda et al. 2019;Rieffel et al. 2015;
Ohzeki 2020; Stollenwerk et al. 2017), but the results are not
always competitive against classical heuristics solvers.

An important issue is that the quality of the solutions found
by QA is limited by multiple factors. First of all, Quantum
Annealers are physical devices that have a limited number of
qubits and connections between them. This limits the size of
the problems that they can tackle and requires to process of
the QUBO problem adapting it to the physical structure of
the Quantum Annealer. A second important aspect is that the
quality of the solutions found byQAdepends on the behavior
of the underlying physical quantum system, which is very
difficult to study. It is known that some problems appear to
be more difficult to solve with QA (Yarkoni et al. 2022; Jiang
and Chu 2023; Huang et al. 2023), but understanding why is
not a trivial task and still an open research question.

Most of the previous studies on QA compare its per-
formance, in terms of required time for computation with
respect to other heuristic solvers, rather than on the quality
of the solutions it finds, i.e., its effectiveness. There are two
ways in which one can study the effectiveness of QA, one is
by analytically describing the underlying quantum behavior
and the other is to perform empirical experiments. A theo-
retical analysis has been performed for very small QUBO
instances (Stella et al. 2005), which, however, are too simple
to assess the effectiveness of QA when compared to other
classical solvers. Furthermore, analytically analyzing such
a quantum system becomes rapidly very expensive and is
generally impossible for problems of interesting size. On the
other hand, the existing empirical studies on the effective-
ness of QA have explored much larger problems but focus
mainly on specific tasks such as feature selection (Ferrari
Dacrema et al. 2022), clustering (Kumar et al. 2018; Neukart
et al. 2018) and classification (Mott et al. 2017; Willsch et al.
2020; Neven et al. 2009), and therefore, lack generality.

To the best of our knowledge, there is no published
research that has investigated extensively how the character-
istics of the problem impact the effectiveness of QA. For this
reason, in this study, we propose a novel empirical method-
ology for the analysis of the effectiveness of QA, based on
the study of the characteristics of QUBO problems with a
meta-learning approach. The general idea consists of gener-
ating many QUBO instances, defining a set of features that
can describe them, and train meta-models to predict whether
QA would solve that problem or not. Our key contributions
are as follows:

• The design of an experimental methodology that can be
applied to study the effectiveness of QA. This method-
ology can be used also for other quantum algorithms,

such as QAOA (Farhi et al. 2014) or VQE (Fedorov et al.
2022);

• The selection of ten classes of optimization problems,
each one with specific characteristics, from which we
generate approximately five thousand QUBO instances;

• The design and the generation of a meta-learning dataset,
which contains for each of the five thousand instances a
selection of a hundred features based on probability the-
ory, statistics, and graph theory.We show that using them
it is possible to effectively predict whether QA would
solve a problem instance effectively or not. We share the
meta-learning dataset online for further research;

• The analysis of the features of a QUBO problemwith the
strongest impact on the effectiveness of QA;

2 Background

2.1 QUBO and Isingmodels

In order to use Quantum Annealing (QA) to tackle optimiza-
tion problems, these should be represented with one of two
equivalent formulations called QUBO and Ising, suitable
for NP-Complete, and some NP-Hard optimization prob-
lems (Glover et al. 2022; Lucas 2014). While the two are
equivalent, the QUBO formulation is closer to traditional
Operations Research, the Ising formulation is instead closer
to Physics.

The objective function in the QUBO model is given by
Eq.1, where x ∈ {0, 1}n is a column vector representing
the assignment of the binary variables x1, x2, ..., xn , n is the
number of problem variables, y the cost, and Q ∈ R

n×n is a
real square matrix, either symmetric or upper triangular.

min
x

y = xT Qx (1)

We will refer to combinatorial optimization problems
written in the QUBO formulation as QUBO problems. Note
that the QUBO formulation does not allow for hard con-
straints. An optimization problem with constraints can be
transformed into aQUBOproblemby introducing aquadratic
penalty term multiplied by a penalty coefficient p. The idea
is that the hard constraints are transformed in soft constraints,
such that if they are violated a positive penalty p is added
to the cost function making the cost of that variable assign-
ment worse. Note that by using soft constraints we do not
have the guarantee that the optimal solution will satisfy the
constraints, whichmay happen frequently if the penalty coef-
ficient p has a value that is too low. In general, a quadratic
binary optimization problem with equality constraints for-
mulated as Ax − d = 0, where d ∈ R

m and A ∈ R
m×n , can
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be transformed into the following QUBO problem:

min
x

y = xT Qx + p · xTCx (2)

C = (Ax − d)T (Ax − d)

If the quadratic binary optimization problem also has
inequality constraints, those need to be transformed first into
equality constraints using binary slack variables. For exam-
ple, if we have the following constraint:

x1 + 2x2 + 4x3 ≤ 3

we can transform it into an equality constraint by introducing
the binary slack variables x4 and x5:

x1 + 2x2 + 4x3 + x4 + 2x5 = 3

There exist no general rule to choose the best number of
slack variables, so multiple strategies can be followed.

A second useful formulation is the Isingmodel, whichwas
developed to describe an energy minimization problem for
a system of particles (Glover et al. 2022; Lucas 2014). The
objective function of the Isingmodel is given by Eq.3, where
s ∈ {−1, 1}n is the column vector representing the assign-
ment of the n problem variables s1, s2, ..., sn also called spin
variables, J ∈ R

n×n is the coupling matrix that describes
the quadratic terms of the objective function and has zero
diagonal, b ∈ R

n is the bias vector, which contains the linear
terms of the objective function. The constant term c ∈ R is
called offset.

min
s

y = sT Js + bT s + c (3)

A QUBO problem can be transformed into an Ising prob-
lem through a linear mapping of the variables. In particular,
a binary variable xi is transformed into a spin variable si
according to the following conversion1:

xi = 1 − si
2

2.2 Quantum Annealing and Quantum Annealers

Quantum Annealing (QA) is a meta-heuristic solver for
QUBOproblems. It is based on theAdiabaticQuantumCom-
putation (AQC) paradigm, with some relaxations (Yarkoni
et al. 2022; Morita and Nishimori 2008; Farhi et al. 2000;
Albash and Lidar 2018; Hauke et al. 2020). The idea is to

1 This mapping is equivalent to the more commonly used xi = 1+si
2

with the difference that in our case a binary 0 is mapped onto spin 1 and
binary 1 is mapped onto spin −1.

represent the optimization problem as an energy minimiza-
tion one, and then use a configurable device that exhibits
the needed quantum behavior to minimize it. Such a device,
the Quantum Annealer, is composed of multiple qubits con-
nected between each other. QA works based on a time
evolution of the quantum system. The initial state of the sys-
tem is a default one, easy to prepare, so that the qubits are
in a state of minimal energy, i.e., the ground state. Then,
the physical system evolves slowly over a short amount of
time by introducing a dependency on the Ising coefficients of
the problem one wishes to solve. This means, for example,
slowly changing the magnetic fields the qubits are subject to.
At the end of the evolution, the physical system will depend
only on the problem and, if the evolution was careful enough,
it will still be in the ground state. Since the state of minimal
energy is also the solution to the optimization problem, mea-
suring the state of the qubits will yield the values that the
problem variables should have.

The evolution of the system in QA occurs in a noisy envi-
ronment and is subject to quantum fluctuations, i.e., quantum
tunneling, which helps it explore the solution space. The
noise of the system and the duration of the evolution influ-
ence the results of QA, if the evolution is too fast the system
will likely escape its ground state and find a worse solution,
while if the evolution is too slow noisemay build up and push
the system again out of the ground state. Due to its stochastic
nature, QA acts as a device sampling low-cost solutions in a
similar way as other classical solvers do, such as Simulated
Annealing. For this reason, QA is repeated multiple times
in order to obtain samples of the final state of the quantum
system.

The physical devices that implement QA are calledQuan-
tum Annealers. Currently, D-Wave Systems Inc. is the com-
pany that provides the Quantum Annealers with the largest
number of qubits.2 For example, the D-Wave Advantage has
more than 5000 qubits with a topology called Pegasus, where
each qubit is connected to other 15 ones.

Solving a QUBO problem with a Quantum Annealer
requires the following steps:

1. Formulate the problem as a QUBO or an Ising prob-
lem: the coefficients that are needed to configure the
QuantumAnnealers are those of the Ising formulation, as
such the problem needs to be in this form. If the problem
has a simpler formulation as a QUBO, the transforma-
tion is straightforward. Note that some problems can be
formulated as QUBO or Ising easily, while others require
more expensive processing.

2. Embed the problem on the topology of the device:
since the Quantum Annealer is a physical object, we

2 The documentation of the D-Wave Systems’ services: https://docs.
ocean.dwavesys.com/en/stable/index.html
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must fit the problem we want to solve on it, accounting
for the limited number of qubits and of the connections
between them. This procedure is calledminor embedding
(Carmesin 2022) and maps each problem variable to one
or more qubits. If multiple qubits are needed to represent
a single problem variable, that is called a qubit chain.
If the problem has a large number of quadratic terms,
a substantial number of qubits may be needed to create
all the physical connections. Figure1 shows an example
of how a simple problem can be mapped on a Quantum
Annealer. Minor embedding is an NP-Hard problem but
polynomial-time heuristic algorithms are available (Choi
2008; Cai et al. 2014; Boothby et al. 2020)3.

3. Evolution of the system and sampling of the solu-
tions: once the minor embedding is done, the problem
is transferred to the Quantum Annealer. First, the device
is programmed with the problem coefficients, then we
can perform a sequence of multiple evolutions to obtain
the desired number of samples ns . Each sample requires
three steps: (i) the evolution is run for the desired dura-
tion, called annealing time ta , (ii) the final state of the
system is measured, which requires a read-out time tr
dependent on the number of qubits used, and (iii) the
device pauses shortly for cooling.

More formally, the energyof a systemcanbemodeledwith
an Hamiltonian, H ∈ R

2n×2n , and the evolution that occurs
in QA is described by the time-dependent Hamiltonian H(t)
thatmodels the transition from the initial defaultHamiltonian
Hi .4 and the Hamiltonian describing the problem Hp:

H(t) = A(t)Hi + B(t)Hp (4)

The coefficient A(t) decreases as the evolution progresses,
while B(t) increases introducing the dependency on the char-
acteristics of the problem, but their exact values depend on
the hardware. At the beginning of the evolution B(t) is zero,
while at the end A(t) is zero. Note that this is just a descrip-
tion of the underlying physical system and there is no need
to compute this representation to use QA.

In the ideal Adiabatic Quantum Computing setting, it
is possible to compute the exact annealing time needed to
ensure the system remains in the ground state and finds
the global optimum, this result dates back from a century
ago (Born and Fock 1928). This optimal annealing time is
inversely proportional to the smallest difference between the
two smallest eigenvalues λ1(t), λ2(t) of H(t). Such differ-
ence is called minimum gap. Although this result may be

3 We use the library minorminer offered by D-Wave: https://docs.
ocean.dwavesys.com/en/stable/docs_minorminer/source/sdk_index.
html
4 The initial Hamiltonian Hi is also called driver Hamiltonian.

useful to understand its behavior, it is not applicable to QA
because it is subject to noise. Furthermore, computing the
eigenvalues of H(t) is prohibitive for all but the smallest
problems.

To exemplify how this representation works, assume to
have an Ising problem of n variables with coupling J and
bias b, Hp is a 2n × 2n matrix computed as follows:

Hp =
n∑

i=1

n∑

j=i

Ji jσ
(i)
z σ

( j)
z +

n∑

i

hiσ
(i)
z (5)

The matrix σ
(i)
z is the Z-Pauli operator σz acting on qubit

i :

σz =
(
1 0
0 −1

)
(6)

σ (i)
z =

i−1⊗

k=1

I ⊗ σz

n−i⊗

k=1

I (7)

with ⊗ being the tensor product and I the identity matrix. A
useful property of Hp is that it is a diagonal matrix that con-
tains all the cost values for all possible variable assignments
of the problem. Since it is diagonal, these values are also
its eigenvalues and the corresponding eigenvectors encode
the variable assignment that has that cost. The minimum
eigenvalue of Hp corresponds to theminimal cost and the cor-
responding eigenvector to the optimal variable assignment.

