
Computer Methods and Programs in Biomedicine 240 (2023) 107736

Available online 30 July 2023
0169-2607/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Fetal states identification in cardiotocographic tracings through discrete 
emissions multivariate hidden Markov models 

Edoardo Spairani a,b,*, Giulio Steyde b, Salvatore Tagliaferri c, Maria G. Signorini b, 
Giovanni Magenes a 

a Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy 
b Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milano, Italy 
c Department. of Obstetrical– Gynaecological and Urological Science and Reproductive Medicine, Federico II University, Naples, Italy   

A R T I C L E  I N F O   

Keywords: 
Cardiotocography 
Clustering 
Fetal states 
Hidden Markov models 

A B S T R A C T   

Background and objectives: Computerized Cardiotocography (cCTG) allows to analyze the Fetal Heart Rate (FHR) 
objectively and thoroughly, providing valuable insights on fetal condition. A challenging but crucial task in this 
context is the automatic identification of fetal activity and quiet periods within the tracings. Different neural 
mechanisms are involved in the regulation of the fetal heart, depending on the behavioral states. Thereby, their 
correct identification has the potential to increase the interpretability and diagnostic capabilities of FHR 
quantitative analysis. Moreover, the most common pathologies in pregnancy have been associated with varia
tions in the alternation between quiet and activity states. 
Methods: We address the problem of fetal states clustering by means of an unsupervised approach, resorting to the 
use of a multivariate Hidden Markov Models (HMM) with discrete emissions. A fixed length sliding window is 
shifted on the CTG traces and a small set of features is extracted at each slide. After an encoding procedure, these 
features become the emissions of a multivariate HMM in which quiet and activity are the hidden states. After an 
unsupervised training procedure, the model is used to automatically segment signals. 
Results: The achieved results indicate that our developed model exhibits a high degree of reliability in identifying 
quiet and activity states within FHR signals. A set of 35 CTG signals belonging to different pregnancies were 
independently annotated by an expert gynecologist and segmented using the proposed HMM. To avoid any bias, 
the physician was blinded to the results provided by the algorithm. The overall agreement between the HMM’s 
predictions and the clinician’s interpretations was 90%. 
Conclusions: The proposed method reliably identified fetal behavioral states, the alternance of which is an 
important factor in the fetal development. One key strength of our approach lies in the ease of interpreting the 
obtained results. By utilizing a small set of parameters that are already used in cCTG and possess clear intrinsic 
meanings, our method provides a high level of explainability. Another significant advantage of our approach is 
its fully unsupervised learning process. The states identified by our model using the Baum-Welch algorithm are 
associated with the “Active” and “Quiet” states only after the clustering process, removing the reliance on expert 
annotations. By autonomously identifying the clusters based solely on the intrinsic characteristics of the signal, 
our method achieves a more objective evaluation that overcomes the limitations of subjective interpretations. 
Indeed, we believe it could be integrated in cCTG systems to obtain a more complete signal analysis.   

1. Introduction 

Computerized cardiotocography (cCTG) is increasingly assuming a 
central role in the scientific literature [1,2]. This diagnostic technique 
enables the assessment of fetal condition by quantifying variations in the 
Fetal Heart Rate (FHR) through linear and non-linear methods, both in 

time and frequency domains [3]. Although CTG tracings are typically 
analyzed in a qualitative way by visual inspection in clinical practice, 
different numerical algorithms have shown their potential in increasing 
the diagnostic accuracy, bettering the capacity to identify potential 
pathological conditions both during antenatal period and labor. The use 
of Information Technology in the analysis of CTG recordings can 
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improve the diagnostic value of CTG, both because it confers objectivity 
and reproducibility to the method [1] and because it allows investi
gating characteristics of the signal that cannot be properly identified by 
visual inspection [2,3]. 

For a proper understanding of cardiotocographic tracings, it is 
essential to know the pathophysiological mechanisms underlying 
changes in FHR both ante- and intra-partum. In particular, a correct 
interpretation cannot help but consider how fetal behavioral states in
fluence heart rate and fetal responsiveness [4]. 

