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Abstract 

The positioning problem is interesting in a variety of applications, especially in indoor 
environments or in urban canyons, where the position information obtainable 
with traditional Global Navigation Satellite Systems is limited. In this paper, we deal 
with the problem of estimating, for the purposes of positioning, the time of arrival 
(TOA) and the angle of arrival (AOA) by processing LTE 3GPP signals, with particular 
attention to the uplink signals. The main contribution of this paper is the definition 
of new opportunistic methods to estimate the TOA and the AOA using the upstream 
demodulation reference signal (DM-RS) instead of the Sounding Reference Signal. 
We will show that the use of DM-RS and of estimation algorithms such as the Space-
Alternating Generalized Expectation-Maximization and the Iterative Adaptive 
Approach for Amplitude and Phase estimation (IAA-APES) allows an efficient estimate 
of the parameters, in spite of the small, occupied bandwidth.

Keywords:  LTE, Time difference of arrival, Ranging measure, Opportunistic positioning, 
Uplink DM-RS, SAGE algorithm

1  Introduction
Nowadays, positioning and navigation technologies are commonly used in a large vari-
ety of contexts [1–5]. The most popular applications are in the transportation field, 
where positioning systems are used to guide the users. In the majority of the positioning 
applications, the localization task is performed by Global Navigation Satellite Systems 
(GNSSs), which are typically very precise. However, in some scenarios, the GNSSs may 
not work effectively [6], for instance in urban canyons and indoor environments. GNSSs 
also suffer from other issues, such as the vulnerability to jamming and spoofing.

One alternative to GNSS is offered by the exploitation of wireless terrestrial signals 
and networks, which provide good coverage. In this context, localization by means 
of the cellular system looks a promising approach, also considering that 5 G technol-
ogy will require the deployment of a large number of micro/pico-cells. For instance, 
the exploitation of 5 G downlink wireless terrestrial signals for localization purposes 
(using both time and angular information, as in the present contribution) has been 
addressed in [7, 8], and some comparisons between uplink and downlink localization 
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schemes can be found in [9, 10]. Addressing the positioning problem using Third 
Generation Partnership Project (3GPP) and Long Term Evolution (LTE) downlink 
signals has become increasingly relevant for research and industrial applications, also 
in view of possible solutions included in future standards.

The 3GPP LTE protocol introduced the support for positioning, and indeed, 4  G 
LTE can provide good coverage in those scenarios where the GNSS fails. The network 
usually measures the Time of Arrival (TOA), the Time Difference of Arrival (TDOA), 
the Received Signal-Strength (RSS), or the Angle of Arrival (AOA) [2]. These meas-
urements are used to perform positioning, using techniques like Enhanced Cell 
Identity (E-CID), Assisted GNSS (A-GNSS), Observed Time Difference of Arrival 
(OTDOA) and Uplink Time Difference of Arrival (UTDOA) [2]. 3GPP introduces 
two stand-alone network-based TDOA measures, i.e., OTDOA and UTDOA, which 
exploit downlink and uplink transmissions, respectively. In OTDOA, the User Equip-
ment (UE) measures the TDOA of neighbour eNodeBs with respect to a reference 
eNodeB, exploiting the Positioning Reference Signal (PRS). Meanwhile, in UTDOA, 
the UE uplink Sounding Reference Signals (SRSs) are measured at some eNodeBs 
or at some Location Measurement Units (LMUs), these being standalone units inte-
grated in the eNodeBs or, alternatively, located in some known strategic locations.

The reference system, which we also consider in this paper, is shown in Fig. 1. The 
LMUs, normally synchronized together, and in known locations, measure the TOA 
and AOA of the uplink signals from the user equipment and pass the measurements 
to a central server for processing. The positioning engine combines the noisy meas-
urements of the distances between the UE and the LMUs, i.e., their pseudoranges, to 
perform localization using optimized trilateration techniques. The LMUs are princi-
pally active as receivers, so are relatively easy to deploy, providing good flexibility. In 
particular, it is possible to deploy units with a vertical distribution, for example, on 
different floors in a building. If the uplink signal can then be received by at least four 
LMUs distributed vertically and horizontally, then the 3D location and local time of 
the UE can be estimated. In [11], a system is described that avoids explicit synchro-
nization of the LMUs, by using the information of an additional transmitting unit in 
known position. In general, LTE uplink signals have generated little attention in the 
positioning research, and the support for uplink positioning was introduced only in 
the latest versions of the LTE standard.

LMU
Base Station LMU

LMU

LMU

UE
Fig. 1  Positioning with cellular uplink signals
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Note that the opportunistic use of uplink signals can be particularly interesting for 
any application where LMUs receive signals of many different UEs, such as in vehicu-
lar applications where each vehicle is interested in its position relative to the others.

In this paper, we focus on the problem of estimating, for positioning purposes, the 
time of arrival (TOA) and the angle of arrival (AOA) of 3GPP LTE signals, with a 
focus on uplink signals. The main contribution of this paper is to define new oppor-
tunistic methods to estimate the TOA and AOA using the uplink demodulation refer-
ence signal (DM-RS) instead of the SRS.

In practice, the transmission of the SRS by the eNodeB occurs at the discretion of 
the network operator, which may request its transmission in order to gather extra 
information on the uplink propagation environment. So it can be that it is only rarely 
transmitted, or indeed not transmitted at all. The advantage of using the DM-RS is 
that the UE itself triggers the sending of the signal and decides when to do the uplink 
transmission, possibly in a collaborative scenario with other UEs. In this case, we dis-
engage from how the eNodeB is managed.

Moreover, transmitting SRS (or PSR) signals at a more frequent rate, as desirable for 
positioning, would use channel resources, decreasing the capacity available for carry-
ing traffic. In contrast, frequent transmission of the DM-RS is an intrinsic part of the 
data communications system, and so is always available. In this way, we do not rely 
on any particular actions or processing by the network operator and infrastructure, 
and we opportunistically use signals that happen to be transmitted, even if they are 
designed for other purposes.

However, for the uplink case, a possible drawback of DM-RS, is that it typically 
occupies, in each transmission, a smaller bandwidth than the SRS, potentially making 
the estimation less precise. Our purpose is to investigate the approach of measuring 
the uplink DM-RS signal and its feasibility for the positioning problem. In particular, 
we show that its use, together with algorithms such as the Space-Alternating General-
ized Expectation-Maximization (SAGE) [12–15] and the Iterative Adaptive Approach 
for Amplitude and Phase estimation (IAA–APES) [16], can provide sufficiently pre-
cise estimates of TOA and AOA. We also propose an initialization method for SAGE, 
which is relevant for the considered case of a small bandwidth occupation. With mul-
tiple antenna receivers, we also show that AOA estimates are not significantly affected 
by the signal bandwidth, and we compare the performance of IAA–APES with that 
obtained with SAGE and joint AOA, TOA estimation. Some preliminary results of 
our research, including some promising experiments in real-world scenarios, are 
reported in [17–19].