As an example, consider the following QUBO problem,
which is minimized when x1 = x2:

min
x1,x2

y = x1 + x2 − 2x1x2

The equivalent Ising formulation is as follows:

min
s1,s2

y = 1

2
− 1

2
s1s2

For this small instance, we can compute Hp easily. The

matrices σ
(1)
z and σ

(2)
z are:

σ (1)
z = σz ⊗ I =

⎛

⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟⎠ σ (2)
z = I ⊗σz =

⎛

⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞

⎟⎠

Hp is then equal to:

Hp = 1

2

⎛

⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞

⎟⎠
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Fig. 1 Embedding of a simple problem with six variables on a portion
of aD-WaveQuantumAnnealer using the Chimera topology. Each node
represents a qubit and each edge is a physical connection between them.

Nodes of the same color indicate the chain of qubits used to represent a
single problem variable. Note how, while the original problem had six
variables, the embedded one requires 14 qubits

The smallest eigenvalue of Hp is λmin = − 1
2 and has a

multiplicity of two corresponding to the first and last eigen-
values. Indeed, both x0 = 0, x1 = 0 and x0 = 1, x1 = 1 are
optimal solutions to the problem. If we sum λmin with the
offset of the Ising problem, 1

2 , we obtain 0, that is the same
value of the QUBO cost function when x1 = x2.

2.3 Studies on the effectiveness of QA

Most of the previous studies on QA focus on its perfor-
mance, by measuring the time required to solve a problem
and comparing it to that of classical solvers. To the best of
our knowledge, there is no consensus on whether QA pro-
vides a general and consistent speedup compared to other
traditional solvers for QUBO problems (Hauke et al. 2020;
Yarkoni et al. 2022; Katzgraber et al. 2014), while a recent
paper claims substantial speedup for a quantum simulation
task (King et al. 2024). Although some papers may claim
a speedup, this is often based on measurements that only
account for part of the process. Indeed, one should consider
the time required by all phases: (i) formulating the optimiza-
tion problem as QUBO or Ising, (ii) embedding the problem
on the QA, (iii) sampling the solutions on the device and (iv)
postprocessing the results if needed (for example by check-
ing if the constraints are satisfied). Frequently, the efficiency
of QA is measured by only accounting for the usage of the
quantum device itself (programming time and the repeated
annealing and read-out) while ignoring the time needed for
minor embedding and for creating the QUBO formulation.
This gives an incomplete picture of the technology that does
not account for two significant bottlenecks. For example, it
may be that in a certain situation, QA is faster than other tra-
ditional methods in solving a specific QUBO problem, but

that may not be the case anymore if one includes the minor
embedding phase. Furthermore, if it is very computationally
expensive to formulate the problemasQUBO, itmay bemore
efficient to use other traditional methods that do not need a
QUBO formulation at all.

When comparing the quality of the solutions found by QA
and classical solvers, i.e., their effectiveness, the published
literature usually focuses on problems related to specific
fields or even to very specific instances of those problems.
Due to this, there is still a limited understanding of how
would QA compare in a more general setting. For example,
the effectiveness of QA has been analyzed for feature selec-
tion (Ferrari Dacrema et al. 2022), classification (Mott et al.
2017; Willsch et al. 2020; Neven et al. 2009) and clustering
(Neukart et al. 2018; Kumar et al. 2018), which are typical
machine learning tasks. In the field of chemistry, QA has
been applied and analyzed to find the equilibria of polymer
mixtures (Micheletti et al. 2021), to find similarities between
molecules (Hernandez and Aramon 2017) and to find their
ground state (Streif et al. 2019). The effectiveness of QA in
solving problems related to logistics has been analyzed too,
for example in solving the Nurse Scheduling Problem (Ikeda
et al. 2019) and in optimizing the assignments of the gates at
the airport (Stollenwerk et al. 2017).

Previous research also studied the effectiveness of QA
from a theoretical perspective by representing analytically
the evolution of the time-dependent Hamiltonian H(t) (see
Eq.4) and computing the probability of escaping the ground
state (Stella et al. 2005). This approach is, however, limited
by the fact that the size of the Hamiltonian grows exponen-
tially on the number of QUBO problem variables n, and
the analytical analysis of the Hamiltonian becomes rapidly
impractical for all but the smallest problems. An alternative
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way is to adopt an empirical approach, by using the outcome
of multiple experiments to probe the underlying physical
system (Irsigler and Grass 2022). The idea is to allow the
evolution to progress up to a certain intermediate stage and
then drastically accelerate it (i.e., a quench, according to D-
Wave terminology), observing how the effectiveness changes
based onwhen the evolution accelerated.While this approach
allows to tackle of large problem instances, applying the
acceleration at different stages of the evolution requires to
repeat the experiment a large number of times and therefore
this approach too is very resource-intensive.

To overcome the limitations of the methods adopted in
the literature, this paper proposes a new empirical approach
to study how the quality of the solutions found by QA is
impacted by the characteristics of the problem. To achieve
this, we first collect a dataset of problem instances belonging
to 10 selected problem classes and solve them using both QA
and three classical solvers. Then, for each problem instance,
we compute a set of features describing various characteris-
tics, from the distribution of the bias coefficients of its QUBO
formulation to the topology of the graph that describes the
instanceonce it has been embedded in theQuantumAnnealer.
Using this dataset, we train a machine learning classifier to
identify whether QA was able to find a good solution for
that instance and, finally, use it to assess which are the most
important problem features.

3 Meta-learning dataset generation

In this section, we present the methodology used to generate
ourmeta-learningdataset, onwhichwe train themeta-models
to predict the effectiveness of QA. We publish this dataset
online for future research. First, we describe how we select
the ten classes of problems we want to solve with QA and
the strategies we use to generate the five thousand instances.
Then, we describe how we evaluate the effectiveness of QA,
in terms of closeness to the optimal solution of the problem
and by comparing QA with other classical methods (Simu-
lated Annealing, Tabu Search, and Steepest Descent). Third,
we describe the representations of the QUBO problem we
used to compute the approximately onehundred features used
to train the meta-models. Finally, we describe how we solve
the instances with QA and with the classical solvers, with a
particular focus on the choice of the optimal hyperparameters
of the solvers.

3.1 Selection of problems and instances

We identify a selection of ten different optimization problems
that exhibit different characteristics: some have constraints,
others do not; some have linear terms, others do not; some
have a large number of quadratic terms while others do

not, etc. The details on their formulations are reported in
Appendix 1 and the details on the generation of the instances
are in Appendix 2.

The first group contains five classes of optimization prob-
lems defined over a graph:Max-Cut,MinimumVertexCover,
Maximum Independent Set, Max-Clique, and Community
Detection. They were selected for the following reasons.
Both the Max-Cut and Community Detection problems have
a straightforward QUBO formulation that does not require
penalties to represent constraints. The Max-Cut, Maximum
Independent Set, andMinimumVertexCover problems share
the same quadratic terms in their QUBO matrix, but not the
diagonal (i.e., the linear terms or bias). TheMax-Clique prob-
lem is formulated as a Maximum Independent Set problem
but is defined on the complement graph. The Community
Detection problem has a very dense QUBO matrix as there
are quadratic terms between all variables and is a relevant
problem in Machine Learning (Nembrini et al. 2022). Since
these problems are formulated on a graph, we apply them to
four different graph topologies: Erdös-Renyi, Cyclic, Star,
and 2d-grid. Note that in order to have a diversified set of
instances we introduce small random perturbations to each
topology, consisting of fewedge insertions anddeletions. The
number of insertions and deletions depends on the number
of nodes on the graph. More details are reported in Appendix
2.1.

The second group of five optimization problems con-
tainsNumber Partitioning,QuadraticKnapsack, Set Packing,
Feature Selection, and 4 × 4-Sudoku. These are a more het-
erogeneous set than the previous graph-based problems and
so require ad-hoc strategies to generate their instances which
we detail in Appendix 2.2. Similarly to the Max-Cut and
Community Detection problems, the Number Partitioning
problem has a straightforward QUBO formulation with no
penalty terms to represent constraints. Similarly to the Com-
munity Detection problem, the Feature Selection problem
has a dense QUBO matrix with quadratic terms between all
variables. Finally, the Quadratic Knapsack, Set Packing, and
4× 4-Sudoku problems are all Constraint Satisfaction Prob-
lems, each with different types of constraints. In particular,
the Quadratic Knapsack problem has inequality constraints
that need to be converted into equality constraints using slack
variables.

We generate multiple instances of all the problem classes
we selected. Concerning the size of the problem instances,
measured in the number of problem variables, there are two
constraints to take into account. First, the D-Wave Quan-
tum Annealer that we use has more than 5000 qubits but,
due to their limited connectivity, it is generally possible to
tackle problem instances up to between 100 and 200 vari-
ables depending on the structure of the QUBO problem. This
is due to the minor-embedding phase. Second, we want the
instances to be representative of problems that are not trivial
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and with a Hamiltonian that could not be analyzed analyt-
ically. In order to provide a more complete picture, we are
also interested to assess the impact of the distribution of the
solution space of the problem. This, formally, corresponds
to the set of eigenvalues and eigenvectors of the Hamilto-
nian of the problem Hp (see Section 2.2). Unfortunately, it
is impractical to compute them for instances of more than
32 problem variables, which may be too small and easy to
allow a comparison of the effectiveness of different solvers.
For these reasons, we decided to create two separate sets of
instances:

• One set of large instances, with 5114 instances of
between 69 and 99 variables, the upper range of what
can be tackled with the QA;

• One set of small instances, with 246 instances of between
27 and 32 variables. With this set of instances, we can do
a more complete analysis which includes also the distri-
bution of the solution space.

The number of problem instances for each optimization
problem is summarized in Table 1. Notice that the instances
of the 4 × 4-Sudoku problem are included only in the small
instances set since the largest possible instance is unique and
it has at most 64 variables. All the generated instances are
satisfiable and, when needed, the penalty term coefficient p
used in the QUBO formulation is optimized with a Bayesian
Search5 (Victoria and Maragatham 2021; Snoek et al. 2012),
in order to maximize the number of feasible solutions for
Simulated Annealing.

3.2 Evaluating the effectiveness of a solver

In this section, we describe how to evaluate the effective-
ness of a solver and, in particular, of QA. Both QA and the
traditional solvers, we compare it to are stochastic and are
executed multiple times to obtain a set of variable assign-
ments that aim to minimize the cost function, which we call
a set of samples. A sample is represented by an assignment
of the decision variables x and by the related cost value y.

We solve all instances with QA, Simulated Annealing
(SA), Tabu Search (TS), and Steepest Descent (SD). Our def-
inition of how much a solver is effective is based on whether
it finds samples that meet some quality constraints. While
for the small instance set it is possible to compute the global
optimum, for the large ones it is not feasible to do so, and
therefore, we define the effectiveness in relative terms with
respect to the other solvers.

5 The range of possible values of p, for a particular instance, depends
on the cost function of that instance.More details are given in Appendix
2

In particular, we evaluate the effectiveness of QA on the
large instances set by comparing its samples with those of
the traditional heuristic solvers. We define the samples asso-
ciated with the best cost value for a solver S as ySmin. An
instance I is QA-over-all if the best solution found by QA
is at least as good as the best one found by SA, SD, and TS
combined. More formally, if yQA

min ≤ min {ySAmin, y
T S
min, y

SD
min}.

Comparing QA with a pool of multiple solvers results in a
stricter evaluation of its effectiveness, but the condition that
QAhas to be at least as good as all the other solvers combined
may be too strict. For this reason, we also compare QA with
each individual solver. An instance I isQA-over-S if the best
solution found by QA is at least as good as the one found by
solver S, hence yQA

min ≤ ySmin.
For the small instances, we can perform a deeper analysis

of the effectiveness because we can explore the full solution
space and find the global optimum. This is in practice done
by computing the Hamiltonian of the problem, Hp, which is
a diagonal matrix enumerating the eigenvalues λ, sometimes
called energy, of all the variable assignments. The eigenvalue
is equivalent to the cost function y but does not include pos-
sible constant offsets c from the Ising formulation, therefore
y = λ + c. The variable assignment x associated with an
eigenvalue λ can be computed starting from the correspond-
ing eigenvector of Hp. The global optimum of an instance
is the assignment xmin corresponding to the minimal eigen-
value of Hp, λmin. We will refer to the maximum eigenvalue
as λmax.