The transition from one to the other behavioral state is a sign of 
integrity and good maturation of the fetal central nervous system (CNS) 
and autonomic nervous system (ANS). For example, a trace with no 
accelerations in 20 min of recording (“nonreactive”) could be due to a 
quiet behavioral state. The longer the period of time in which there are 
no accelerations, the greater the risk that the fetus may be in a hypoxic 
condition. Conversely, a highly responsive well-oxygenated fetus might 
have incoming accelerations for more than an hour and simulate fetal 
tachycardia, a condition associated with hypoxia [5]. 

For these reasons, the automatic identification of fetal behavioral 
states is a challenging but fundamental task in cCTG. Being able to spot 
the distinct fetal stages within the CTG tracings has the potential to 
increase the interpretability and reliability of this diagnostic method
ology and is of fundamental clinical relevance. In fact, from the duration 
of the different phases, important information about the state of fetal 
well-being is derived. It has been observed that prolonged phases of 
inactivity are important indicators of pathological conditions, and al
terations in the physiological alternation of fetal states have been 
associated with several conditions in pregnancy [6–10]. Moreover, CTG 
parameters have been shown to vary substantially according to the 
behavioral state, which suggests that they should be more correctly 
interpreted knowing the fetal state in which they were computed 
[11–14]. 

Indeed, as discussed in [15], the fetal behavioral state has been 
shown to affect the responsiveness of CNS. 

Nijhuis [4] reported that for fetuses at term (i.e., from 36–38 weeks 
of gestation), 4 distinct behavioral states can be identified, which closely 
follow the behavioral states observed in neonates. These states are 
referred to as 1F (quiet sleep), 2F (active sleep), 3F (quite awake) and 4F 
(active awake). Each is characterized by a typical FHR pattern and is 
associated with a different motility and eye movements profile. 

In fetuses not yet at term this distinction is less clear and is often 
difficult to identify these 4 behavioral states by definition. 

In the context of the non-stress test, it is more common to consider 
only two states (i.e., “active” and “quiet”) which can be more consis
tently identified also at earlier gestational ages [16,17]. 

The identification of different fetal states within CTG tracings is, to 
date, still left to the clinician’s experience and can consequently lead to 
discordance in interpretations. In the wider context of automatic iden
tification of fetal behavioral states in the FHR, only a few simple algo
rithms for their identification have been presented in [18–20]. 

In this paper, we present an unsupervised method based on Hidden 
Markov Models (HMMs) for clustering FHR signals’ points as belonging 
to “active” and “quiet” states. We believe that HMMs could be particu
larly well-suited for this task for several reasons. Unlike other clustering 
techniques, they correctly capture the inherent temporality of the 
analyzed signal and they naturally exploit the clinical observation that 
FHR signals change their characteristics in time, alternating among 
different phases that present consistent similarities and are generated by 
variations in the fetal state, which cannot be directly observed. More
over, they are fully data-driven and present the great advantage to be 
very well interpretable. 

The proposed approach is based on shifting a fixed-length sliding 
window on the FHR tracing and extracting a small set of features at each 
slide. The parameters are considered to be the set of emissions/obser
vations of the HMM while the “active” and “quiet” phases are the hidden 
states. After the unsupervised training phase, the model can 

automatically assign each point of the shifting window to the state under 
which it is more likely to have observed the emitted set of observations 
[21]. 

An illustration of the procedure is shown in Fig. 1. 

2. Methods 

2.1. Overview of the proposed method 

The core idea behind this approach is to exploit the a priori knowl
edge of the existence of two distinct fetal stages (A and Q) to develop an 
unsupervised classification model for their identification within an FHR 
signal. The need for adopting an unsupervised learning approach, which 
aims at discovering patterns and relationships in data without any 
predefined guidance (no labelled data as in the supervised case) derives 
from the absence of an objective external source of information that can 
be used to identify the labels (i.e., the ground truth). 

