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ABSTRACT
The paper addresses a bicriteria optimisation problem in telecommunication net-
works that aims at finding Pareto efficient pairs of paths between two given nodes,
seeking to minimise the number of SRLGs (Shared Risk Link Groups) common
to both paths and the path pair cost. This problem is of particular importance in
telecommunication routing design, namely concerning resilient routing models where
both a primary and a backup paths have to be calculated to minimise the risk of
failure of a connection between origin and terminal nodes, in case of failure in the
primary path. An exact resolution method is applied for solving this problem, en-
abling the calculation of the whole set of Pareto optimal solutions, which combines a
transformation of the network representation with a path ranking algorithm. A com-
prehensive experimental study on the application of this approach, using reference
network topologies, considering random SRLG assignments to the links and random
link bandwidth occupations, together with the discussion on typical examples of
solution selection and potential advantages of the method, are presented.

KEYWORDS
Telecommunication routing design; Shared Risk Link Groups; Resilient routing
models; Bicriteria optimisation

1. Introduction

Multicriteria shortest path problems have important applications in telecommunica-
tion networks, specially in routing design – see (Raith and Ehrgott 2009; Cĺımaco
and Pascoal 2012; Cĺımaco and Craveirinha 2019). For a better understanding of the
present work we review some background concepts concerning the underlying problem
of telecommunication network routing design addressed by our approach.

In the design of routing models for telecom networks it is assumed, in general, a two-
layer network representation: a physical layer (the physical network) that is a represen-
tation of the relevant physical and functional elements involved in the communication
process (such as cables, optical fibers, switches, routers, control software, or others,
depending on the technological features and architecture of the considered network)
and the logical layer (the logical network) which is a mathematical representation of
the possible interconnections between functional service access points, corresponding
to origin-destinations nodes. The routing procedures involve the calculation of one or
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more paths between origin-destination nodes in the logical network (the representation
level where routing algorithms work). Our bicriteria approach addresses a telecom net-
work routing design problem involving the calculation of two paths: an active path and
a protection path (usually with reserved bandwidth for each end-to-end connection)
to be used when the active path becomes inoperative due to unavailability of any of its
arcs as a result from a failure in some underlying element(s) of the physical network.
In this context, (for modelling purposes) it is used the concept of Shared Risk Ling
Group (SRLG), such that each arc in the logical network is associated with a list of
SRLGs, each of them corresponding to a risk in the physical network, represented by
a specific label. Each label may be identified mathematically by an element in a dis-
crete finite set. Each SRLG is defined by the set of logical arcs which may be affected
by a specific risk (defined at the physical network level) and, in the applications, its
specification is obtained from the mapping of the physical network onto the logical
network. Therefore, a one-to-one correspondence between labels-risks-SRLGs can be
established. Note that, in many situations, an arc is associated with more than one
SRLG since logical arcs tend to share physical network elements thence the associated
risks of failure. For example, a cut in an optical fibre or a fault in a wavelength divi-
sion multiplexer usually affects several arcs of the logical network. Further analysis of
this and other types of problems of telecommunication network routing design from
an Operations Research perspective and focusing on the application of multicriteria
approaches can be seen in (Cĺımaco and Craveirinha 2019). This type of problems is
of paramount importance having in mind that very high levels of service availability
should be maintained in the event of failures and the enormous amounts of traffic that
can be lost. Usually the network designer seeks to calculate a pair of SRLG-disjoint
paths, ensuring that no single fault of the active path affects the backup, ou protection,
path. This problem was shown to be NP-complete in (Hu 2003).

There may arise situations for which no SRLG-disjoint path pair exists, a case in
which the aim of the routing procedure may consist of finding a maximally SRLG-
disjoint path pair, that is, a path pair with the minimal number of common SRLGs,
so as to minimise the risk of simultaneous failure of the two paths. Moreover, a key
concern is bandwidth usage optimisation, seeking to optimize the use of bandwidth re-
sources throughout the network links, in order to achieve the maximal possible network
traffic carrying capability. This is usually represented in terms of a linear objective
function, such that the cost of using a link is dependent on its used bandwidth and the
cost of a path is the sum of the costs of its arcs. These considerations lead to a typical
formulation of the routing problem with path protection involving the calculation of
a pair of paths which are maximally SRLG-disjoint and minimal in terms of the total
cost.

A multiobjective lexicographic formulation of this type of problem considering four
objective functions was addressed in (Gomes et al. 2016), where two effective heuristics
were presented. Other algorithms (either exact algorithms or heuristics) for various
lexicographic formulations of similar problems were proposed in (Hu 2003; Todimala
and Ramamurthy 2004; Rostami et al. 2007; Gomes and Craveirinha 2010; Silva et al.
2011; Gomes et al. 2013a,b; de Sousa et al. 2019; Pascoal et al. 2022).

