
Received 26 May 2024, accepted 15 June 2024, date of publication 20 June 2024, date of current version 27 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3417352

Optimising Queries for Pattern Detection Over
Large Scale Temporally Evolving Graphs
HASSAN NAZEER CHAUDHRY AND MATTEO ROSSI
Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy

Corresponding author: Hassan Nazeer Chaudhry (hassannazeer.chaudhry@polimi.it)

ABSTRACT Large-scale graph processing and Stream processing are two distinct computational paradigms
for big data processing. Graph processing deals with computation on graphs of billions of vertices and edges.
However, large-scale graph processing frameworks mostly work on graphs that do not change over time,
while on the other end of the spectrum, stream processing operates on a continuous stream of data in real-
time. Modern-day graphs change very rapidly over time, and finding patterns in temporally evolving graphs
could reveal a lot of insights that can not be unveiled using traditional graph computations.We have proposed
a novel framework called FlowGraph which could find patterns in dynamic and temporally evolving graphs.
Computations on large-scale graphs are iterative and takemultiple steps before final results can be calculated,
which is very different from stream processing which is one-shot computation. Therefore, the most critical
bottleneck of such a system is the time required to process the query. In this work, we have proposed a query
optimization technique that could reduce the time required to process the pattern. The proposed system has
an optimization technique that could reduce the time required to process the pattern, especially those related
to the temporal evolution of the graph. Our method shows for eight clauses the execution time is reduced
by 75%, we also proved that this improvement is not affected by the scaling of the graph or the change of
elements in given clauses.

INDEX TERMS Graph data structures, distributed computations, vertex-centric computations, temporal
pattern recognition, query optimization, and dynamic graph computations.

I. INTRODUCTION
Large-scale graphs are complex data structures that consist
of a set of vertices and edges that connect these vertices.
These graphs represent complex systems or relationships
between entities; some common use cases of large-scale
graphs include social network analysis [1], transportation
networks [2], [3], biological and genetics networks [4], [5],
internet and web searches, recommendation systems [6],
and cybersecurity. In social network analysis, large-scale
graphs are commonly used to represent and analyze social
networks, such as Facebook and Twitter, to understand social
structures and relationships [7], [8]. Another use case is
transportation networks where graphs are used to represent
road networks and airline routes. Given graphs that represent
the network, different algorithms are then used to optimize
routes, reduce congestion, and improve efficiency [9], [10],

The associate editor coordinating the review of this manuscript and

approving it for publication was Giacomo Fiumara .

[11]. In biology and genetics, Large-scale graphs are used to
represent complex biological systems, such as protein-protein
interaction networks and gene regulatory networks, to better
understand biological processes and diseases [4], [12], [13].
One of the most used large-scale graph networks is the
internet and web search. Graphs are used to represent the
structure of the internet and web pages which is helpful
in algorithms to improve search results. Similarly, graphs
are employed in recommendation systems to represent user
preferences and item similarities, such as those used by
Amazon and Netflix [6], [14], [15].
The term ‘‘large scale’’ refers to graphs that are so large

and complex that traditional methods for processing and
analyzing graphs are no longer effective. These graphs can
contain millions or even billions of vertices and edges,
making them too large to be stored in memory on a
single computer [16]. As a result, large-scale graphs require
specialized techniques and tools for processing, analyzing,
and visualizing the data. These techniques include distributed

86790

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-2307-0920
https://orcid.org/0000-0002-9193-9560
https://orcid.org/0000-0003-1528-7203


H. N. Chaudhry, M. Rossi: Optimising Queries for Pattern Detection

computing, parallel processing, graph partitioning, and com-
pression algorithms [17]. In the last two decades, specialized
software frameworks have been designed that can handle and
process large-scale graphs efficiently. Several surveys [16],
[17], [18], [19] are published in the field of large-scale graphs
processing, which cover most of the state of the art in the
realm of iterative computation of algorithms on large scale
graphs. Pregel is one of the earliest efforts in 2010 in this
direction, its central idea is based on the Think Like A
Vertex (TLAV) paradigm [16]. In TLAV several distributed
nodes also known as workers coordinate with the centralized
master. The graph is divided into workers while going
through several iterations known as super steps to perform
computations on respective partitions of graphs. TLAV
employs a bulk synchronous parallel programming model
which is a message-passing and synchronous paradigm for
computation. There are also graph processing systems that
are asynchronous and use shared memory models instead of
message passing [20], [21], [22]. The survey [16] provides
a comprehensive review of different TLAV frameworks. The
TLAV approach mostly works on static graphs, or on graphs
that do not change very often. In practice, large-scale graphs
change very often and their structure evolves. Some efforts to
perform computations over large-scale temporally evolving
graphs are Chronos [23], Immortalgraph [24], Tornado [25],
Chronograph [26] and Graphbolt [27].
Large-scale graph processing and stream processing are

two distinct paradigms that are used for different types of
data processing tasks. Graph processing is used to analyze
and manipulate large-scale graphs with billions of vertices
and edges. In contrast, stream processing is used to process
a continuous stream of data [28], [29]. However, there are
some use cases where it may be necessary to combine both
paradigms to achieve certain types of data processing tasks.
Firstly, for real-time graph updates, it may be necessary to
update the graph as new data arrive. For example, in a social
media platform, it may be necessary to update the social
graph as new users join or new relationships are formed.
In this case, a stream processing system can be used to
capture the incoming events and update the graph. Secondly,
graph analytics can be applied to real-time data; in some
applications, it may be necessary to analyze the graph as
new data arrives. For example, in a financial fraud detection
system, it may be necessary to detect suspicious transactions
by analyzing the transaction graph. In this case, a graph
processing system can be used to analyze the graph as new
transactions arrive. Thirdly, graph queries may be necessary
to query the graph in real-time as new data arrives. For
example, in a logistics tracking system, it may be necessary
to query the transportation network graph to find the optimal
route for a package. In this case, a graph processing system
can be used to store and query the graph data in real time.
To mix large-scale graph processing and stream processing,
it is necessary to have a system that can handle both types
of data processing paradigms. Some popular open-source
systems that can handle both paradigms include Apache

Flink, Apache Beam, and Apache Spark. These systems
provide a unified programming model for both batch and
stream processing and can be used to process both graph and
non-graph data. In our earlier research work, a framework
called FlowGraph is proposed [30], [31]. FlowGraph is
a distributed system that can process temporally evolving
large-scale graphs as large-scale graph frameworks and detect
patterns analogous to stream processing. TLAV-based large-
scale graph processing frameworks are iterative and require
several iterations before graph computation can be done;
on the contrary, pattern detection works on streams of data
and requires near to real-time flow of data. Both goals are
distantly different from each other and require a reduction of
time in iterative computation of graph processing. There are
several aspects of the reduction in processing time including
graph partitioning optimization [32], load balancing [33],
graph compression [34], [35], caching and better locality
optimization, speeding up graph traversal having better
communication algorithms, hardware acceleration [36] and
query optimization. This research work is based on efficient
query structuring and optimising overall query processing
time. In literature, query processing has been firstly achieved
using heuristic-based techniques [37], [38], [39]. This
involves reordering graph nodes [37], [39] and predicate
pushdown [37]. The drawback of this group of techniques
is that they need a very specific structure of the query.
Secondly, it is done using operator fusion or a combination
of multiple operators [40], [41], [42], [43]. However, this
group of techniques require operators in which partial results
can be stored between multiple operators. The third type of
technique known as the interpretation-based query model,
[42], [44], [45], translates the query into a data flow graph
(DFG) and then tries to optimize DFGs. These techniques are
slow in performance and need time to translate queries into
DFGs [42], [43]. This work lies in the first category where the
structure of the query is manipulated to reduce the operation
time. The pattern of FlowGraph consists of N clauses where
each clause ends up with the predicate evaluating to True
or False [30], [31]. In FlowGraph some clauses take more
computational time called heavier as compared to others
called lighter. If lighter clauses evaluate to false, the entire
pattern evaluates to false even though other clauses evaluate
to True. The premise of the optimization technique lies in
the fact that if lighter clauses are evaluated before heavier
and checked for if they evaluate to False a computation the
heavier clauses can be skipped. For all possible cases in
which lighter are shifted before heavier computation time
can be reduced by 75%. To summarize our key contributions
are:

• The pattern detection capabilities of the FlowGraph
framework are enriched by adding a construct, called
FollowedBy, which allows users to relate properties of
the graph at different points in time.

• A data structure to incrementally store the changes in the
graph over time has been proposed, it also allows us to
perform graph computations at different time points.

VOLUME 12, 2024 86791



H. N. Chaudhry, M. Rossi: Optimising Queries for Pattern Detection

• A novel optimization technique is proposed for temporal
patterns, that can reduce the total computation time
by 75%.

• It is proved that the proposed optimization technique
is independent of graph size, pattern structure and total
number of clauses in the pattern.

Section II presents existing literature related to optimiza-
tion; Section III introduces the architecture and language
constructs of FlowGraph. Section IV describes the optimiza-
tion technique. Section V, presents the experimental setup
and discusses the results. Finally, Section VI concludes.

II. RELATED WORK
Optimization refers to a group of techniques which enhance
the efficiency or performance of algorithms, data structure
or software pipelines in general. In the context of this
paper, it refers to Query Optimization(QO). QO is defined
as an algorithm that changes a query in a way that the
time required to process a query is reduced. One of the
earliest use cases of QO is in databases, discussed in
subsections II-A. The literature on databases is included since
most of the optimization algorithms draw inspiration from
DB optimization. The literature review of big data regimes
is included such as stream processing and semantic graphs.
Since they are the most related areas to the work and graph
processing, query optimization in stream processing has been
discussed in II-B and semantic graphs in II-C. Finally, large-
scale graph processing optimization has been discussed II-D.