In particular, in our work, we set up a discrete emissions multivariate 
HMM with two possible states (A and Q), one for each possible fetal 
phase. The HMM states are not directly visible, but they are observable 
through a discrete set of emissions; the latter consists of the discretized 
values of a set of parameters computed on a moving window running on 
the FHR signal. Hence, at each shift of the sliding window, the compu
tation of a set of quantitative features, describing different aspects of the 
FHR signal, is performed. Each variable in the set is then codified so that 
the parameters’ set is in the form of a binary array, that is passed to the 
trained HMM. The latter gives back the state (A or Q) most likely to have 
given rise to the observed set of emissions. 

Fig. 1. Illustration of the whole described procedure. At each shift of a 3-min 
sliding window, a set of selected parameters, describing different aspects of 
the FHR chunk within the 3-min window, is obtained. The computed set is then 
properly encoded and passed in input to the HMM. The latter predicts the state 
which is more likely to have generated the observed sequence of parameters. 
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The remaining part of the section has the following structure: a brief 
introduction on HMMs is provided in Section 2; a description of the data 
employed to train and test the developed model is furnished in Section 3; 
Sections 4 and 5 respectively describe the computation of the parame
ters set and its categorization while Sections 6 and 7 expose the details of 
the presented HMM and of its training. 

2.2. A brief introduction to hidden Markov models 

Classical Markov models are random stochastic processes in which 
the probability that rules the transition from one state of the system to 
another one only depends on the immediately preceding one and not on 
the whole trajectory of states that have brought to the actual one 
(memory-lessness property). In standard Markov models, the states of 
the system are directly observable. 

HMMs, on the other hand, are Markov models in which the states are 
not directly observable, but are inferable through a set of random var
iables, called observations or emissions, that are probabilistically related 
to the unobservable states [21]. 

An HMM is defined through:  

• A set S of N possible states {S1, …, SN}.  
• A set A of M possible emissions/observations {a1, …, aM}.  
• A N x N transition matrix called P such that P(i, j) = pij = p(Sj|Si).  
• A N x M emission matrix called E such that E(i, j) = eij = p(aj|Si).  
• A 1 x N vector π0 of prior probabilities. 

The P matrix regulates state changes, while the E matrix rules the 
probability of a given state to emit a certain symbol (observation). 
HMMs can present univariate or multivariate emissions. In the first case, 
a single observation is emitted at each time, while in the second one, a 
set of observations is issued. 

The P and E matrices are learnt during the training phase through the 
Baum-Welch algorithm, a special case of the expectation-maximization 
(EM) algorithm [22]; the algorithm requires an initial estimate of π0, 
E and P, which are then updated to the current values during the 
training. 

Once an estimate of matrices E and P has been obtained, the model 
can be exploited to make predictions. Specifically, given a particular 
sequence of observations, the model will use the learnt knowledge to 
predict the trajectory of states most likely to have given rise to the 
observed sequence. This task is addressed through the Viterbi algorithm 
[23]. The prototype of an HMM is depicted in Fig. 2. 

2.3. The employed dataset 

The dataset we used in our work is the one described in [24], which 
comprises 17,483 FHR tracings sampled at 2 Hz and lasting at least 20 
min. From this wider set, we isolated records for gestational weeks be
tween 30 and 40. A preprocessing step was also necessary to clean up the 

traces, which are affected by different kinds of artifacts. The denoising 
step includes the linear interpolation of signal losses lasting less than 15 
s. 

2.4. Parameters computation 

We decided to perform the computation of a set of parameters on 3- 
minute moving windows (360 points of the tracing), shifting along the 
FHR signal with a 5-second stride (10 signal points). 

The parameters we decided to include in our study are those which, 
based on our prior knowledge, we expect to vary the most between 
Active and Quiet states. 

In particular, the regressor set we considered comprehends two 
groups of features, the first of which includes parameters that are 
directly obtained from the FHR signal, and the second of which is formed 
by a single signal-independent feature, hence not straightly derived from 
the tracing. 