The major contributions of this work are: i. the proposal of a bicriteria optimisation
approach for the telecom network routing design problem with protection, hereafter
designated as NRDPP; ii. the implementation of an adequate exact resolution method
for the formulated bicriteria problem, based on the algorithm in (Pascoal and Cĺımaco
2020), enabling to obtain a set of exact Pareto optimal solutions; iii. the development
of an application study using reference telecom network topologies; iv. the description
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of a procedure for selecting a solution in the obtained Pareto optimal (or efficient)
solutions set, suitable for the application in telecom network routing design. These
contributions can be specified as follows. Firstly, we formalize the NRDPP in terms
of a bicriteria optimisation problem with a linear objective function representing the
additive cost of using the two paths and a non-linear objective function representing
the number of risks (thence SRLGs) common to the two paths. Note that the non-
linear objective function is particularly difficult of handling since it is the cardinal of
the intersection of two discrete sets associated with the two paths. Secondly, by iden-
tifying each SRLG with a specific label, we describe a resolution method based on the
algorithm in (Pascoal and Cĺımaco 2020), enabling the obtainment of the set of exact
Pareto optimal solutions. This base algorithm was customized to take into account
relevant features of the application and improve computational performance. We also
include an outline review of the auxiliary path ranking algorithm in (Martins et al.
1999). Thirdly, we put forward an extensive experimental study on the application of
our bicriteria approach to the NRDPP by using reference test logical network topolo-
gies in (Orlowski et al. 2010) and considering random costs (obtained from typical
bandwidth availability distributions) and random risk/SRLG assignments to the arcs.
This enabled an evaluation of the computational performance, potentialities and pos-
sible advantages of the application of our approach. This application study shows that
in a large percentage of instances the algorithm obtains, as a subproduct, the exact
lexicographic optimum (in term of number of common risks) so that this type of solu-
tion may also be considered as a possible final solution, that is, the pair of paths to be
chosen for each origin-destination for given input on the network structure, including
SRLGs and bandwidths. Note that this exact lexicographic optimal solution (that is,
the pair of paths which are maximally SRLG disjoint and, as a secondary objective, of
minimal cost) is a common approach in resilient routing design. Furthermore, the reso-
lution method enables the calculation of a set of exact Pareto optimal solutions close to
the lexicographic optimum, which eventually may be useful as possible final solutions
to the network routing design problem. Moreover, as a contribution to the practical
application of our approach, we also discuss and present adequate selection procedures
for the final solution to be used in the context of our approach to the NRDPP. In the
computational experiments the run times for different number of SRLGs and different
mean number of SRLGs per link are analysed, showing the applicability and efficiency
of the approach in most types of networks. Potential advantages of this type of ap-
proach besides its exactness are discussed, namely regarding the fact that it enables
the analysis of trade-offs between risk-disjointness and cost. Furthermore, we show
that there are situations (namely when the lexicographic optimum pair of paths has
one or more common SRLGs and the risk occurrence probabilities vary significantly),
for which it may arise that some of the trade-off solution(s) of this model can be op-
timally resilient (in probabilistic terms), as hown in the application study. Finally, a
typical example of selection of an efficient solution in the Pareto optimal set is shown,
highlighting potential advantages of the approach. In Appendix, a review of the aux-
iliary path ranking algorithm in (Martins et al. 1999), used in the implementation of
the resolution algorithm, is shown.

The remainder of the text is organized as follows. In Section 2 the notation and pre-
liminary definitions are introduced. The bicriteria optimisation problem is formalised
and the method for solving it is shown by presenting a review of the maximal la-
bel disjoint-minimal cost algorithm on which it is based and by referring to auxiliary
sub-algorithms. Also, the fundamental underlying mathematical properties of the res-
olution algorithm are shown and its application to a small instance of the problem
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is exemplified. The application study of the approach to five sets of logical networks
based on reference logical network topologies, considering various distributions of ran-
dom SRLGs and arc costs, is developed in Section 3, including an analysis of the
results and method’s performance for the different sets of networks. Moreover, the se-
lection of an efficient solution in the Pareto optimal set, is discussed by recurring to an
illustrative example for one of the networks, thence highlighting potential advantages
of the approach. Finally, conclusions of this work are outlined in Section 4.

2. The maximally SRLG-disjoint/minimal cost path pair problem

In this section we formalize elementary concepts used in this work, define the addressed
problem, describe the algorithm to solve it, and show its basic mathematical properties.

2.1. Preliminary definitions

Let G = (N,A) be a directed network, where N is the set of n nodes and A ⊆ N ×N
is the set of m arcs, n,m ∈ N. Given two nodes v1, vr ∈ N , a path from v1 to vr
in the network G is a sequence p = ⟨v1, v2, . . . , vr⟩, where (vi, vi+1) ∈ A, for any
i = 1, . . . , r − 1. Let s, t ∈ N be called the source and the terminal nodes of G,
respectively, and P denote the set of paths in G from s to t without repeated nodes,
that is, loopless paths. Note that we consider only loopless paths because all the arc
costs are non-negative and the cost function is linear so that the consideration of
paths with loops would be unnecessary, as formally shown in Proposition 2.1 in the
next subsection.

Let L be the finite discrete set of network labels (such that each label corresponds
to exactly one failure risk), ensuring a one-to-one correspondence between labels and
SRLGs. Hereafter, we will denote the arc (vi, vj) simply by (i, j). Then, the following
parameters and sets are associated with any arc (i, j) ∈ A:

• Lij = {l1ij , . . . , lkij} ⊆ L, the set of labels corresponding to risks/SRLGs assigned
to arc (i, j) that is, which may affect (i, j),
• Al = {(i, j) ∈ A : l ∈ Lij} ⊂ A, which defines the SRLG Al corresponding to

label l ∈ L, and
• cij ∈ R+

0 , the cost for using the arc (i, j).