A. OPTIMIZATION IN DATABASES
Database (DB) is one of the earliest and most studied use
cases for query optimization [46], [47], [48]. Optimization
in DB can be broadly classified into indexing methods,
cost-based techniques, join optimization, predicate push-
down, and parallel execution. Indexing methods are one
of the most widely applied query optimization techniques
in DB [49], [50], [51]. Although the creation of indexes
on columns is frequently referenced in queries for filtering
or sorting purposes, DB can promptly pinpoint and fetch
the required rows [52]. This approach reduces the need
for exhaustive scans of entire tables, consequently speeding
up query performance. Cost-based optimization entails
assessing the cost associated with various query execution
plans and opting for the plan with the lowest cost [53], [54],
[55]. This approach takes into account factors such as disk
I/O, CPU utilization [56], and memory usage to identify
the most effective strategy for executing a query. Cost-based
optimization draws upon statistics concerning the distribution
of data within tables to make informed decisions, aiming
to enhance query performance [57], [58]. Join operations
merge rows from two or more tables based on a common
column are bottleneck on the performance of database
systems [59], [60]. Join optimization methods, including
join reordering, selection of join types (such as nested loop
joins, hash joins, or merge joins), and join elimination, are
instrumental in streamlining join operations and reducing

query execution duration [61], [62], [63], [64], [65], [66].
Simplifying join operations in databases can significantly
improve the performance of DB systems [67]. Predicate
pushdown refers to the practice of shifting filter conditions
(predicates) near the data source [68], thereby diminishing
the volume of data necessitating processing in subsequent
stages of the query execution plan. By implementing
filter conditions early in the query execution sequence,
databases can curtail the volume of data transmitted and
processed, ultimately enhancing query performance [69].
Several techniques in literature employ predicate pushdown
methods for optimization [69], [70], [71], [72], [73]. Parallel
execution methods encompass the division of a query into
smaller tasks capable of simultaneous execution across
multiple CPU cores or nodes within a distributed setting [74],
[75]. These approaches harness the collective computational
prowess of numerous resources concurrently [76], resulting
in reduced query processing time, especially for CPU-
intensive workloads. Parallel execution proves particularly
advantageous for queries handling expansive datasets and
intricate computations [77], [78], [79].

B. OPTIMIZATION IN STREAM PROCESSING
Achieving data parallelism in batch processing is very simple,
in the case of stream processing data arrives in a single
sequence, and extracting parallelism in Stream-processing
systems (SPE) is challenging and requires a careful design.
SPE optimisation techniques can be broadly divided into
four groups. Firstly, heuristic-based techniques [37], [38],
[39] form a graph from a query and perform graph
transformation, for example, reordering of graph nodes,
substituting certain graph nodes with others [37], [39].
In the predicate pushdown [37] technique, the filtering
operation is shifted closer to data so that the remaining
operations in the query are reduced. The major drawback of
heuristic-based techniques is that they require a very specific
shape of query such as filtering defined over events of an
input stream. So, a push-down query can not be applied
to filtering following a join operation. Secondly, in queries
based on operator fusion [40], [41], the fusion techniques
store immediate results between two operators in a register
or cache hence reducing the unnecessary movement of data.
The fusion technique can only work if a soft pipeline breaker
(SPB) can be achieved [42], [43]. SPB is a technique that
stores any operator’s partial results before the next operator
can be processed. Thirdly, SPE uses an interpretation-
based query model [42], [44], [45] which translates queries
into a data flow graph (DFG). However, despite being
well-used optimisation regimes such architectures are slower
in performance, the inefficiency is attributed to the conversion
of a query into DFG and data transfer dependencies in
DFG [42], [43].

C. OPTIMIZATION IN RESOURCE DESCRIPTION
FRAMEWORK (RDF) AND SPARQL
Resource Description Framework (RDF) and SPARQL are
the backbones of the Semantic Web. RDF is the standard

86792 VOLUME 12, 2024



H. N. Chaudhry, M. Rossi: Optimising Queries for Pattern Detection

model for representing and exchanging data on the web
and storing information in graph-based format. However,
the graphs used in RDF are quite different from those
used in our work. RDF mostly employ subject-predicate-
object triples rather than standard vertex edge notation.
SPARQL is a query language employed to query and
manipulate RDF data. It provides a standardized way to
retrieve, update, and manipulate RDF graphs stored in
RDF databases or triple stores. Query rewriting involves
transforming SPARQL queries into semantically equiva-
lent forms that are more efficient to execute [80]. This
process can include restructuring the query to leverage
indexes, eliminating redundant operations, or reordering
operations to minimize computational overhead [80], [81],
[82], [83], [84]. For example, replacing certain complex
graph patterns with simpler patterns or breaking down
complex queries into smaller, more manageable subqueries
can improve performance. The authors [85] returned top
k queries sorted by the user-defined scoring function. The
sort, split, and interleave scheme is employed on sorted
k queries and speed up is achieved by selecting the best
query.

Triple/Quad Store Indexing based on subject, predicate,
object, and context enables efficient data retrieval and query
processing. Various indexing structures, such as B-trees
or hash tables, can be used to organize and store RDF
data for fast lookup. Indexing allows the query engine to
quickly locate relevant triples/quads based on query patterns,
significantly reducing query execution time, especially for
large datasets. Materialized Views are precomputed query
results or intermediate graph patterns stored as persistent
data structures [86]. By caching frequently accessed or
computationally expensive query results, materialized views
can accelerate query processing and improve overall system
performance. Materialized views can be updated periodically
to reflect changes in the underlying data or query patterns,
ensuring query results remain up-to-date [87]. Predicate and
Resource Partitioning The RDF dataset based on predicates
or resources involves dividing the data into smaller subsets
that can be processed independently [88]. By partitioning
the data, query execution can be distributed across multiple
processing units or nodes, reducing the size of individual
queries and improving overall performance. Partitioning
strategies may include horizontal partitioning (splitting data
based on predicates) or vertical partitioning (splitting data
based on resources), depending on the characteristics of the
dataset and query workload [88].

D. OPTIMIZATION IN LARGE SCALE GRAPH PROCESSING
Large-scale graph processing can be achieved using several
ways such as partitioning [32], load balancing [33], com-
pression [34], [35], caching, fast graph traversal, inter-node
communication optimization, hardware acceleration [36] and
query optimization. Graph Partitioning means dividing the
graph into smaller partitions based on certain criteria (e.g.,
node properties, connectivity) to distribute the workload

across multiple processing units or machines [32], [89].
Effective partitioning reduces communication overhead and
improves parallelism by ensuring that each processing
unit handles a manageable portion of the graph [90].
References [32] and [91] provide a comprehensive sur-
vey on optimization using graph partitioning techniques.
Load Balancing involves balancing computational workload
evenly across all processing units or machines to prevent
bottlenecks and maximize resource utilization [33]. Load
balancing techniques ensure that each partition or processing
unit receives a comparable amount of work, minimizing
idle time and improving overall system performance [92],
[93], [94]. Employing graph compression algorithms to
reduce the storage space required for representing large
graphs [34], [35]. Graph compression techniques aim to
minimize memory usage and I/O overhead while preserv-
ing the essential structural properties and connectivity of
the graph [35]. Caching and Better Locality Optimiza-
tion store frequently accessed graph data or intermediate
results, reducing the need for repeated computations and
improving data locality [95]. By keeping relevant data
closer to the processing units, caching enhances memory
access patterns and reduces latency during graph traversal
and processing [96], [96]. Optimizing graph traversal
algorithms and data structures to minimize traversal time
and improve overall performance [97]. Techniques such
as parallel traversal, optimized data representations (e.g.,
adjacency lists, adjacency matrices), and efficient graph
search algorithms (e.g., breadth-first search, depth-first
search) can significantly speed up graph traversal opera-
tions [97], [98], [99]. Designing efficient communication
protocols and algorithms for exchanging data and messages
between processing units or nodes in a distributed graph
processing system [100]. Optimized communication algo-
rithms minimize overhead and latency, enabling fast and
reliable data exchange during parallel graph processing tasks.
Hardware Acceleration is leveraging specialized hardware,
such as GPUs (Graphics Processing Units) or FPGAs (Field-
Programmable Gate Arrays), to accelerate graph processing
tasks. Hardware acceleration can significantly improve
computational throughput and reduce processing time for
graph analytics and traversal operations. Optimizing query
execution plans and algorithms to minimize resource usage
and execution time for graph queries and analytics tasks.
Query optimization techniques aim to reduce the number
of I/O operations, minimize intermediate data transfer, and
exploit parallelism to improve query performance on large-
scale graphs.

III. SYSTEM MODEL
This section is a summary of FlowGraph’s architecture
and its execution model, more details can be found in
[30] and [31]. Section III-A provides an overview of the
system’s architecture and the different entities in Flow-
Graph. Section III-B explains the elements of FlowGraph
patterns.

VOLUME 12, 2024 86793



H. N. Chaudhry, M. Rossi: Optimising Queries for Pattern Detection

A. SYSTEM ARCHITECTURE
FlowGraph is a distributed large-scale graph processing
framework. It has one master, a client, and N workers, and
the graph of size K vertices is divided over N workers,
as shown in Figure 1. The client acts as an interface for the
external world, the graph changes, and the pattern is fed to
the client. The following assumptions have been made on
the changes arriving in the system: (i) the external source
will time stamp the messages; (ii) the messages always arrive
in order; and (iii) there is no clock source in FlowGraph,
the timing is fed by messages coming from an external
clock source. The pattern specifies what is to be extracted
or obtained from the given graph or how to modify a certain
graph. The client is connected to themaster, which has several
workers connected to it. The master is responsible for the
orchestration of the entire operation. The graph changes over
time, which means a new vertex or edge could be added,
or removed or its attribute can be modified. Each time the
change is fed into the system it distributes these changes to
the appropriate worker node. Each vertex is assigned a unique
identifier using a suitable hashing algorithm and based on
that each worker gets a particular vertex. The corresponding
edges are assigned to the worker containing the source vertex.
Each worker keeps the data structure that maintains the
key and vertex, along with the time at which the vertex
was added or removed, as shown in Figure 1. FlowGraph
performs graph computations and finds numerous patterns in
the graph. After the client connects to the master node, the
client sends graph changes as well as patterns to be evaluated
on the graph. Section III-B explains different parts of patterns
in FlowGraph. Each worker maintains a data structure for
vertices, as shown below; it includes the vertex name, the time
at which the vertex was added, and the vertex itself. A vertex
can also store several properties as well as computational
results in the key-value pair form. Computational results
are stored after vertex-centric computation is performed.
Similarly, edges are kept in key-value pair form, where the
key contains the name of the source vertex, and the value
contains the time at which the edge was added and the edge
itself. Just like vertices, edges can also store properties—for
example, in a social media graph, an edge might represent
a relationship such as a ‘‘friend-of’’ between two vertices.
In this case, the key would be ‘‘relationship’’ while the value
would be ‘‘friend-of’’. Each vertex and edge is associated
with a set of properties. For example, consider a graph for
the social media use case: the vertex may have properties
such as the name of a person, age, and location, while an
edge would have properties such as ‘‘friend-of’’. As the graph
evolves, each worker stores the current as well as the previous
state of the graph. Since our focus is to develop a proof of
concept of pattern evaluation on a temporally evolving graph,
our system implements a simplistic graph partitioning policy
based on hashing and does not have a fault tolerance or load
balancing policy. In our system, it is assumed that all nodes
are balanced; for the experimental setup, a balanced load is
sent from the client side and uses a basic partitioning scheme.