In this paper, Sect. 2.1 briefly present the model of the uplink DM-RS. Section 2.2 
and 2.3 review the basics of the SAGE algorithm and the IAA–APES algorithms, 
respectively. Section 3.1 focuses on single antenna receivers and on the uplink Time 
of Arrival (ToA) measurement of the uplink DM-RS signals, showing simulations 
and experimental results using the proposed SAGE and IAA–APES algorithms. In 
Sect.  3.2, we consider multiple antennas receivers and AOA estimation with IAA–
APES and SAGE, with joint AOA and TOA estimation with SAGE. We compare sim-
ulation results in order to show the performance of the proposed approaches. Finally, 
the conclusions follow.
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2 � Methods
2.1 � The LTE uplink reference signals for positioning

In the LTE protocol, some Reference Signals (RSs) are transmitted during downlink and 
uplink transmission. These signals are known in advance at the receiver and generally 
are used for coherent demodulation, channel estimation, determination of some indica-
tor of the status of the network, and resource allocation in case of multiple users con-
nected to the same eNodeB. Thus, the estimation of the k-th frequency sample of the 
channel frequency response (CFR) can be obtained as1

where Sk is the known reference complex signal or data value assigned to the k-th sub-
carrier, and Rk is the received signal value affected by noise Wk . The CFR samples are the 
input to the SAGE and IAA–APES algorithms, which we will describe later. These algo-
rithms exploit the CFR bins in order to estimate parameters like the TOA and the AOA 
of the received signal.

2.1.1 � Uplink reference signals

As mentioned in Sect. 1, in LTE uplink, there are two types of RSs, the DM-RS and the 
SRS [20–22]. The DM-RS is designed for coherent demodulation of the data and for 
channel estimation. In this work, we show that even if the DM-RS is not designed for 
positioning, it is possible to exploit it opportunistically for this purpose.

In the frequency domain, the DM-RS occupies the same subcarriers used by data or 
by control data transmission, and in time, it is located in some SC-FDMA symbols. The 
SRS occupies the last SC-FDMA symbol in the subframe, but usually the SRS occupies 
different subcarriers with respect to the ones assigned to data transmission, and in gen-
eral, the number of occupied subcarriers is larger. As mentioned, it is possible that the 
SRS is sent rarely or never transmitted. This was actually observed in our experience. We 
therefore propose the use of DM-RS instead of SRS for uplink AOA and TOA measure-
ments. Moreover, one benefit is that each time there is some data (or control) transmis-
sion, there is an opportunity to make a measurement, since DM-RS is transmitted, too. 
The possible drawback of using the DM-RS is that it occupies only the portion of the 
bandwidth reserved for data (or control) transmission, while in some configurations, the 
SRS can occupy the whole bandwidth. This leads to a higher estimation variance when 
the DM-RS is used.

In general, the uplink RSs include particular reference sequences, which are allocated 
to some Resource Blocks (RBs). If the RBs allocated for the RS transmission are less than 
or equal to two, the RS is based on special QPSK sequences. If three or more RB are 
allocated, the RS sequence is based on a Zadoff-Chu (ZC) sequence. Uplink reference 
sequences are described in more detail in [20, 22, 23].

(1)Ĥk =
Rk

Sk
= Hk +

Wk

Sk
,

1  It is assumed the use of OFDM with sufficiently long cyclic prefix.
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2.2 � Joint parameters estimation with SAGE

2.2.1 � Problem statement

We are typically interested in the joint estimation of the TOA and the AOA, since these 
are essential to provide information to the actual positioning engine. We consider a gen-
eral propagation scenario, with a transmitter equipped with a single antenna and a receiver 
with an antenna array composed of M antenna elements. This type of channel is referred to 
as a single-input multiple-output (SIMO) channel, and the antenna array steering vector is 
described as a(φ) ∈ C

M , where φ is the azimuth angle. In the special case of a single omni-
directional antenna receiver, the channel will be referred to as a single-input single-output 
(SISO) channel. In this case, M = 1 and a(φ) = 1, ∀φ since we are considering the uplink, 
a SISO and SIMO set-up are more common and relevant. In fact, in most cases, the ter-
minals will not be equipped with multiple antennas but more likely with a single isotropic 
antenna. In addition, in our approach, the idea is to opportunistically estimate at the LMUs 
the parameters of interest of the signals transmitted by the terminals, without adding extra 
complexity at the terminals themselves.

Let us assume that the M antenna array elements are located at positions 
p1, . . . ,pM , pi ∈ R

2 , with respect to an arbitrary origin.
Assuming that the channel presents a finite number of multipath components L, it is pos-

sible to describe the received baseband signal, in vector notation, as

where θ = [θ1, . . . , θL]
T represents the channel parameter vector of the L paths, with 

θ l = [Re{αl}, Im{αl}, τl , νl ,φl] . Note that, in the considered scenario, delays τl can be 
identified with the reception timestamps collected by the LMU anchor nodes, accord-
ing to their local clocks. Using the technique described, for instance, in [11], actual 
delays can be computed by the positioning engine during the data processing stage, also 
without requiring synchronization of the LMUs. This is done by taking into account the 
intrinsic redundancy of multiple reception of the same packet by the different anchor 
nodes, and by exploiting the information provided by a transmitting unit. In the follow-
ing, we will therefore focus on the problem of accurate arrival time estimation within 
each transmission slot. Considering the l-th incident wave, the signal is indeed char-
acterized by the complex amplitude αl , the delay τl , the incident angle φl , while νl rep-
resents the frequency shift, which takes into account the Doppler frequency and the 
frequency offset between the transmitter and the receiver. Considering the l-th path, 
the steering vector is a(φl) = [a1(φl), . . . , aM(φl)]

T and its components depend on the 
antenna array geometry. Assuming a uniform linear array (ULA) the steering vector 
a(φl) has elements

(2)

y(t, θ) = [y1(t, θ), . . . , yM(t, θ)]T

=

L

l=1

αl s(t − τl)e
j2πνl ta(φl).