The set of arc labels and the linear (additive) cost for any path p ∈ P , are defined by:

l(p) =
⋃

(i,j)∈p

Lij (1)

and

c(p) =
∑

(i,j)∈p

cij , (2)

respectively. Given a pair of paths (p, q) ∈ P × P , the following objective functions
are defined:

• the number of labels/SRLGs common to both paths, given by z1(p, q) = |l(p) ∩
l(q)|,
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• and the pair’s cost, given by z2(p, q) = c(p) + c(q).

As an example, let us consider the network in Figure 1 with unitary arc costs,
cij = 1, and the sets Lij defined by the different arc colours (or the different letters
appended to the arc) shown in the image, for any (i, j) ∈ A. Assuming that the initial
node is s = 1 and the terminal node is t = 4, the pair of paths (p, q) with p = ⟨1, 3, 4⟩
and q = ⟨1, 3, 2, 4⟩ has z1(p, q) = 1 shared risk (represented by g, the green colour,
given that l(p) ∩ l(q) = {g}), and cost z2(p, q) = 5.

s t1

2

4

3

{r}

{g}

{g} {g}

{g,b}

{r}

i jLij

Figure 1. Example network (N,A)

2.2. The problem

Herein we formulate the bicriteria maximally SRLG-disjoint shortest path pair prob-
lem (or SRDSP) problem which aims at finding pairs of paths from s to t in (N,A)
which minimise the objective functions z1 and z2:

min z1(p, q)
min z2(p, q)
s. t. p, q ∈ P

(3)

When the two objective functions are conflicting, no pair of paths optimizes z1 and z2
simultaneously. So, a compromise solution has to be chosen by the network designer
in the set of efficient (or Pareto optimal) solutions. A pair of paths (p′, q′) ∈ P × P is
said to dominate another pair (p, q) ∈ P × P when{

(z1(p
′, q′), z2(p

′, q′)) ≤ (z1(p, q), z2(p, q))
(z1(p

′, q′), z2(p
′, q′)) ̸= (z1(p, q), z2(p, q))

(4)

where the first inequality should be read component-wise. The pair of paths (p, q) ∈
P × P is said to be efficient (or Pareto optimal) if and only if there is no other pair
(p′, q′) ∈ P × P that dominates it. If (p, q) is an efficient solution, then its objective
function vector (z1(p, q), z2(p, q)) is said to be a non-dominated point.

The set of efficient solutions is denoted by XE , whereas the set of non-dominated
vectors is denoted by YN and is also known as the non-dominated frontier or the Pareto
frontier. The exact resolution of the SRDSP problem involves the calculation of the
set of efficient pairs of paths in P and the corresponding YN . If z(R) denotes the set of
images of the pairs if paths in R ⊆ P ×P , that is, z(R) = {(z1(p, q), z2(p, q)) : (p, q) ∈
R}, then YN = z(XE). As shown in Proposition 2.1, this set YN may be obtained by
considering only loopless paths from s to t. As an illustrative example of sets XE and
YN the list of pairs of paths linking s = 1 to t = 4 in the network in Figure 1 is shown
in Table 1, where pairs of the same paths in reverse order are omitted. In this case the
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set of efficient pairs of paths is

XE = {(p1, p2), (p2, p1), (p2, p2), (p2, p4), (p4, p2)},

corresponding to the set of non-dominated points YN = {(2, 4), (1, 5)}.

Table 1. Pairs of paths from node 1 to node 4 in the network (N,A)
Path pk Path q l(pk) ∩ l(q) z1(pk, q) z2(pk, q)
p1 = ⟨1, 2, 4⟩ ⟨1, 2, 4⟩ {r, g, b} 3 4

⟨1, 3, 4⟩ {r, g} 2 4
⟨1, 2, 3, 4⟩ {r, g} 2 5
⟨1, 3, 2, 4⟩ {g, b} 2 5

p2 = ⟨1, 3, 4⟩ ⟨1, 3, 4⟩ {r, g} 2 4
⟨1, 2, 3, 4⟩ {r, g} 2 5
⟨1, 3, 2, 4⟩ {g} 1 5

p3 = ⟨1, 2, 3, 4⟩ ⟨1, 2, 3, 4⟩ {r, g} 2 6
⟨1, 3, 2, 4⟩ {g} 1 6

p4 = ⟨1, 3, 2, 4⟩ ⟨1, 3, 2, 4⟩ {g, b} 2 6

Proposition 2.1. For the SRDSP, there is a set R ⊆ P × P composed of pairs of
loopless paths such that YN = z(R).

Proof. Let (z̄1, z̄2) ∈ YN be a non-dominated point for the SRDSP, such that z̄i =
zi(p, q), with (p, q) ∈ XE , i = 1, 2. Let us assume, with no loss of generality, that p is
a loopless path, contrary to q which has the form q = q1 ⋄ C ⋄ q2, where C is any of
its loops. (The same reasoning can be applied in case p, or both p and q, have loops.)
Therefore, the path q∗ = q1 ⋄ q2 has less loops than q. If q∗ is not loopless, then the
reasoning can be repeated as many times as necessary until a loopless path is obtained.