Our major focus is on how graph computation and stream
processing alongside each other can be handled; and how
the pattern evaluation paradigm of stream processing can be
combined with an iterative graph computation model.

B. EXECUTION MODEL
This section provides an overview of the language offered by
FlowGraph (see [30], [31] for more details). The client sends
a certain set of commands (i.e., a pattern) to the master for
graph computation to be performed and certain attributes to
be detected. The master uses this pattern to send instructions
to the workers step by step. The pattern has a certain set of
operators that defines what workers have to do on the graph
stored on the workers. The worker performs a given operation
on the sub-graph and returns the aggregate information to
the master. A pattern is a collection of certain clauses, where
each clause can be subdivided into clause elements. All clause
elements are evaluated sequentially. There are five types
of clause elements: compute, select, partition, aggregate,
extract, and evaluate. All clauses must end with evaluate,
which is a predicate clause, and either be True or False. In the
rest of this section, each clause’s elements are discussed.
A typical clause would look like the following:

graph.compute(...).selectV(...)
.partitionByV(...).extractV(...)
.aggregate(...).evaluate(...)

In the above snippet compute() is an iterative graph com-
putation, explained further in Section III-B1. The next part is
selectV(), which filters results based on given criteria, further
explained in Section III-B2. Partitioning partitionByV() is
analogous to a group used in databases (more details are
provided in Section III-B3). During all aforementioned cases,
the system is in graph domain; extractV() transforms the
graph into a collection of tuples on which aggregate() could
be applied (extraction is further explained in Section III-B4).
aggregate applies to the tuples extracted by extractV() (see
Section III-B5). Finally, a predicate can be applied (i.e.,
evaluated), which asserts a certain condition and returns the
result of the given clause, which can be True or False (see
Section III-B6 for some details). Multiple clauses can be
joined together using followedBy(), as shown below:

clause1. followedBy("time").clause2

The pattern above has two clauses sandwiched by fol-
lowedBy(), which has a time value passed as an argument.
As a result, clause 1 will be processed at the current time
while clause 2 will be processed at the current time plus the
time given inside followedBy() also known as the end time.
In other words, the current time and the current time plus the
end time define a window interval in which the computation
is performed.

1) COMPUTE
Compute is the central part of graph processing, and it
involves a vertex-centric paradigm. FlowGraph uses an

86794 VOLUME 12, 2024



H. N. Chaudhry, M. Rossi: Optimising Queries for Pattern Detection

iterative computation model, where each step is known as
a super step. After each step, workers wait for neighbour-
ing workers to complete the task; this is known as the
synchronization barrier, and during this waiting window
messages are exchanged between the different workers. After
the synchronization barrier messages are dispatched over the
network without being sent to the master. After completion
of all super steps, the final result is aggregated and sent to the
master.

graph.compute(...)

Several graph computations can be performed on the
graph; as a proof of concept, two computations are used in
this paper as a test case. The first one is triangle identification,
where a triangle is said to be formed if any given vertex
Ai is connected to any other vertex Aj, and the vertex Aj is
connected to Ak , such that the vertex Ak is connected to the
Ai, thus forming a triangle of vertices.

graph.compute("triangle")

The above snippet takes a graph and returns the result as a
list of vertices that form triangles. Similarly, another possible
example could be counting themaximum number of outgoing
edges of the given graph. In this case, the outdegree of each
vertex is measured in the graph and the maximum degree of
the graph is chosen.

graph.compute("maxOutDegree")

In the above piece of code, the input would be the
graph and the output would be the number representing
the maximum outdegree of the graph. Different types of
computations take different amounts of time. For example,
triangle identification is computationally heavy (i.e., it takes
more time to compute) while maximum outdegree is light
since it takes less time as compared to triangle identification.
Indeed, triangle counting is performed by iterating over
triplets of vertices and checking whether the triangle is
formed or not, and its worst-case complexity isO(V 3) (a time
complexity ofO(E×D), where E is the total number of edges
andD is the maximum degree of vertex, can be obtained if an
adjacency matrix is used with some optimizations). The time
complexity for computing the maximum outdegree, instead,
is O(V 2).

2) SELECT
Select is the filtering-like operation in which certain vertices
or edges are selected based on certain properties. For
example, if vertices having an age greater than 30 are
required, the selection would be given as follows:

graph.compute(...).selectV("age" > 30)

In the above code snippet, a computation is performed
(where the ellipsis indicates that the kind of computation
performed does not play any role). After getting the result the
vertices whose age is greater than 30 are filtered. Similarly,
edges can be selected based on certain properties. The select

can be extended to multiple properties using conjunction; for
example, if the age is greater than 30 and the country is Italy,
select can be formulated as a conjunction of both attributes.
As discussed before, each worker has data structures that
store vertices and edges. Once the selection is done, the
vertices and edges are reduced to only those which contain
the given attributes.

3) PARTITION
The partition is analogous to the ‘‘group by’’ operator
in databases. It takes a list of vertices or edges and
groups the vertices or edges based on certain criteria.
For example, consider a graph having a property named
‘‘country’’ on each vertex, and the partitioning by country
is performed. Each group contains a single country such
as Italy, Germany, the USA, etc. Each partition forms a
subgraph, and any operations performed after partitioning
are performed on each subgraph separately. For example,
if compute() is performed after partitioning, the computation
will be performed on each subgraph separately.

graph.compute(...).selectV("age" > 30)
.partitionByV("Country")

In the above code snippet, a computation is performed;
after getting the results, the vertices are filtered whose age
is greater than 30 and then grouped by country.

4) VALUES EXTRACTION
Extraction transforms the graph domain into a set of values,
hence departing from graph processing. In other words,
extraction is a bridge between graph processing and stream
processing. The aforementioned compute(), select(), and
partition() operate on graph data structures; however, once
extraction is applied the graph becomes a set of values or a
flat list. Now the aggregate() discussed in the next subsection
can be applied to this set of values. An extraction can be
considered as a conversion of a graph data structure into
a tuple or flat list. For extraction on vertices and edges,
there are two different operators extractV () and extractE().
A vertex or edge may have several properties, and extractV
and extractE extract all properties stored on vertices and
edges, respectively. However, both extractV and extractE
can specify a subset of properties as an argument; in this
case, only the specified properties will be extracted from
edges or vertices. Let us consider the first example below,
in which a computation is performed on the graph, then
filtering is performed for all vertices whose age attribute
is greater than 30, and finally extractV() is applied to get
the flat list of vertices defined by the previous part of the
clause.

graph.compute(...).selectV("age" > 30)
.extractV()

As another example consider the snippet below, in which
extractV() is applied after partitioning; in this case, the graph
is grouped by country using partitionBy(), then a flat list is

VOLUME 12, 2024 86795



H. N. Chaudhry, M. Rossi: Optimising Queries for Pattern Detection

FIGURE 1. FlowGraph architecture.

extracted. However, once extraction is applied the grouping
done by partitionBy() is unfolded and there are no groups
anymore.

graph.compute(...).selectV("age" > 30)
.partitionBy("Country").extractV()

5) AGGREGATE
The aggregate operation in FlowGraph is similar to stream
processing. aAggregate only works once the extraction has
been performed on the data and the graph is transformed
into tuples. FlowGraph has several aggregate operators such
as max, min, average, filtering, mapping, reduction, and flat
map. The operator might work on each worker or merge
the data into the master. For example, reduce collects the
data from each worker and brings it to the master. In other
cases, data remains on the worker; for example, in the case of
filtering each worker filters data on its corresponding nodes.
The snippet below shows an example of aggregate; after the
computation is performed on the graph, the graph is filtered
by age greater than 30, and vertices are extracted. The flat
list now contains a list of vertices with the ‘‘age’’ property
included, and aggregate() applies the minimum operator on
the list obtained through extractV().

graph.compute(...).selectV("age" > 30)
.extractV("age").Aagregate("min")

6) VARIABLES AND EVALUATION
In the previous sections, several graphs and streaming
transformations have been discussed. Once a clause has
been extracted it is tested against certain conditions using
the evaluate primitive. Each clause in FlowGraph must end
with an evaluation. Evaluation tests the given clause against
some condition and returns True or False. In other words,
evaluation converts the given clause into a predicate. It is
important to note that evaluation can only refer to a certain
variable computed previously in the given clause. Let us
consider the following structure:

graph.compute(...).<graph transformations>
. extractV()<Aggregate operators>
.evaluate()

In the above structure, a compute() is performed on the
graph, and the graph is transformed using graph transforma-
tion operations such as selectV() (filtering) and partitionBy()
(grouping). Once transformed extractV() converts the graph
to a flat list, on which different Aggregate operators could
be applied. Finally, evaluate() returns whether the predicate

86796 VOLUME 12, 2024



H. N. Chaudhry, M. Rossi: Optimising Queries for Pattern Detection

FIGURE 2. Temporal operator and time window in FlowGraph.

is True or False. The snippet below gives a more specific
example:

graph.compute("triangle").
.selectV("age" > 30).extractV("age")
.aggregate("avg").evaluate("age" > 40)

In the above snippet, the triangle identification is done
on the graph, which returns all triangles in the graph; the
obtained triangles are then filtered using selectV(‘‘age’’ >
30), thus reducing the vertices to only those who have
an ‘‘age’’ property greater than 30. The obtained results
are converted to a flat list using extractV(‘‘age’’). The
aggregation operator aggregate(‘‘avg’’) finds the average age
on flat list extract by extractV(‘‘age’’). Finally, the predicate
is checked using evaluate(‘‘age’’ > 40), which tests if the
average age is greater than 40. It is important to note here
that the attribute ‘‘age’’ is referred to repeatedly, so it could
be replaced by a variable, as shown below.

graph.compute("triangle").
.selectV("age" > 30).extractV("age",X)
.Aggregate("avg").evaluate(X > 40)

The above snippet shows variable X , which is used in
extractV(‘‘age’’, X). This variable can referred to later in the
clause as in evaluate(X > 40).