We define a sample with energy λ as ε-Optimal if the
following condition holds:

λ ≤ λmin + ε · (λmax − λmin) (8)

The ε-Optimality condition describes how close is the
eigenvalue of a sample to the solution of the instance. The
coefficient ε ∈ [0, 1] allows to restrict the interval under
which λ is considered close enough to the optimal eigen-
value λmin. Notice that if ε = 0 only the global optimum of
the instance meets the constraint in Eq.8.

We also define a sample x as Hamming-Optimal (h-
Optimal) if it differs from any solution xmin in at most one
decision variable. This corresponds to check the Hamming
distance between a sample and a solution of the instance:

||x − xmin||Hamming ≤ 1 (9)

3.3 Meta-learning features

In this section,we introduce the featureswedefine to describe
a problem instance. We rely on a selection of metrics used in
statistics and probability theory, such as the Gini coefficient
(Damgaard and Weiner 2000), the Herfindahl-Hirschman
index (Brezina et al. 2016) and the Shannon entropy (Shan-
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Table 1 Each row of the table
gives the number of small and
large instances related to each
problem class

Problem class Number of instances
Small Large

Graph Max-Cut 20 620

Minimum Vertex Cover 20 619

Maximum Independent Set 20 620

Maximum Clique 20 620

Community Detection 20 620

No-graph Quadratic Knapsack 20 620

Set Packing 20 620

Number Partitioning 20 620

Feature Selection 20 155

4 × 4-Sudoku 30 −

non 1948), aswell asmetrics used in graph theory, such as the
spectral gap, the radius a graph, its diameter and its connec-
tivity. In total, we compute 107 features, which we describe
in detail in Appendices 3 and 4.

The features we compute can be grouped in multiple
domains of analysis. Overall, we identify seven domains,
among which we describe the three most relevant ones:

• Logical Ising Graph (LogIsing): This domain uses the
Ising formulationof aQUBOproblem. It is represented as
a graph having one node per problem variable, associated
with the corresponding bias b, and an adjacency matrix
that corresponds to the coupling matrix J ;

• Embedded Ising Graph (EmbIsing): This domain uses
the Ising formulation of a QUBO problem obtained after
its minor embedding on the QA. The target architec-
ture is D-Wave Advantage with the Pegasus topology.
Therefore, this formulation represents the actual prob-
lem solved by the Quantum Annealer, in which multiple
qubits may be used to represent one problem variable.
This formulation is represented as a graph in the same
way as LogIsing;

• Solution Space (SolSpace): This domain uses the
eigenvalues, or energy values, of all possible variable
assignments, which can be computed only for the small
instances, and aims to describe how they are distributed.

Other domainswe identify are (i) NormalizedMultiplicity
(NorMul),whose features are related to themultiplicity of the
eigenvalues of Hp; (ii) Matrix Structure (MatStruct), which
contains features related to the distribution of the values of the
matrix Q of a QUBO problem; (iii) 25%-SolSpace and 25%-
NorMul, which contain the same features of SolSpace and
NorMul, but computed by considering only the 25% lowest
eigenvalues of Hp , i.e., the energies of the 25%best solutions.

For the LogIsing and EmbIsing domains, we compute sev-
eral features on different mathematical objects, such as the

couplingmatrix J , the Laplacianmatrix of the corresponding
graph, and the bias vector. We call such objects components.

We can also identify sets of features that refer to the same
mathematical object but are computed on different domains.
For example, both LogIsing and EmbIsing domains include
features computed on the bias.We refer to themas component
sets and allow us to perform an analysis of the importance of
those mathematical objects that is orthogonal to that of the
domains. We identified the following component sets: Cou-
pling, Bias, Laplacian, Structural Adjacency (StructAdj),
and Structural Laplacian (StructLap), where StructAdj and
StructLap gather features related to the binarized versions of
the coupling and Laplacian matrices.

3.4 Hyperparameter optimization of the solvers

Since the goal of this study is to compare the effectiveness of
different solvers, it is essential to ensure that each solver is
using the best hyperparameters. Indeed, it is well known in
many fields that comparing methods that are not consistently
optimized leads to inconsistent results that cannot be used
to draw reliable conclusions (Shehzad and Jannach 2023;
Ferrari Dacrema et al. 2021). The same applies in our case.

We optimize the hyperparameters of each solver (QA, SA,
TS, SD) on the instance with the largest minor embedding on
D-Wave Quantum Annealer for each optimization problem
class. The goal is to identify the hyperparameters that will
lead the solver to find the variable assignment with the lowest
cost y. Once the optimal hyperparameters have been found,
they are used to solve all instances of the corresponding prob-
lem class. We optimize separately the hyperparameters used
for the large and small instance sets. To optimize the hyperpa-
rameters of the classical solvers, we use the standard QUBO
formulation, while for QA, we use the embedded QUBO for-
mulation: we followed this strategy because the embedded
QUBO formulation is required only for QA. In this way, we
have a fair comparison between different solvers since, for
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each one of them, we take into account only the necessary
steps to solve a QUBO instance.

Optimal hyperparameters of Quantum Annealing
QA has several hyperparameters that can be optimized,6

some of which refer to the evolution process as a whole
while others allow to fine-tune it at the level of each indi-
vidual qubit. The access to the D-Wave Quantum Annealers
is limited and for such a large set of instances, we have
devised a methodology to optimize the hyperparameters we
believe are the most important: the annealing time ta and
the number of samples ns . In order to perform an efficient
optimization within the available resources, we define a fixed
computational budget T for each instance. Using the default
annealing time, 20μs, and drawing 100 samples requires,
in the worst case, at most 37 ms. In our experiments, we
allocated T = 70 ms and T = 300 ms per each problem
instance.

The optimization is performed by iterating over 10 values
for ta , approximately equidistant from each other, between
5 μs and 200 μs. Given ta , the number of samples ns is
computed as the maximum value allowed within the compu-
tational budget T , according to Eq.10. For T = 70 ms, ns is
between 145 and 537 while, for T = 300 ms, ns is between
766 and 2826.

ns =
⌊

T − tp
ta + tr + �

⌋
(10)

The term tp � 15 ms is the time needed to program
the instances on the Quantum Annealer, tr is the read-out
time, needed to read the results of the annealing process,
and � � 20 μs is the delay applied after each read-out
operation. The read-out time tr is unknown a-priori because
it depends on the size of the embedded problem. Based on
empirical observation, we use tr = 75 μs for small instances
and tr = 150 μs for large instances. We choose ta and the
related ns which provide the sample with the lowest energy.
If for multiple pairs (ta , ns) QA finds samples with the lowest
energy, we choose the pair with the smallest ta .

Since the results we obtained when using both compu-
tational budgets are very similar, we report those for T =
70 ms. The selected hyperparameters are reported in Table 2.
Notice that the annealing time ta for the large instances is
often smaller than for the small instances. This highlights
that, for large instances, a larger ta does not improve the
effectiveness of QA, at least in the range of values, we con-
sidered and for the number of samples it allows to draw. Such

6 For a detailed explanation of all the hyperparameters of D-Wave
Quantum Annealers, refer to the documentation of the devices: https://
docs.dwavesys.com/docs/latest/c_solver_parameters.html

result suggests that QA may require an additional optimiza-
tion, for example, of the annealing schedule, which is not
straightforward and it goes beyond the scope of this study.

Optimal hyperparameters of the classical solvers
The hyperparameters of Simulated Annealing (SA), Tabu
Search (TS), and Steepest Descent (SD) are optimized with
the following procedure. For the optimization of these meth-
ods, we do not use a fixed computational budget because the
technology is fundamentally different and, due to the vari-
ous stages required by QA, it is not trivial to define such a
comparison in a way that is fair. First, we fix the number of
samples to ns = 200 which is a value comparable to that
used for QA. For half of the large instances, QA uses more
samples than the classical solvers, while for the remaining
half the opposite is true. We optimize the hyperparameters
with a Bayesian Search of 100 iterations (Victoria andMara-
gatham 2021; Snoek et al. 2012). The results are available
in Appendix 5. For TS, we optimize the number of restarts
of the algorithm and the initialization strategy. For SD, there
are no hyperparameters to optimize, except for the number of
samples, which we have already set. For what concerns SA,
we optimized the number of sweeps,7 the schedule8 and
the initial state generator.We noticed, however, that hyperpa-
rameters, we found for SA produced worse results compared
to the default ones in our following analysis, which may be
due to the sensitivity of SA to some of them. For this reason,
we retain the default hyperparameters of 1000 sweeps, a
geometric beta schedule, and a random initial state
generator.

4 Meta-model training and optimization

In this study, we aim to identify which are the characteristics
of a problem that impact the effectiveness of QA. We do
this by first training a classification model on the dataset we
have created in order to predict whether QAwould solve that
instance well or not based on its features. Since the classifier
is trained to predict the outcome of another experiment, it is
called ameta-model. Once the meta-model is trained, we can
use it to probe how important are the various features.

We train themeta-modelswithRandomForest, AdaBoost,
XGBoost and Logistic Regression, using as input data either
a specific domain (e.g., LogIsing, EmbIsing, SolSpace)
or a specific component set (e.g., Bias, Coupling, Lapla-
cian), which are described in Section 3.3. The target labels
are described in Section 3.2 (i.e., Optimal, ε-Optimal, h-

7 A sweep consists in flipping a randomly chosen decision variable.
8 The schedule determines how the temperature of the system decreases
over time.
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Table 2 Optimal
hyperparameters for QA for
each problem class

Problem class Large instances Small instances
ta [μs] ns ta [μs] ns

Max-Cut 113 190 200 182

4 × 4-Sudoku − − 200 182

Max-Clique 157 165 135 234

Community Detection 92 205 113 259

Number Partitioning 157 165 200 182

Maximum Independent Set 113 190 135 234

Minimum Vertex Cover 27 273 200 182

Set Packing 70 224 157 214

Feature Selection 157 165 27 441

Quadratic Knapsack 5 307 135 234

Optimal) and they are binary, according to whether the solver
meets that effectiveness condition or not.

The first step is to train the meta-model and optimize
its hyperparameters to ensure it is effective in predict-
ing the label. In order to measure the effectiveness of the
meta-models, we have to account for the significant class
imbalance of the labels toward the negative class, i.e.,
instances that are not solved well by QA (see Section 5). We
use Balanced Accuracy (BA) to evaluate the meta-models
because it is robust to class imbalance. Given the true posi-
tives as T P , the true negatives as T N , the number of positive
labels in the data as P and the number of negative labels as
N , the Balanced Accuracy BA is computed as follows:

BA = 1

2

(
T P

P
+ T N

N

)
(11)

The training and optimization of the meta-models is per-
formed with 5-fold Nested Cross-Validation. First, we create
a 5 folds testing split with a training fold and a testing one
which we will use to train and evaluate the meta-model.
In order to find the optimal hyperparameters for the meta-
model, we split each training fold with a further 5 folds
split, the optimization split. This results in 5 optimization
splits for each of the 5 training folds of the testing split and
is aimed at preventing the overfitting of the meta-models.
The splits are all stratified with respect to the problem class
of the instances, to ensure every split has an equal distri-
bution of the problem classes. All meta-models are trained
on the same data splits and we perform different splits for
the large and small instances. The hyperparameters of the
meta-models are optimized according to a Bayesian Search
(Victoria and Maragatham 2021; Snoek et al. 2012) explor-
ing 50 configurations, we select those that provide the best
Balanced Accuracy on the optimization split.

Once the meta-models have been optimized, we use them
to assess which problem characteristic, i.e., feature, is most
important. We use Permutation Feature Importance (PFI),

which evaluates how the accuracy of a model drops when
the values of a certain feature are shuffled. The idea is that
the more important a feature is the larger will be the drop
when the values of that feature are shuffled. For each feature
the process is repeated multiple times and the corresponding
importance is given by the mean of the drop in accuracy
observed.