The first group is formed by 5 parameters and includes the variance 
of the signal or total power (PWT), DELTA, Sample Entropy (SampEn), 
the power in the very-low frequency range (VLF) and the number of 
accelerations within the window (Accel.). All features are computed 
onto the whole three-minute windows except from DELTA, which is 
obtained only using the points belonging to the central minute of each 
window, for consistency with its definition [25]. 

PWT and DELTA are two linear measures of variability in the time 
domain, which are known to increase during fetal activity [11,26]. 
DELTA is a commonly used parameter in clinical practice and consists of 
the difference between the maximum and minimum value of the signal 
after the application of a low-pass and down-sampling procedure 
excluding accelerations and decelerations [25]. Wide variations in terms 
of this parameter among distinct behavioral states have been reported in 
the literature [11]. SampEn is a family of statistical indices that measure 
regularity, or predictability, by counting the presence of repetitive 
patterns. SampEn has been shown to increase during quiet states [11, 
26]. VLF was computed as the percentage of the power of the detrended 
signal at frequencies below 0.03 Hz. This feature has been shown to vary 
substantially between active and quiet states in [11]. 

The accelerations are identified according to the definition provided 
in [27] as periods longer than 15 s during which the FHR remains at least 
5 bpm above the baseline and that have a maximum amplitude of at least 
10 bpm. 

The second group of parameters coincides with the percentage of 
perceived fetal movements (FMP) inside the window. The FMP signal is 
the result of the pregnant woman pressing a button, integrated with the 
system, to indicate the perception of fetal movements during the CTG 
examination. Technically, the FMP is a signal that has the same duration 
as the FHR trace, where the perceived movements are indicated by the 
value 1 and the remaining points have a value of 0. In our study, we refer 
to FMP as the percentage of perceived movements within the 3-min 
window. 

Accelerations and fetal movements are perhaps the most typical 
characteristic of activity phases in CTG traces. However, their presence 
does not automatically indicate that the fetus is in an active state. FMPs, 
for example, may be present also in the quiet phase 1F, although more 
sporadically, and could be the result of the mother’s misperception [28]. 

The choice of integrating a set of indices derived from the FHR 
tracing (PWT, DELTA, SampEn, VLF, Accel.) together with a signal- 
independent feature (FMP) has the intent to allow objective and sub
jective information to co-participate and work in tandem to the process 
of identifying fetal stages. 

A summary reporting the computed parameters is shown in Table 1. 
Parameters were computed using MATLAB R2022b (The Math 

Works, Inc.). Fig. 2. Scheme of a generic Hidden Markov Model with N states and M possible 
emissions for each state. The probability to observe the jth emission in the ith 
state is ruled by the emission probability eij. On the other hand, the probability 
of shifting from state i to state j is governed by pij. 

E. Spairani et al.                                                                                                                                                                                                                                



Computer Methods and Programs in Biomedicine 240 (2023) 107736

4

2.5. Parameters encoding: the observation set 

Once the parameters’ set is obtained at each shift of the 3 min sliding 
window, the latter needs to be properly encoded to be passed as input to 
the HMM. 

As previously stated, the idea is to interpret the group of regressors 
computed at each sliding of the moving window as the set of observable 
random variables emitted by the actual state of the HMM (i.e., the 
emissions). These observations are probabilistically related to the sys
tem’s state through the emission matrix E, which is estimated during the 
training phase. 

Since each parameter is continuous, we decide to put ourselves in a 
simplified case, by converting each variable to categorical. PWT, VLF, 
SampEn, DELTA and FMP are categorized according to the 33.3rd and 
66.6th percentile values of their respective PDFs, which have been 
computed considering all the signals in the dataset. Accel., on the other 
hand, is binarized with respect to the presence or absence of accelera
tions within the 3-minute window. Thus, each 3-minute excerpt of the 
FHR signal is converted into a binary vector of 17 symbols, formed by 5 
triplets and a final tuple. The first 5 groups of 3 digits respectively 
indicate low, middle and high values of PWT, VLF, SampEn, DELTA and 
FMP, and the last group of 2 symbols stand for the presence or absence of 
accelerations. 