(3)a(φl)i = exp

(
j2π

(i − 1)d

�
sin φl

)
, i = 1, . . . ,M,
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where d is the distance between the antenna elements and � is the wavelength. Based on 
this model, the corresponding channel impulse response (CIR) and CFR are respectively 
given by

Let us assume that the CFR is observed through Nsc samples in frequency domain, at 
frequencies fk separated by �f  (e.g., each sample can represent the channel estimate 
obtained at different subcarriers from an LTE reference signal). Different Nt CFR snap-
shots are then estimated at each tn , separated by �t (e.g., each CFR can be estimated 
in each LTE slot exploiting different RSs). Thus, the m-th antenna element of the array 
detects the channel sample

At the receiver, NtNscM complex valued observations are available, i.e.,

We will refer to the complete set of channel observations as Ĥ(t; f ) , which are the sum 
of the true channel samples plus complex Gaussian noise n(t; f ) , with σ 2 = N0/2 vari-
ance per dimension. It is possible to write

where the noise samples are assumed independent and identically distributed (i.i.d.) 
for each tn ∈ t and fk ∈ f  . Now the problem to solve is the estimation of the unknown 
channel parameter vector γ =

[
σ 2; θ

]
∈ C

5 L+1 starting from the channel observations 
Ĥ(t; f ) . Under the Gaussian additive noise assumption, the final ML channel parameter 
estimate becomes

(4)h(t; τ ; θ) =

L∑

l=1

αlδ(τ − τl)e
j2πνl ta(φl)

(5)H
(
t; f ; θ

)
=

L∑

l=1

αle
j2π(νl t−f τl)a(φl)

(6)Ĥm

(
tn; fk

)
=

L∑

l=1

αle
j2π(νl tn−fkτl) · am(φl)+ n(tn; fk).

(7)
Ĥ
�
tn; fk

�
=




Ĥ1

�
tn; fk

�

...

ĤM

�
tn; fk

�



 ∈ C
M ,

n = 1, . . . ,Nt; k = 1, . . . ,Nsc.

(8)Ĥ(t; f ) = H(t; f ; θ)+ n(t; f ),

(9)θ̂ML = arg min
θ

Nt∑

n=1

Nsc∑

k=1

�Ĥ
(
tn, fk

)
−H

(
tn; fk; θ

)
�2,

(10)σ̂ 2
ML =

1

2NtNscM

Nt∑

n=1

Nsc∑

k=1

�Ĥ
(
tn, fk

)
−H

(
tn; fk; θML

)
�2.
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It is important to point out that the estimation of θ̂ML , from which we derive the time 
delays for positioning purposes, is a very complex problem because it is a 5L−dimen-
sional minimization problem, considering the estimation of complex amplitude (real and 
imaginary part), delay, incident angle, and doppler frequency shift. In order to decrease 
the complexity of the problem, the SAGE algorithm [12–15] can be used to evaluate the 
ML estimation of θ̂ML . The SAGE algorithm breaks the 5L minimization problem into a 
sequence of 5L iterative mono dimensional problems [12–15].

2.2.2 � The SAGE algorithm

Determining the number of multipath components L is not completely straightfor-
ward, as we will briefly discuss in Sect.  2.2.4. We assume in the following that L is 
known. Starting from the channel observations Ĥ(t; f ) , one can isolate the l-th term 
relating to the l-th path. This term can be calculated by canceling the interference 
caused by the other paths. Thus, having one previous estimate of the channel param-
eter vector θ̂ ′ , the term relating to the l-th path can be isolated as

After isolating the CFR relative to the single path l, its channel parameter vector θ l can 
be estimated by solving Eq. (9) for a single path, namely

Now the 5L dimensional maximization problem of Eq. (9) has been turned into L five-
dimensional minimization problems. The value αl can be determined in closed form 
assuming that the values τl , νl and φl , are known. Indeed, we have

It is possible to arrange the values Ĥl

(
tn; fk

)
 and ei2π(νl tn−fkτl)a(φl) in the complex vec-

tors H l and W l , respectively, so that the minimization problem can be written as

It is well known that the vector αlW l minimizing (14), is the orthogonal projection U l of 
H l onto W l/‖W l‖ , namely

The inner product can be written as

(11)Ĥl

(
tn; fk

)
= Ĥ

(
tn, fk

)
−

L∑

l′=1,l′ �=l

H
(
tn; fk; θ̂

′
l′

)
.

(12)θ̂ l,ML = arg min
θ l

{
Nt∑

n=1

Nsc∑

k=1

�Ĥl

(
tn; fk

)
−H

(
tn; fk; θ l

)
�2

}
.

(13)αl,ML(τl ,φl , νl) = arg min
αl

{
Nt∑

n=1

Nsc∑

k=1

∥∥∥Ĥl

(
tn; fk

)
− αle

i2π(νl tn−fkτl)a(φl)
∥∥∥
2
}
.

(14)αl,ML(τl ,φl , νl) = min
αl

{
�H l − αlW l�

2
}
.

(15)U l =
H l ·W l

�W l�
2
W l αl,ML(τl ,φl , νl) =

H l ·W l

�W l�
2
.
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and, furthermore, �W l�
2 = NtNscM . Note that z

(
τ ,φ, ν, Ĥl

)
 can be interpreted as a 

three-dimensional correlation function. It can be shown [12] that the values τl , φl and νl 
can be obtained by solving the problem

so that the overall problem now becomes that of finding the maximum of a three-dimen-
sional correlation function. The procedure explained so far is an expectation-maxi-
mization (EM) algorithm. The EM algorithm proceeds iteratively by considering one 
multipath component at a time, cancelling all the other components from the observa-
tions based on the previous parameter estimates θ̂

′
 (E step), and updating the current 

parameters by maximizing the three-dimensional correlation function (M step). This 
results in the new parameters θ̂

′′
 , which will be used in the next iteration. The iterations 

can be stopped when convergence is reached. The vector parameters obtained at the 
µ iteration is called θ̂(µ) . The sequence of likelihood values at each iteration is called 
�(θ(µ)) and has the property that it is always monotonically non decreasing through the 
successive iterations [12]. Once the final ML channel parameter estimates are computed, 
the ML estimate σ 2

ML of the noise variance is easily derived using (10).
The SAGE algorithm further simplifies the EM algorithm, decomposing the 3D 

correlation maximization problem for each path into a sequence of 3 successive one 
dimensional maximization problems. In other words, the SAGE algorithm uses alter-
nate optimization over the four parameters τl , φl νl and αl , starting from an initial 
guess of their values. It optimizes only one variable at a time, keeping the others fixed. 
The process is then repeated until the variables have converged (Fig. 2).

(16)

H l ·W l = z
(
τ ,φ, ν, Ĥl

)
=

Nt∑

n=1

Nsc∑

k=1

e−i2π(νl tn−fkτl)aH (φl)Ĥl

(
tn; fk

)
,

(17)
(
τ̂l , φ̂l , ν̂l

)

ML
= arg max

[τ ,φ,ν]

{∣∣∣z
(
τ ,φ, ν, Ĥl

)∣∣∣
}

Fig. 2  SAGE. The flow chart of the SAGE algorithm
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2.2.3 � Uplink DM‑RS transmission issues using SAGE

Since the DM-RS is transmitted inside an uplink data transmission, the band occu-
pied by the data is scheduled by the eNodeB. Therefore, in correspondence with a ban-
dlimited DM-RS input, the CFRs can be estimated only in those portions of the band 
where the data transmission is scheduled. The typical resulting available time-frequency 
pattern Ĥ(t; f ) is depicted in Fig.  3. Due to this particular pattern, one can expect a 
performance degradation caused by the relatively small bandwidth available for TOA 
estimation in each subframe. Suppose that the channel is observed at different subcar-
riers fk = k�f  , and at different time snapshots tn = n�t , (corresponding to different 
measurements of the CFR) and through M different antennas, This defines a uniform 
grid of coordinates I =

{
(n, k ,m)

}
 . It is apparent in this case that the correlation func-

tion defined in Eq.  (16), whose absolute value we wish to maximize, is a three-dimen-
sional DFT that can be easily computed via FFT algorithms.