5 Results and analysis

In this section, we provide the most relevant insights of our
analysis regarding the effectiveness of QA. We have three
goals: (i) determine hitch classes of problems are more diffi-
cult to solve with QA, (ii) understandwhether it is possible to
predict the effectiveness of QA based on the features we have
identified; and (iii) discover the domains, the component sets
and the features that impact the effectiveness ofQA. To do so,
we describe the results obtained by solving the instanceswith
QA and with the other classical solvers. Then, we describe
the results of the validation of the meta-models and of the
Permutation Feature Importance performed on their features.
We publish online a dataset with all the instances we gener-
ated, the features we computed and the samples obtained for
each solver.9

5.1 Effectiveness of QA for large instances

In this section, we discuss the effectiveness of QA compared
to the other classical solvers (SA, TS and SD) on the large
problem instances. Table 3 reports the results on each prob-
lem class according to the labels we defined in Section 3.2,
i.e., whether the best sample found by QA is at least as good

9 The instances, the dataset with the features, the results of the solvers
and an example script to train meta-models are available at this GitHub
repository: https://github.com/qcpolimi/QA-MetaLearning
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Table 3 Comparison on the
percentage of problem instances
in which QA is at least as
effective as a specific solver
(QA-over-SA, QA-over-TS and
QA-over-SD) or as all of them
combined (QA-over-all)

Problem class QA-over-all QA-over-SA QA-over-TS QA-over-SD

Max-Cut 75 % 75 % 75 % 76 %

Number Partitioning 30 % 30 % 33 % 30 %

Community Detection 13 % 15 % 24 % 39 %

Minimum Vertex Cover 0 % 77 % 0 % 0 %

Maximum Independent Set 0 % 73 % 0 % 0 %

Set Packing 0 % 32 % 0 % 0 %

Quadratic Knapsack 0 % 2 % 68 % 0 %

Feature Selection 0 % 0 % 0 % 0 %

Maximum Clique 0 % 0 % 0 % 0 %

Average 14 % 37 % 24 % 18 %

as that found by a specific solver (QA-over-SA, QA-over-TS
and QA-over-SD) or by all of them combined (QA-over-all).

As a general comment, we can observe that for less than
half of the problem classes (4 out of 9) QA solves effectively
more instances than at least one classical solver, while for
most of the problem classes (7 out of 9) QA is more effective
than at least one of the classical solvers for some particular
instances. However, if we combine all classical solvers QA
is more effective only in three problem classes but mostly to
a limited extent. Only for Max-Cut QA shows a consistently
high effectiveness. These results confirm that the effective-
ness of QA depends on the problem class, as is the case for
classical solvers, which is consistent with what was observed
in previous studies (Yarkoni et al. 2022; Jiang and Chu 2023;
Huang et al. 2023). If we compare QA and classical solvers
throughout the problem classes, we can see that QA is very
frequently more effective than SA, while it is more effec-
tive than TS or SD only on some specific problem classes.
As a result, we conclude that comparing QA only with SA,
without considering other solvers, is not the best practice to
evaluate the effectiveness of QA.

Regarding the characteristics of the problem classes, a
first observation we can make is that QA is more effec-
tive on problems that do not require penalties to represent
constraints: Max-Cut, Community Detection, and Number
Partitioning. This suggests that the presence of constraints
is a factor that makes a problem more difficult to solve with
QA. The reason for this may be due to the type of quadratic
terms introduced by the penalties which could open new
research directions in whether one could use a different for-
mulation for the same constraint that is more suitable for QA
(Mirkarimi et al. 2024). Furthermore, remember that Max-
Cut,Maximum Independent Set, andMinimumVertexCover
share the same Ising couplingmatrix J , with the exception of
a multiplicative factor, but have a different bias vector b. We
can observe howMax-Cut is the only one among them that is
solved effectively by QA, suggesting that the bias structure
plays an important role as well.

Lastly, a high number of quadratic terms (i.e., a dense
coupling matrix J ) does not always negatively affect QA.
In particular, both Community Detection, and Number Par-
titioning have a dense coupling matrix but still 13% of
CommunityDetection instances and the 30%ofNumber Par-
titioning instances are solved effectively with QA.

5.2 Effectiveness of QA for small instances

In this section, we discuss the effectiveness of both QA and
the other classical solvers (SA, TS, and SD) on the small
problem instances. For these instances, we can compute the
cost associated with all variable assignments and the global
optimum. We do this by computing the Hamiltonian of the
problem Hp and using its eigenvalues (i.e., its diagonal). We
also compute the maximum energy values needed to assess
the ε-Optimality for the samples of QA.

Table 4 compares the effectiveness of the solvers accord-
ing to the labels defined in Section 3.2, i.e., if the solver finds
the global optimum (Optimal), if the energy of the best sam-
ple is close to that of the global optimum (for ε-Optimal, we
use ε = 10−5), if the variable assignment of the best sample
has a Hamming Distance of at most 1 with any of the global
optimum solutions (h-Optimal).

Consistentlywithwhat was observed for the large instances,
QA is less effective than the classical solvers on all the
effectiveness conditions. If we compare 10−5-Optimal and

Table 4 Fraction of the instances that are solved well according to a
certain effectiveness condition (see Section 3.2)

Solver Optimal 10−5-Optimal h-Optimal

QA 43 % 57 % 64 %

SA 59 % 75 % 68 %

TS 74 % 90 % 81 %

SD 78 % 95 % 86 %

The most effective solver is highlighted in bold
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h-Optimal, we can see that QA finds more h-Optimal sam-
ples than 10−5-Optimal samples, as opposed to the other
solvers. This indicates that QA finds more easily samples
which are close to the optimal ones in terms of Hamming
distance rather than energy. Notice that in this experiment
SD is the most effective solver, this may be related to the
small size of the instances which may make them relatively
easy to solve with simple strategies.

As done for the large instances, we compare the effective-
ness of the solvers on the problem classes. Table 5 shows
the fraction of problem instances in which the solver finds
the global optimum (i.e., Optimal). Overall, as opposed to
what we observed for the large instances, on the small ones
QA is never more effective than the classical solvers. QA
seems to be more effective for problems that are defined over
graphs (Max-Cut, MaximumClique, Community Detection)
compared to the ones that are not. Note, however, that on
two graph problems, Minimum Vertex Cover and Maximum
Independent Set, QA performs significantly behind the clas-
sical solvers. Based on the analysis of the large instances
(see Section 5.1) we observed that the bias of the problem
seems to play a role in affecting the effectiveness of QA. This
observation is confirmed here as well since QA is muchmore
effective in solvingMax-Cut problems than in solvingMaxi-
mum Independent Set and Minimum Vertex Cover ones. We
can also observe that the effectiveness of QA is quite poor
for Set Packing and Feature Selection, being significantly
behind the classical solvers.

Interestingly, on Max-Cut and 4 × 4-Sudoku problems
almost all the solvers find the global optimum, while for
the Quadratic Knapsack hardly any instance can be solved
optimally at all, with the most effective solver being TS with
4% of the instances solved optimally.

As a second analysis, we study the effectiveness of QA in
sampling solutions with a variable assignment that is close to
one of the optimal ones in terms of Hamming distance (i.e.,

Table 5 Fraction of the instances in which the solvers are able to find
the global optimum (i.e., Optimal)

Problem class QA SA TS SD

Max-Cut 100% 100% 100% 88%

Sudoku 100% 100% 100% 100%

Maximum Clique 83% 100% 92% 100%

Community Detection 54% 58% 58% 58%

Number Partitioning 33% 100% 92% 100%

Maximum Independent Set 21% 17% 100% 100%

Minimum Vertex Cover 17% 17% 100% 96%

Set Packing 12% 50% 54% 100%

Feature Selection 0% 42% 33% 33%

Quadratic Knapsack 0% 0% 4% 0%

The most effective solver of each problem class is highlighted in bold

h-Optimality). The results reported in Table 6 are consis-
tent with the previous ones in which we assessed the ability
of the solvers to find the global optimum, see Table 5. We
should note QA exhibits much better effectiveness, when
measured in this way, being able to sample solutions close
to the optimal ones in the majority of cases. For example,
the effectiveness of the Number Partitioning problem goes
up from 33 to 96% while for Minimum Vertex Cover goes
from 17 to 58%. The results also confirm that QA is quite
effective for problems that do not require penalties to model
constraints (Max-Cut, Community Detection, and Number
Partitioning). On the other hand, QA is still ineffective for
the Feature Selection problem. Quadratic Knapsack remains
very challenging for all the solvers.

5.3 Meta-models and feature importance analysis

The goal of our analysis is to identify the domains and the
component sets whose features allow the meta-models to
predict well the effectiveness of QA.We limit our analysis to
themeta-models trained to predictwhetherQAwill be at least
as effective compared to all the classical solvers combined
(target label QA-over-all) for the large instances. We also
analyze the meta-models predicting whether QA will find
the global optimum on the small instances (QA-Optimal).
The full results are available in the online appendix.

The first important question is whether it is possible to
train meta-models able to predict the effectiveness of QA.
The results in terms ofBalancedAccuracy are shown in Fig. 2
(target QA-over-all) and in Fig. 3 (target QA-Optimal) for the
two most effective classifiers. We can immediately see that
for several domains or components of the large instances,
the Balanced Accuracy is approximately 85%, while for the
small instances it is often exceeding 90 or even 95%. This,
combined with the fact that we selected a heterogeneous set

Table 6 Fraction of the instances in which the solvers are able to find
a variable assignment having a Hamming distance of at most 1 with
respect to any optimal solution (i.e., h-Optimal)

Problem class QA SA TS SD

Sudoku 100% 100% 100% 100%

Max-Cut 100% 100% 100% 88%

Number Partitioning 96% 100% 92% 100%

Community Detection 96% 100% 96% 100%

Maximum Clique 92% 100% 92% 100%

Minimum Vertex Cover 58% 33% 100% 96%

Maximum Independent Set 46% 17% 100% 100%

Set Packing 38% 50% 54% 100%

Feature Selection 4% 71% 67% 75%

Quadratic Knapsack 0% 0% 4% 0%

The most effective solver of each problem class is highlighted in bold
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Fig. 2 Bar plot showing the
balanced accuracy of the
meta-models which predict
whether QA is at least as good
of all the classical solvers
combined (QA-over-all) on the
large instances. The domains or
component sets the model is
trained on are listed on the
x-axis. Domains and component
sets are ordered according to the
Balanced Accuracy of the best
related meta-model, in
descending order. The vertical
black segments on the top of
each bar represent the standard
deviation of the meta-models

of problem classes and instances that are solved by QA with
different degrees of success, allows us to conclude that it is
indeed possible to build accurate meta-models to predict the
effectiveness of QA. These meta-models can then be used
for many purposes, among which, studying the behavior of
this technology.

Wenowanalyzewhich are thedomains or components that
produce the best meta-models. Concerning the domains, the
more informative ones are those related to the graph structure
of an Ising problem (LogIsing and EmbIsing) which, based
on the high accuracy of themeta-model,we conclude are very
informative on the effectiveness of QA. Among the domains,
the distribution of the values in the Q matrix of the QUBO
problem (MatStruct) is less informative, this can be explained

by the fact that the problem that is actually solved on the
quantum device is represented as Ising and not as QUBO.

Secondly, if we consider the domains related to the dis-
tribution of the energies of an Ising problem which are
only available for the small instances (SolSpace, NorMul,
25%-SolSpace, 25%-NorMul in Fig. 3) it is possible to build
meta-models which, again, predict well the effectiveness of
QA with a Balanced Accuracy well above 90%. This result
shows that the effectiveness of QA also depends on the dis-
tribution of the energies of the problem, i.e., on how the
cost y of the QUBO problem is distributed. Notably, using
features based on the solution space allows to achieve compa-
rable Balanced Accuracy with other domains, indicating that
both are equally very informative. This is a particularly good

Fig. 3 Bar plot showing the Balanced Accuracy of the meta-models
which predict whether QA will find the global optimum (Optimal) on
small problem instances. The domains or components the model is
trained on are listed on the x-axis. Domains and component sets are

ordered according to the Balanced Accuracy of the best related meta-
model, in descending order. The vertical black segments on the top of
each bar represent the standard deviation of the meta-models
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result because it is relatively easy to compute the features for
the other domains once the problem has been formulated as
QUBO.

