
Profiling vs Static Analysis: The Impact on Precision Tuning
Lev Denisov

Politecnico di Milano
Milan, Italy

lev.denisov@polimi.it

Gabriele Magnani
Politecnico di Milano

Milan, Italy
gabriele.magnani@polimi.it

Daniele Cattaneo
Politecnico di Milano

Milan, Italy
daniele.cattaneo@polimi.it

Giovanni Agosta
Politecnico di Milano

Milan, Italy
giovanni.agosta@polimi.it

Stefano Cherubin
NTNU

Trondheim, Norway
stefano.cherubin@ntnu.no

ABSTRACT
In this study, we compare two different approaches to precision
tuning — worst-case static annotation, and profile-guided annotation.
We propose and implement a profile-guided approach in an existing
precision tuning tool TAFFO. In comparison to the static approach
used by the tool before, the profile-guided approach reaches up
to 4 orders of magnitude lower error while providing comparable
speedup and requiring less expertise from the programmer, tested on
benchmarks of the PolyBench/C suite.

CCS CONCEPTS
• Software and its engineering → Software design tradeoffs; Soft-
ware performance; Compilers; • Computer systems organization
→ Embedded software.

KEYWORDS
Precision tuning, compiler, performance evaluation, embedded sys-
tems, approximate computing

ACM Reference Format:
Lev Denisov, Gabriele Magnani, Daniele Cattaneo, Giovanni Agosta, and Ste-
fano Cherubin. 2024. Profiling vs Static Analysis: The Impact on Precision
Tuning. In The 39th ACM/SIGAPP Symposium on Applied Computing (SAC
’24), April 8–12, 2024, Avila, Spain. ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3605098.3636080

1 INTRODUCTION
Approximate computing is an umbrella term for the techniques that
trade off accuracy for time-to-solution, energy-to-solution, or hard-
ware complexity of compute-intensive applications. Precision tun-
ing is an approximate computing technique notable for its wide
applicability. This technique reduces the precision of the individ-
ual operations on real numbers in a given kernel, for instance from
floating-point to fixed-point.

The conversion can be done manually, but it is an error-prone and
tedious process that requires expertise and time. Alternatively, there
exist tools that perform automated precision tuning. These tools

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SAC ’24, April 8–12, 2024, Avila, Spain
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0243-3/24/04.
https://doi.org/10.1145/3605098.3636080

typically use a profile-guided or static analysis to derive the code
properties. In profile-guided analysis, the application code is instru-
mented and run on sample input data to collect information about the
error propagation. The static analysis instead requires annotations
and employs techniques such as dataflow analysis and symbolic
execution to gather equivalent error propagation information.

While there are tools leveraging each approach [2], a comparison
is hard to strike because different tools also entail differences in other
steps of the precision tuning pipeline. It is an open question whether
profile-guided or static analysis is more effective, and in which
cases. The static analysis approach is intrinsically pessimistic, often
producing results that are too conservative to be considered helpful
for precision tuning. It also requires annotations, complicating the
process. The quality of the profile-guided approach is dependent
on the representativeness of the training data, but it also needs less
effort from the programmer. In this paper, we address this question by
comparing them within the same tool on the same set of benchmarks.

We chose as the starting point a state-of-the-art open-source preci-
sion tuning framework TAFFO [1], as it takes as input the intermediate
representation of the industry-standard LLVM compiler framework
(LLVM-IR), which ensures a degree of source language indepen-
dence, as well as a wide applicability of the tool. We compare the
two approaches on the full set of PolyBench/C benchmarks [3].

The contributions of this study: 1) we quantify the difference
between static and profile-guided analysis for precision tuning in
terms of error and speedup, 2) we provide a new profile-guided
precision tuning tool that leverages the capabilities of the existing
TAFFO framework.

2 PROFILE-GUIDED ANALYSIS
A crucial step of a precision-tuning process is the value range analy-
sis, which characterizes the dynamic ranges of the program, and de-
fines the possible level of their approximation. We propose a profile-
guided value range analysis based on the instrumentation of the
compiler intermediate representation code (LLVM-IR). The LLVM-IR

file is first prepared by assigning unique names to all floating-point
LLVM-IR registers and these names are saved into global constants.
The logging function is also inserted into the LLVM-IR file. This
function accepts the name of the register and its value. It performs
either logging directly into a file or updates an in-memory structure
that contains minimum and maximum values for the register name,
and this structure is flushed into the log file later. After that the calls
to the logging function are inserted for every floating-point register,
passing the global constant with the register’s name and the value of

446

https://orcid.org/0000-0003-3540-4235
https://orcid.org/0000-0001-9729-5826
https://orcid.org/0000-0003-1453-3257
https://orcid.org/0000-0002-0255-4475
https://orcid.org/0000-0002-5579-5942
https://doi.org/10.1145/3605098.3636080
https://doi.org/10.1145/3605098.3636080
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3605098.3636080&domain=pdf&date_stamp=2024-05-21


SAC ’24, April 8–12, 2024, Avila, Spain L. Denisov et al.

the register. The instrumented code is then compiled into a binary.
The user can run the binary with one or more datasets, collecting
the logged values in trace files, which are then used in the precision
tuning process. The code changes done by the instrumentation are
illustrated in listing 1 (original) and listing 2 (instrumented), the
changes are highlighted in red.