In the case, we are considering, where the channel estimates are known only in a non-
uniform grid in time-frequency, we can still use FFT and embed the data in a uniform 
grid, by simply setting to zero the missing values. This allows to still exploit the efficiency 
advantages that the FFT brings. In other words, the increase in the data by the extra 
zeros is outweighed by the efficiency gain of the FFT.

In [12], the initial conditions are calculated using a non-coherent accumulation during 
the M-step, while a successive cancellation is used during the E-step. For instance, the 
initial value of the parameter τ̂l is calculated as

Initial values of the other parameters (φ̂l , ν̂l) , are computed similarly. This procedure is 
called non-coherent accumulation because in this case the summations are calculated 
outside the absolute value, and the phase of the complex samples is not considered. The 
procedure starts by estimating the initial condition of the first path, based on the val-
ues of the full observation matrix Ĥ(t; f ) , which are influenced by all the paths unde-
tected so far. Then, the first path estimation is cancelled during the E-step and another 

(18)τ̂l = arg max
τ






M�

m=1

Nt�

n=1

�����

Nsc�

k=1

ej2π fkτ Ĥm,l

�
tn; fk

�
�����

2



.

Fig. 3  Time-frequency pattern. The typical time-frequency pattern available with DM-RS
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non-coherent accumulation procedure is performed. This process continues until the 
last path initial parameter values are estimated.

We found out experimentally that the use of non-coherent accumulation often ends 
up in wrong initial estimates, corresponding to local maxima of the correlation function 
z(τl ,φl , νl) of Eq.  (16). This has serious implications, since, during the E-step, the esti-
mate is subtracted from the data, and the initial error propagates. The problem is par-
ticularly critical with uplink transmissions. Indeed, when no information about the CFR 
is available, we pad with zeros the unknown CFR bins. One can notice that the squared 
modulus of the correlation function z(τl ,φl , νl) of Eq. (16) corresponds to a periodogram 
in the delay-angle-Doppler domain, which will exhibit maximum values at (τl; νl;φl) 
that correspond to the parameters of the paths. By setting the missing values to zero, we 
implicitly multiply the data by a three-dimensional window. This causes a convolution in 
the transform domain, possibly originating spurious local maxima in z(τl ,φl , νl) which 
make it problematic to recognize correct maxima after non-coherent accumulation.

Based on this, we propose a new method to estimate the initial conditions of SAGE. In 
particular, the initial conditions of the first path is made by searching the values corre-
sponding to (τ ,φ, ν) (or to (τ ; ν) in the 2D single antenna case) corresponding to a maxi-
mum of the periodogram calculated using the full observation matrix Ĥ(t; f ) . Then, we 
perform the path cancellation and we calculate the second path parameters, again cal-
culating a periodogram. This procedure is repeated until the last path initial conditions 
are estimated. In general, this method requires more computational effort with respect 
to the simplest non-coherent accumulation because it performs the search of the maxi-
mum in a 2D or 3D function, but the search for the maximum has to be done only once 
to estimate the initial conditions. Actually, we found out that using the FFT in subse-
quent stages does not provide significant advantages with respect to the SAGE greedy 
approach, with a significant increase in the computational complexity. Nevertheless, 
the proposed initialization procedure improves the overall algorithm performance. The 
number of iterations to convergence can be regulated by choosing an appropriate stop 
criterion, which in our implementation is determined by the variation of the parameters 
between one iteration and the next. In our experiments, the algorithm stops when the 
delay variation is below 0.5 ns, the doppler estimate variation is below 0.5 Hz and the 
angle variation is less than 1◦ . With these values, the algorithm converges, on average, 
after 15 iterations. In the following sections, we refer to our proposed method as 2D 
initialization (or 3D initialization in case of AOA, TOA and Doppler estimation), and to 
non-coherent initialization when the method proposed in [12] is used.

2.2.4 � Detection of the number of paths

The SAGE algorithm does not provide a method for the estimation of the number L 
of multipath components, and previously we assumed to know the number of paths L. 
Conventional information criteria [24] can be used to estimate L. According to [25], in 
our problem, it is possible to use the Minimum Description Length (MDL) criterion, 
also referred to as Bayesian Information Criterion (BIC), in order to estimate L. In the 
next simulation results, we assume to know the number of paths L, in order to compare 
the performance of the different algorithms.
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2.3 � The IAA–APES algorithm

Turning now to the estimation of the AOA, we start by considering the problem of AOA 
estimation only, then we move to a brief explanation of the joint estimation. Since the num-
ber of different AOAs is usually small, the AOA estimation can be viewed as a sparse data 
reconstruction problem where AOAs are associated to those directions that have non-
zero amplitudes. In this approach, the first step is to find a sparse representation of the 
array output data. We assume that there are L sources that arrive at the array with angles 
φ = [φ1, . . . ,φL] . In the presence of additive noise the output of an antenna array with M 
elements is

where N is the number of snapshots, A(φ) is the M × L steering matrix defined as 
A(φ) = [a(φ1), . . . , a(φL)] and s[n] = [s1[n], . . . , sL[n]]

T is the source vector signal at 
time n. By comparing with the model in Eq. (2), we can see that y[n] is the noisy sampled 
version of y(t, θ) , with sampling instants at each snapshot. As a consequence, sl[n] is the 
sampled version of αl s(t − τl)e

j2πνl t . Considering a ULA, the steering vector of the l-th 
source is given by Eq.  (3). It is important to note that if the geometry of the array 
changes, only the expression of the steering vector has to be modified. Usually, the num-
ber L of source angles of arrival is unknown, and in order to estimate the AOAs of the 
different sources, a K point grid with K ≫ L is considered. In other words, the consid-
ered region of the angles of interest is subdivided into a grid φ̃ =

[
φ̃1, . . . , φ̃K

]
 of K points 

and for each point the power is estimated. Indeed, assuming that the set φ̃ contains the 
φl values corresponding to all sources, the K−dimensional vector s[n] in Eq.  (19) has 
only a few significant components, and is therefore “sparse.”