For example, let’s assume we consider a 3 min chunk of FHR signal, 
described by high PWT, middle VLF, low SampEn, high DELTA, high 
FMP and presence of accelerations; the latter will be coded as “0 0 1 0 1 
0 1 0 0 0 0 1 0 0 1 1 0” (see Fig. 3). 

2.6. The proposed HMM for the fetal state assessment 

The intent of the present work is to demonstrate how HMMs can be 
used as a tool capable of enabling the unsupervised identification of fetal 
states within an FHR signal. 

In our attempt to solve the problem, we make the modeling 
assumption that the system can be described by an HMM with two 
possible states (N = 2), i.e., activity (A) and quiet (Q). The evolutional 
dynamics of this system are governed by its emission and transition 
probabilities, which are estimated during the training phase, as will be 
explained in Section 7. The emission set A is hence composed of 17 
possible observations: A= {PWT low, PWT middle, PWT high, VLF low, 
VLF middle, VLF high, SampEn low, SampEn middle, SampEn high, 
DELTA low, DELTA middle, DELTA high, FMP low, FMP middle, FMP 
high, Accel. yes, Accel. no}. This modeling choice hence makes the E 
matrix of size N x M, and the P matrix of size N x N where N = 2 and M =
17. A representation of the developed HMM is depicted in Fig. 4. The 
HMM was implemented in Python, version 3.7. 

2.7. HMM training: Estimating the model’s parameters and the most 
likely trajectory of states 

After defining the structure of the model and coding each 3 min 
chunk of FHR, as explained in Sections 5 and 6, we proceed to the 
estimation of matrices E and P through the Baum-Welch’s algorithm. 
This requires an initial estimate of π0, E and P, which are then updated 
to the current values during the training. To avoid any kind of bias due 
to particular a priori modeling choices, we chose the equiprobability 
condition for the initialization of π0, E and P. 

For model training, we selected a subset of 9 signals, each containing 
at least one quiet and one activity stage. The training set thus results in 
3273 3-min excerpts. 

To identify the top-performing observation set, we trained several 

Table 1 
Summary of Computed Parameters.  

Method Parameter Sequence 
length 

Hypothesis 

Time domain DELTA 1 min Variability of FHR signal in 
the time domain  

PWT 3 min   
Accel 3 min  

Frequency domain 
analysis 

VLF 3 min Quantification of the activity 
of the autonomic nervous 
system 

Signal regularity 
and predictability 

SampEn 3 min Presence of recurrent patterns 
in a single scale 

Signal Independent FMP 3 min Mother’s perception of fetal 
movement  

Fig. 3. Illustration of the encoding procedure. At each shift of the 3 min sliding window, a set of quantitative parameters is computed. PWT, VLF, SampEn, DELTA 
and FMP are categorized in low, middle and high according to the values of their pdf’s percentiles 33.3 and 66.6 Accelerations, instead, are binarized with respect to 
the presence or absence of accelerations within the 3-minutes window. This way each 3-minutes excerpt of the FHR signal is encoded in the form of a 17 elements 
binary array of 1 and 0 composed of 5 triplets and a final couple. 
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HMMs, one for each possible combination of the parameters set. 
Excluding the case where no feature is included, since each parameter 
may or may not be included in the emission set, the number of possible 
combinations amounts to 2n -1 = 63, where n = 6 equals to the number 
of features. 

2.8. HMM testing: Finding the most likely trajectory of states 

Once an estimate of matrices E and P has been obtained through the 
Baum-Welch’s algorithm, the model can be exploited to make pre
dictions. Specifically, given a particular sequence of observations, the 
model will use the learnt knowledge to predict the trajectory of states 
most likely to have given rise to the observed sequence, through the 
Viterbi algorithm. 

Once each FHR point is classified as belonging to the Active or Quiet 
phase, a postprocessing step is carried out. Since Quiet and Active stages 
are known to have a duration in the order of the tens of minutes [29], the 
label associated with short sub-sequences lasting less than 4 min and 
totally included in longer excerpts of the opposite state, is reversed. 