If we look at the orthogonal grouping of the features, by
component sets, we notice that with the Bias, Coupling the
Laplacian component sets it is possible to train at least ameta-
model with good Balanced Accuracy (higher than 80%). On
the other hand, the Structural Adjacency (StructAdj) and
Structural Laplacian (StructLap) are the least informative
and, in particular for large instances, do not allow to build a
meta-model better than random guess. Since both StructAdj
and StructLap are computed on the binarized problem struc-
ture, they only account for how the problem variables are
connected and not the coefficient values, this means that the
structure of the problem alone is not informative at all. The
bias and the coupling of an Ising problem, together with the
Laplacian matrix related to the graph of the Ising problem,
are the most informative on the effectiveness of QA.

In general, we can confirm that the characteristics of the
problem are important to determine the effectiveness of QA
but one must account for the actual coefficient values of
the problem and, preferably, use features derived from the
Ising formulation. This could open new research questions
on whether one can change the formulation of a problem so
that its coefficients have a different distribution that is more

adequate for the QA. Furthermore, since the coefficients are
a function of the problem class and the data, it may be possi-
ble to identify which types of graph topologies may be more
or less difficult to tackle based on the distributions of the
coefficients that they would produce.

We nowmove to analyzing which specific features are the
most important among the ones we identified. We limit our
analysis on feature importance to theXGBoost andAdaBoost
meta-models trained on two domains (LogIsing and EmbIs-
ing) and on two component sets (Bias and Coupling). In the
case of meta-models related to small instances, we include in
the analysis also the domain SolSpace. The best five features
of each of these domains and component sets are listed in
Table 7 (target QA-over-all, large instances) and in Table 8
(target Optimal, small instances).
Domains feature importance
We consider in particular the domains LogIsing and EmbIs-
ing. The majority of the most important features are related
to the bias and to the coupling of the problem, which is con-
sistent with our previous analysis. Some features are related
to the distribution of the values of the bias and the coupling
(Gini index, Shannon entropy,Herfindahl-Hirschman index),
while other features are related to precise values of these
mathematical objects (minimum value, maximum value).

Table 7 Best five features, ordered according to feature importance, of AdaBoost and XGBoost meta-models trained with LogIsing and EmbIsing
domains and with Bias and Coupling component sets

AdaBoost XGBoost

Domains LogIsing Bias min Coupling min eigval

Bias gini index Coupling max eigval

Laplacian connected components Degree min eigval

Laplacian min eigval Coupling radius

Bias condition number Bias gini index

EmbIsing Bias min Bias hhi

Bias condition number Graph Structure qubits

Bias shannon entropy Coupling spectral gap

Bias gini index Coupling max eigval

Coupling gini index Laplacian spectral gap

Component Bias EmbIsing min LogIsing hhi

sets LogIsing shannon entropy EmbIsing gini index

LogIsing gini index LogIsing gini index

LogIsing condition number LogIsing max

LogIsing min LogIsing shannon entropy

Coupling LogIsing gini index LogIsing max eigval

LogIsing hhi LogIsing radius

EmbIsing gini index EmbIsing radius

LogIsing min eigval EmbIsing min eigval

EmbIsing spectral gap LogIsing min eigval

The target of the meta-models is QA-over-all
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Table 8 Best five features, ordered according to feature importance, of AdaBoost and XGBoost meta-models trained on given domains and
component sets

AdaBoost XGBoost

Domains LogIsing Coupling gini index Coupling max eigval

Bias gini index Degree max eigval

Bias condition number Bias gini index

Coupling radius Bias condition number

Structural Adjacency min eigval Laplacian max eigval

EmbIsing Bias min Coupling max eigval

Bias shannon entropy Bias gini index

Bias gini index Bias hhi

Degree condition number Structural Degree shannon entropy

Bias hhi Coupling spectral gap

SolSpace grouped hhi gini index

gini index grouped hhi

third quartile third quartile

shannon entropy hhi

min min

Component Bias EmbIsing condition number EmbIsing gini index

sets LogIsing hhi EmbIsing condition number

LogIsing shannon entropy LogIsing hhi

LogIsing min EmbIsing shannon entropy

EmbIsing max EmbIsing hhi

Coupling EmbIsing spectral gap LogIsing spectral gap

LogIsing gini index EmbIsing spectral gap

LogIsing spectral gap LogIsing radius

LogIsing diameter EmbIsing min eigval

EmbIsing min eigval EmbIsing gini index

The target of the meta-models is QA-Optimal

In particular, notice that Bias gini index (related to
the distribution of the bias), Bias condition number
(related to the values of the bias) and Coupling max
eigval (related to the eigenvalues of the coupling) are
among the best features in the majority of the meta-models.
We deduce that the distribution of the values and the values
themselves of the bias are important to study the effectiveness
of QA, together with the eigenvalues of the coupling. This is
again an interesting observation because it would allow us to
identify in advance whether a problem could be well-suited
for QA.

Notice also that the number of qubits needed to embed the
problem on the Quantum Annealer (Graph Structure
qubits) is important, for one meta-model, to predict the
effectiveness of QA for the large instances, but not for the
small instances. This difference may be linked to the fact
that, for the small instances, the number of qubits required
after the minor-embedding process is limited and therefore
has a lower impact.

We analyze, for these two domains, the least important
features too. The majority of them is related to the structural
adjacency and to the structural Laplacian matrix. This con-
firms that the sole structure of a problem is not sufficient to
determine the effectiveness of QA. Thus, we must consider
also the coefficient values between the variables.

For what concerns the SolSpace domain (see small
instances in Table 8), notice that both the meta-models have
the same top three features, although in a different order: such
features are mostly related to the distribution of the eigen-
values of the problem (gini index and grouped hhi),
which plays, therefore, a role in determining the effectiveness
of QA.

Component sets feature importance
If we consider the Bias component set, the majority of the
most important features are related to the distribution of the
values of the bias, both considered in the LogIsing domain
and in the EmbIsing domain. In particular, observe that the
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Gini index and the condition number of the Bias, computed
in both domains, are among the five most important features,
as they were for the meta-models trained on the domains
LogIsing and EmbIsing. This corroborate our statement that
the distribution and the values of the bias are important to
determine the effectiveness of QA.

If we instead consider the Coupling component set, we
observe that most of the important features we identify are
related to the values and to the eigenvalues of the cou-
pling. Features computed in both the LogIsing and EmbIsing
domains are important and the most important features are
related to the values of the eigenvalues of the coupling.Notice
that the spectral gap and the Gini index of the coupling, com-
puted both in the LogIsing and EmbIsing domains, are shared
with almost all meta-models as some of the most important
features. We conclude that the eigenvalues of the coupling
and their distribution are important to analyze the effective-
ness of QA.

Feature correlation with target label
In the previous analysis, we identified the features that are
the most important for the meta-models. Some of these
features, furthermore, are important also if computed in dif-
ferent domains and for differentmeta-models. These features
are, for the LogIsing and EmbIsing domains: Bias gini
index, Bias condition number, Coupling max
eigval; while for the SolSpace domain: gini index,
grouped hhi, and third quartile. We want now to
give an intuition of which values of these features determine
a low or an high effectiveness of QA. For each feature we
identified, we compute the Spearman rank with the targets of
the meta-models (QA-over-all and QA-Optimal).

For most of these features, the Spearman rank does not
highlight a strong correlation with the value of the target (in
general, the Spearman rank in absolute value is below 0.40).
This suggests that the complexity of the underlying behavior
might require more powerful tools. Two exceptions are given
by gini index and grouped hhi in domain SolSpace,
which have respectively a Spearman rank of −0.596 and
0.537. This mean that as the Gini index of the eigenvalues
increases, the Ising problem becomes less difficult to solve.
On the other hand, high values of grouped hhi of the
eigenvalues imply that the Ising problem is difficult to solve
with QA.

6 Conclusions

In this paper, we have studied the effectiveness of QA with
an empirical approach based on meta-learning models.

First, we select a pool of ten optimization problems which
can be formulated as QUBO. Then, we generated more than

five thousand instances, based on different problem sizes and
structures. In particular, we created two sets, one containing
large instances and another with small ones for which we can
study also the properties of the whole solution space.

As a second step, we define a set of more than a hundred
features to describe each problem instance. The features are
heterogeneous, based on graph theory or on metrics largely
used in statistics, probability theory, and economics, and
account for the structure of the problem, its coefficients,
and its solution space. We gather all the features into a
meta-learning dataset, which we share on GitHub for fur-
ther research.

Third, we compare the effectiveness of QA and three clas-
sical solvers: Simulated Annealing (SA), Tabu Search (TS),
and Steepest Descent (SD).We observe that QA is frequently
less effective than the classical solvers, for both the large and
small instances, except for specific problems. In particular,
we have observed that QA solves more effectively problems
with no constraints in their formulation (Max-Cut, Number
Partitioning, and Community Detection).

Lastly, we train different classification algorithms to pre-
dict whether QA will solve an instance effectively or not and
show that it is possible to do so accurately. We then use the
meta-models to probe the behavior of QA. In particular, by
analyzing the feature importance of the meta-models, we can
observe how the distribution of the bias and the coupling of
a problem play a key role in determining whether QA will
be effective in solving it.

In conclusion, we successfully applied an empirical anal-
ysis of the effectiveness of QA based on meta-learning.
Possible future directions include the analysis on how dif-
ferent distributions of the coupling and bias values relate to
the effectiveness of Quantum Annealing. Such results could
be correlated to specific kinds of problems. For example,
problems characterized by graphs with a power-law distribu-
tion (e.g., problems involving social networks) may be more
or less difficult to tackle than those characterized by regular
graphs. This can be done, for example, by defining new fea-
tures that describe how much the distribution of the bias and
the coupling differs from another distribution, e.g., from a
Gaussian or a uniform distribution. Thanks to its generality,
the methodology can be easily extended to other heuristic
solvers of QUBO problems, such as the Variational Quan-
tum Eigensolver (VQE) (Fedorov et al. 2022) and Quantum
Approximate Optimization Algorithm (QAOA) (Farhi et al.
2014), providing a useful tool to further our understanding
of how to use these quantum algorithms effectively.

Supplementary information. The meta-learning dataset
with all the problem instances, the corresponding graphs
and features, as well the samples obtained with each
solver can be accessed here: https://github.com/qcpolimi/
QA-MetaLearning
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Appendix 1. QUBO formulations
of optimization problems

In this Appendix, we show theQUBO formulations of the ten
optimization problems we selected for our study. We divide
the problems in two different groups: problems defined over
a graph, explained in Section 1.1, and problems not defined
over a graph, explained in Section 1.2.

1.1 Graph problems

1.1.1 Max-Cut

Given the graph G = (V , E), a cut over graph G induced
by the set of vertices S and V − S is the set of edges which
connect vertices in S with vertices in V − S. The Max-Cut
problem aims at finding the largest cut which can be induced
on graph G (Glover et al. 2022). Consider, for each vertex i
of graph G, a binary variable xi , such that

xi =
{
1 if i ∈ S

0 otherwise

Then, the Max-Cut problem is formulated as written in
Eq.A1

min
x

y = −
∑

(i, j)∈E
(xi + x j − 2xi x j ) (A1)

1.1.2 Maximum Independent Set

Given the graph G = (V , E), an independent set is a set S
of vertices which are not adjacent to each other. The Max-
imum Independent Set problem aims at finding the largest
independent set in G. Consider, for each vertex i of graph G,
a binary variable xi , such that

xi =
{
1 if i ∈ S

0 otherwise

Then, the Maximum Independent Set problem can be
formulated as a QUBO problem as it is written in Eq.A2
(Chapuis et al. 2019).

min
x

y = −a
∑

i∈V
xi + b

∑

(i, j)∈E
xi x j (A2)

The penalty term b must outweigh the term a, to penalize
the choice of having two connected vertices in S.

