
1 THE TG3.3 BULLETIN  

A very large number of reinforced concrete struc-
tures built in the 1950s and 1960s are nearing or have 
exceeded the end of their design lifespan. In certain 
cases, owing to deterioration and maintenance back-
logs such structures are operating under conditions 
that substantially deviate from original design as-
sumptions. In addition, the projected effects of the on-
going climate change will place further pressure on 
future structural performance in terms of accelerated 
deterioration in the face of natural hazards that are so-
far unaccounted for in the original design. Inadequate 
performance of infrastructures, such as bridges, is 
known to bear adverse effects on economic growth 
and, as exemplified by the recent collapse of the Mo-
randi bridge in Genoa, also comprise notable risks to 
the safety of people and can lead to a loss of trust in 
management and governance. Thus, understanding 
the current and future performance of reinforced con-
crete structures and infrastructures is essential for fu-
ture social, economic, and environmental develop-
ments. However, structural integrity management 
remains a challenging task and current best practices 
prove limited, primarily with respect to the acquisi-
tion and utilization of data and information on struc-
tural performance. At large scale the acquisition of 

structural performance data is still based on outdated 
and underperforming methodologies such as visual 
inspections that affect the availability of infrastruc-
tures, the safety of operators, and the efficiency of 
maintenance interventions generating reduced func-
tionality and relevant economic social costs.  

Despite the large research efforts devoted in the 
last decades, Structural Health Monitoring (SHM) 
methods, which continuously collect and automati-
cally process structural health data, are not yet imple-
mented at large. The lack of technical standards on 
SHM has played a key role in the past and still con-
stitutes one of the main barriers for the extensive 
adoption of these technologies in the condition as-
sessment of structures and infrastructures. 

The first SHM guidelines were issued in Canada in 
2001 (ISIS, 2001) and were followed by other docu-
ments published all over the world (Rucker et al., 
2006), (GB 50982-2014. Technical Code for 
Monitoring of Building and Bridge Structures, 2014), 
(Osterreichische Forschungsgesellschaft StraBe; 
Schiene;Verkehr, 2012), (UNI, 2016). The most re-
cent technical documents on SHM have been issued 
in Italy in 2020 (Ministero delle Infrastrutture e dei 
Trasporti, 2020), (Limongelli et al., 2020) and are 
specific for bridges. In 2020, the fib Task Group 3.3 
on ‘Existing Concrete Structures: Life Management, 
Testing and Structural Health Monitoring’ took the 
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best practices for condition assessment, whereas the latter exemplifies application of these tools on selected 
case studies on actual full-scale structures. 



initiative to prepare state-of-the-art guidelines (Bulle-
tin) on this topic to support the development of the 
relevant parts of the Model Code 2020.  

The Bulletin is organized into 6 chapters that cover 
the value chain of data management, which is over-
viewed in chapter 1; data acquisition is dealt with in 
chapter 2, data processing to extract information for 
condition diagnosis and performance prediction in 
chapters 3 and 4 respectively, while the use of infor-
mation to support decision-making is finally covered 

in chapter 5. The document is complemented with a 
listing of case studies that report practical applica-
tions to real world structures, which are collected in 
the sixth chapter of the Bulletin. This paper overviews 
chapters 3 and 6: the former outlines methods and 
best practices for condition assessment (diagnostic 
process), whereas the latter exemplifies application of 
these tools on selected case studies on actual full-
scale structures. .  

 
Figure 1. Conceptual framework for condition assessment (Bulletin fib Task Group 3.3, 2022) 

 

2 CONDITION ASSESSMENT 

The conceptual framework of condition assess-
ment, which is adopted in the Bulletin, is summarized 
in Figure 1. It relies on derivation of a set of indicators 
within the context of functionality (serviceability) 
and safety. Data acquired through Visual Inspections 
(VI), Non Destructive Testing (NDT) and SHM are 
used to compute indicators that describe the state and 
the loading on the structure. While SHM relies on 
continuous tracking of the structural response, NDTs 
and VIs are usually performed periodically or occa-
sionally. The indicators are classified according to the 
method used to gather the information (VI, NDT, or 
SHM) and the level of the assessment. The latter can 
be either global or local.  