7) TEMPORAL OPERATIONS
As discussed in Section III-A changes arrive at different
points of time in FlowGraph. Any modification, insertion,

or deletion of an edge or vertex is referred to as a change
in the graph. For the sake of simplicity let us assume that the
change is the addition of a vertex. Figure 2 shows that the first
vertex is added at time t1, and other changes occur at times t5,
t8, t12, t15 and t18. Consider the pattern below, which contains
followedBy() sandwiched by two clauses.

<clause1>.evaluate().followedBy("10")
<clause2>.evaluate()

FlowGraph does not evaluate clauses at a single point
in time; instead, it uses a window in which evaluation is
performed, as shown in the temporal window part of Figure 2.
It is important to note that all computations are triggered only
by the new change arriving in the system. In the given code
snippet above the first part is a clause followedBy() by another
clause. The time given in followedBy() provides the size of
the window. The first computation should start from t1 and
adding the time in followedBy() it should go till t11. In this
window, t1 is the start point while t11 is the end point of
the computation. However, since no change has arrived at
time t11, the system will wait until the next change arrives,
which is time t12 in this case. The first red part from t1 to
t12 indicates two points in time across which the computation
will be performed. Since the original computation was to
be performed at t1 and t11, at time t12 FlowGraph will go
back at time t11. As a result, clause 1 will be evaluated at
time t1, while clause 2 will be evaluated at time t11. Once
the computation is performed between time t1 and t11, the
window slides to the next available point in time, t5 in this

VOLUME 12, 2024 86797



H. N. Chaudhry, M. Rossi: Optimising Queries for Pattern Detection

FIGURE 3. Optimization for depth of 3 clauses.

case, and the endpoint of the window is also updated from t12
to t15—i.e., the window starts at t5, and end after the window
size specified by the followedBy(). In this case, Clause 1 will
be evaluated at time t5, while Clause 2 will be evaluated at
time t15; notice that in this case change has arrived exactly
at the end of the window size—i.e. at t15. Similarly, in the
last case the window slides between t8 to t18. All workers
store changes in vertices and edges along with the time at
which the change was made. This means that each worker
has different versions of the graph at any given point in time.
The client sends a timestamp with each change in vertex and
edge. To evaluate a clause at a certain time the worker extracts
vertices and edges at a given point in time.

IV. PROPOSED TECHNIQUE
This section discusses the optimizer design, where the pattern
is optimized at the master level before it is dispatched to
different workers. Optimization refers to the process in which
the given pattern is reformulated so that it can run in a
more efficient form. In this section, the terms ‘‘pattern’’ and
‘‘query’’ are used interchangeably, since most optimisation
problems are referred to as query. Section IV-A explains
the basic idea behind the optimization, while Section IV-B
presents an example of optimization. Section IV-B also
discusses how shuffling the query for the sake of optimization
does not affect the query result.

A. BACKGROUND
Section III-B1 describes the computation in FlowGraph.
It is important to note that not all compute() are equal,
some take more time than others. For example, a triangle
identification operation in a large-scale graph takes a much
longer time compared to computing how many outgoing
edges there are in vertices. The amount of time required to
perform a certain computing operation depends on howmany
iterations and computations are needed to get the final answer.
In Section III-B1 triangle identification and max incoming
edges are explained.

It can be seen that finding triangles requires several
exchanges of messages to assert the formation of the triangle
as compared to finding a maximum number of outgoing
edges. The basic idea of optimization is based on the fact that
if there is any heavy clause and it is executed first, then it
would take a long time before it could be True or False. Let
us assume that the heavy clause is followedBy() the lighter
clause and this evaluates to False. The result of both clauses
would be False, however, the time it took for a heavy clause
to execute gets wasted. For an illustration of the concept, two
types of compute() are chosen i.e. out-degree and triangle
identification arranged in the order from lighter to heavier.

B. OPTIMIZATION OF QUERY
Section III-B introduced the concept of a pattern of two
clauses. However, the pattern is not limited to two clauses;
rather, in general, a pattern consists of N clauses, where all
clauses are separated using followedBy(), as shown below.

<clause1>.evaluate(...).followedBy(...)
<clause2>.evaluate(...) .followedBy(...)
...
<clauseN>.evaluate(...)

Therefore, a single pattern is a set of N clauses C =

{C1,C2, . . .CN }. Each clause has a compute() clause ele-
ment. Every clause Cj consists of different components,
which can be divided into graph-based clause elements i.e.
compute(), select(), partition() aggregate-based clause ele-
ments i.e., extract() and aggregate() and predicate evaluate().

As an example consider the code snippet below, it has two
clauses, where the first one has compute(‘‘triangle’’), which
is heavy, while the second one has the lighter computation
compute(‘‘maxOutDegree’’); both are evaluated with the
window size of 10 since followedBy("10") has 10 as time
value.

graph.compute("triangle").
.selectV("age" > 30).extractV("age",X)

86798 VOLUME 12, 2024



H. N. Chaudhry, M. Rossi: Optimising Queries for Pattern Detection

FIGURE 4. Optimization for depth of 4 clauses.

.Aggregate("avg").evaluate(X > 40).

.followedBy("10")
graph.compute("maxOutDegree","Y").
.extractV("Y").evaluate(Y <= 5)

The above pattern consists of two clauses separated by
followedBy(). The first clause identifies the triangles and
filters out triangles using selectV() whose age property is
greater than 30. Converts the graph into a set of tuples using
extractV(), it only gets age property from each vertex and
gives it a variable name X . Finds the average age using
Aggregate() and applies the predicate evaluate() to check if
the average age is greater than 40. The second clause finds
the maximum out-degree and stores the result in variable Y .
This variable Y is stored on each vertex along with the other
properties of vertices. The graph is converted to a set of tuples
by using extractV() applied on variable Y . Finally, predicate
evaluate() is applied to check if themaximum in-degree of the
graph is less than equal to 5. Each jth compute() has certain
weights assigned to it, Cj → wj. For example, the weight
for the first clause in the snippet above is higher (triangle
identification) than the weight for the second clause, which
is lighter (maximum out-degree). Optimization is defined
as an out-of-order evaluation of N clauses based on their
weights wj, where the lighter clauses are evaluated before
the heavier ones. If a lighter clause is evaluated as False, the
heavier clauses are not evaluated. The major premise behind
this scheme is that even though a heavier clause evaluates to
True, if the following lighter clause is False, then the result
will be False. The optimal scheme would be to check if the
lighter clause is False, and then evaluation of the heavier
clause is not required at all, resulting in less computational
time.

Let us consider patterns made of three and four-clause
as an example of query optimization. The clauses used for
the proof of concept are shown in Figure 3 and Figure 4,
respectively.

1) THE THREE-CLAUSE CASE
For the three-clause case C = {C1,C2,C3} shown in
Figure 3, let compute() of these clauses be c1, c2 and
c3 respectively; there are two levels of clauses, i.e., L = 2.
The optimization algorithm back-propagates from the last
node c3 to c2, and it looks for nodes where c2 > c3. This
means c2 has a higher weight as compared to c3, therefore,
c2 is heavy and c3 is light. If c2 > c3 holds, the optimization
algorithm executes c3—the lighter clause—before c2, which
is a heavier clause. If c3 evaluates to false there is no need
to evaluate c2, since even if c2 is evaluated, the last clause
c3 becomes false and the entire pattern evaluates to false.
If c3 is pre-evaluated it would save the computation time
needed to evaluate c2.

If there is no such node at level c2 > c3, the algorithm
goes to level L = 0 and checks if c1 > c2. In this case, c2 is
evaluated before c1. This means c2 is lighter than c1, so the
same principle applied for c2 > c3 can be used here.

2) THE FOUR-CLAUSE CASE
For the four-clause case C = C1,C2,C3,C4 shown in
Figure 4, let compute() of C1, C2, C3 and C4 be c1, c2, c3 and
c4 respectively; the number of levels is three, so L = 3.
The optimization algorithm performs backpropagation going
from the last compute c4 backwards. It looks for nodes where
c3 > c4 holds. Thismeans c3 has a higherweight as compared
to c4, therefore c3 is heavy and c4 is light. If c3 > c4 holds, the
optimization algorithm executes c4 (the lighter clause) before
c3, which is a heavier clause. If c4 evaluates to false there
is no need to evaluate c4, since even if c3 is evaluated, the
last clause c4 becomes false and the entire pattern evaluates
to false. If c4 is pre-evaluated it saves the computation time
needed to evaluate c3. If there is no such node at level c3 > c4,
the algorithm goes at L = 1 and checks if c2 > c3, as shown
in Figure 4. In this case, c3 is evaluated before c4 in a similar
way as previously explained for c3 > c4. This means c3 is

VOLUME 12, 2024 86799



H. N. Chaudhry, M. Rossi: Optimising Queries for Pattern Detection

FIGURE 5. Increase of clauses versus times in second.

lighter than c4 and the same principle applied for c3 > c4 can
be used here.

3) THE N-CLAUSE CASE
The three and four-clause cases shown in Section IV-B1 and
Section IV-B2, respectively, can be extended toN clauses. For
such a case, the level of the tree will be L = N − 1. The tree
will be parsed from the leaf node containing cN−1 < cN . The
process is repeated for each level j such that j varies from L to
level 1, wherein each case condition cN−(j−L+1) < cN−(j−L)
is traversed backwards.

C. CORRECTNESS OF THE OPTIMIZATION
When the optimization is applied, the lighter clauses are
evaluated before the heavier clauses, which modifies the
order in which the pattern was intended to be executed. For
example, let us consider that clause 2 is lighter than clause
1 in the snippet given below.

<clause1>.evaluate().followedBy()
<clause2>.evaluate()

With the optimization, clause 2 will be evaluated before
clause 1, whereas in the original pattern clause 1 was intended
to be executed before clause 2. But would this flippingmodify
the correctness of the pattern (in other words, are the two
patterns equivalent)?

The best way to answer this question leads us to how
workers store graphs with timestamps. Each vertex is stored
with the time at which it was added, removed, or modified.
This means that graph computation as well as pattern
detection can be performed at any point in time without
affecting the graph at other times. As a result, FlowGraph can
move backwards or forward in history, irrespective of clause
order in the graph. Consider the example of Figure 2, and
assume that the first clause (e.g., triangle identification) is

heavy and evaluated at time t1, and the second is light (e.g.,
max incoming edges) and evaluated at time t11. If the second
clause is evaluated before the first clause at time t11, it would
be run on the graph at instance t11. Since the graph at t11 is
not affected by whether the triangle identification was run
on time t1 or not, evaluation at time t11 is order oblivious.
In other words, changing the evaluation sequence of clauses
does not alter the overall result of the clause. More precisely,
the correctness of the optimization is ensured by the four
principles of evaluation in FlowGraph, which make clauses
position-oblivious.