1.1.3 Minimum Vertex Cover

Given the graph G = (V , E), a Vertex Cover C is a set of
vertices such that all the edges E are connected at least to a
vertex in C . The Minimum Vertex Cover is the Vertex Cover
with the smallest number of vertices (Glover et al. 2022).
Consider, for each vertex i of graph G, a binary variable xi ,
such that

xi =
{
1 if i ∈ C

0 otherwise

TheMinimumVertexCover can be formulated as aQUBO
problem as written in Eq.A3.

min
x

y =
∑

i∈V
xi + p ·

∑

(i, j)∈E
(1 − xi − x j + xi x j ) (A3)

As for theMaximum Independent Set problem, also in the
Minimum Vertex Cover problem the penalty term p must be
chosen large enough, to penalize the selection of a set of
vertices which is not a vertex cover of G.

1.1.4 Max-Clique

Given the graph G = (V , E), a clique C is a sub-graph of G
such thatC is fully connected. TheMax-Clique problemaims
at finding the cliqueC ofG with the highest number of nodes.
The QUBO formulation of the Max-Clique problem has the
same QUBO formulation of the Maximum Independent Set,
but it leverages the complement graph Ḡ ofG (Chapuis et al.
2019). Please refer to the Section A.1.2.

1.1.5 Community Detection

Given the graph G = (V , E), the aim of the Community
Detection problem is to partition G in two communities
C1,C2 of similar nodes (Negre et al. 2020; Nembrini et al.
2022). Remember that the graphG is represented by the adja-
cency matrix A, where the (i, j) entry is Ai j = 1 if nodes
i and j are connected by an edge, otherwise it is Ai j . The
degree vector d keeps track of howedges are incident to every
node of the graph. The similarity between nodes is expressed
by themodularitymatrix B, which is computed according to
the following formula:

B = A − ddT

2|E |
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The binary variable xi is related to the node i ∈ V of graph
G and it is defined as follows:

xi =
{
1 if i ∈ C1

0 if i ∈ C2

The matrix Q is proportional to B. In particular, it is equal
to:

Q = − 1

|V | B

The negative sign is due to the fact that QUBO problems
require to beminimization problems in order to be solvedwith
a QA. The formulation of the problem is therefore given by:

min
x

y = − 1

|V | x
T Bx

1.2 No-graph problems

1.2.1 Number Partitioning

Given a set of real numbers Z = {z1, z2, ..., zn}, the Number
Partition problem aims at finding two partitions Z1, Z2 of Z
in order to minimize the following expression (Glover et al.
2022):

⎛

⎝
∑

z′∈Z1

z′ −
∑

z′′∈Z2

z′′
⎞

⎠
2

(A4)

The binary decision variable xi is defined as follows:

xi =
{
1 if zi ∈ Z1

0 if zi ∈ Z2

The QUBO formulation of the Number Partitioning prob-
lem is then derived from the expression (A4), and it can be
written as follows:

min
x

y =
⎛

⎝
|Z |∑

i=1

xi zi −
|Z |∑

i=1

(1 − xi )zi

⎞

⎠
2

1.2.2 Set Packing

Given a collection of n sets S1, S2, ..., Sn , each one with a
given capacity c1, c2, ..., cn , the Set Packing problem aims at
finding a selection of sets providing the largest total capacity,
while respecting m constraints for the selection of the sets.
The binary decision variable xi is associated with the set Si ,

in particular:

xi =
{
1 if Si is selected

0 otherwise

The Set Packing problem can be formulated as it follows:

max
x

y =
∑

ci xi

s.t.
∑

a ji xi ≤ 1, j = 1, 2, ...,m, a ji ∈ {0, 1}

In order to map the constraints of the Set Packing prob-
lem into a quadratic penalty term, we leverage the following
conversion rule (Glover et al. 2022):

n∑

i=1

a ji xi ≤ 1 → p ·
∑

i=1

∑

k>i

a ji a jk xi xk

where coefficients a ji and a jk are either 0 or 1. The objective
function is therefore derived as

min
x

y = −
∑

ci xi + p ·
n∑

i=1

n∑

k>i

xi xk

m∑

j=1

a ji a jk

1.2.3 Quadratic Knapsack

Given a set of projects P1, P2, ..., Pn such that for each pair
(Pi , Pj ) it exists a joint revenue ri j = r ji , the Quadratic
Knapsack problem aims at maximizing the total revenue
of activating the projects under a budget constraint. The
Quadratic Knapsack problem is formulated as it follows:

max
x

y =
n∑

i

n∑

j

ri j xi x j

s.t.
n∑

i

ci xi ≤ b

To formulate the Quadratic Knapsack problem in the
QUBO formulation, we introduce m binary slack variables
t1, t2, ..., tm . Each slack variable has a budget coefficient
ct j , which has to be chosen accordingly to the budget b,
e.g., by stating that

∑m
j ct j = b. With these type of con-

straints, we rewrite the problem using the formulation given
in Eq.2, defined in Section 2.1. The QUBO formulation of
the Quadratic Knapsack problem is therefore:

min
x

y = −
n∑

i

n∑

j

ri j xi x j+p·
⎛

⎝
n∑

i

ci xi +
m∑

j

ct j t j − b

⎞

⎠
2
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1.2.4 Sudoku

ASudoku can be considered as a constraint satisfaction prob-
lem (Bukhari et al. 2022). In our study, we analyze only small
instances of Sudoku problems, so we consider Sudoku with
a 4× 4 grid and some fixed assignments. We call such prob-
lems 4 × 4-Sudoku The binary variable we use is defined
as

x(i, j),k =
{
1 if cell (i, j) has value k

0 otherwise

There are four kinds of constraints in a Sudoku:

Cell Constraints.
A cell can contain only one number;

4∑

k=1

x(i, j),k = 1 ∀i, j ∈ {1, 2, 3, 4}

Row Constraints.
Two cells in the same row must have distinct numbers;

4∑

j=1

x(i, j),k = 1 ∀i, k ∈ {1, 2, 3, 4}

Column Constraints.
Twocells in the samecolumnmust have distinct numbers;

4∑

i=1

x(i, j),k = 1 ∀ j, k ∈ {1, 2, 3, 4}

Block Constraints.
Two cells in the same block must have distinct numbers;

∑

(i, j)∈B
x(i, j),k = 1 ∀k ∈ {1, 2, 3, 4},

∀ blocks B

There are totally 64 constraints in a 4 × 4-Sudoku prob-
lem. If some cells are already assigned, the number of
constraints and the number of variables reduces. In par-
ticular:

– If cell (i, j) is assigned, there exist no variable related
to this cell;

– If cell (i, j) is not assigned and the number of values
it can have ism, then there existm variables related to
cell (i, j) and each variable refer to a possible value
of the cell;

We canmap all the constraints into a single square matrix
A, which has at most 64 rows and 64 columns. Each
column is related to a variable x(i, j),k , while each row
refers to a constraint. Assume that x is a vector where
each element is a variable x(i, j),k . If 	1 is a vector of 64
elements, all equal to 1, the QUBO formulation of the
4 × 4-Sudoku problem is:

min
x

y = (Ax − 	1)T (Ax − 	1)

1.2.5 Feature Selection

Given a dataset D, the Feature Selection problem aims at
finding the subset S ⊂ F = { f1, f2, ..., fn} of the best k fea-
tures able to represent the dataset. This is done especially in
machine learning, to reduce the number of features of a pre-
dictive model and therefore its complexity. Assume to have
n features. For each feature fi , we have the binary decision
variable xi , defined as follows:

xi =
{
1 if fi is selected

0 otherwise

We model the Feature Selection problem using Pearson
correlation Corr(·, ·) (Ferrari Dacrema et al. 2022). For the
quadratic terms, we compute the correlation between two
different features fi , f j of D. For the linear terms, we com-
pute the correlation between a feature fi and the target t of
D. We can compute directly the QUBO matrix Q, where in
particular its (i, j) element of the matrix Q is equal to:

Qi j =
{
Corr( fi , f j ) if i �= j

−Corr( fi , t) otherwise

Supposewewant to select k features. Todo so,we consider
the following QUBO formulation of the Feature Selection
problem:

min
x

y = xT Qx +
(

n∑

i=1

xi − k

)2

Notice that, if less or more than k features are selected,
the penalty term is larger than 0 and the objective function
value gets worse.

Appendix 2. Instance generation strategies

In this section, we explain the strategies we applied to gener-
ate the instances of the optimization problems we selected.
The strategies vary whether the problem is defined over a
graph or not. An instance of a problem is characterized by
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its structure, which is either the topology of a graph or a
general title which refers to the strategy used to generate the
constraints and the objective function, and the number of
variables n.

In general, for all the problems we generate instances
with a minimum of nmin variables to a maximum of nmax

variables. For every optimization problem, except for the
4 × 4-Sudoku and for the Feature Selection problem, there
exist nrep instances having a certain structure and with the
same number of variables. Such instances are however differ-
ent between each other, thanks to graph tweaking (explained
in Section B.1) and to the random generation of the coeffi-
cient of the cost function and of the constraints.

For the small instances, we have chosen nmin = 27,
nmax = 32 and nrep = 1. For the large instances, we have
chosen nmin = 69, nmax = 99 and nrep = 5.

2.1 Graph problems

The instance of a problem defined over a graph is totally
determined by the topology of the graph. The strategy we
applied to generate instances of graph problems is essentially
divided in two distinct phases: the first is the generation of
the graph G of n nodes, according to a certain topology;
the second is the generation of an instance, for every graph
problem, defined over G.

We have selected four different graph topologies to gen-
erate the graph G: the Star topology, the Cycle topology, the
2d-grid topology and the Erdös-Rényi topology. A key step
in the generation ofG is the random insertion and removal of
a limited number of edges, resulting in the tweaking of graph
G. In this way, we generatemore graphs starting from a given
topology and with n nodes, which however get tweaked in
different ways. We ensure always that the tweaked graph is
connected. In particular, the graph tweaking process happens
according to the following rules:

• At most nins = ⌊ n
6

⌋
edges are inserted;

• At most nrem = ⌊ n
8

⌋
edges are removed;

• To perform the tweaking, we randomly modify the adja-
cency matrix A of the original graph. We start the
tweaking of A from the first element of the first row,
A11, and we proceed left-to-right, till the element in the
last column and in the last row, Ann .

• If Ai j = 0 and less than nins edges have been inserted,
insert the edge (i, j) by setting Ai j = 1 with probability
pins = 40%;

• On the contrary, if Ai j = 1 and less than nrem edges have
been removed, remove the edge (i, j) by setting Ai j = 0
with probability prem = 30%;

• If the tweaked graph is not connected, repeat the proce-
dure;

For the Minimum Vertex Cover and the Maximum Inde-
pendent Set problems we have to set the value of the penalty
term coefficient p. For the Minimum Vertex Cover, we have
set p = n, that is to the number of nodes of the graph G.
For the Maximum Independent Set, we have set p = 2n.
In both cases, we have that an assignment which violates a
constraint highly penalize the objective function and that it
is not a solution of the instance.

2.2 No-graph problems

For what concerns the problems not defined over a graph, to
generate an instance we have to generate the matrices related
to the objective function and to the constraints. In particular,
we want to analyze satisfiable instances. We discuss how the
strategies we used to generate the instances of each problem
we selected.

2.2.1 Number Partitioning

To generate the instances of the Number Partitioning prob-
lem, we have to define the set Z to partition. For simplicity,
we generate only sets of integer numbers. We selected three
probability distributions to generate the set Z , in addition to
a fourth strategy where Z contains all the numbers between
1 and the number of variables n. The three probability distri-
butions are: (i) a uniform distribution between 1 and 99; (ii) a
geometric distribution with probability of success p = 0.02;
(iii) a Poisson distribution of mean value μ = 50.

2.2.2 Set Packing

An instance of the Set Packing problem is determined by the
capacities of the n sets c1, c2, ..., cn , the coefficients a j,i of
the constraints, and the coefficient of the penalty term p.