Because all the arcs in q∗ are also in q, then l(q∗) ⊆ l(q), and because there are no
negative costs in the network, then c(q∗) ≤ c(q) also holds. Therefore,

z1(p, q
∗) ≤ z1(p, q) and z2(p, q

∗) ≤ z2(p, q),

and we must have

z1(p, q
∗) = z1(p, q) = z̄1 and z2(p, q

∗) = z2(p, q) = z̄2,

otherwise (p, q∗) would dominate (p, q) and this could not be an efficient solution,
thence contradicting the assumption.

The SRDSP problem differs from classical bicriteria path problems for two main
reasons. The first is the fact that it aims at finding pairs of paths. The second has to
do with the non-linear nature of the objective function z1 that counts the number of
risks shared by the two paths. Most research on path problems and K-shortest path
problems has been focused on linear objective functions, but some works are devoted to
non-linear versions of the problem, like in (Gabriel and Bernstein 2000; Reinhardt and
Pisinger 2011; Gualandi and Malucelli 2012). Reviews on multicriteria path problems
can be found in (Raith and Ehrgott 2009; Cĺımaco and Pascoal 2012).

2.3. Overview of the resolution algorithm

The exact algorithm in (Pascoal and Cĺımaco 2020) addresses two points: finding
pairs of paths from s to t and handling the functions z1 and z2 from a bi-objective
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perspective. The first aspect involves a modification of the graph G where each path
corresponds to a pair of paths in the original graph. The second involves the adaptation
to the SRDSP problem of a bi-objective method based on ranking paths, presented in
(Cĺımaco and Martins 1982). Both procedures are now briefly outlined.

The algorithm starts by transforming the network G = (N,A) into a new network,
G′ = (N ′, A′), such that:

• each node i ∈ N is duplicated as the node i′;
• each arc (i, j) is duplicated as the arc (i′, j′); and
• a new arc is added which links node t to node s′, the arc (t, s′).

The new sets of nodes and arcs are

N ′ = N ∪ {i′ : i ∈ N},
A′ = A ∪ {(i′, j′) : (i, j) ∈ A} ∪ {(t, s′)}. (5)

The initial node of network G′ is the node s, and the new terminal node is node t′.
The arc costs and labels are also duplications of those in the network G, such that:

ci′j′ = cij and li′j′ = lij , for any (i, j) ∈ A. (6)

Finally, cts′ = 0 and lts′ = {x}, with x an extra label, x ̸∈ L (details of Algorithm 1
can be found in (Pascoal and Cĺımaco 2020)).

Every path from s to t′ in G′ corresponds to a pair of paths from s to t in G and
denoting by ⋄ the concatenation of two paths, the following result holds.

Lemma 2.2. (Pascoal and Cĺımaco 2020) Any path p from s to t′ in the network G′

has the form: p = q ⋄ ⟨t, s′⟩ ⋄ r′, with q a path from s to t and r′ a path from s′ to t′.
Moreover,

z1(p) = |l(q) ∩ l(r′)| and z2(p) = c(q) + c(r′). (7)

For solving the SRDSP problem, an adaptation of the algorithm in (Cĺımaco and
Martins 1982) was used. This is based on ranking paths by non-decreasing order of
the cost, z2 which originates a sequence of solutions from which the efficient ones can
be selected, {pi}i=1,...,k. Contrary to the standard bi-objective shortest path problem,
while the objective function z2 in the SRDSP problem is linear, the function z1 is
non-linear, and so it is more difficult of handling, namely as far as finding its optimum
is concerned. Still, a ranking algorithm can be applied for finding paths in G′, accord-
ing to z2. Moreover, a subsequence of efficient solutions non-decreasing in z1 can be
obtained according to the following result.

Lemma 2.3. (Pascoal and Cĺımaco 2020) Let {pi}i≥1 be the sequence of efficient
paths from s to t′ in G′ with respect to (z2, z1); then, these paths can be arranged in a
way that satisfies:

z2(pi) < z2(pi+1) and z1(pi) > z1(pi+1)

or

z2(pi) = z2(pi+1) and z1(pi) = z1(pi+1).
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As a consequence, paths in G′ can be ranked by order of z2, and the dominance test
proposed by (Cĺımaco and Martins 1982) prunes those which are dominated. This test
consists of comparing the objective function values of each current solution with those
of the latest non-dominated solution candidate. For ranking paths we used, in our
implementation, the MPS algorithm, the deviation algorithm in (Martins et al. 1999),
which is reviewed in Appendix A. Other ranking algorithms can be used instead, for
instance (Yen 1971; Martins and Pascoal 2003; Carlyle and Wood 2005). At a given
step of the method, say step k, let m2 denote the cost of the latest path computed in
G′ until step k (which is the greatest cost found so far, given the paths ranking), and
let M1 denote the lowest number of common labels of the pairs of paths computed
until step k. Because paths are ranked according to z2, their costs never decrease.
Then, given a new path p in G′, the dominance test included in the algorithm is as
follows:

• If z2(p) = m2 and z1(p) = M1, then p is added to the set of candidates to
non-dominated solutions.
• If z2(p) = m2 and z1(p) < M1, then the candidate solutions are dominated. The
path p is a new candidate to nondominated solution.
• If z2(p) = m2 and z1(p) > M1, then the path p is dominated.
• If z2(p) > m2 and z1(p) = M1, then the path p is dominated and the current
solutions, in the set of candidates, are non-dominated.
• If z2(p) > m2 and z1(p) < M1, then the current solutions, in the set of candidates,

are non-dominated and the path p is a new candidate to nondominated solution.
• If z2(p) > m2 and z1(p) > M1, then the current solutions, in the set of candidates,

are non-dominated and the path p is dominated.