A major part of chapter 3 is dedicated to methods 
and tools that are applied in the SHM context, which 
relies on continuous tracking of structural response, 
typically in the dynamic (vibration-based) sense. Dif-
ferent approaches of damage detection, data driven 
and physics based, are described, and the influence of 
environmental and operational conditions which can 
often harden a robust estimation of damage indica-
tors, is discussed together with the issues involved in 
the definition of thresholds for reliable assessment of 
structural condition in terms of relevant limit states. 

3 DATA ACQUISITION FOR CONDITION 

ASSESSEMENT 

SHM and NDT involve the observation of the 
structural state and the assessment of deterioration, 
aging and degradation through non-invasive tech-
niques that can have an either continuous (SHM) or a 
periodic (NDT) implementation character in time.  

The information collected by monitoring and test-
ing the structure provides a data-informed basis for 
engineering decision making and an important tool 
for performance assessment that can support the man-
agement of structures and infrastructures throughout 
their life-cycle. Data-driven condition assessment 
generally adheres to a stepwise process requiring: 
• extraction of damage parameters, also referred to 

as damage sensitive features, from data gathered 
from NDT and SHM 

• computation of damage indicators from these 
damage features; these should additionally fea-
ture robustness against effects of operational and 
environmental variability.  

• assessment of condition through comparison of 
the derived damage indicators with thresholds, 
which define different condition limit states.  



4 IDENTIFICATION OF INDICATORS 

As part of the Bulletin (section 3.2.1), we initiate 
by outlining indicators that are directly linked to a 
damage process (e.g., corrosion or fatigue) and the as-
sociated damage parameters. For instance, for the 
case of corrosion-related damage, relevant damage 
parameters can be moisture, corrosion rate, chloride 
presence, or electrical resistivity, while the corre-
sponding indicators are porosity, degree of water sat-
uration, or chloride concentration at rebar surface. 
We subsequently list indicators aimed at quantifica-
tion of acting environmental conditions and loads 
(section 3.2.2), such as earthquake intensity (or 
ground acceleration amplitude) for the case of seismic 
loading. We further briefly refer to the classical ap-
proach of visual inspection and associated indicators, 
particularly those assisted by recent advances in opti-
cal & remote sensing (3.3). However, the main instru-
ment to structural assessment stems from indicators 
relating to structural status and response, which are 
overviewed in sections 3.4 & 3.5 of the Bulletin. 

Figure 2. Monitoring-driven Indicators extracted via NDT ver-

sus those inferred via SHM. 

We distinguish between NDT (section 3.4) versus 
SHM schemes (section 3.5), as summarized in Figure 
2. A main distinction between these two schemes lies 
in the scale of the conveyed information. NDT can 
offer more targeted assessment in terms of localized 
damage phenomena, while SHM information is most 
typically referring to global quantities, especially 
when relating to vibration-based SHM. As part of the 
Bulletin, we further distinguish between two main 
evaluation schemes for assessing structural condition 
(Aktan et al., 2019) 
• Empirical schemes – these schemes do not include 

analysis procedures. They pertain to use of visual 
observations, information from measurements in 
their raw form (e.g., deflection/strain measure-
ments), and analysis of the engineering drawing ad 
specification documents. 

• Scientific schemes – these schemes rely on use of 
refined analysis procedures (e.g., structural identi-
fication, statistical processing, time series 

analysis, machine learning, fusion of experimental 
data and models via the process of updating). 
 Measurements that are indirectly linked to struc-

tural condition (“state”), such as ultrasonic or vibra-
tion-based measurements cannot be straightforwardly 
linked to empirical schemes and will thus require 
what we termed the “scientific” approach.  