Listing 1: Original LLVM-IR code
1 ...

2 %var1 = fmul float %9, %12

3 %var2 = fadd float %10, %14

4 ...

Listing 2: Instrumented LLVM-IR code
1 @var1_name = constant "uniq1"

2 @var2_name = constant "uniq2"

3 define void @log_value(%name, %value) {...}

4 ...

5 %uniq1 = fmul float %9, %12

6 call @log_value(@var1_name, %uniq1)

7 %uniq2 = fadd float %10, %14

8 call @log_value(@var2_name, %uniq2)

9 ...

The process of mapping the dynamic ranges from the trace file
back into the original program consists of a few steps. First, a depen-
dency graph representing memory operations is built by analyzing
the LLVM-IR of the program. Initially, the graph is seeded with one
node for each instruction that allocates a buffer in memory (alloca,
malloc, etc.). Then, all the uses of each buffer that do not change its
value (load, store, usage as an argument to a function call, pointer
operations, etc.) are added to the graph as new nodes, connected
with an arc to the node that allocated the buffer. An example of such
a cluster can be found in Listing 3.

Listing 3: A cluster of memory operations with the same range
1 %DY = alloca float

2 %"a::var123" = load float, float* %DY

3 store float %"a::var109", float* %DY

4 %DY2 = bitcast float* %DY to i8*
5 %"a::var109" = fdiv float 1.000000e+00, %"a::var108"

At the end of this process, each connected component (or node
cluster) in the graph determines a set of virtual registers that shall
share the same range. After building the node clusters, the trace
files are parsed and the minimum and maximum values witnessed
during execution are extracted for every register in the trace file. If a
register belongs to a node cluster, these values are shared with all
other registers in the cluster. At this point, the pass writes the just
computed ranges into the LLVM-IR. If the user passes more than one
trace file, the ranges are computed over all files combined. After that,
any kind of data-type allocation and optimization strategies can be
applied, regardless of the dynamic-range analysis employed before.

3 EXPERIMENTAL EVALUATION
In this section, we discuss the implementation of the profile-guided
analysis in a state-of-the-art precision-tuning tool TAFFO and com-
pare the profile-guided precision tuning with the static approach on
the PolyBench/C benchmark suite.

3.1 Profile-guided TAFFO
Figure 1 illustrates the normal compilation flow and the compilation
flows for TAFFO in static and profile-guided modes.

Source code

clang front-end

normal compilationLLVM IR

profile-guided

Instrumentation

Instrumented binary

Run instrumented

Profiling data

Profiled annotation

Target-independent opt

Target-dependent opt

Back-end

ASM
static

INIT
VRA

DTA
CONV

FE

Figure 1: TAFFO compilation in static and profile-guided modes

The normal compilation flow follows the standard set of transfor-
mations by the compiler front-end, middleware and back-end, from
the source code, through LLVM-IR, ending in assembly code.

The static mode in TAFFO is implemented as five LLVM analy-
ses and transformation passes that happen right after the compiler
front-end has produced the LLVM-IR (figure 1, static), namely: Ini-
tializer (INIT) reads the annotations and determines the amount of
code affected by the tuning, Value Range Analysis (VRA) computes
numerical intervals for all annotated variables and any other vari-
ables that depend on them, Data Type Allocation (DTA) decides the
new data type for each intermediate value and variable, Conversion
(CONV) modifies the LLVM-IR accordingly to the data type picked
by DTA, Feedback Estimator (FE) statically estimates the error. For
more details we refer the reader to Cattaneo et al. [1].

To implement profile-guided analysis we replace the static anal-
ysis passes of TAFFO (INIT and VRA) with the set of analysis steps
implementing the methodology described in section 2 (figure 1,
profile-guided). Instrumentation introduces the logging operations
into LLVM-IR, which, in turn, is compiled into the Instrumented
binary. Run instrumented step involves running the Instrumented
binary with one or more datasets to collect Profiling data. Profiled
annotation step applies the ranges from Profiling data into the origi-
nal program. Then DTA, CONV, and FE stages of TAFFO are applied
and the compilation resumes normally.