In addition, m2 and M1 must be updated during the process, whenever z2(p) < m2 or
z1(p) < M1. The algorithm starts by computing the shortest path in G′ with respect
to z2, say p. This path is then used to initialize m2 and M1 (m2 = z2(p), M1 = z1(p)).
The paths are ranked until all solutions have been computed or an acceptable pair of
paths with respect to the number of shared labels has been found. The pseudo-code of
the algorithm used for the SRDSP problem, designated as BRRA (Bicriteria Resilient
Routing Algorithm) is outlined in Algorithm 1.

Note that this base algorithm was customized for the envisaged application. In
particular, we could easily introduce an upper bound on the total cost of the two
paths, remembering that these costs are calculated by non-decreasing order. Such
bound should only be considered for solutions with previously fixed acceptable number
of common risks between the active and the protection paths. This feature enables,
in many practical situations, the saving of run time as compared to the complete
running of the base algorithm. Furthermore, in the application, we could take into
account failure probabilities associated with the arcs if such information was available
to the network designer so that trade-offs between risk-disjointness and total cost of
the two paths may be analysed for a limited number of calculated Pareto optimal
solutions. An illustrative example of this type of procedures is shown in Section 3.5.
As an illustrative example of the working of the algorithm Table 2 lists the pairs of
paths from s = 1 to t = 4 in the network in Figure 1 obtained by a ranking algorithm
with respect to the paths cost. Applying the dominance test described above allows
the set XE to be obtained, according to the remarks in the last column of the table.
The efficient pairs of paths are marked with a star.
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Algorithm 1: Finding the non-dominated SRDSPs (BRRA)

1 G′ ← Duplicate the network G // Network modification

2 p∗2 ← Shortest pair of paths from s to t′ with respect to z2 in G′

3 m2 ← z2(p
∗
2)

4 M1 ← z1(p
∗
2)

5 k ← 0
6 PN ← ∅
7 PX ← {p∗2}
8 while there are paths left to rank and a stopping condition is not met do
9 k ← k + 1

10 pk ← k-th shortest path from s to t′ with respect to z2 in G′

11 if z2(pk) = m2 then
12 if z1(pk) = M1 then PX ← PX ∪ {pk}
13 if z1(pk) < M1 then
14 M1 ← z1(pk)
15 PX ← {pk}

16 else
17 if z1(pk) < M1 then
18 PN ← PN ∪ PX

19 m2 ← z2(pk)
20 M1 ← z1(pk)
21 PX ← {pk}

3. Application study

The code BRRA was applied to different benchmark telecommunication network topolo-
gies described in (Orlowski et al. 2010), listed in Table 3, with n, m being the number
of nodes, arcs, respectively. The implementation used C language and the MPS algo-
rithm (Martins et al. 1999) to rank the loopless paths. The tests ran on an Intel®
i7-6700 Quad core, with 8Mb of cache, a 3.4 GHz processor and 16 Gb of RAM, over
openSUSE Leap 42.2.

The used reference networks are undirected. To use them in the application study
and having in mind that the corresponding logical networks are directed, each edge
{i, j} is duplicated as two directed arcs in opposite directions, (i, j) and (j, i). The
results presented hereafter are average values found for 10 seeds of the random number
generator and 45 origin-destination pairs. For each arc (i, j) ∈ A, cij = 1/bij represents
the cost of the link occupation, bij being the available bandwidth, the values of which
are randomly generated according to the distributions in Table 4, in the sets:

Ii = {2 + 2k : k = 20i, . . . , 20i+ 19}, i = 0, 1, 2;
I3 = {2 + 2k : k = 60, . . . , 78}.

The distributions D1, D2 and D3 represent uniformly, highly and lightly loaded net-
works, respectively. The sets of SRLGs/labels, Lij , assigned to the arcs are uniformly
generated between 1 and |L| = 15, 20, 25, with mean number of SRLGs per arc
α = 1, 2, 4.
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Table 2. Ranked pairs of paths from node 1 to node 4 in the network (N,A)
Path pairs (pk, pk′ ) (z1(pk, pk′ ), z2(pk, pk′ )) Remark

(p1, p1) (3,4)
(p1, p2)* (2,4) Dominates the previous pair
(p2, p1)* (2,4)
(p2, p2)* (2,4)
(p1, p3) (2,5) Dominated
(p1, p4) (2,5) Dominated
(p2, p3) (2,5) Dominated
(p2, p4)* (1,5)
(p3, p1) (2,5) Dominated
(p3, p2) (2,5) Dominated
(p4, p1) (2,5) Dominated
(p4, p2)* (1,5)
(p3, p3) (2,6) Dominated
(p3, p4) (1,6) Dominated
(p4, p3) (1,6) Dominated
(p4, p4) (2,6) Dominated