4.1 NDT-based condition Indicators 

The majority of NDT methods aims at identifying 
flaws, such as cracks or fouling within the monitored 
structural medium. NDT methods have already been 
extensively overviewed as part of (Fib Bulletin N° 22. 
Monitoring and Safety Evaluation of Existing 
Concrete Structures., 2003). Typical methods include 
Radiography (x-rays or gamma rays), ultrasound, 
magnetic particles, eddy current, thermography, Im-
pact Echo, and Ground Penetrating/Pulsar radar sys-
tems. The afore-listed methods aim at detection cavi-
ties, corrosion and distortions in the composition of a 
material (Omar & Nehdi, 2018). Indications about the 
material strength can be obtained through methods 
such as rebound hammer or pulse velocity tests. It is 
worth noting that several NDT technologies can be 
adopted for use under an SHM regime, i.e., in a con-
tinuous and automated fashion. For instance, acoustic 
emission sensors (Tonelli et al., 2020) and Guided-
Wave assessment based on PZT transducers 
(Ostachowicz et al., 2012) that are able to serve as 
both actuators and sensors, or reinforcement corro-
sion sensors can be permanently deployed on struc-
tures, thus serving for SHM. 

4.2 SHM-based condition Indicators 

SHM describes a continuous process of data acqui-
sition and automated processing, most typically re-
quiring scientific, as opposed to empirical, means of 
evaluation. Although monitoring campaigns can also 
be executed over shorter deployment intervals, the 
concept of SHM typically refers to long-term sensor 
deployments.  

Uncertainties relating to the sensing modules and 
uncertainty quantification methods form an indispen-
sable part of the SHM-based structural identification 
and condition assessment process. A complete condi-
tion assessment process relies on sound data treat-
ment, reliable structural identification procedures, as 
well as coupling with expert engineering judgement, 
oftentimes supported by updated numerical models of 
the structure (Simoen et al., 2015) 

Indicators from Static Monitoring 
Methods intended to provide information with re-

spect to the static behavior of a structure include both 
short- and long-term monitoring methods. For in-
stance, the evaluation of relative or plastic defor-
mations may be achieved both by means of a 



topographic network with measurements repeated in 
fixed time intervals, but also via a more refined con-
tinuous monitoring system comprising sensors able to 
monitor movement, displacement or rotations of the 
structure (Sousa, 2020). Similarly, for the task of 
crack detection, a defect can be quantified and evalu-
ated via direct measurements, e.g., by means of peri-
odic or one-off non-destructive tests (e.g., ultrasonic 
velocity tests, hammer sounding) or by means of a 
(continuous) SHM system comprising displacement 
transducers that monitor cracking evolution over 
time. The advantage of utilizing a continuous SHM 
system lies in the possibility to detect damage pro-
cesses prior to their visual manifestation and to pro-
vide near-real time alerts when the deterioration 
mechanisms evolve. As a further means to obtaining 
direct performance indicators from static monitoring 
one could also consider the diagnostic and proof 
(static) load tests. In complement to load tests, long-
term monitoring allows for assessing further parame-
ters with important influence on the structural behav-
iour of concrete structures, such as the evolution of 
creep and shrinkage of concrete. Although a number 
of relatively recent and comprehensive models have 
been suggested, there is a lack of consensus on their 
utilization due to substantial scatter in their predic-
tions. This uncertainty may be reduced via static mon-
itoring information (e.g., via use of strain-gauges in-
stalled in spans and support sections, displacement 
transducers in bearing devices, and tracking of deflec-
tions). 

Indicators from Vibration-based Monitoring 
The most established SHM methods, the so-called 

Vibration Based Monitoring (VBM) methods, rely on 
dynamic monitoring data, such as acceleration or ve-
locity recordings. VBM schemes operate on both 
forced, free, and ambient vibration data, however - in 
the context of SHM - ambient vibrations are generally 
employed (Limongelli et al., 2016). VBM methods 
are based on the premise that damage induces a shift 
in the stiffness, mass or energy dissipation capacity of 
the structure. The vibrational response is analyzed by 
mean of system identification methods to identify a 
mathematical model able to describe the structural be-
havior. The parameters of this model can be physical 
properties, such as for example stiffness and mass 
properties that are directly linked to modal parame-
ters, or statistical properties such as for example the 
coefficients of a regression function. Among these 
parameters, those sensitive to the variation of the dy-
namic characteristics of the structure, can be assumed 
as damage parameters or features and the indicators 
of damage can be defined in terms of a demonstrated 
shift from a reference condition. It must be noted that 
environmental changes, related for example to tem-
perature, humidity, wind speed, etc. as well as opera-
tional changes due to the variability of the traffic 
loading on bridges or, more generally, the changes in 

applied loads and/or masses may affect these damage 
features. Their effect must thus be removed or ac-
counted for in the damage detection procedure in or-
der to avoid false or missing damage identifications. 
The treatment of environmental and operational ef-
fects can be carried out during the system identifica-
tion procedure or can be included in the algorithms of 
damage identification. A schematic illustration of the 
VBM chain for condition assessment, from the initial 
stage of measurement collection to the stage of dam-
age diagnosis, is reported in Figure 3.  