3. Results 

As discussed so far, the goal of the present work is to describe a 
method based on HMMs for the unsupervised clustering of fetal 

behavioral states within FHR signals. Since the developed method is 
completely data-driven, to evaluate the model’s capacity to spot activity 
and quiet stages, we compared the predictions provided by our models 
with the annotations of an expert clinician. To avoid any kind of bias on 
both sides, we provided the doctor with a set of 35 unlabeled signals and 
asked him to annotate them. Meantime we used our HMMs to classify 
each data point within the same signals supplied to the clinician, which 
represent our testing set. Then, to assess the degree of concordance, we 
proceeded to compare the predictions of the HMMs with the annotations 
of the clinician, which we consider to be the ground truth. Table 2 shows 
the scores for the 5 best performing HMMs and the ones for the best- 
performing HMM with the exclusion of FMP, ordered by decreasing 
accuracy. The green and red dots in Table 2 respectively indicate 
included and excluded features. The scores reported in Table 2 include 
the overall accuracy (ACC), the True Active Rate (TAR), the True Quiet 
Rate (TQR), the False Active Rate (FAR) and the False Quiet Rate (FQR) 
as defined in equations from 1 to 5. 

Acc =
TA + TQ

TA + TQ + FA + FQ
(1)  

TAR =
TA

TA + FQ
(2)  

Fig. 4. Illustration of the HMM structure in the complete case. The developed HMM consists of 2 possible states (Quiet and Activity), each of which can generate the 
discrete set of observations. 

Table 2 
Top 5 performing HMMs + #1 without fmp.  
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TQR =
TQ

TQ + FA
(3)  

FAR =
FA

TA + FQ
(4)  

FQR =
FQ

TQ + FA
(5) 

The obtained results indicate that HMM #1, represented in the first 
row of Table 2, stands out with the highest overall accuracy of 0.90. It 
includes VLF, SampEn, DELTA, FMP, and Accel. Its outperforming ACC 
indicates a strong concordance between the predictions of HMM #1 and 
the annotations made by the clinician. HMM #1 also demonstrates a 
high TAR of 0.90, suggesting its effectiveness in correctly identifying 
active states. 

Comparing HMM #1 to HMM #2, which includes the whole set of 
computed parameters, we observe that HMM #1 has a higher accuracy 
(0.90 vs. 0.88) and a higher TAR (0.90 vs. 0.86). This indicates that 
HMM #1 is more successful in accurately identifying active states. 
However, HMM #1 has a lower TQR compared to HMM #2, implying 
that it may struggle somewhat in accurately identifying quiet phases. 

HMM #3, which excludes PWT and VLF, on the other hand, achieves 
a TAR of 0.89 and a TQR of 0.87. These values are comparable to those 
of HMM #1, indicating that HMM #3 is also capable of correctly iden
tifying both active and quiet states with a high degree of accuracy, at the 
expense of FAR. 

HMM #4, which doesn’t comprise PWT and SampEn, exhibits 
slightly lower performance than HMM #1 and HMM #3, with an ac
curacy of 0.87 and a TAR of 0.85. However, it shows a higher TQR of 
0.92, suggesting its ability to accurately identify quiet phases. 

HMM #5, which doesn’t include PWT and DELTA, achieves the 
lowest overall accuracy of 0.85. However, it still presents a TQR of 0.93 
showing off a high discriminative power in identifying quiet stages. 

The choice of the most suitable HMM depends on the specific re
quirements and priorities of the analysis, considering factors such as the 
desired balance between accurately identifying both active and quiet 
states. 

In our specific case we are mostly interested in maximizing the 
classification accuracy, since our goal is assessing the HMMs’ ability to 
correctly classify both active and quiet states, providing a reliable 
measure of the model’s overall performance. ACC, in fact, provides an 
overall assessment of the concordance between the HMM predictions 
and the clinician’s annotations, giving us a comprehensive under
standing of the model’s effectiveness. 