The IAA–APES algorithm is a data-dependent, non-parametric approach based on the 
weighted least square algorithm [16]. Assuming that P ∈ R

K×K  is the diagonal matrix 
whose non-zero elements are the power at each angle of the scanning grid, its k− th diag-
onal element can be expressed as

where sk [n] has to be estimated. Considering that φk is the current angle of interest, it is 
possible to define the interference plus noise covariance matrix as

where the correlation matrix is R = A(φ)PAH (φ) . Then, it is possible to define the WLS 
cost function as [16, 26]:

where

(19)y[n] = A(φ)s[n]+ n[n] n = 1, . . . ,N

(20)Pk =
1

N

N∑

n=1

|sk [n]|
2, k = 1, . . . ,K ,

(21)Q(φk) = R − Pka(φk)a
H (φk)

(22)
N∑

n=1

∥∥y[n]− sk [n]a(φk)
∥∥2
Q−1(φk )

(23)�x�2
Q−1(φk )

= xHQ−1(φk)x.
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Minimizing the cost function with respect to sk [n] , which is considered deterministic 
and unknown, it is possible to obtain the estimate [16]

Since IAA–APES requires the correlation matrix R , which depends on the unknown sig-
nal powers, it has to be implemented iteratively, and usually the initialization is made 
with a conventional beamformer [16, 27]. In IAA–APES, the estimation of P and R , are 
calculated using the signal estimation obtained in the previous iteration. This makes the 
IAA–APES algorithm robust to coherent or highly correlated sources. Also, it can have 
good performance using only few snapshots [27].

The illustrative AOA estimation can be extended to TOA and Doppler estimation, 
or to joint TOA, AOA and Doppler estimation, by appropriately defining matrix A in 
(19). For example, a joint AOA, TOA estimation can be obtained by considering the 
following matrix

 where, in case of ULA, we have, denoting with P the number of frequency bins,

The frequencies in Eq.  (26), in contrast to the simpler model in (19), come into play 
because we perform a joint estimation of the TOA and AOA, as opposed to the simpler 
AOA estimation, which does not involve the τi factors. Also in this case, the parameters’ 
estimates are obtained from the pairs (τ̂i, φ̂k) that maximize the power. Let us denote 
with I the number of grid points for the delay, K the number of grid points for the angle, 
M the number of antennas and P the number of channel frequency bins. We can notice 
that one issue of the IAA–APES implementation is related to the inversion of the cor-
relation matrix R , which has dimension MP ×MP . Moreover, to achieve a proper res-
olution, I and K have to be selected large. For instance, matrix A(τ ,φ) has dimension 
MP × KI . In practical scenarios, the large dimensions of matrix R and A make it prohib-
itive to use IAA–APES for joint estimation. Because of this, in the following we decided 
not to use IAA–APES for joint estimation, while we use it to estimate each parameter 
separately.

(24)ŝk [n] =
aH (φk)R

−1y[n]

aH (φk)R
−1a(φk)

, n = 1, . . . ,N

(25)
A(τ ,φ) =

[
a(τ1,φ1), a(τ2,φ1), . . . ,

a(τI ,φ1), a(τ1,φ2), . . . , a(τI ,φK )
]
,

(26)a(τi,φk) =





ej2π f1τi

...

ej2π fPτi

e
j2π

�
f1τi+

d
�
sin φk

�

...

e
j2π

�
f1τi+

2d
�
sin φk

�

...

e
j2π

�
fPτi+(M−1) d

�
sin φk

�





.
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3 � Results and discussion
3.1 � Uplink TOA estimation

This section focuses on measurement of the time of arrival, thus considering the case 
of single antenna receivers, so we are not considering the effect of different angles 
of arrival. The joint estimation of TOA and AOA will be considered in Sect. 3.2. We 
compare the performance of the SAGE algorithm, the IAA–APES algorithm and a 
simpler correlation peak detector in three different scenarios. The first scenario con-
siders an optimistic situation which allows us to establish a bound for the perfor-
mance that can be obtained in more realistic settings, considered in the other two 
scenarios which simulate typical uplink transmissions. We also perform simulations 
of some pedestrian and vehicular models defined in the 3GPP standard [28, 29], 
described in Sect. 3.1.3.

3.1.1 � Simulation setup

In our simulations, we generate a random sequence of bits that are converted to com-
plex symbols for each subframe according to the SC-FDMA modulation scheme, and 
we include the DM-RSs, according with the specifications in [22]. Then, the channel is 
simulated and the convolution with the generated input is calculated. The channel is 
updated at every slot by taking the value of the Doppler into account.

Complex white Gaussian noise is added to the signal based on the SNR value, which is 
a simulation parameter. The resulting complex signal plus noise represents the received 
signal. The peak position obtained correlating the received signal with the known 
DM-RS sequence provides a first TOA estimation, which is usually not precise. Using 
the TOA correlation information and discarding the Cyclic Prefix, we are able to find 
the DM-RS location in the received signal and perform the CFR estimation as in Eq. (1). 
Since the time distance between a DM-RS and the following one is fixed and equal to 
�t = 0.5 ms, once we have the position of the first DM-RS, we can easily find the posi-
tion of the other DM-RS in the received signal. This provides an estimate of the CFR for 
each slot. This collected information constitutes the input of the SAGE and IAA–APES 

Fig. 4  Simulation setup. Block diagram of the simulation setup.
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algorithms. These steps are summarized in the block diagram of Fig. 4. In details, the 
setup for the three scenarios we consider are: 

1	 Full band We simulate a transmission that occupies the whole available LTE uplink 
bandwidth, and in particular we select the bandwidth with Nsc = 1200 subcarriers. 
It is well known that the variance of the delay estimation is inversely proportional to 
the occupied bandwidth, so this case provides a lower bound for TOA estimation in 
LTE uplink;

2	 Simulated ping The second scenario simulates a data transmission using Nsc = 1200 
subcarriers, but in this case, the occupied bandwidth is limited. In particular, we 
model an uplink transmission where the allocated band changes every two slots. 
Moreover, in this scenario, the allocated band occupies a minimum of 4 RBs and a 
maximum of 18 RBs. For each subframe, two uniform random values are generated, 
we call them rNRB and rstart . The value rNRB represents the number of occupied RBs, 
and it is uniformly generated between 4 and 18. Moreover, rstart represents the start-
ing RB and is uniformly generated between 1 and 100− rNRB;

3	 Real ping In the third scenario, a real uplink data transmission pattern originated by 
a ping command to a server was considered. The scheduled uplink frequencies are 
obtained from the commercial u-blox LTE module Toby L20 [30]. Figure 5 shows the 
time-frequency pattern of the transmission. Note that the DM-RS signal is transmit-
ted every 0.5 ms using the same time-frequency pattern of the ping data.