 

Figure 3. VBM methods for condition assessment. 

It is important to note that, due to their nature, vi-
bration-based indicators typically provide infor-
mation that is relevant to variations of stiffness, mass 
and energy dissipation capacity, but not direct infor-
mation on the variation of structural strength.  

Methods for structural identification 
The term system identification, also known as 

structural identification (St-ID), when used in the 
context of civil structures, forms the essence of what 
was in our introduction defined as the “scientific” ap-
proach to assessment. The term St-ID is used in dif-
ferent ways depending on the respective context. En-
gineering applications use numerical models such as, 
for example, finite element models that are directly 
related to physical parameters of a structural system. 
In these, cases the term system identification often re-
fers to the estimation of physical model parameters, 
such that the numerical model best reflects the struc-
tural behavior observed experimentally. This proce-
dure is more appropriately termed model updating or 
model calibration. However, the term system identifi-
cation more broadly pertains to the identification of a 
mathematical system model describing an input-out-
put relation of a considered system without a direct 
relation to physical properties such as geometry or 
material parameters.  

5 TREATMENT OF OPERATIONAL AND 
ENVIRONMENTAL EFFECTS 

Particular attention ought to be paid to the influence 
of varying Environmental and Operational Condi-
tions (EOCs)(Sohn, 2007) on the collected data. En-
vironmental variability is usually related to tempera-
ture, humidity, wind speed, etc., whereas the 



operational changes involve the traffic loading on 
bridges or, more generally, the changes in applied 
loads and/or masses. EOCs often influence damage 
indicators by masking true damage effects (Laory et 
al., 2019). It is worth noting that the removal of EOC 
effects has been heavily addressed in the literature for 
the case of natural frequencies, which are highly sus-
ceptible to EOC variability. Remedial methods are 
clustered in two main categories: i) output-only meth-
ods (unsupervised) aiming to eliminate the EOC in-
fluence on the basis of output-only information 
(Kullaa, 2011), (Cross et al., 2011) and ii) input-out-
put methods (supervised), which establish a functio-
nal dependence between the measured vibration data 
and/or the extracted features and the measured EOCs 
(Spiridonakos et al., 2016). Output-only methods in-
clude the Principal Component Analysis (PCA) 
(Magalhães et al., 2012) or its nonlinear variants (ker-
nel PCA, Factor Analysis). PCA is a multivariate sta-
tistical tool, relying on a linear transformation of the 
dataset onto a new set of independent variables, des-
ignated as principal components (PC), that can de-
scribe the variance in the original data. The tools es-
sentially identify inherent trends in the 
measured/identified features, allowing to separate 
EOC influences. The model-based (supervised) class 
is usually expressed in terms of a regression problem, 
where EOC information is obtained by appropriate 
environmental or operational. Once the effect of all 
external factors on the measured/identified parame-
ters has been successfully minimized or removed, any 
further variation in the monitored features can be at-
tributed to structural change. In its simplest form, the 
supervised class relies on regression relationships be-
tween the investigated features and the EOCs. De-
pending on consideration of EOC measurements on 
only the current, or additionally previous, time in-
stant(s), these methods are characterized as static or 
dynamic, respectively. When dealing with static re-
gression models, the Multiple Linear Regression 
(MLR) is the statistical technique generally adopted 
to express the relationship between a single depend-
ent variable (such as natural frequency, rotation, 
strain, deformation, etc.) and one or more independ-
ent variables or predictors (such as temperature, hu-
midity, etc.). The objective of MLR is to use the in-
dependent variables, whose values are directly 
measured, to predict the selected dependent parame-
ter (Hair, Joseph F., 2009). When a regression rela-
tionship is established between the dependent varia-
ble (e.g., the modal frequency) and the predictors 
(e.g., the temperature and the humidity), the value of 
the dependent variable is obtained through a linear or 
non-linear multiple regression equation. It is worth 
mentioning that, among the supervised methods de-
scribed in the system identification literature for re-
moving the EOC effects, Auto-Regressive models 
with eXogenous input, see e.g. (Ljung, 1998) are 
probably the most general methods, since they can 

address both static and dynamic regression, as special 
cases. 