The transition matrix P for the most accurate HMM (i.e., HMM #1) is 
reported in Table 3. 

The analysis of P provides important insights into the system’s dy
namics since its values indicate the probability of the system to transit 
from one state to another. 

The high values on the main diagonal of P, hence indicate the ten
dency of the system to remain in the actual state for long periods rather 
than rapidly shifting to the other one. In fact, the probabilities associated 
with remaining in a quiet or active state are respectively 0.985 and 
0.982; on the other hand, the probability of shifting to an active state 
when the system is in a quiet phase is very low (0.015) and so is the 
probability of passing from an active stage to a quiet one (0.018). 

This kind of behavior is consistent with what is generally observed in 
clinics, since both active and quiet phases are known to have a duration 
in the order of tens of minutes [16]. This means that once the fetus enters 

either the quiet or active phase, it tends to persist in that state for a 
considerable amount of time before transitioning to the other state. 

A visualization of the observation probabilities within the emission 
matrix E of HMM #1 is shown in Fig. 5, which provides insights into the 
relationship between the probabilities associated with different feature 
values and the corresponding fetal states. 

From the observation of Fig. 5 we can ascertain how high probabil
ities associated with high values of VLF, DELTA, FMP, Accel., together 
with low values of SampEn are more likely to reflect a state of fetal 
activity, rather than a quiet one. On the other hand, high probabilities 
associated with low values of VLF, DELTA, FMP, Accel. and high values 
of SampEn are very likely to be related to a quiet phase. 

The analysis of Table 2 combined with the findings depicted in Fig. 5, 
sheds light on the heavy impact of Accel and FMP, which appear to be 
the most important features in the clustering process. 

To evaluate the contribution of FMP, which is the only signal- 
independent feature, we compared the scores obtained by HMM #1 
with the ones obtained with HMM #1 with the exclusion of FMP. 

The inclusion of FMP in HMM #1 resulted in an improvement in the 
classification accuracy by approximately 6%. This suggests that FMP 
contributes positively to the overall performance of the model in accu
rately classifying fetal states. 

However, it is noteworthy that even when FMP was excluded from 
the feature set, the obtained scores remained acceptable, particularly in 
terms of True Positive Rate (TPR). This indicates that the other features 
included in the regressor set are still capable of capturing relevant in
formation and effectively distinguishing between fetal activity and quiet 
phases. 

Figure 6 illustrates a visual comparison between the annotations 
made by the clinician and the predictions generated by HMM #1. Two 
exemplary signals are shown, where the green and black points repre
sent Active and Quiet phases, respectively. Additionally, short red hor
izontal lines are used to indicate the segments in which the clinician’s 
annotations differ from the model’s predictions. 

It is necessary to remark again that the labeling performed by the 
clinician was done on signals not annotated by our model, so that his 
judgment was not influenced by the predictions obtained from the 
HMM. Figure 6(a) illustrates a signal presenting a prolonged phase of 
fetal quiet within two active stages. By comparing the HMM predictions 
with the labels provided by the clinician we can assess a high degree of 
concordance. The only equivocal portions are concentrated in areas that 
straddle two distinct phases. 

Figure 6(b), shows instead a signal which exhibits an initial quiet 
phase, lasting about 20 min, followed by an active stage approximately 
of the same duration. Even in this case, the model’s predictions are 
aligned with the clinician’s annotations, and the degree of concordance 
is still higher than in the preceding example. 

From the observation of Fig. 6(a) and (b) it’s possible to appreciate 
that portions labelled as quiet tend to exhibit lower variability and a 
lower tendency to accelerate as compared to activity phases. This ten
dency is consistent with what observed in Fig. 5, since parameters 
associated with signal’s variability (i.e., DELTA) tend to assume higher 
values when the actual state is active. On the other hand, the more likely 
presence of accelerations within active phases determines a more pre
dictable dynamic of the system. Again, this is consistent with what was 
observed from the inspection of E, since low values of SampEn are 
probable to reflect a condition of fetal activity. 