3.1.2 � Simulation results with different initialization procedures

This section presents some simulation results that show the performance of the 
2D SAGE initialization and the non-coherent initialization, in different scenarios. 
For completeness, we compare the results obtained with these two initialization 
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Fig. 5  Time-frequency pattern of the “real” ping signal



Page 15 of 27Pin et al. J Wireless Com Network         (2023) 2023:72 	

procedures with other techniques in order to give an idea of the overall performance. 
We test the ability of the algorithms to discriminate close paths in delay domain.

For each scenario, we set the SNR to 10 dB and we simulate 3 paths with the same 
amplitude |αl |2 = 0 dB and random phase, l ∈ 1, . . . , 3 , fixed Doppler frequencies 
νl = 10 Hz, l ∈ 1, . . . , 3 . Then, the delay is selected as

according to different �τ values. In particular, the simulated transmission has a duration 
in time of 25 subframes, i.e., 50 CFRs snapshots are available in each scenario. These 
values are selected because the uplink data transmission associated to ping a server has 
approximately this duration. Then, we iterate the simulation for n = 500 times using dif-
ferent seeds for the random number generator. Thus, in the simulated ping scenario, the 
bandwidth allocation changes at every iteration, while in the real ping scenario and in 
the full band scenario, the allocation is fixed and only the noise changes during each 
trial. The following plots report the RMSEE of the results obtained in the different trials

where n is the number of trials and τ̂1,i is the estimate of the first path delay in each 
simulation. Assuming a zero mean Gaussian distribution with unknown variance σ 2 for 
the difference τ̂1,i − τ1 , the RMSEE is an estimator of the standard deviation σ [31], for 
which we can compute confidence intervals, resulting in

where χ2
a,n is the a critical value of the chi-squared distribution, and 1− α if the con-

fidence level. For n = 500 and 1− α = 0.95 , we obtain CI/RMSEE=[0.9417 1.0661], 
meaning that the 95% confidence interval is between ±6% of the calculated RMSEE. 
Similar conclusions can be drawn for the RMSEE of the other parameters that we will 
consider in the following. Figure 6 shows the RMSEE of the first path delay in the full 
band scenario. For the correlation peak detector, we consider two strategies. The first 
one correlates the transmitted DM-RS of each slot with the received signal. In the sec-
ond one, two contiguous DM-RSs belonging to the same subframe are correlated with 
the received signal, and the samples between the two DM-RS are filled with zeros. We 
can notice that the two correlation methods are less precise then the other algorithms. 
When �τ is above 50 ns, the IAA–APES, SAGE 2D and SAGE non-coherent algorithms 
have almost the same performance, with an error below 2 ns.

Figure 7 shows the RMSEE of the first path delay in the simulated ping scenario. In 
this case, the SAGE 2D initialization outperforms all the other methods. As expected, 
with a limited band occupation, the correlation methods perform badly with a very 
large error. Note that SAGE, with non-coherent initialization, has an error that 
increases even with increasing �τ . This is due to the erroneous initialization, which is 
incorrect when the bandwidth is small. Also IAA–APES exhibits an increasing error 

(27)τ1 = 15 ns , τ2 = τ1 +�τ , τ3 = τ1 + 2�τ

(28)RMSEE =

√∑
(τ̂1,i − τ1)2

n
,

CI =
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with increasing �τ . This happens because IAA–APES in this case is not able to sepa-
rate the three paths and only one path, with erroneous delay, is estimated. Finally, 
Fig. 8 shows the RMSEE of the first path delay in the real ping scenario. Also in this 
case, we can see that the SAGE 2D algorithm outperforms the other algorithms. The 
behaviour is similar to that of the simulated ping scenario.

In summary, we can point out that the 2D initialization of SAGE in case of the 
simulated ping and real ping scenarios have performance comparable to the other 
algorithms in the full band scenario. Indeed, 2D SAGE initialization in the two ping 
scenarios gives results close to the full band scenario, with estimation errors below 
20 ns when �τ is higher than 40 ns. These results confirm that using DM-RS can be 
appropriate for opportunistic positioning.

Fig. 6  RMSEE of the first path delay. Comparison between different algorithms in the full band scenario

Fig. 7  RMSEE of the first path delay. Comparison between different algorithms in the simulated ping 
scenario
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3.1.3 � Simulation results using standard channel models

In this section, we present simulation results for more realistic channel realizations. 
We assume the number of paths L is known. In particular, we consider the RMSEEs 
in the three scenarios described in the previous section, i.e., full band, simulated ping 
and real ping. However, in this case, the channel is derived from three different mod-
els, based on the EPA, EVA and ETU channel models described in the LTE standard 
[28, 29], whose parameters are reported in Table 1.

The phase of the complex channel gain αl for each path is generated randomly, i.e., 
αl = |αl |e

jφ with φ uniform in [0, 2π ] . We simulate the transmission of 25 consecutive 
subframes, which are approximately the number of subframes occupied by a ping. We 
generate 500 different channel realizations for each SNR value, ranging from − 15 to 
20 dB with 5 dB steps. We report the results relative to a a random Doppler for each 

Fig. 8  RMSEE of the first path delay. Comparison between different algorithms in the real ping scenario

Table 1  Channel models used in simulation

Paths 1 2 3 4 5 6 7 8 9

EPA

τl [ns] 0 30 70 90 110 190 410

fl,max [Hz] 5 5 5 5 5 5 5

|αl |
2 [dB] 0 − 1 − 2 − 3 − 8 − 17.2 − 20.8

EVA

τl [ns] 0 30 150 310 370 710 1090 1730 2510

νl,max [Hz] 70 70 70 70 70 70 70 70 70

|αl |
2 [dB] 0 − 1.5 − 1.4 − 3.6 − 0.6 − 9.1 − 7 − 12 − 16.9

ETU

τl [ns] 0 50 120 200 230 500 1600 2300 5000

νl,max [Hz] 300 300 300 300 300 300 300 300 300

|αl |
2 [dB] − 1 − 1 − 1 0 0 0 − 3 − 5 − 7
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path, uniform between −νl,max and νl,max . Similar conclusions can be drawn when a 
fixed Doppler frequency equal to νl,max is set for each path.

3.1.4 � EPA random Doppler results

In Figs. 9 and 10, the RMSEEs of the first path delay is shown. In particular, we com-
pare the results obtained with SAGE, IAA–APES and the correlation peak detector, 
considering the EPA channel model in the three different scenarios with random Dop-
pler. Figure 10 shows a detail of Fig. 9. In the full band case, the correlation RMSEE is 
comparable with the other methods. IAA–APES has the best performance in the full 
band scenario and when the SNR is low in all the scenarios evaluated. At low SNR, in 

Fig. 9  RMSEE of the first path delay. Comparison between SAGE, IAA–APES and the correlator peak detector, 
considering the EPA channel model in the three different scenarios with random Doppler

Fig. 10  RMSEE of the first path delay. Inset of the comparison between SAGE, IAA–APES and the correlator 
peak detector, considering the EPA channel model the three different scenarios with random Doppler 
generation
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the two ping scenarios, the error in pseudorange is around 15 m. On the contrary, in 
the real ping and simulated ping scenarios with SNR higher than − 5 dB, the SAGE 
algorithm gives a slightly better estimation, with errors in pseudorange around 13 m. 
So, SAGE has a slightly better performance compared to IAA–APES, while IAA–
APES appears to be the best choice in the full band case with the EPA channel.