6 DAMAGE DETECTION 

The St-ID methods described in the previous sec-
tion infer the main system properties of the system or 
a model that can be used to reproduce its response to 
a given excitation. Section 3.5.2.2 of the Bulletin in-
troduces the concept of Damage Sensitive Features 
(DSF) and the methods that can be used for their esti-
mation from measurements. The DSF must be able to 
capture robust information about deviations of the 
system from a reference, or ‘healthy’, condition. In 
Figure 4 are reported some of the DSFs that can be 
extracted using the System identification methods 
previously described. DSFs. could be monitored var-
iables or to more indirect properties, such modal pa-
rameters. Damage indicators (DIs) defined in terms of 
variations of the DFSs - for example the change of the 
frequencies or mode shapes - are the metrics that 
quantitatively describe damage.  

 

Figure 4. Conceptual framework for condition assessment  

Vibration based methods for damage detection al-
lows assessing changes in the dynamic behaviour of 
the structure e.g., due to variations of stiffness, mass 
or energy dissipation capacity. They are classified in 
data-driven and model-based methods. The latter, de-
scribed in Section 3.5.2.2.2, update models of the 
structural behaviour to identify changes in the DSFs, 
the former only rely on data for the extraction of the 
DSFs. Data-driven methods, described in Section 
3.5.2.2.1, are less computationally intensive and 
thereby attractive for real time processing but they 
only allow damage identification. Model-based meth-
ods on the other hand entail the computation cost of 
the updating process but enable a more refined char-
acterization of damage according to the Rytter 
(Rytter, 1993) classification up to classification and 
quantification. Damage identification through data 
driven methods operating in the frequency domain is 
carried out using as DSFs modal or operational pa-
rameters -or function of those. Methods that operate 
in the time-domain use more often parameters 



without a direct physical meaning such as, for in-
stance, the coefficients of auto-regressive models or 
the covariance properties of the measured time series. 
The higher level of damage detection, that is localiza-
tion, requires the use of DSF with a spatial definition 
- such as for instance modal or operational shapes - 
able to detect irregularities in the deflected profile of 
the structure. The methods take their name from the 
DSF on which they rely: energy (Kim & Stubbs, 
1995), flexibility (Zhang & Aktan, 1998), Interpola-
tion error (Limongelli, 2010), wavelet transform 
(Wang et al., 2013), transmissibility (Chesné & 
Deraemaeker, 2013). These features can be extracted 
from the response to vibrations preferably measured 
in terms of acceleration since localized damage is 
more likely to affect the higher modes that are better 
captured by such measurements. Uncertainties related 
for instance to noise contamination and to approxima-
tions introduced during signal processing affect the 
estimates of the DSF. Recently strain based modal 
shapes, eliminate some sources of uncertainty - for in-
stance they do not require double differentiation for 
the computation of curvature – and have recently 
been used for damage localization (Anastasopoulos et 
al., 2018). Improvement in this field is also supported 
by the increasing precision and decreasing costs of 
MEMS based sensing solutions and by the availabil-
ity of large dataset of measurements processed using 
Artificial Intelligence techniques. Damage quantifi-
cation using data driven methods can only be per-
formed in relative sense, that is from the variation of 
the damage features with respect to the reference state 
(Zhou et al., 2015), (Ou et al., 2017), (Yeager et al., 
2019). However, this variation does not provide an 
estimation of the deterioration in terms of the struc-
tural parameters such as stiffness, mass or damping. 
Differently model-based methods update the model 
parameters using the DSF, and thereby allow to ob-
tain a quantification of damage through the variation 
of the structural parameters extracted from the model. 
The model updating task can be performed through 
numerical or probabilistic models (Friswell & 
Mottershead, 1995). Both stochastic, e.g. Bayesian 
(Argyris et al., 2020), as well as deterministic ap-
proaches, e.g. Constrained Eigenstructure Assign-
ment method (Ziaei-Rad & Imregun, 1996) can be 
used to this end. In recent years Machine Learning 
(ML) methods which rely on the use of Artificial 
Neural Networks (ANNs) have gained ground in data 
driven applications (Bull et al., 2020). These methods 
are based on the training of a model using labelled 
datasets and thereby require the availability of la-
belled datasets for the classification of damage. For 
damage detection can fuse various types of monitor-
ing information and identify patterns in data. Datasets 
relevant to several different damage scenarios (dam-
age locations, types and severities) seldom available 
for civil structures thereby they are artificially gener-
ated using numerical models. The alternative, using 