Table 3. Test parameters

Network n m δ = m/n |L| α

NSFFixedLabels 11 52 4.7 21 1.5
NSFRandomLabels 14 42 3.0 15, 20, 25 1, 2, 4
France 25 90 3.6 15, 20, 25 1, 2, 4
Cost266 37 114 3.1 15, 20, 25 1, 2, 4
Germany50 50 176 3.5 15, 20, 25 1, 2, 4

3.1. NSFFixedLabels and NSFRandomLabels networks

The code BRRA was capable of solving until the end all the instances for fixed (this cor-
responds to a practical instance of the network structure) and for randomly generated
SRLGs. The average run times shown in Figures 2 and 3, of the order of ms, do not
vary much with |L| and tend to increase with α for each given distribution, as might
be expected. From the structure of the underlying combinatorial problem one may
not conclude the existence of a congruence between the increase (or decrease) in |L|
and the average run times, contrary to what occurs with α. In fact, from these results
and from further experimentation we observed different types of situations (concerning
average run time variations with respect to |L|) in different network topologies and, in
some cases, even for the same network with different available bandwidth distributions,
as shown for example in Figure 8.

3.2. France network

The results for the instances concerning the France network are shown in Table 5 and
in Figures 4, 5. The code BRRA was capable of finding all the Pareto optimal pairs of
paths in almost all the cases, that is, in at least 94% of the problems (this worst case
was for distribution D2), although the algorithm halted due to memory constraints,
in a significant number of cases, specially for α = 4. If the algorithm is halted due to

Table 4. Available bandwidth dis-
tributions

I0 I1 I2 I3

D1 25% 25% 25% 25%
D2 70% 15% 10% 5%
D3 18% 18% 18% 46%
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Figure 2. NSFFixedLabels: Run times for problems solved until the end
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Figure 3. NSFRandomLabels: Run times for problems solved until the end

memory constraints, the set of efficient path pairs obtained until that moment, PX , is
output and two situations may occur:

(1) all the non-dominated points have been calculated, that is, z(PX) = YN ;
(2) not all the non-dominated points have been calculated, that is, z(PX) ⊊ YN .

A related problem aiming at the calculation of a lexicographic optimal pair of paths
with respect to (z1, z2) was addressed in (Pascoal et al. 2022), where an exact combina-
torial algorithm and an integer linear programming (ILP) formulation were presented.
The solution for the lexicographic problem corresponds to a point of the Pareto frontier
of our bicriteria problem and its objective function values coincide with those obtained
by the code BRRA if running with no limitations. Therefore, the solutions obtained by
BRRA were compared with the lexicographic optimal solution of the ILP formulation
given in (Pascoal et al. 2022) to distinguish situations (1) and (2), and calculate the
percentage of cases for which all the efficient solutions were obtained. These values
are summarized in Table 5. In the following, when BRRA runs normally we say that
the problem is solved until the end (shortly designated as STE). Whenever BRRA runs
normally or it is halted due to memory limitations but situation (1) occurs, then we
say that all efficient solutions are found (shortly designated as AES). As for the run
times, the trend is still that they do not change much with the bandwidth distribution
but tend to increase with α as expected. The problems that were not halted due to
memory storage ran in up to 1.5s, whereas if one considers all the instances for which
it was possible to find all the non-dominated solutions the code required up to 4.5s. It
is worth noting that the samples used to obtain the average values shown in Figures 4
and 5 are different, given that different instances may have been solved until the end
or such that all non-dominated points were obtained.
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Table 5. Results for France

α = 1 α = 2 α = 4

Dist.\|L| 15 20 25 15 20 25 15 20 25

D1
STE (%) 92 86 92 59 68 83 23 33 43
AES (%) 97 98 98 97 98 97 98 98 98

D2
STE (%) 89 85 89 59 68 85 23 33 43
AES (%) 94 95 94 97 98 100 99 98 98

D3
STE (%) 94 87 94 62 69 85 25 34 44
AES (%) 100 100 100 98 98 98 100 100 99

STE: Problems solved until the end; AES: Problems for which all
efficient solutions were found
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Figure 4. France: Run times for problems solved until the end
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Figure 5. France: Run times for problems for which the whole Pareto front was found
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Table 6. Results for Cost266

α = 1 α = 2 α = 4

Dist.\|L| 15 20 25 15 20 25 15 20 25

D1
STE (%) 83 93 95 21 31 57 3 7 11
AES (%) 92 98 98 89 84 92 88 87 77

D2
STE (%) 86 95 96 22 33 60 3 7 12
AES (%) 95 100 98 98 96 99 96 95 97

D3
STE (%) 78 87 88 20 29 53 3 7 11
AES (%) 87 91 90 87 82 85 93 88 87

STE: Problems solved until the end; AES: Problems for
which all efficient solutions were found
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Figure 6. Cost266: Run times for problems solved until the end

3.3. Cost266 network

The percentage of problems solved until the end decreased very significantly for α =
2, 4 but the percentage of problems for which all efficient solutions were found is still
very high, as shown in Table 6. As for the average run times, they were lower (always
less than 350ms), in the former set of instances (Figure 6), than for the France network
and of the same order of magnitude for the latter set (up to 4.9s), see Figure 7. The
variations with the distributions and their defining parameters α, |L| follow the same
trends as for France network.