1) GRAPH STATE INDEPENDENCE
The graph data structure maintains its state independently
of the order in which computations are performed on it.
Each vertex in the graph is timestamped, indicating when
it was added, removed, or modified. As a result, the
evaluation of each clause operates on the graph state at the
time of evaluation, unaffected by the order in which other
computations are performed. Let G denote the graph data
structure, and V represent the set of vertices inG. Each vertex
vi ∈ V is associated with a timestamp ti, indicating its state at
a given time. Consider a clause Ci in the pattern, evaluated at
time ti. Let f (Ci,Gti ) represent the result of evaluating Ci on
graph G at time ti. The evaluation function f operates solely
on the state of the graph at the time of evaluation. Therefore,
for any clause Ci, its evaluation is independent of the state of
the graph at any other time.

2) TEMPORAL EVALUATION
When a clause is evaluated, it operates on the state of the
graph at that specific timestamp. This means that the result
of evaluating a clause is determined solely by the state of
the graph at the time of evaluation, regardless of when other
computations were performed. Given the timestamped nature

86800 VOLUME 12, 2024



H. N. Chaudhry, M. Rossi: Optimising Queries for Pattern Detection

FIGURE 6. Impact of error variance on results.

TABLE 1. Abbreviation used in the simulations.

of the graph, each clause’s evaluation is tied to a specific
timestamp. Let ti be the timestamp associated with clause Ci.
For any clause Ci, its evaluation is solely determined by the
state of the graph at time ti.

3) PATTERN COMPOSITION
The pattern is composed of individual clauses, each rep-
resenting a specific computation or condition. The overall
result of the pattern is determined by the combined
results of evaluating these clauses. Since each clause’s
evaluation is independent of the other clauses, the overall
result of the pattern remains unchanged regardless of
the evaluation order. The overall result of the pattern is
determined by the combined results of evaluating individual
clauses.

4) CONSISTENCY OF RESULTS
The consistency of results is maintained irrespective of the
order in which clauses are evaluated. This is because the
evaluation of each clause is based on the same underlying
graph state, ensuring that the computed results are consistent
regardless of the evaluation order.

V. RESULTS AND PERFORMANCE EVALUATION
This section presents the results obtained after performing
various experiments. The main goal of our experiments is
to validate that our optimization algorithm executes patterns
in less time than the non-optimized algorithm. Section V-A
describes the experimental setup. To validate our algorithm
three experiments are being performed, with varying clause
sizes (Section V-B), types of clauses (Section V-C and
Section V-D), and graph sizes (Section V-E).

VOLUME 12, 2024 86801



H. N. Chaudhry, M. Rossi: Optimising Queries for Pattern Detection

TA
B

LE
2.

Co
m

pa
ri

so
n

of
ti

m
e

of
op

ti
m

iz
ed

ve
rs

us
no

n-
op

ti
m

iz
ed

pa
tt

er
ns

.

86802 VOLUME 12, 2024



H. N. Chaudhry, M. Rossi: Optimising Queries for Pattern Detection

A. EXPERIMENTAL SETUP
The original FlowGraph implementation, which is freely
available [101], was evaluated on EC2 instances of the Ama-
zon AWS cloud [30], [31]. The experiments presented in this
paper were carried out on a server running Ubuntu Linux on
an Intel i7 (12th generation) processor with 128 GB of RAM.1

The three-experiment setup proves that our optimization
algorithm gives a much better time regardless of graph size,
execution order, number of clauses, and clause elements.
The first experiment, described in Section V-B, shows that
the optimized queries take much less time as compared to
non-optimized ones. The second experiment, presented in
Section V-D, shows that varying clause elements do not
affect the optimisation. Different possible combinations of
clause elements have been used, and the results show that the
optimization works regardless of the clause elements chosen.
Finally, Section V-E shows that the optimization works on
graphs of any size. The synthetic graph generator (SGG)
was used to generate the graphs for the experiments. The
SGG application in our framework can generate directed and
undirected graphs of any size.

B. OPTIMIZING QUERIES WITH VARYING CLAUSE SIZES
The first experiment is designed to check the impact of
the variation of the placement of heavy compute clauses
in the pattern. As discussed in Section III-B1 a ‘‘triangle
identification’’ operation is heavy, while ‘‘Max Out-Degree’’
is light. The number of clauses has been increased from
two to eight. For this experiment, we have kept the
injection speed to 5 changes per second (CPS), using
graphs of size 1000k vertices, and 4 workers; also, the
clause has all elements i.e. compute(), selectV(), extractV(),
partitionBy(), aggregate(), and evaluate(). It can be seen in
Figure 5 that in all cases the gap between optimized and
non-optimized computations grows as the number of clauses
increases.

Patterns consisting of multiple clauses, categorized as
either heavy or light based on their computational require-
ments, can be optimized to improve execution time. However,
certain patterns may be non-optimizable, meaning that the
clauseswithin these patterns cannot be rearranged or swapped
to achieve better performance, resulting in the execution time
of the original and optimized clauses remaining the same.
This can be checked by implementing the optimizer and
comparing the execution times of the original and optimized
patterns. By analyzing patterns that are categorized as non-
optimizable, the conditions that prevent optimization can
be determined. Table 2 shows the breakdown of clauses of
Figure 5 from two clauses up to four. A scenario has been
considered where the light clause is False to experiment with
two clauses. For the first case ({Heavy,Light}), evaluating
the pattern without optimization took 10 seconds, while
with the optimization it took 3.5 seconds since in this

1A single-threaded,monolithic version of the optimizer, which can be used
to run FlowGraph on a single machine, is freely available at [102].

case the light clauses are evaluated to False, so the heavy
ones are not evaluated. This is a reduction of one-third of
the total time. However, no optimization is done if both
clauses are either light, heavy or end with heavy. For three
clauses all eight combinations are shown in Table 2, and it
can be observed that the optimization is possible for four
out of eight clauses. For the {Light1,Heavy,Light2} case
two variations have been considered: in the first variation
Light1 is False, in the second variation Light1 is True, while
Light2 is False. In all cases, the optimized computation
takes 1

4 of the time of the non-optimized one. In the
{Light1,Heavy,Light2} and {Heavy,Light1,Light2} cases
the optimized computation takes 1

4 and 1
2 of the time of the

non-optimized one, respectively. Similarly, for four clauses,
there are 11 patterns out of a total of 16 that are optimizable.
Figure 5 shows the average of the total computation time

in each N -clause pattern. The values given in Figure 5
and Table 2 are computed after repeating the experiment
20 times. The execution time of each iteration varies slightly
depending on how busy the processor is during execution.
Columns ‘‘without optimization’’ and ‘‘with optimization’’ in
Table 2 show, between brackets, the minimum and maximum
execution times for each repeated experiment. The times
shown in the Table and figures are the averages over
all iterations. As Figure 6 shows, the difference between
minimum and maximum times is between 0.5s and 1.5s,
independent of whether the pattern was optimized. Hence,
the results given in Figure 7 are consistent, and the variance
in execution time does not change the conclusion that the
optimization reduces the time concerning non-optimized
executions.

C. VARYING CLAUSE ELEMENTS
This section describes themethod underlying the experiments
shown in Section V-D, which concerns the impact of
changing clause elements. Table 1 provides the abbreviations
(explained later) used to label the experiments shown in
Figure 7 and in Figure 8.

1) EXTRACT, AGGREGATE WITHOUT SELECT
In the first variation, the following are removed: selectV()
(i.e., filtering) from the clause, abbreviated as ‘‘without
select’’ (WOS). The clause contains extractV() and aggre-
gate() operations abbreviated as ‘‘extract, aggregate’’ (EA),
as shown below. The combination of ‘‘without select’’ and
‘‘extract, aggregate’’ is abbreviated as WOS-EA.

graph.compute(...)
.extractV(...).aggregate(...)

2) PARTITION, AGGREGATE WITHOUT SELECT
As a variation of Section V-C1, the following are being
included: partitionV(). In this case, graph computation is
performed, and the result is grouped (partition) and then
converted to a list of tuples, abbreviated as ‘‘partition,

VOLUME 12, 2024 86803



H. N. Chaudhry, M. Rossi: Optimising Queries for Pattern Detection

FIGURE 7. Varying number of clauses with different clause elements.

aggregate’’ (PA). The combination of ‘‘without select’’ and
‘‘partition, aggregate’’ is abbreviated as WOS-PA.

graph.compute(...).partionBy(...)
.extractV(...).aggregate(...)

3) SINGLE ATTRIBUTE SELECT, EXTRACT, AGGREGATE
In sections V-C1 and V-C2 the clause without filtering is
applied before tuples are made. In this new case, a single
attribute filtering has been performed, without partitioning,
as shown below and abbreviated as ‘‘single attribute extract
aggregate’’ (SA-EA).

graph.compute(...).selectV("age" > 30)
.extractV(...).aggregate(...)

4) SINGLE ATTRIBUTE SELECT, PARTITION, AGGREGATE
The single attribute select in Section V-C3 is extended
here to incorporate partition, abbreviated as ‘‘single attribute
partition select’’ (SA-PS).

graph.compute(...).selectV("age">30)
.partitionBy(...).extractV(...)
.aggregate(...)

5) TWO ATTRIBUTE SELECT, EXTRACT, AGGREGATE
So far clauses without select have been discussed in
sections V-C1 and V-C2, and single select attribute in
sections V-C3 and V-C4. In these two new cases, the pattern
is extended to two attributes (TA). In the first case below,
the selectV() is applied with partitionBy(), abbreviated as
‘‘two attributes select extract aggregate’’ (TA-SEA), as shown
below.

graph.compute(...)
.selectV("age">30 and"country"="Italy")
.extractV(...).aggregate(...)

In the second case, partitionBy() with two attributes
selectV(), abbreviated as ‘‘two attributes select partition
aggregate’’ (TA-SPA) has been included.

graph.compute(...)
.selectV("age">30 and "country"="Italy")
.partitionBy(...).extractV(...)
.aggregate(...)