monitored data, is to apply unsupervised ML meth-
ods, that discern between dataset that exhibit different 
patterns, but they cannot label the different datasets 
and thereby structural sates. As previously men-
tioned, the use of model-based methods entails the 
task of model updating that can be computationally 
intensive when large sets of data must be continu-
ously used to obtain real time estimate of the struc-
tural response. However, updated models can provide 
more information and, if prognostic modes are avail-
able, allow to perform the prognostic, beyond the di-
agnostic, task that is the forecast of the future struc-
tural behaviour and an estimate of the remaining 
service life. 

7 THRESHOLDS FOR ASSESSMENT 

The condition indicators identified as described in 
the previous sections must be compared with target 
values (thresholds) that correspond to service or ulti-
mate limit states. As described in Section 3.7 of the 
Bulletin, these values can correspond to target relia-
bility levels or, in a risk-based perspective, to a trade-
off between the direct costs related to the reliability 
of the structure on one side and the indirect costs re-
lated to its loss of functionality on the other 
(Diamantidis et al., 2019) This is a key aspect of the 
decision-making process underlying asset manage-
ment and maintenance scheduling. Due to the several 
uncertainties that affect the values of the damage in-
dicators, the definition of the threshold values re-
quires a trade-off between the probability of false and 
missing indications of damage. Most often the distri-
bution of the damage indicators in the damage state is 
unknown, thereby the threshold values are deter-
mined based on the distribution in the reference struc-
tural state that is fixing a maximum acceptable value 
of the probability of false alarms in the reference state  

8 CASE STUDIES 

Chapter 6 of the Bulletin contains a selection of 
case studies that illustrate the application on large-
scale structures, of methods and tools described in the 
previous chapters of the document. The case studies 
cover a wide range of typologies of concrete struc-
tures, mainly bridges under diverse damage scenarios 
induced by corrosion, fatigue, or extreme events such 
as floods, seismic excitation, but also applications on 
cultural heritage buildings and bridges, dams, har-
bours, wind turbines, and stadiums. Each cases study 
is described in one page; the scope is to provide the 
main information related to the monitoring system 
and to provide references where the interested reader 
can find more information and, if available, an open 
access repository of data relevant to the case study.  



9 CONCLUSIONS 

This paper summarizes the content of Chapters 3 and 
6 of the fib Bulletin on ‘Existing Concrete Structures: 
Life Management, Testing and Structural Health 
Monitoring’ that is in preparation on behalf of fib 
Task Group 3.3. Chapter 3 deals with methods for 
condition assessment of reinforced concrete struc-
tures. This task entails the extraction, from testing and 
monitoring data, of condition indicators that carry in-
formation about the structural condition, and their 
comparison with thresholds corresponding to target 
performance level. Both local and global indicators 
are described in the chapter, with particular emphasis 
on vibration-based indicators that can be retrieved 
from the response to vibrations using structural iden-
tification and damage detection methods. The defini-
tion of the values of the condition indicators, is also 
briefly addressed in the chapter. Several case studies 
in which the methods for condition assessment are ap-
plied are described in Chapter 6 of the Bulletin. They 
cover a wide range of structures and the entire value 
chain of data management from acquisition, to pro-
cessing for diagnosis and prognosis and support to de-
cision making. 
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