3.4. Germany50 network

This network has significantly more nodes, arcs and connectivity than the previous
ones justifying why less percentage of instances were solved until the end by BRRA, as
can be seen in Table 7, especially for α = 4 (worst-case scenario). Nevertheless, BRRA
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Figure 7. Cost266: Run times for problems for which the whole Pareto front was found
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Table 7. Results for Germany50

α = 1 α = 2 α = 4

Dist.\|L| 15 20 25 15 20 25 15 20 25

D1
STE (%) 79 84 90 29 45 64 3 8 11
AES (%) 80 90 92 66 70 77 68 71 67

D2
STE (%) 93 94 98 38 54 78 3 9 14
AES (%) 95 100 100 87 87 94 89 91 86

D3
STE (%) 71 77 84 26 38 57 3 7 10
AES (%) 72 82 84 57 59 68 61 63 56

STE: Problems solved until the end; AES: Problems for
which all efficient solutions were found
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Figure 8. Germany50: Run times for problems solved until the end

was still capable of obtaining the whole Pareto solutions set for between 56% and
100% of all the instances. As for the average run times these are of the same order of
magnitude as in Cost266 network for the former set of instances (Figure 8) excepting
for D3 where they tend to be higher, and of the same order of magnitude for the latter
set (Figure 9), excepting for D3, α = 2 where they tend to be lower.

Overall, we conclude that the algorithm was capable of calculating exactly the whole
Pareto set in most cases or, at least, a major part of this set, in the reference test net-
works, still in times compatible with a wide range of applications to telecommunication
network routing design problems.

3.5. Solution selection procedures

Concerning the selection of an efficient solution in the obtained Pareto set, network
designers tend to choose the lexicographic optimal solution (corresponding to z∗1 , the
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Figure 9. Germany50: Run times for problems for which the whole Pareto front was found
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minimal z1), seeking to minimise the probability of end-to-end connection failure, in
order to guarantee maximal service availability. Hence, we admit that, in practice, one
might consider the analysis (in a bicriteria context) of non-dominated solutions with
a number of common labels of z1 = z∗1 + i, i = 0, 1, 2, 3, and thus analyse possible
trade-offs between SRLG disjointness and cost.

An illustrative example for an instance in the France network is shown in Figure 10.
In this case only the 4 solutions in the green area of the Pareto set would be analysed.
An obvious choice would the lexicographic optimum (solution 7), which ensures full
SRLG disjointness, or, alternatively, solution 6 if the designer (or possibly a corporate
customer exploring the services associated with this end-to-end connection) accepts a
minimal worsening in optimal resilience for obtaining a gain of approximately 19% in
total route cost. Similar examples could be shown for other instances/networks.
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Figure 10. Non-dominated solutions for a selected instance in France network

As noted in the introduction, some situations may arise for which the lexicographic
solution has one or more SRLGs common to both paths and the risk occurrence
probabilities vary significantly. Now we will show that, in some circumstances, the
consideration of alternative efficient solutions is not only advisable in terms of trade-
off analysis but also may be useful for selecting a solution with maximal survivability
value for the end-to-end connection supported by the pair of paths.

Let us consider a routing situation in a network such that the lexicographic optimal
solution of the problem, x∗1 = (p1, q1), has z1(x

∗
1) = l∗ = 1 and the failure probability

assigned to the risk common to p1 and q1 is known, P1. Let us also assume that the
algorithm calculated another efficient solution, x2 = (p2, q2), with z1(x2) = l∗ + 1,
the failure probabilities for the two associated common risks being P2 and P3, with
P2, P3 < P1. This may clearly arise in physical networks with significant asymmetries
in failure probabilities of its components. Thence the end-to-end connection failure
probability (corresponding to the service unavailability) is simply given by the total
probability theorem, assuming statistical independency among failures of the physical
network elements:

U(x2) = P2 + P3 − P2P3 ≈ P2 + P3 (P2, P3 ≪ 1).

Therefore, for all cases such that U(x2) < P1 = U(x∗1) the efficient solution x2 could
be optimally resilient, unlike the lexicographic optimum, x∗1. A realistic numerical ex-
ample follows, considering values of the same magnitude as in the examples addressed
in (de Sousa et al. 2019) in the context of geodiverse routing methods for disaster

15



resilience scenarios. If

R1 = 0.9940 = 1− P1,

R2 = 0.9995 = 1− P2,

R3 = 0.9994 = 1− P3,

then,

U(x∗1) = 0.60% > U(x2) = 0.11%.

Moreover, from the definition of non-dominance it results that the cost of solution
x2 is less than the cost of x∗1, so that, in this type of case, the efficient solution x2
would be clearly preferable as compared to the lexicographic optimum. This type of
argument could be naturally applied to other efficient solutions, by performing an a
posteriori analysis, based on information on failure probabilities. This illustrates the
capabilities of the proposed approach.