D. IMPACT OF VARYING CLAUSE ELEMENTS
For the second experiment, the elements in each clause
have been changed; notice that, in the figures, optimized

86804 VOLUME 12, 2024



H. N. Chaudhry, M. Rossi: Optimising Queries for Pattern Detection

FIGURE 8. Varying graph sizes with different clause elements (For varying clauses).

executions are shown in yellow, while unoptimized one are
shown in cyan. As shown in Figure 7, the first case does
not have any selectV() (without filtering), the second one
has a single selectV() attribute i.e. age, and the third one
has two attributes selectV(), age and country. In each case,
the number of clauses in the pattern is increased from two
to six. The clause without selectV() has two variations, one
with extractV() and one with partitionBy(). In all cases,
a constant rate of change has been used, a graph size of
1000k vertices, and four workers. The number of clauses is
being changed from two to five. Note that the experiments
depicted in Figure 7 have slight variations of execution times
and the figure shows the average duration of 20 executions
per experiment. As shown in Figure 6, the execution time
of each experiment varies between minimum and maximum
values. Nevertheless, the time variance, which is in the
order of the second, does not affect the shape of the graphs
or the overall results of Figure 7. In each case, it has
been considered that clauses do not have: all light, all
heavy, or heavy at the end of clauses. In other words, the

optimizable cases are being selected. For two clauses there
is only one case where optimization is possible, i.e., heavy
followedBy() light. For the three-clause pattern, there are four
cases where optimization is possible, while for four clauses
eleven optimizable scenarios are possible. Results obtained
with varying clause sizes are shown in Table 2. The results
presented in Figure 7 show that the trend for single and two
attributes is the same if the number of clauses is changed from
two to five.

E. IMPACT OF VARYING GRAPH SIZE
The third experiment is designed to check the impact of graph
size on the optimization algorithm. The number of clauses
is changed from two to four and the size of the graph is
varied from 250k to 1000k vertices. For this experiment,
4 workers are used and the injection speed of 5 CPS is
maintained. Along with graph size and the number of clauses,
the number of clause elements is modified (the corresponding
abbreviations are shown in Table 1). It can be seen in Figure 8
that in all cases the trend of the increase in optimization

VOLUME 12, 2024 86805



H. N. Chaudhry, M. Rossi: Optimising Queries for Pattern Detection

time as the graph size increases are similar for two, three,
four, and five clauses. Moreover, comparing different clause
elements in the overlay plots shows that the trends also remain
comparable for varying clause elements. Finally, the gap
between the optimized and non-optimized curves shows an
almost similar deviation for all clause elements. This leads us
to argue that the proposed optimized algorithm is not affected
by the graph size, clause elements or the number of clauses.
As discussed in Section V-D, Figure 8 shows the average
duration computed over 20 executions per experiment. Like
in Figure 7, the slight variations (in the order of the second)
of the execution time do not affect the overall results shown
in Figure 8.

F. LIMITATIONS AND FUTURE WORK
In this paper, the optimizations for pattern detection frame-
works over large-scale graphs are discussed. The results show
a 75% reduction in time in query processing capabilities of
the FlowGraph engine, though the same techniques could also
be implemented for other platforms. However, the technique
also has limitations, optimization is only possible if the
clauses of the pattern occur in a certain order. For example,
optimization is not possible if the pattern has all clauses of
similar weight i.e., all light or all heavy. The second limitation
of this work is that the results are tested over synthetic graphs,
and software is used to generate graphs of different sizes.
In this paper, testing for optimization algorithms is done for
different graph sizes, varying clause types in a pattern, and
clause sizes in a pattern. However, a constant injection rate
for changes of 5 CPS is assumed. In future work, the impact
of variations in the injection rate will be tested. FlowGraph
can not handle deep learning algorithms, as future work is
planned to includemachine learning-based algorithms. In this
case, the algorithm will be trained using offline training data,
once trained the model will be deployed on a FlowGraph
which could asses vertex or edge properties to take certain
decisions.

VI. CONCLUSION
Modern-day graphs are dynamic and they evolve temporally.
Current large-scale graph processing systems do not accom-
modate such temporal changes while evaluating large-scale
graphs. Moreover, large-scale graph processing systems do
not allow pattern detection which has a central place in stream
processing systems. We presented FlowGraph [30], [31],
a large-scale processing framework that can handle graph
computations along with pattern detection for temporally
evolving graphs. Large-scale graph processing uses an
iterative computation paradigm known as TLAV; however,
pattern detection requires a data pipeline that can process
data in a very short time. In this paper, we presented a
query optimization for FlowGraph which can reduce query
processing time and enable more efficient pattern detection
for large-scale graph processing. Our results proved that 75%
of optimization can be achieved, independent of graph size,
clause elements, and number of clauses in the pattern.

REFERENCES
[1] M. Gabielkov, A. Rao, and A. Legout, ‘‘Studying social networks at scale:

Macroscopic anatomy of the Twitter social graph,’’ in Proc. ACM Int.
Conf. Meas. Model. Comput. Syst., Jun. 2014, pp. 277–288.

[2] M. Kurant and P. Thiran, ‘‘Extraction and analysis of traffic and
topologies of transportation networks,’’ Phys. Rev. E, Stat. Phys. Plasmas
Fluids Relat. Interdiscip. Top., vol. 74, no. 3, Sep. 2006, Art. no. 036114.

[3] J. Lin and Y. Ban, ‘‘Complex network topology of transportation
systems,’’ Transp. Rev., vol. 33, no. 6, pp. 658–685, Nov. 2013.

[4] G. A. Pavlopoulos, P. I. Kontou, A. Pavlopoulou, C. Bouyioukos,
E. Markou, and P. G. Bagos, ‘‘Bipartite graphs in systems biology and
medicine: A survey of methods and applications,’’ GigaScience, vol. 7,
no. 4, Apr. 2018, Art. no. giy014.

[5] G. A. Pavlopoulos, M. Secrier, C. N. Moschopoulos, T. G. Soldatos,
S. Kossida, J. Aerts, R. Schneider, and P. G. Bagos, ‘‘Using graph theory
to analyze biological networks,’’ BioData Mining, vol. 4, no. 1, pp. 1–27,
Dec. 2011.

[6] M. Eirinaki, J. Gao, I. Varlamis, and K. Tserpes, ‘‘Recommender systems
for large-scale social networks: A review of challenges and solutions,’’
Future Gener. Comput. Syst., vol. 78, pp. 413–418, Jan. 2018.

[7] X. Zhao, J. Liang, and J. Wang, ‘‘A community detection algorithm based
on graph compression for large-scale social networks,’’ Inf. Sci., vol. 551,
pp. 358–372, Apr. 2021.

[8] L. Quick, P. Wilkinson, and D. Hardcastle, ‘‘Using pregel-like large
scale graph processing frameworks for social network analysis,’’ in
Proc. IEEE/ACM Int. Conf. Adv. Social Netw. Anal. Mining, Aug. 2012,
pp. 457–463.

[9] G. Mali et al., ‘‘A new dynamic graph structure for large-scale
transportation networks,’’ in Int. Conf. Algorithms Complex. Berlin,
Germany: Springer, 2013.

[10] J. Cao, Q. Li, W. Tu, Q. Gao, R. Cao, and C. Zhong, ‘‘Resolving urban
mobility networks from individual travel graphs using massive-scale
mobile phone tracking data,’’Cities, vol. 110,Mar. 2021, Art. no. 103077.

[11] J. P. Pereira and D. Pavlov, ‘‘Route planning in large-scale transport
networks: A multi-criteria approach using prefractal graphs with
optimization of transportation costs,’’ in Trends and Applications in
Information Systems and Technologies, vol. 39. USA: Springer, 2021.

[12] M. Li, H. Cui, C. Zhou, and S. Xu, ‘‘GAP: Genetic algorithm based
large-scale graph partition in heterogeneous cluster,’’ IEEE Access, vol. 8,
pp. 144197–144204, 2020.

[13] T. Aittokallio, ‘‘Graph-based methods for analysing networks in cell
biology,’’ Briefings Bioinf., vol. 7, no. 3, pp. 243–255, May 2006.

[14] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, ‘‘Graph convolutional neural networks for web-scale
recommender systems,’’ in Proc. 24th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Jul. 2018, pp. 974–983.

[15] Z.Wu, C. Song, Y. Chen, and L. Li, ‘‘A review of recommendation system
research based on bipartite graph,’’ in Proc. MATEC Web Conf., vol. 336,
2021, p. 05010.

[16] R. R. McCune, T. Weninger, and G. Madey, ‘‘Thinking like a vertex:
A survey of vertex-centric frameworks for large-scale distributed graph
processing,’’ ACM Comput. Surv., vol. 48, no. 2, pp. 1–39, Nov. 2015.

[17] S. Heidari, Y. Simmhan, R. N. Calheiros, and R. Buyya, ‘‘Scalable
graph processing frameworks: A taxonomy and open challenges,’’ ACM
Comput. Surv., vol. 51, no. 3, pp. 1–53, May 2019.

[18] M. E. Coimbra, A. P. Francisco, and L. Veiga, ‘‘An analysis of the graph
processing landscape,’’ J. Big Data, vol. 8, no. 1, pp. 1–41, Apr. 2021.

[19] V. Kalavri, V. Vlassov, and S. Haridi, ‘‘High-level programming
abstractions for distributed graph processing,’’ IEEE Trans. Knowl. Data
Eng., vol. 30, no. 2, pp. 305–324, Feb. 2018.

[20] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
‘‘Powergraph: Distributed graph-parallel computation on natural graphs,’’
in Proc. 10th USENIX Symp. Operating Syst. Design Implement., 2012,
pp. 17–30.

[21] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and
J. M. Hellerstein, ‘‘Distributed GraphLab: A framework for machine
learning in the cloud,’’ 2012, arXiv:1204.6078.

[22] Y. Low, J. E. Gonzalez, A. Kyrola, D. Bickson, C. E. Guestrin,
and J. Hellerstein, ‘‘GraphLab: A new framework for parallel machine
learning,’’ 2014, arXiv:1408.2041.

[23] W. Han, Y. Miao, K. Li, M. Wu, F. Yang, L. Zhou, V. Prabhakaran,
W. Chen, and E. Chen, ‘‘Chronos: A graph engine for temporal graph
analysis,’’ in Proc. 9th Eur. Conf. Comput. Syst., Apr. 2014, pp. 1–14.

86806 VOLUME 12, 2024



H. N. Chaudhry, M. Rossi: Optimising Queries for Pattern Detection

[24] Y. Miao, W. Han, K. Li, M. Wu, F. Yang, L. Zhou, V. Prabhakaran,
E. Chen, and W. Chen, ‘‘ImmortalGraph: A system for storage and
analysis of temporal graphs,’’ ACM Trans. Storage, vol. 11, no. 3,
pp. 1–34, Jul. 2015.