4. Discussions and conclusions 

In this work, we propose a method for unsupervised FHR signal 
clustering, based on Hidden Markov Models (HMM), to automatically 
identify fetal behavioral states of quietness and activity within CTG 
tracings. More specifically, the developed model is a Multivariate HMM 
with categorical emissions. 

The obtained results seem to suggest that the developed model can 

Table 3 
Transition Matrix P For Hmm #1.  

State Quiet Activity 

Quiet 0.985 0.015 
Activity 0.018 0.982  
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identify quiet and activity states with a good degree of reliability. In fact, 
the predictions of the model have shown, for the best model, a degree of 
agreement of 90% with the interpretations of an expert clinician. 

A desirable feature of our method is the ease of interpreting the 
obtained results. Indeed, the choice of a small set of parameters, already 
used in computerized Cardiotocography, with a clear intrinsic meaning, 
provides explainability to this approach. 

Another appealing feature of our approach is that the learning pro
cess is fully unsupervised. In fact, the states identified by the model 
using the Baum-Welch algorithm are associated with the “Active” and 
“Quiet” states only a-posteriori. The choice of using a totally data-driven 
approach was suggested by the need to find a classification method able 
to go beyond the clinician’s interpretations. Letting the model 

autonomously identify the clusters, rather than relying on expert an
notations, removes the dependence on the annotator’s choice, thus 
hopefully reaching a more objective evaluation that is only based on the 
intrinsic characteristics of the signal. Indeed, in the absence of a more 
objective external source of information that can be used to identify the 
labels, e.g. ultrasound, the advantages of a supervised approach are 
limited. 

Despite the achieved results seem to suggest that the approach can be 
effectively used as a tool to cluster active and quiet fetal stages, it should 
be taken into account that just a limited amount of data was available to 
test the performance of the proposed HMM. The limited quantity of 
testing data can be primarily attributed to the time constraints faced by 
the participating clinician. The time required to increase the testing set 

Fig. 5. Visual illustration of the emission probabilities for the best performing HMM (HMM #1).  

Fig. 6. comparison between the predictions of the best performing HMM (HMM #1) and the clinician’s annotations for two example signals (a) and (b). Green and 
black points respectively denote Active and Quiet phases. The red horizontal lines in predictions plots underline the portions in which the physician’s notes deviate 
from the model’s predictions. 
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of one order of magnitude would have caused an unacceptable delay in 
the publication of our work. Looking ahead, we are firmly committed to 
expanding our research efforts with the aim of gathering more extensive 
testing data. This could even benefit from the enrollment of a larger 
cohort of expert clinicians, boosting the truthful of testing ground truth. 
By doing so, we seek to enhance the robustness and generalizability of 
our results. 

Future developments of the present work include defining different 
models tuned for gestational age and, for the last weeks of gestation, 
moving to a four-state model. Indeed, a model capable of distinguishing 
among all four behavioral states would be of great interest, although it 
has been shown in [4] that these states emerge with reasonable reli
ability only at the very end of the pregnancy. 

We believe that the proposed method could represent a noticeable 
enhancement for the computerized analysis of the non-stress test. 
Indeed, the alternation of behavioral states is by itself of clinical interest 
and is an important pre-processing stage for the interpretation of CTG 
parameters that is often overlooked. Indeed, it has been clearly shown 
that CTG parameters widely vary between behavioral states. Reporting 
only their mean value without taking into account the states on which 
they were averaged could at least explain the large variability observed 
in CTG parameters, even within physiological pregnancies. 

It is worth noting that including the FMP signal in the analysis only 
marginally increases the performance of the model, which can be suc
cessfully adopted by using the FHR signal alone. 

Our method is applicable also when the FHR is extracted employing 
other methods rather than CTG, such as non-invasive electrophysiology. 
A compelling use case could be the analysis of behavioral states in long- 
term recordings, which could be very interesting for monitoring several 
pregnancy complications [6], from Intra Uterine Growth Restriction [7], 
diabetes [10,30], or hypertension [8], since all these conditions have 
been shown to have an impact on behavioral states. 
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