4. Concluding remarks

We presented a bicriteria optimisation approach for the telecommunication network
routing design problem with path protection and the implementation of an adequate
exact resolution method for the formulated bicriteria problem, based on the algorithm
in (Pascoal and Cĺımaco 2020), enabling to obtain a set of exact Pareto optimal solu-
tions. Also, an application study using reference telecommunication network topologies
considering random arc bandwidth occupations and random SRLGs/risks assignments
to the arcs of the associated logical networks, was developed. The description of a pro-
cedure for selecting a solution in the obtained Pareto optimal solution set, suitable
for the application in telecom network routing design, was put forward. This may be
useful in telecommunication network resilient routing design for analysis of possible
trade-offs between SRLG disjointness and total cost. Experiments for assessing the
performance of the method on reference test networks have shown that the method is
capable of calculating the whole Pareto set in the vast majority of cases or, at least, a
major part of this set. In general, the run times increased with the size/connectivity
of the networks and, in most cases, with the increase in the mean number of SRLGs
per arc. Another advantage of the method is that it calculates, as a subproduct, the
lexicographic optimal solution, a common approach to the routing design problem.
Furthermore, we have shown that, in some circumstances, which may arise in telecom-
munication network routing design, including geodiverse routing models, the proposed
approach may be useful for analysing possible optimally resilient solutions in the Pareto
optimal set. These features make the proposed approach and resolution method suit-
able for a wide range of applications on resilient routing design of telecommunication
networks (namely optical fiber based transport networks and SDNs – Software Defined
Networks), including off-line dynamic routing.
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Appendix A. MPS algorithm for ranking loopless paths

In the following we review the algorithm proposed in (Martins et al. 1999) for ranking
K loopless paths by non-decreasing order of cost, for a given K ∈ N.

Let X be a set that stores candidates to the k-th loopless path candidates, pk, for
k = 1, . . . ,K. The set X is initialised with the shortest path from s to t in (N,A), p1,
and after paths p1, . . . , pk−1 having been determined, the path pk is the next shortest
path currently stored in the set X. When path pk is selected and removed from X,
its nodes are analysed in order to generate new candidate paths with a low cost. The
shortest deviation of pk at node vi is given by the shortest path from vi to t, after
deleting the arc of pk that starts at node vi. This best path has the form:

p = subpk
(s, vi) ⋄ (vi, j) ⋄ Tt(j),

where the arc (vi, j) ∈ A does not belong to any of the candidate paths computed so
far, Tt denotes the tree of the shortest paths from any node to t, Tt(j) denotes the
path from j to t in Tt, ⋄ stands for the concatenation of paths, and subp(u, v) is the
subpath of path p between nodes u and v. Node vi ∈ N is called the deviation node
of path p, and will be denoted by dp.

The MPS algorithm relies on two important ideas to define the new deviations to
consider for each path pk. The first is the use of reduced costs instead of the usual
costs associated with the network arcs. The second is to represent the network in the
sorted forward star form.

Let πi denote the cost of the path in Tt from any i ∈ N to node t. The reduced cost
associated with (i, j) ∈ A is defined by

c̄ij = cij − πi + πj

and it satisfies:

• c̄ij ≥ 0, for any (i, j) ∈ A,
• and c̄ij = 0, for any (i, j) ∈ Tt.

Moreover,

c(p) = c(Tt(s)) + c̄(p),

for any path p from s to t, and the use of reduced costs preserves the order in paths
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p1, . . . , pK . Therefore, c̄(Tt(u)) = 0, for any u ∈ N , and when scanning node v ∈ pk, the
deviation (v, u) with the minimum reduced cost has to be determined. Additionally, in
the sorted forward star form network deviations are presented in non-decreasing order
of their tail nodes, and deviations with the same tail node are sorted by non-decreasing
order of their reduced costs.

The generation of a new candidate by this method depends on the selection of the
arc (vi, j), chosen in a way that the nodes of a path should not be repeated. This
procedure may still generate some paths with loops, whenever subpk

(s, vi) and Tt(j)
share nodes. Therefore, only arcs that start at a node previous to the first loop have
to be considered. An outline of this algorithm is presented in Algorithm 2.

Algorithm 2: MPS algorithm for ranking K loopless paths by order of cost

1 Tt ← tree of the shortest paths from any i ∈ N to t
2 for (i, j) ∈ A do c̄ij ← πj − πi + cij
3 Represent A in the sorted forward star form
4 p← Tt(s)
5 dp ← s
6 X ← {p}
7 k ← 0
8 while X ̸= ∅ and k < K do
9 p← argmin{p ∈ X : c̄(p)} // p = ⟨v1, v2, . . . , vr⟩

10 X ← X − {p}
11 for i = d(p), d(p) + 1, . . . , r − 1 such that subp(s, vi) is loopless do
12 (vi, v)← arc that follows (vi, vi+1) in A such that v ̸∈ subp(s, vi)
13 if (vi, v) is defined then
14 q ← subp(s, vi) ⋄ (vi, v) ⋄ Tt(v)
15 dq ← vi
16 X ← X ∪ {q}
17 if vi = vr−1 then
18 k ← k + 1
19 pk ← p
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