[25] X. Shi, B. Cui, Y. Shao, and Y. Tong, ‘‘Tornado: A system for real-time
iterative analysis over evolving data,’’ in Proc. Int. Conf. Manag. Data,
Jun. 2016, pp. 417–430.

[26] B. Erb, D. Meißner, J. Pietron, and F. Kargl, ‘‘Chronograph: A distributed
processing platform for online and batch computations on event-sourced
graphs,’’ in Proc. 11th ACM Int. Conf. Distrib. Event-Based Syst.,
Jun. 2017, pp. 78–87.

[27] M. Mariappan and K. Vora, ‘‘GraphBolt: Dependency-driven syn-
chronous processing of streaming graphs,’’ in Proc. 14th EuroSys Conf.,
Mar. 2019, pp. 1–16.

[28] M. Fragkoulis, P. Carbone, V. Kalavri, and A. Katsifodimos, ‘‘A survey
on the evolution of stream processing systems,’’ VLDB J., vol. 33, no. 2,
pp. 507–541, Mar. 2024.

[29] G. Cugola and A. Margara, ‘‘Processing flows of information: From data
stream to complex event processing,’’ ACM Comput. Surv., vol. 44, no. 3,
pp. 1–62, 2012.

[30] H. N. Chaudhry, ‘‘FlowGraph: Distributed temporal pattern detection
over dynamically evolving graphs,’’ in Proc. 13th ACM Int. Conf. Distrib.
Event-Based Syst., Jun. 2019, pp. 272–275.

[31] P. Daverio, H. N. Chaudhry, A.Margara, andM. Rossi, ‘‘Temporal pattern
recognition in graph data structures,’’ in Proc. IEEE Int. Conf. Big Data,
Dec. 2021, pp. 2753–2763.

[32] T. A. Ayall, H. Liu, C. Zhou, A. M. Seid, F. B. Gereme, H. N. Abishu,
and Y. H. Yacob, ‘‘Graph computing systems and partitioning
techniques: A survey,’’ IEEE Access, vol. 10, pp. 118523–118550,
2022.

[33] M. V. der Boor, S. C. Borst, J. S. H. Van Leeuwaarden, and D. Mukherjee,
‘‘Scalable load balancing in networked systems: A survey of recent
advances,’’ SIAM Rev., vol. 64, no. 3, pp. 554–622, Aug. 2022.

[34] S. Maneth and F. Peternek, ‘‘A survey on methods and systems for graph
compression,’’ 2015, arXiv:1504.00616.

[35] M. Besta and T. Hoefler, ‘‘Survey and taxonomy of lossless graph
compression and space-efficient graph representations,’’ 2018,
arXiv:1806.01799.

[36] X. Shi, Z. Zheng, Y. Zhou, H. Jin, L. He, B. Liu, and Q.-S. Hua, ‘‘Graph
processing on GPUs: A survey,’’ ACM Comput. Surv., vol. 50, no. 6,
pp. 1–35, Nov. 2018.

[37] M. Armbrust, T. Das, J. Torres, B. Yavuz, S. Zhu, R. Xin, A. Ghodsi,
I. Stoica, and M. Zaharia, ‘‘Structured streaming: A declarative API for
real-time applications in apache spark,’’ in Proc. Int. Conf. Manag. Data,
May 2018, pp. 601–613.

[38] B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine, D. Fisher,
J. C. Platt, J. F. Terwilliger, and J. Wernsing, ‘‘Trill: A high-performance
incremental query processor for diverse analytics,’’ Proc. VLDB Endow-
ment, vol. 8, no. 4, pp. 401–412, Dec. 2014.

[39] H. Miao, H. Park, M. Jeon, G. Pekhimenko, K. S. McKinley, and
F. X. Lin, ‘‘StreamBox: Modern stream processing on a multicore
machine,’’ in Proc. USENIX Annu. Tech. Conf., 2017, pp. 617–629.

[40] P. M. Grulich, B. Sebastian, S. Zeuch, J. Traub, J. V. Bleichert, Z. Chen,
T. Rabl, and V. Markl, ‘‘Grizzly: Efficient stream processing through
adaptive query compilation,’’ in Proc. ACM SIGMOD Int. Conf. Manag.
Data, Jun. 2020, pp. 2487–2503.

[41] G. Theodorakis, A. Koliousis, P. Pietzuch, and H. Pirk, ‘‘LightSaber:
Efficient window aggregation on multi-core processors,’’ in Proc. ACM
SIGMOD Int. Conf. Manag. Data, Jun. 2020, pp. 2505–2521.

[42] T. Neumann, ‘‘Efficiently compiling efficient query plans for modern
hardware,’’ Proc. VLDB Endowment, vol. 4, no. 9, pp. 539–550,
Jun. 2011.

[43] S. Zeuch, B. D. Monte, J. Karimov, C. Lutz, M. Renz, J. Traub,
S. Breß, T. Rabl, and V.Markl, ‘‘Analyzing efficient stream processing on
modern hardware,’’ Proc. VLDB Endowment, vol. 12, no. 5, pp. 516–530,
Jan. 2019.

[44] P. Carbone et al., ‘‘Apache flink: Stream and batch processing in a single
engine,’’ Bull. Tech. Committee Data Eng., vol. 4, p. 38, 2015.

[45] H. Miao, M. Jeon, G. Pekhimenko, K. S. McKinley, and F. X. Lin,
‘‘StreamBox-HBM: Stream analytics on high bandwidth hybrid mem-
ory,’’ in Proc. 24th Int. Conf. Architectural Support Program. Lang.
Operating Syst., Apr. 2019, pp. 167–181.

[46] M. Khan and M. Khan, ‘‘Exploring query optimization techniques in
relational databases,’’ Int. J. Database Theory Appl., vol. 6, no. 3,
pp. 11–20, 2013.

[47] H. Herodotou, N. Borisov, and S. Babu, ‘‘Query optimization techniques
for partitioned tables,’’ in Proc. ACM SIGMOD Int. Conf. Manag. Data,
Jun. 2011, pp. 49–60.

[48] J. Kossmann, T. Papenbrock, and F. Naumann, ‘‘Data dependencies
for query optimization: A survey,’’ VLDB J., vol. 31, no. 1, pp. 1–22,
Jan. 2022.

[49] S. Maesaroh, H. Gunawan, A. Lestari, M. S. A. Tsaurie, and M. Fauji,
‘‘Query optimization in MySQL database using index,’’ Int. J. Cyber IT
Service Manag., vol. 2, no. 2, pp. 104–110, Mar. 2022.

[50] M. Ridani and M. Amnai, ‘‘Query optimization using indexation
techniques in datawarehouse: Survey and use cases,’’ in Proc. Int. Conf.
Artif. Intell. Smart Environ. Cham, Switzerland: Springer, 2023.

[51] P. L. Bajaj, ‘‘A survey on query performance optimization by index
recommendation,’’ Int. J. Comput. Appl., vol. 113, no. 19, pp. 36–40,
Mar. 2015.

[52] D. Li, L. Han, and Y. Ding, ‘‘SQL query optimization methods of
relational database system,’’ in Proc. 2nd Int. Conf. Comput. Eng. Appl.,
vol. 1, Mar. 2010, pp. 557–560.

[53] T. Shioi and K. Hatano, ‘‘Rule- and cost-based optimization of
OLAP workloads on distributed RDBMS with column-oriented storage
function,’’ in Proc. IEEE 4th Int. Conf. Future Internet Things Cloud
Workshops (FiCloudW), Aug. 2016, pp. 165–170.

[54] H. Lan, Z. Bao, and Y. Peng, ‘‘A survey on advancing the DBMS query
optimizer: Cardinality estimation, cost model, and plan enumeration,’’
Data Sci. Eng., vol. 6, no. 1, pp. 86–101, Mar. 2021.

[55] S. Kumar et al., ‘‘Cost-based query optimization with heuristics,’’ Int. J.
Sci. Eng. Res., vol. 2, no. 9, p. 102, 2011.

[56] S. Breß et al., ‘‘A framework for cost based optimization of hybrid
CPU/GPU query plans in database systems,’’ Control Cybern., vol. 41,
no. 4, p. 941, 2012.

[57] C. Forresi, M. Francia, E. Gallinucci, and M. Golfarelli, ‘‘Cost-based
optimization of multistore query plans,’’ Inf. Syst. Frontiers, vol. 25, no. 5,
pp. 1925–1951, Oct. 2023.

[58] V. K.Myalapalli andA. S. N. Chakravarthy, ‘‘Revamping SQL queries for
cost based optimization,’’ in Proc. Int. Conf. Circuits, Controls, Commun.
Comput. (IC), Oct. 2016, pp. 1–6.

[59] D. Khanna et al., ‘‘Performance analysis for select, project and join
operations of Oracle, My-SQL and Microsoft access DBMSS,’’ Int. J.
Comput. Eng. Technol. (IJCET), vol. 1, no. 1, p. 140, 2018.

[60] M. Sharma and G. Singh, ‘‘Analysis of joins and semi-joins in centralized
and distributed database queries,’’ in Proc. Int. Conf. Comput. Sci.,
Sep. 2012, pp. 15–20.

[61] A. K. Z. Al Saedi, R. B. Ghazali, and M. B. M. Deris, ‘‘An efficient multi
join query optimization for DBMS using swarm intelligent approach,’’
in Proc. 4th World Congr. Inf. Commun. Technol. (WICT), Dec. 2014,
pp. 113–117.

[62] S. Sumathi and S. Esakkirajan, ‘‘Transaction processing and query
optimization,’’ in Fundamentals of Relational Database Management
Systems, vol. 2, no. 3, Springer, 2017, pp. 319–352.

[63] Y. Xu and P. Kostamaa, ‘‘Efficient outer join data skew handling in
parallel DBMS,’’ Proc. VLDB Endowment, vol. 2, no. 2, pp. 1390–1396,
Aug. 2009.

[64] G. Mahajan, ‘‘Query optimization in DDBS,’’ Int. J. Comput. Appl. Inf.
Technol. (IJCAIT), vol. 1, no. 1, p. 94, 2012.

[65] J. Duggan, O. Papaemmanouil, L. Battle, and M. Stonebraker, ‘‘Skew-
aware join optimization for array databases,’’ in Proc. ACM SIGMOD
Int. Conf. Manag. Data, May 2015, pp. 123–135.