For what concerns the capacities ci , we sample the highest
possible capacity coefficient, called cmax, from a uniform
distribution between 10 and 39. This number represents the
highest possible capacity coefficient, called cmax. Then, we
generate the capacities c1, c2, ..., cn of the sets by sampling
them from to a uniform distribution between 1 and cmax.

To generate the coefficients a j,i , we consider a matrix A
where the element in the j-th row and in the i-th columns is
equal to a j,i . Notice that A has always n columns. We have
defined four strategies to generate matrix A:

• A is rectangular, with n − 1 rows and the elements ai,i
and ai,i+1 are equal to 1, for i = 1, 2, ..., n − 1. All the
other elements are set to zero. We say that this matrix
has a step structure. We provide below, as an example, a
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matrix of this kind with n = 5:

A =

⎛

⎜⎜⎝

1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1

⎞

⎟⎟⎠

• A is rectangular, with a number of rows m randomly
sampled from a uniform distribution between 2 and

⌊ n
2

⌋
.

All the columns of A have exactly one element equal
to 1. We say that this matrix has disjoint rows structure.
Below, we provide an example of a disjoint rows matrix,
with n = 5 and m = 3:

A =
⎛

⎝
1 0 0 1 0
0 0 1 0 1
0 1 0 0 0

⎞

⎠

• A is a square matrix. The elements on the main diagonal
are all equal to 1. Furthermore, for each row of A, a
random off-diagonal element is set to 1 with probability
p = 60%.We say that this matrix has an almost diagonal
structure;

• A is rectangular, with a number of rowsm sampled from a

uniform distribution between 10 and
⌊
n2
2

⌋
. The elements

of A are randomly generated between 0 and 1, with equal
probability. We say that this matrix has a random struc-
ture;

Also the penalty term pmust be chosen, in order to penal-
ize the assignments which violate the constraints. We use
100 steps of Bayesian optimization to choose p, bymaximiz-
ing the percentage of feasible solutions found by Simulated
Annealing in 30 executions. The range of values of p is deter-
mined by the sum call = ∑n

i |ci |. In particular:
⌊call

3

⌋
≤ p ≤ call

2.2.3 Quadratic Knapsack

In theQuadraticKnapsack problem, to generate the instances
we have to choose: (i) the values of the joint revenue ri j ; (ii)
the values of the coefficients c1, c2, ..., cn of the constraint;
(iii) the budget b; (iv) the number m of slack variables ti to
introduce and their constraints coefficients cti ; (v) the value
of the penalty term coefficient p.

We generate the joint revenue values by generating a
matrix. The general joint revenue value ri j is the element
in the i-th row and in the j-th column of a revenue matrix
R. By definition of the Quadratic Knapsack problem, R is
symmetric. We generate R according to the following four
strategies:

• R is diagonal. The elements on the diagonal are sampled
from a uniform distribution of integer numbers between
15 and 39. We say that the structure of R is diagonal;

• R has the whole diagonal, with some other few random
off-diagonal elements. The elements on the diagonal of
R are sampled from a uniform distribution of integers
numbers between 15 and 39. Then, for every column of
R, we set with probability 40% a random off-diagonal
ri j with an integer number sampled from a uniform dis-
tribution between 1 and 24; when the element is set, we
make the matrix symmetric by dividing ri j by 2 and set-
ting r ji = ri j . In the case r ji element is set again, when
considering column j , the previous value of r ji and ri j
is overwritten. We say that R has an almost diagonal
structure. An example of almost diagonal 4 × 4 matrix
is:

⎛

⎜⎜⎝

17.0 13.5 0.0 16.0
13.5 32.0 0.0 0.0
0.0 0.0 19.0 0.0
16.0 0.0 0.0 26.0

⎞

⎟⎟⎠

• The on-diagonal elements of R are non-zero; also the
elements immediately on the right and on the left of
on-diagonal elements are non-zero; the on-diagonal ele-
ments are integer numbers sampled from a uniform
distribution between 15 and 39; the off-diagonal elements
immediately to the right of on-diagonal elements are sam-
pled from the same distribution; then, the off-diagonal
elements are divided by 2 and the matrix is made sym-
metric, by setting ri j = r ji , for every i, j ∈ {1, 2, ..., n}.
We say that R has an enlarged diagonal structure. An
example of a 4 × 4 enlarged diagonal is:

⎛

⎜⎜⎝

15.0 11.0 0.0 0.0
11.0 25.0 9.5 0.0
0.0 9.5 31.0 17.0
0.0 0.0 17.0 37.0

⎞

⎟⎟⎠

• R is generated randomly, and every element is sampled
from the uniformdistribution of integer numbers between
15 and 39; then, all the elements below the diagonal are
ignored and set to 0; finally, the off-diagonal elements
are divided by 2 and the matrix is made symmetric, by
setting ri j = r ji , for every i, j ∈ {1, 2, ..., n}. We say
that R has a random structure.

The coefficients c1, c2, ..., cn which appear in the con-
straint are integer numbers sampled from a uniform distribu-
tion between 1 and 15. The budget b is set as φ ∗ ∑n

i=1 ci ,
where φ ∈ R is sampled from a uniform distribution between
0.20 and 0.70.
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We have chosen to introduce four binary slack vari-
ables t1, t2, t3, t4 to transform the inequality constraints into
equality constraints. The slack variables are respectively
associated with the budget coefficients ct1 , ct2 , ct3 , ct4 . We
choose also the values of these coefficients as it follows:

ct1 =
⌊
b

2

⌋
ct2 =

⌊
b

4

⌋
ct3 =

⌊
b

8

⌋
ct4 = b −

3∑

i=1

cti

(B5)

We use 100 steps Bayesian Search to choose p, by
maximizing the percentage of feasible solutions found by
Simulated Annealing in 30 executions. The range of the val-
ues of p depends on the sum rall = ∑n

i=1
∑n

j=1 |ri j |. In
particular:

1 ≤ p ≤ rall

2.2.4 Sudoku

To generate 4×4-Sudoku instances, we generated randomly
30 different solved 4× 4-Sudoku games. We then iteratively
removed the value of a cell, chosen randomly, of the 4 × 4-
Sudoku game. Each time we remove a cell, we increase the
number of variables of the related 4×4-Sudoku instance.We
ensure that the generated instance has a number of variables
between 27 and 32.

Notice that it is not possible to build instances larger than
64 variables of the 4 × 4-Sudoku problem. For this reason,
we generate only small instances for this kind of problem.

2.2.5 Feature Selection

We generated the instances of the Feature Selection problem
starting from the following public datasets10: waveform
-5000,SPECTF,spambase,USPS,isolet,gisette,
Bioresponse. An instance of the Feature Selection prob-
lem depends on the dataset D, on the number of features to
select k, and on the target variable t .

Assume we generate m instances with a number of vari-
ables n, with n bounded between nmin and nmax. To select
the dataset D, we use an iterative procedure. We start from
the dataset waveform-5000 and we check if it has more
than n = nmin non-target features: if this condition is
true, we select this dataset and we reduce its number of
features to n, by deleting randomly chosen features; oth-
erwise, we go to the next dataset, chosen according to the
order we used to list them, and we repeat this check. After
the last dataset, Bioresponse, we repeat staring from

10 Datasets are available on thewebsiteOpenML: https://www.openml.
org

waveform-5000. After that m features are selected, we
continue the procedure by incrementing n. The procedure
goes on until we generate m instances with n = nmax vari-
ables.

Assume that the dataset D is the i-th dataset selected to
generate an instance of n variables, in the iterative procedure,
the number of features to select is computed as follows:

k =
⌊n
5

⌋
+ i

For what concerns the target variable t , every dataset we
selected has one or multiple target variables. Since this for-
mulation can tackle only one target variable t , in case of
multiple target variables we randomly select one of them
and delete all the others.

For small instances, we considered nmin = 27, nmax = 32
andm = 4, for a total of 24 instances. The number of features
k we select is bounded between 5 and 9. For large instances,
we considered nmin = 69, nmax = 99 and m = 5, for a
total of 155 instances. The number of features we select is
bounded between 13 and 23.

Appendix 3. Definition of the features

We introduce in this section the definitions of the features
we used in our study. A subset of these features is based on
probability theory and statistics, another subset is based on
graph theory, and other features are related to the study of
the spectrum of matrices.

Gini index
Given a set X of positive numbers, the Gini index Gini(Y )

is a real number which measures the degree of inequality
between the values y ∈ Y (Damgaard and Weiner 2000).
It is comprised between 0 (all the values y ∈ Y are equal)
and 1 (only one value of Y is different from 0). Given an
ordered collection of values Y = {y1, y2, · · · , ym}, such that
0 ≤ y1 ≤ y2 ≤ · · · ≤ ym , the Gini index is computed as
follows:

g(Y ) =
2

m∑
i=1

iyi

m
m∑
i=1

yi

− n + 1

n
(C6)

Herdindahl-Hirschman index
Given a set �, called industry, composed of m firms
F1, F2, ..., Fm , each one characterized by a market share
S(Fi ) ∈ [0, 1], such that

∑m
i=1 Fi = 1. The Herfindahl-

Hirschman index (HHI) is a measure used in economics to
quantify the competitiveness of an industrywith respect to the
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market share of the firms that compose the industry (Brezina
et al. 2016). The HHI of industry � is defined as follows:

HH I (�) =
∑

F∈�

S(F)2

Clearly, 0 < HH I (�) ≤ 1. In particular, HH I (�) = 1
when there exists only one firm inside industry�, that is� is
a monopoly. On the contrary, if we assume that all the firms
have equal market share, the market is competitive and, if
m → +∞, we have that HH I (�) → 0.

If two firms Fi , Fj merge into a larger new firm Fz , we
have that S(Fz) = S(Fi ) + S(Fj ). The HHI computed on
the new industry, which includes Fz , increases.

Shannon entropy
Given a random variable Y , distributed according to a certain
distribution pY (y). The Shannon entropy of Y measures the
level of uncertainty in the distribution pY (y). In the discrete
and finite case, assuming that the possible values of Y are
y1, y2, ..., ym , Shannon entropy is defined as follows:

Sh(Y ) = −
m∑

i=1

pY (yi ) log2 pY (yi )

In general, Shannon entropy can be greater than 1. The
maximum value of Shannon entropy occurs when Y is dis-
tributed according to a uniform distribution, where all the
values of Y are equally probable and none of them can be
predicted more easily than the others.

Condition number
Given a matrix M , the condition number CN (M) measures
how close is matrix M to be singular. If M is symmetric and
real, the CN (M) is computed according to the maximal and
minimal eigenvalues of M , respectively λmax and λmin:

CN (M) =
∣∣∣∣
λmax

λmin

∣∣∣∣

Radius of a graph
Given a graph G(V , E), described by the adjacency matrix
A. The radius of graph G is the largest eigenvalue of A in
absolute value.

Diameter of a graph
Given a graphG(V , E), the shortest path between two nodes
i , j is the sequence of edges having minimal cost which
connects i and j . The diameter of G is the length of the
longest shortest path. If G is not connected, the diameter is

not defined. In the case of negative weights on the edges that
form a cycle, the diameter is not defined too.

Spectral gap of a graph
Given a graph G(V , E), described by the adjacency matrix
A, the spectral gap of G the difference, in modulus, between
the two largest eigenvalues of A. Another definition we use is
related to the Laplacian L of the graph. In this case, the spec-
tral gap is the smallest non-zero eigenvalue of the Laplacian
L related to the graph.

Connectivity of graph
Given a graphG(V , E), described by a positive semi-definite
Laplacian matrix L , the connectivity is equal to the second
smallest eigenvalue of L .

Connected components of a graph
Given a graphG(V , E), described by a positive semi-definite
Laplacian matrix L , the number of connected components of
the graph is equal to the multiplicity of the eigenvalue 0 of
L .