3.1.5 � EVA random Doppler results

In Figs. 11 and 12, we show the RMSEE of the first path delay, considering the EVA 
channel model in the three different scenarios with random Doppler. Figure 12 shows 

Fig. 11  RMSEE of the first path delay. Comparison between SAGE, IAA–APES and the correlator peak 
detector, considering the EVA channel model in the three different scenarios with random Doppler

Fig. 12  RMSEE of the first path delay. Inset of the comparison between SAGE, IAA–APES and the correlator 
peak detector, considering the EVA channel model in the three different scenarios with random Doppler
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a detail of Fig. 11. From this figures, we can observe that the correlation based estima-
tion has a high error at low SNR and in the two ping scenarios.

SAGE outperforms in this case the other algorithms, in particular when the two ping 
scenarios are considered, while in the full band scenario SAGE and IAA–APES have 
similar performance. The RMSEE of SAGE in the simulated ping scenario is close to the 
SAGE RMSEE in the full band scenario, with an RMSEE in pseudorange equal to about 
to 1.5 m. SAGE, in the real ping scenario, reaches an RMSEE of about 20 m in pseu-
dorange. This value is rather large, but considerably smaller compared to the RMSEE of 
IAA–APES in the real ping scenario.

3.1.6 � ETU random Doppler results

Figures 13 and  14 show the RMSEE of the first path delay, considering the ETU channel 
model in the three different scenarios with random Doppler. Figure 14 shows a detail of 
Fig. 13. From these figures, we can observe that the correlation based estimation has a 
high error at low SNR and in the two ping scenarios. IAA–APES has good performance 
in the full band scenario and also performs better than SAGE when the SNR is below 
−  10  dB in the simulated ping scenario. In the full band scenario, IAA–APES has an 
error in pseudorange approximately between 4.8 and below 1 m at low and high SNR, 
respectively. The SAGE algorithm in this case outperforms the other algorithms, in par-
ticular in the two ping scenarios when the SNR is above − 10 dB. In the real ping sce-
nario, SAGE has an RMSEE in pseudorange of about 15 m. These values are considerably 
smaller compared to the RMSEE of the first path obtained with IAA–APES in the real 
ping scenario, which is around 52 m.

3.1.7 � Simulation results summary

In summary, IAA–APES appears to be more reliable when the SNR is below − 10 dB 
in all scenarios. This is because IAA–APES uses the time snapshots to average 
the results, whereas SAGE uses all the snapshots in order to estimate the Doppler 

Fig. 13  RMSEE of the first path delay. Comparison between SAGE, IAA–APES and the correlator peak 
detector, considering the ETU channel model in the three different scenarios with random Doppler
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frequency. When the SNR is larger then −  10  dB, in the full band scenario, IAA–
APES and the SAGE algorithm with the proposed 2D initialization have similar 
performance in all the different channel realizations. The RMSEE in this scenario 
is generally small, and in some cases, the pseudorange error is less then 1 m. How-
ever, this scenario is not completely realistic, because, in an LTE uplink transmis-
sion, UE data do not occupy the whole bandwidth. When a limited bandwidth data 
transmission is simulated at an SNR larger than − 10 dB, SAGE outperforms all the 
other methods and provides estimates with an RMSEE smaller than the other algo-
rithms. In the simulated ping scenario, where the occupation bandwidth is random 
and between 4 to 18 RBs, SAGE has a performance similar to the full band case. This 
means that SAGE is not affected by the decrease of the bandwidth. This is due by the 
fact that considering the 25 subframe simulation we have information of the CFR 
spread in the whole 1200 subcarriers. When we consider a real ping transmission 
pattern, which has a lower overall band occupation compared to the simulated ping 
scenario, SAGE performance degrades but still remains much better than the other 
algorithms.

It can be seen from the figures that the noise level affects the estimation in many 
cases, and in particular for the method based on the correlation. Note that IAA–
APES is, in general, more robust with respect to noise, due to the intrinsic average 
calculated by the algorithm. SAGE appears in some cases to be more affected by 
noise than in other cases. This is certainly due to the different transmission time-
frequency patterns and to the delay distance between paths. The simulations suggest 
that the accuracy of the estimates may be in some cases slightly affected by the noise 
level as soon as it is below a threshold that allows to discriminate the parameters to 
be estimated.

In [18], we reported some preliminary results about measuring the distance 
between two antennas using real DM-RS signals generated by an LTE module. The 
results confirm the feasibility of the proposed approach.

Fig. 14  RMSEE of the first path delay. Inset of the comparison between SAGE, IAA–APES and the correlator 
peak detector, considering the ETU channel model in the three different scenarios with random Doppler
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3.2 � Joint TOA and AOA estimation

This section presents the simulation set-up used to evaluate the AOA estimation perfor-
mance of IAA–APES and SAGE. As discussed in Sect. 2.3, we report for SAGE with 3D 
initialization (see Sect. 2.2.3), the results relative to the joint estimation of AOA, TOA 
and Doppler, while IAA–APES can be used, due to its complexity, for AOA estimation 
only. We consider here the case of receivers equipped with an antenna array.

3.2.1 � AOA and TOA simulation set‑up

The simulations use the same set-up described in Sect. 3.1.2, and the block diagram of 
the setup is the same as shown in Fig. 4. In the simulations, we consider the case of four 
antennas. We evaluate the root mean square error (RMSEE) performance in the three 
scenarios described in Sect. 3.1.2, namely, the full band scenario, the simulated ping sce-
nario and the real ping scenario.

The simulation objective is to test the ability of SAGE and IAA–APES to sepa-
rate close paths in the angle domain. So, similarly to the processing in Sect. 3.1.2, for 
each scenario we set the SNR to 10 dB and we simulate three paths, where the delays 
are set to τ1 = 15 ns, τ2 = 65 ns and τ3 = 115 ns, the Doppler frequencies are gener-
ated uniformly with values between −70 Hz and 70 Hz, and the angles are set to 
φ1 = 0◦,φ2 = φ1 +�φ,φ3 = φ1 −�φ.

The magnitude of the complex gain αl is equal for all the three paths, while the phase 
for each path is generated randomly, i.e., αl = |αl |e

jφ with φ uniform in [0, 2π ] . We simu-
late the transmission of 25 consecutive subframes. For each scenario, we vary �φ from 
1 ◦ to 35◦ with step 1 ◦ , we perform 100 different channel realizations for each angle, 
and we consider an ULA antenna array with M = 4 antennas. Table 2 summarizes the 
adopted parameters.