[66] M. Freitag, M. Bandle, T. Schmidt, A. Kemper, and T. Neumann,
‘‘Adoptingworst-case optimal joins in relational database systems,’’Proc.
VLDB Endowment, vol. 13, no. 12, pp. 1891–1904, Aug. 2020.

[67] C. Lee, C.-H. Ke, J.-B. Chang, and Y.-H. Chen, ‘‘Minimization of
resource consumption for multidatabase query optimization,’’ in Proc.
3rd IFCIS Int. Conf. Cooperat. Inf. Syst., 1998, pp. 241–250.

[68] A. Y. Levy, I. S. Mumick, and Y. Sagiv, ‘‘Query optimization by predicate
move-around,’’ in Proc. VLDB, vol. 94, 1994, pp. 12–15.

[69] C. Yan, Y. Lin, and Y. He, ‘‘Predicate pushdown for data science
pipelines,’’ Proc. ACM Manag. Data, vol. 1, no. 2, pp. 1–28, Jun. 2023.

[70] Y. Yang, M. Youill, M. Woicik, Y. Liu, X. Yu, M. Serafini, A. Aboulnaga,
and M. Stonebraker, ‘‘FlexPushdownDB: Hybrid pushdown and caching
in a cloud DBMS,’’ Proc. VLDB Endowment, vol. 14, no. 11,
pp. 2101–2113, Jul. 2021.

VOLUME 12, 2024 86807



H. N. Chaudhry, M. Rossi: Optimising Queries for Pattern Detection

[71] S. Kandula, L. Orr, and S. Chaudhuri, ‘‘Data-induced predicates for
sideways information passing in query optimizers,’’ VLDB J., vol. 31,
no. 6, pp. 1263–1290, Nov. 2022.

[72] F. Kastrati and G. Moerkotte, ‘‘Optimization of disjunctive predicates for
main memory column stores,’’ in Proc. ACM Int. Conf. Manag. Data,
May 2017, pp. 731–744.

[73] S. Kandula, L. Orr, and S. Chaudhuri, ‘‘Pushing data-induced predicates
through joins in big-data clusters,’’ Proc. VLDB Endowment, vol. 13,
no. 3, pp. 252–265, Nov. 2019.

[74] S. Wu, F. Li, S. Mehrotra, and B. C. Ooi, ‘‘Query optimization for
massively parallel data processing,’’ in Proc. 2nd ACM Symp. Cloud
Comput., Oct. 2011, pp. 1–13.

[75] M. T. Özsu and P. Valduriez, ‘‘Distributed and parallel database systems,’’
ACM Comput. Surv. (CSUR), vol. 28, no. 1, pp. 125–128, 1996.

[76] D. Subramanian and K. Subramanian, ‘‘Query optimization in multi-
database systems,’’ Distrib. Parallel Databases, vol. 6, pp. 183–210,
Apr. 1998.

[77] R. Nehme and N. Bruno, ‘‘Automated partitioning design in parallel
database systems,’’ in Proc. ACM SIGMOD Int. Conf. Manag. Data,
Jun. 2011, pp. 1137–1148.

[78] T. Eavis and A. Taleb, ‘‘Query optimization and execution in a parallel
analytics DBMS,’’ in Proc. IEEE 26th Int. Parallel Distrib. Process.
Symp., May 2012, pp. 897–908.

[79] S. Ganguly, W. Hasan, and R. Krishnamurthy, ‘‘Query optimization for
parallel execution,’’ in Proc. ACM SIGMOD Int. Conf. Manag. Data,
Jun. 1992, pp. 9–18.

[80] J. Unbehauen, C. Stadler, and S. Auer, ‘‘Optimizing SPARQL-to-SQL
rewriting,’’ in Proc. Int. Conf. Inf. Integr. Web-Based Appl. Services,
Dec. 2013, pp. 324–330.

[81] D. Hernández, L. Galárraga, and K. Hose, ‘‘Computing how-provenance
for SPARQL queries via query rewriting,’’ Proc. VLDB Endowment,
vol. 14, no. 13, pp. 3389–3401, Sep. 2021.

[82] G. Correndo, M. Salvadores, I. Millard, H. Glaser, and N. Shadbolt,
‘‘SPARQL query rewriting for implementing data integration over linked
data,’’ in Proc. EDBT/ICDT Workshops, Mar. 2010, pp. 1–11.

[83] X. Jian, Y. Wang, X. Lei, L. Zheng, and L. Chen, ‘‘SPARQL rewriting:
Towards desired results,’’ in Proc. ACM SIGMOD Int. Conf. Manag.
Data, Jun. 2020, pp. 1979–1993.

[84] W. Le, A. Kementsietsidis, S. Duan, and F. Li, ‘‘Scalable multi-query
optimization for SPARQL,’’ in Proc. IEEE 28th Int. Conf. Data Eng.,
Apr. 2012, pp. 666–677.

[85] S.Magliacane, A. Bozzon, and E. Della Valle, ‘‘Efficient execution of top-
k SPARQL queries,’’ in Proc. Int. Semantic Web Conf. Berlin, Germany:
Springer, 2012.

[86] D. Ibragimov, K. Hose, T. B. Pedersen, and E. Zimányi, ‘‘Optimizing
aggregate SPARQL queries usingmaterialized RDF views,’’ inProc. 15th
Int. Semantic Web Conf. (ISWC). Kobe, Japan: Springer, Oct. 2016.

[87] G. Troullinou, H. Kondylakis, M. Lissandrini, and D. Mottin, ‘‘SOFOS:
Demonstrating the challenges of materialized view selection on knowl-
edge graphs,’’ inProc. Int. Conf. Manag. Data, Jun. 2021, pp. 2789–2793.

[88] M. Schmidt, M. Meier, and G. Lausen, ‘‘Foundations of SPARQL query
optimization,’’ in Proc. 13th Int. Conf. Database Theory, Mar. 2010,
pp. 4–33.

[89] F. Rahimian, A. H. Payberah, S. Girdzijauskas, M. Jelasity, and S. Haridi,
‘‘A distributed algorithm for large-scale graph partitioning,’’ ACM Trans.
Auto. Adapt. Syst., vol. 10, no. 2, pp. 1–24, Jun. 2015.

[90] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz, Recent
Advances in Graph Partitioning. Berlin, Germany: Springer, 2016.

[91] H. W. Y. Adoni, T. Nahhal, M. Krichen, B. Aghezzaf, and A. Elbyed,
‘‘A survey of current challenges in partitioning and processing of graph-
structured data in parallel and distributed systems,’’ Distrib. Parallel
Databases, vol. 38, no. 2, pp. 495–530, Jun. 2020.

[92] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and
P. Kalnis, ‘‘Mizan: A system for dynamic load balancing in large-scale
graph processing,’’ in Proc. 8th ACMEur. Conf. Comput. Syst., Apr. 2013,
pp. 169–182.

[93] D. Yan, J. Cheng, Y. Lu, and W. Ng, ‘‘Effective techniques for message
reduction and load balancing in distributed graph computation,’’ in Proc.
24th Int. Conf. World Wide Web, May 2015, pp. 1307–1317.

[94] J. Sun, H. Vandierendonck, and D. S. Nikolopoulos, ‘‘GraphGrind:
Addressing load imbalance of graph partitioning,’’ in Proc. Int. Conf.
Supercomputing, Jun. 2017, pp. 1–10.

[95] Z. Lin, C. Li, Y. Miao, Y. Liu, and Y. Xu, ‘‘PaGraph: Scaling GNN
training on large graphs via computation-aware caching,’’ in Proc. 11th
ACM Symp. Cloud Comput., Oct. 2020, pp. 401–415.

[96] Y. Zhang, V. Kiriansky, C. Mendis, S. Amarasinghe, and M. Zaharia,
‘‘Making caches work for graph analytics,’’ in Proc. IEEE Int. Conf. Big
Data, Dec. 2017, pp. 293–302.

[97] M. Then, M. Kaufmann, F. Chirigati, T.-A. Hoang-Vu, K. Pham,
A. Kemper, T. Neumann, and H. T. Vo, ‘‘The more the merrier: Efficient
multi-source graph traversal,’’ Proc. VLDB Endowment, vol. 8, no. 4,
pp. 449–460, Dec. 2014.

[98] H. Cao, Y.Wang, H.Wang, H. Lin, Z. Ma,W. Yin, andW. Chen, ‘‘Scaling
graph traversal to 281 trillion edges with 40 million cores,’’ in Proc.
27th ACM SIGPLAN Symp. Princ. Pract. Parallel Program., Apr. 2022,
pp. 234–245.

[99] F. Checconi and F. Petrini, ‘‘Traversing trillions of edges in real time:
Graph exploration on large-scale parallel machines,’’ in Proc. IEEE 28th
Int. Parallel Distrib. Process. Symp., May 2014, pp. 425–434.

[100] O. Batarfi, R. E. Shawi, A. G. Fayoumi, R. Nouri, S.-M.-R. Beheshti,
A. Barnawi, and S. Sakr, ‘‘Large scale graph processing systems: Survey
and an experimental evaluation,’’ Cluster Comput., vol. 18, no. 3,
pp. 1189–1213, Sep. 2015.

[101] H. N. Chaudhry. (2022). Flowgraph Distributed Engine. [Online].
Available: https://github.com/HassanNazeerChaudhry/flowgraphnew

[102] H. N. Chaudhry. (2023). Flowgraph Optimizer. [Online]. Available:
https://github.com/HassanNazeerChaudhry/FlowGraphOptimizer

HASSAN NAZEER CHAUDHRY received the
B.Sc. degree in computer engineering and the
M.Sc. degree in electrical and ICE from the Uni-
versity Engineering and Technology at Taxila,
Pakistan, in 2006 and 2009, respectively, and the
M.Sc. degree in electrical and ICE from Tech-
nische Universität Darmstadt, Germany, in 2015.
He is currently pursuing the Ph.D. degree with
Politecnico diMilano, Italy. Before this, heworked
at several international companies, including the

Center of Excellence for ASIC Design and DSP, UET Taxila, Pakistan,
Siemens, Germany, MIMOOn GmbH, Germany, Fiat, Italy, Basic Net, Italy,
Algo Systems S.a.S., Italy. His current topic of research is large-scale graph
processing.

MATTEO ROSSI is currently an Associate Pro-
fessor with Politecnico di Milano. His research
interests include formal methods for safety-critical
and real-time systems, architectures for real-time
distributed systems, and transportation systems
both from their design and application in urban
mobility scenarios.

Open Access funding provided by ‘Politecnico di Milano’ within the CRUI CARE Agreement

86808 VOLUME 12, 2024