Appendix 4. Domains and component sets

4.1 Matrices of an Ising graph

We call the Ising graph a graph having the coupling matrix
J of an Ising problem as an adjacency matrix. Each node of
the graph corresponds to a variable of the Ising problem. The
nodes of an Ising graph have a weight too, determined by the
bias vector b of the Ising problem. In the case the Ising prob-
lem is mapped onto the topology of a QuantumAnnealer, we
call it embedded Ising graph; otherwise, we refer to it as log-
ical Ising graph. We call the structural adjacency matrix A of
an Ising graph the adjacencymatrix related to the unweighted
version of the Ising graph.

The degreematrix DJ of the Ising graph is computed start-
ing from the coupling J , while the structural degree matrix
DA of the Ising graph is computed starting from A.

The Laplacian L of an Ising graph is computed according
to the following formula:

L = D − J

The structural Laplacian LA is computed using A instead
of J and DA instead of DJ .

The normalized adjacencymatrix AN is computed accord-
ing the following formula:

AN = D
− 1

2
A AD

− 1
2

A
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The normalized Laplacian LN is instead equal to:

LN = D
− 1

2
A L AD

− 1
2

A

4.2 Domains and related features

We list here all the features computed in every domain we
consider. We refer to the definitions of the features given in
Appendix C.

4.2.1 Embedding and logical Ising graph (EmbIsing
and LogIsing)

In these domain, we gather features related to the embedded
and logical Ising graph. We compute the features starting
from the following mathematical objects: bias, coupling,
Laplacian, degree, structural adjacency, structural degree,
structural Laplacian, normalized adjacency and normalized
Laplacian matrices. In both the domains, we compute the
same features, but the considered mathematical objects vary
in size and values. For both the domains, we use the nota-
tion Object feature to refer to the feature feature,
in lowercase letters, computed on the mathematical object
Object.

Coupling
Given the coupling J , we compute:

• Coupling gini index: Gini index of the eigenval-
ues of J . Since eigenvalues may be negative, we shift
all the eigenvalues by the subtracting to all of them the
smallest eigenvalue of J ;

• Coupling hhi: HHI of the eigenvalues of J . The
share of the eigenvalues is equal to their multiplicity
divided by n;

• Coupling shannon entropy: Shannon entropy
of the eigenvalues of J . The probability of an eigenvalue
is equal to its multiplicity divided by n;

• Coupling condition number: condition number
of J ;

• Coupling radius: radius of the graph described by
adjacency matrix J ;

• Coupling diameter: diameter of the graph
described by the adjacency matrix J . It may be not
defined;

• Coupling spectral gap: spectral gapof thegraph
described by the adjacency matrix J ;

• Coupling min eigval: smallest eigenvalue of J ;
• Coupling max eigval: largest eigenvalue of J .

Bias
Given the bias b, we compute:

• Bias gini index: Gini index of the values of b.
Since some values of b may be negative, the values are
all shifted by subtracting the minimal value of b;

• Bias hhi: HHI of the values of b. The share of the
values corresponds to their multiplicity divided by n;

• Bias shannon entropy: Shannon entropy of the
values of b. The probability of a value corresponds to its
multiplicity divided by n;

• Bias min: the minimal value of b;
• Bias max: the maximal value of b;
• Bias condition number: the fraction between the
maximal and the minimal value of b, in absolute value.

Degree
Given the degree matrix D of an Ising graph, we compute:

• Degree gini index: Gini index of the eigenvalues
of D. Since eigenvalues may be negative, we shift all the
eigenvalues by the subtracting to all of them the smallest
eigenvalue of D;

• Degree hhi: HHI of the eigenvalues of D. The share
of the eigenvalues is equal to their multiplicity divided
by n;

• Degree shannon entropy: Shannon entropy of
the eigenvalues of D. The probability of an eigenvalue is
equal to their multiplicity divided by n;

• Degree min eigval: minimal eigenvalue of D;
• Degree max eigval: maximal eigenvalue of D;
• Degree condition number: condition number of

D.

Laplacian
Given the Laplacian matrix L of an Ising graph, we compute:

• Laplacian gini index: Gini index of the eigen-
values of L . Since eigenvalues may be negative, we shift
all the eigenvalues by the subtracting to all of them the
smallest eigenvalue of L;

• Laplacian hhi: HHI of the eigenvalues of L . The
share of the eigenvalues is equal to their multiplicity
divided by n;

• Laplacian shannon entropy: Shannon entropy
of the eigenvalues of L . The probability of an eigenvalue
is equal to its multiplicity divided by n;

• Laplacian min eigval: minimal eigenvalue of L;
• Laplacian max eigval: maximal eigenvalue of

L;
• Laplacian connectivity: the second smallest
eigenvalue of L . We compute it also if L is not positive
semi-definite;

• Laplacian spectral gap: the smallest non-zero
eigenvalue of L;
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• Laplacian connected components: multiplic-
ity of eigenvalue 0 of L . We compute it also if L is not
positive semi-definite.

Structural and normalized matrices
The features computed for the structural adjacency, degree
and Laplacianmatrices and for the normalized adjacency and
Laplacian matrices are the same computed for their weighted
counterparts. The main difference is that the structural and
the normalized matrices are positive-semidefinite and there
is no need to shift the eigenvalues to compute the Gini index.

Graph structure in EmbIsing domain
In the EmbIsing domain, we compute also two features
related to the size of the Embedded Ising graph. In partic-
ular, we compute:

• Graph Structure qubits: number of nodes of
the Embedded Ising graph, which corresponds to the
number of qubits used to solve an Ising problem with
the Quantum Annealer;

• Graph Structure chains: number of chains of
nodes in the Embedded Ising graph; a chain represents
a single node of the Logical Ising graph, i.e., a single
variable of the original Ising problem.

4.2.2 Matrix structure (MatStruct)

In this domain, we compute the features related to the values
of the QUBO matrix Q. In particular, we compute:

• gini index: Gini index of the values of Q. We sub-
tract the minimal value of Q from all the elements to
guarantee that the values are positive;

• hhi: HHI of the values of Q. The share of an element of
Q is equal to its number of occurrences inside Q, divided
by n2;

• shannon entropy: Shannon entropy of the values
of Q. The probability of an element of Q is equal to its
number of occurrences inside Q, divided by n2.

4.2.3 Solution space (SolSpace)

In this section, we compute features related to the eigen-
values of the Hamiltonian of the problem Hp, related to a
QUBO problem. A generic eigenvalue of Hp is λi . Assume
that λmin is the minimal eigenvalue of Hp. Remember that,
if the QUBO problem has n variable, Hp has 2n eigenvalues.
In this domain, we compute:

• gini index: Gini index of the eigenvalues of Hp. To
have all positive values, eigenvalues are shifted by sub-
tracting λmin to all of them;

• hhi: HHI of the eigenvalues of Hp. We use the value

S(λi ) = λi − λmin∑2n
j=1(λ j − λmin)

(D7)

as the share of an eigenvalue λi ;
• grouped hhi: HHI of the eigenvalues of Hp, where

identical eigenvalues are considered together. The share
of the eigenvalue λi is equal to the sum of the shares of
the eigenvalues equal to λi , computed according to the
formula (D7).

• shannon entropy: Shannon entropy of the eigen-
values of Hp. We use as probability of eigenvalue λi the
value described in Eq.D7;

• min: the minimal eigenvalue of Hp;
• first quartile: the eigenvalue of the first quartile
of Hp;

• median: the median eigenvalue of Hp;
• third quartile: the eigenvalue of the third quartile
of Hp;

• max: the maximal eigenvalue of Hp.

4.2.4 Normalized multiplicity (NorMul)

In this section,we compute features related to themultiplicity
of the eigenvalues of the Hamiltonian of the problem Hp,
related to aQUBOproblem.Assume that there arem different
eigenvalues of Hp. The multiplicity of the eigenvalue λi of
Hp is equal to μi . We call normalized multiplicity πi of λi
the value:

πi = μi∑m
j=1 μ j

In this domain, we compute the following features:

• gini index: Gini Index of the normalized multiplic-
ities of the eigenvalues of Hp;

• hhi: HHI of eigenvalues of Hp, where we use their nor-
malized multiplicities as shares;

• shannon entropy: Shannon entropy of the eigenval-
ues of Hp, where we use their normalized multiplicities
as probabilities;

• smallest eig: the normalized multiplicity of the
smallest eigenvalue of Hp.

123



   48 Page 26 of 28 Quantum Machine Intelligence             (2024) 6:48 

4.2.5 25%-SolSpace and 25%-NorMul

The features computed in these domains are the same
computed in the domain SolSpace and NorMul. The only
difference is that here, if consider the eigenvalues in ascend-
ing order, we consider only the eigenvalues of Hp in the first
quartile.

4.3 Component sets

Component sets gather all the features computed on the
samemathematical objects, but in different domains. In these
study, all the component sets contain features computed in
both the LogIsing and EmbIsing domains. For every compo-
nent set, we use the notation Domain feature to refer to
the feature feature, written in lowercase letters, computed
in the domain Domain on the mathematical object related
to the component set. The component sets we consider are:

• Bias: it contains the features related to the bias;
• Coupling: it contains the features related to the coupling;
• Laplacian: it contains the features related to the Lapla-
cian matrix;

• StructAdj: it contains the features related to the struc-
tural adjacency matrix;

• StructLap: it contains the features related to the struc-
tural Laplacian matrix;

4.4 Complexity in features computation

The major complexity in the computation of the features is
given by the computation of the Hamiltonian of the problem,
Hp. To do so it is in fact necessary to compute a 2n real-
valued vector, with n number of QUBO variables, according
to Eq.5. This of course is related only to the small instances.

For what concerns the features related to the large
instances, the bottleneck lies in computing all the minor
embeddings of the instances: minor embedding is, indeed,
an NP-Hard problem.

Once Hp and the minor embedding of the instances have
been computed, all the features are easily computed without
any particular complexity.

Appendix 5. Hyperparameters of the solvers

Tabu Search
We optimize the number of restarts of the algorithm. The
default number of restarts is 100,000. Table 9 contains the
optimal hyperparameters found for each problem class.

Table 9 Optimal hyperparameters of Tabu Search for each problem
class

Problem class Number of restarts
Large instances Small instances

Max-Cut 523,486 990,687

4 × 4-Sudoku − 72,057

Max-Clique 977,117 1,174,131

Community Detection 1,415,919 372,449

Number Partitioning 1,350,888 871,728

Maximum Independent Set 869,152 1,436,896

Minimum Vertex Cover 388,887 1,047,039

Set Packing 890,741 1,445,991

Feature Selection 1,037,380 995,175

Quadratic Knapsack 452,422 1,305,536

Table 10 Optimal hyperparameters for simulated annealing for each
problem class

Problem class Large instances Small instances
sweeps schedule sweeps schedule

type type

Max-Cut 924 linear 592 linear

4 × 4-Sudoku − − 1260 geometric

Max-Clique 630 geometric 728 geometric

Community 1073 linear 1033 linear

Detection

Number 1426 geometric 819 linear

Partitioning

Maximum 626 geometric 1192 linear

Independent Set

Minimum Vertex 1100 geometric 1393 linear

Cover

Set Packing 625 geometric 518 geometric

Feature Selection 1388 linear 576 linear

Quadratic Knapsack 503 geometric 1133 linear

Simulated Annealing
We optimized the number of sweeps and the schedule
type. The default value of the number of sweeps is 1000,
while the defualtschedule type isgeometric.Notice
that we solve the instances also with Simulated Annealing
with no hyperparameters optimization andweobtained better
results. Table 10 contains the optimal hyperparameters found
for each problem class.
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Appendix 6. Additional results
on the effectiveness of solvers

Table 11 Table containing, for each considered problems, the fraction
of 10−5-optimally solved instances for all the solvers

10−5-Optimal
Solver QA SA TS SD
Problem

Max-Cut 100% 100% 100% 88%

Sudoku 100% 100% 100% 100%

Maximum Clique 83% 100% 92% 100%

Community Detection 100% 100% 100% 100%

Number Partitioning 46% 100% 92% 100%

Maximum Independent Set 21% 17% 100% 100%

Minimum Vertex Cover 17% 17% 100% 96%

Set Packing 25% 50% 58% 100%

Feature Selection 0% 71% 75% 75%

Quadratic Knapsack 62% 88% 79% 92%

The values in bold text refer to the most effective solvers for a particular
problem
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