3.2.2 � AOA and TOA simulation results

Figure 15 shows the RMSEE in logarithmic scale, of the first path delay obtained with 
SAGE, in the three considered scenarios. We can notice that the RMSEE of the delay 
of the first path is always below 5 ns in all scenarios. As a matter of fact, the results 
obtained for the other two paths (not shown in the figure) indicate that the RMSEE 
is always below 20 ns in all scenarios. In particular, when the distance in the angle 
domain between paths exceeds 5 ◦ , the RMSEE for all the paths in all scenarios is 
below 1 ns, that is lower than 1 m accuracy. The obtained results are rather precise 
because in this case we are performing a joint estimation in three domains (delay, 

Table 2  Parameter used in simulations for AOA estimation

Parameters τl [ns] νl,max [Hz] φl [ 
◦] |αl |

2 [dB]

Paths

1 15 70 0 0

2 65 70 �φ 0

3 115 70 −�φ 0
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angle, and Doppler). Indeed, if some close paths are not separable in some domains 
(e.g., delay and Doppler), they can be separable in others (e.g., angle), and the addi-
tional information can be exploited by SAGE in order to separate and properly esti-
mate close paths.

Figure 16 shows the RMSEE of the first path AOA, on a logarithmic scale, obtained 
with a joint AOA and TOA estimation with SAGE and an AOA estimation with IAA–
APES, in the three scenarios, as a function of �φ . Focusing first on the full band sce-
nario, considering first the results for IAA–APES, we do not show the first path angle 
RMSEE between 1 ◦ and 6 ◦ which is actually 0 (note that the first path angle φ1 = 0◦ 
belongs to the grid used in the algorithm). Between 1 ◦ and 13◦ , only one path is dis-
criminated by the algorithm, thus explaining the error increase with �φ . For greater 

Fig. 15  RMSE of the first path delay estimation. The three scenarios are considered, using SAGE with 3D 
initial conditions

Fig. 16  RMSEE of the angle. Comparison between SAGE and IAA–APES in the full band scenario



Page 24 of 27Pin et al. J Wireless Com Network         (2023) 2023:72 

�φ , IAA–APES starts to estimate a second path and the error stabilizes. Starting at 
�φ = 26◦ , also the third path could be estimated, but not for all the channel realiza-
tions. Above an angle separation of 28◦ , the three paths are always estimated and the 
error is consistently below 0.2◦ for all of them. While the RMSEE obtained with IAA–
APES for the first path is approximately between 0.003◦ and 0.2◦ in the whole range 
considered, we can see that SAGE gives an error always below 0.001◦ , which is a very 
precise estimation.

Similar RMSEE behaviours can be observed for the simulated and real ping scenarios. 
In the simulated ping scenario  (Fig. 17), IAA–APES does not discriminate the second 
and third paths for angles below �φ = 8◦ , and �φ = 21◦ , respectively. The IAA–APES 
angle RMSEE for the first path is always below 0.1◦ and always below 0.8◦ for all the three 
paths and for the entire �φ range. SAGE in this case presents a slightly higher RMSEE 
compared to the full band scenario, and the RMSEE is always below 0.003◦ when �φ is 
low, and reaches values below 0.001◦ when �φ is greater than approximately 23◦.

In the real ping scenario, the behaviour of the IAA–APES curves can be explained as 
before. We obtain an RMSEEs always below 0.1◦ for the first path, while with SAGE the 
error is approximately 0.001◦ except at very low �φ values (Fig. 18).

The results obtained in this simulations show that the angle estimation is in gen-
eral very precise, with a weak dependence on the particular bandwidth used. This is in 
accordance with the Cramer-Rao lower bound (CRLB) which can be obtained for the 
AOA estimation [12].

4 � Conclusion
The main contributions of this paper are twofold. First, a new method for the estimation 
of TOA using the uplink DM-RS instead of the SRS is proposed. In this way, any sin-
gle data transmission, e.g., a simple ping in uplink, can give the opportunity to estimate 
the UE position. We point out that a reliable positioning opportunistic system, with the 
support of the eNodeB, can therefore be implemented using the DM-RS instead of the 
SRS, which in most cases is never transmitted or is transmitted rarely. To demonstrate 

Fig. 17  RMSEE of the angle. Comparison between SAGE and IAA–APES in the simulated ping scenario
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the feasibility of the method, we compared different algorithms for TOA estimation in 
the single antenna scenario. We proposed a novel initialization method for the SAGE 
algorithm, and we demonstrated by means of extensive simulations that the proposed 
procedure provides better performance compared to the non-coherent accumulation 
method proposed in [12], when uplink scenarios are considered. The results are con-
firmed by simulations with more sophisticated channel models like EPA, EVA and ETU. 
The SAGE algorithm with our initialization method performs better than the correla-
tion based method and the IAA–APES algorithms. Meanwhile, the simulations show 
that IAA–APES is more reliable then SAGE at low SNR values, typically below − 10 dB. 
We can conclude that the SAGE algorithm with our proposed initialization outperforms 
the other algorithms when a real DM-RS transmission pattern is used. Furthermore, 
we have shown that by combining measurements of signal transmissions on different 
frequencies, the performance results are similar to those obtained by processing a large 
bandwidth transmission.

In the second part of the paper we demonstrated, by means of simulations, that the 
AOA estimation results do not depend significantly on the signal bandwidth. Indeed, 
using the DM-RS, we saw that missing data in the time frequency pattern do not have 
a real impact on the AOA estimation. The RMSEE obtained in the simulations is small, 
and in particular IAA–APES allows to obtain an RMSEE below 1◦ , while, with SAGE, we 
have RMSEE values always below 0.01◦ . For SAGE, we evaluate also the delay estimates 
and we obtain RMSEE values below 1 ns, when the paths were well separated in the 
angle domain. We conclude that the proposed SAGE implementation allows AOA and 
TOA estimation in uplink transmissions, and that it can provide joint AOA, TOA esti-
mates to exploit hybrid positioning techniques. Furthermore these results can also apply 
to downlink signals. We are aware of the fact that the channel response in real scenarios 
is continuous. Nevertheless, the considered models are quite general and, even if they 
consider a discrete number of multipath components, the delays and arrival angles are 
continuous. The numerical results actually consider certain fixed parameters in order 

Fig. 18  RMSEE of the angle. Comparison between SAGE and IAA–APES in the real ping scenario
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to give a proof of concept. Certainly future work (even experimental in real-world envi-
ronments) will be able to consider more general set-ups. Future work will consist of an 
intensive campaign of measurements, in order to evaluate possible practical limitations 
of the proposed approach. A further future research topic can go in the direction of inte-
grating the estimates provided by the proposed methods in an actual position tracking 
engine, in order to assess the impact of the estimate precision on the overall positioning 
accuracy.
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