3.2 Experimental Setup
We evaluate Profile-guided TAFFO on the STM32L010 microcon-
troller with Arm Cortex-M0+ CPU (32 MHz), 128 Kbytes of Flash
memory and 20 Kbytes of SRAM. Since this device lacks hard-
ware support for floating-point, we use software implementation
of floating-point operations with the -msoft-float compilation flag.
The target is the PolyBench/C benchmark suite [3] version 4.2.1,
featuring computational kernels from domains such as physics sim-
ulation, linear algebra, image processing, statistics, and dynamic
programming. Due to the low amount of RAM available on the
microcontroller, PolyBench was configured with the dataset size
MINI_DATASET. We profile the benchmarks with the original datasets
and then apply random noise to the dataset with amplitude up to
±100% of the original values for the evaluation.

447



Profiling vs Static Analysis: The Impact on Precision Tuning SAC ’24, April 8–12, 2024, Avila, Spain

10 6 10 4 10 2 100

mean relative error

trmm
syrk

syr2k
symm

seidel-2d
mvt

ludcmp
lu

jacobi-2d
jacobi-1d

heat-3d
gramschmidt

gesummv
gemver

gemm
fdtd-2d
durbin

doitgen
deriche

covariance
correlation

cholesky
bicg
atax

adi
3mm
2mm

static
profile-guided

Figure 2: Mean relative error of static and Profile-guided TAFFO

0 2 4 6 8 10
speedup

trmm
syrk

syr2k
symm

seidel-2d
mvt

ludcmp
lu

jacobi-2d
jacobi-1d

heat-3d
gramschmidt

gesummv
gemver

gemm
fdtd-2d
durbin

doitgen
deriche

covariance
correlation

cholesky
bicg
atax

adi
3mm
2mm

static
profile-guided

Figure 3: Speedup of static and Profile-guided TAFFO

3.3 Experimental Results
Figure 2 shows the mean relative error for the profile-guided and the
static approaches. For both static and Profile-guided TAFFO the mean
relative error is below 1% (10−2) for the majority of the benchmarks.
It can be also observed that Profile-guided TAFFO has lower or
equal error than static in 24 out of 27 benchmarks. Moreover, in
13 out of 27 benchmarks the difference in error between static and
Profile-guided TAFFO is an order of magnitude or higher. This can be
explained by Profile-guided TAFFO achieving tighter ranges, leading
to more bits being assigned to the fractional part, making it more
accurate. In heat-3d the error is 0 for both approaches because
this benchmark is very amenable to conversion into fixed-point
arithmetic. Both static and Profile-guided TAFFO have a significant
error in gramschmidt benchmark as it implements a numerically
unstable algorithm that is not a good target for precision tuning
optimization. Overall, Profile-guided TAFFO achieves much higher
accuracy than static TAFFO: in more than 80% of benchmarks the
error for Profile-guided TAFFO is less than 10−6, while static TAFFO

is below this threshold in only 40% of benchmarks.
Figure 3 shows the speedups relative to the unmodified float

version. It can be seen that in 24 out of 27 benchmarks Profile-guided
TAFFO achieves the same speedup as static TAFFO. In most cases, the
speedup is in the range of 2-3×, with the occasional 5-10× speedup.
There are 3 benchmarks where speedup obtained with Profile-guided
TAFFO is significantly better than with static TAFFO: deriche, heat-
3d, and seidel-2d. All of these cases can be explained by the static
approach producing overly pessimistic ranges for the intermediate
results, leading to significant parts of the program using conversions
between the fixed-point and floating-point formats, leading to a
smaller speedup or even a slowdown.

4 CONCLUSION
In this work, we explored the choice between static and profile-
guided analysis in the construction of automated precision tuning
tools. The experimental analysis shows that static and profile-guided
analyses lead to similar performance impacts, but profile-guided
analysis can significantly reduce the accuracy degradation.

ACKNOWLEDGMENTS
The authors gratefully acknowledge funding from European Union’s
Horizon 2020 Research and Innovation programme under the Marie
Skłodowska Curie grant agreement No. 956090 (APROPOS: Ap-
proximate Computing for Power and Energy Optimisation, http:
//www.apropos.eu/).

REFERENCES
[1] Daniele Cattaneo et al. 2021. Architecture-aware Precision Tuning with Multiple

Number Representation Systems. In 2021 58th ACM/IEEE Design Automation
Conference (DAC). 673–678. https://doi.org/10.1109/DAC18074.2021.9586303

[2] Stefano Cherubin and Giovanni Agosta. 2020. Tools for Reduced Precision
Computation: a Survey. Comput. Surveys 53, 2 (Apr 2020), 35 pages. https:
//doi.org/10.1145/3381039

[3] Louis-Noël Pouchet et al. 2012. Polybench: The polyhedral benchmark suite. URL:
http://www. cs. ucla. edu/pouchet/software/polybench 437 (2012), 1–1.

448

http://www.apropos.eu/
http://www.apropos.eu/
https://doi.org/10.1109/DAC18074.2021.9586303
https://doi.org/10.1145/3381039
https://doi.org/10.1145/3381039

	MAIN MENU
	Search
	Print
	View Full Page
	View Page Width
	Author Index
	Table of Contents

