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Summary
Objective. The use of standardized structured reports (SSR) and suitable terminologies 
like SNOMED-CT can enhance data retrieval and analysis, fostering large-scale studies 
and collaboration. However, the still large prevalence of narrative reports in our laboratories 
warrants alternative and automated labeling approaches. In this project, natural language 
processing (NLP) methods were used to associate SNOMED-CT codes to structured and 
unstructured reports from an Italian Digital Pathology Department. 
Methods. Two NLP-based automatic coding systems (support vector machine, SVM, and 
long-short term memory, LSTM) were trained and applied to a series of narrative reports.
Results. The 1163 cases were tested with both algorithms, showing good performances 
in terms of accuracy, precision, recall, and F1 score, with SVM showing slightly better 
performances as compared to LSTM (0.84, 0.87, 0.83, 0.82 vs 0.83, 0.85, 0.83, 0.82, 
respectively). The integration of an explainability allowed identification of terms and groups 
of words of importance, enabling fine-tuning, balancing semantic meaning and model per-
formance.
Conclusions. AI tools allow the automatic SNOMED-CT labeling of the pathology 
archives, providing a retrospective fix to the large lack of organization of narrative reports.

Key words: SNOMED-CT, digital pathology, natural language processing, laboratory 
information system

Introduction

The progressive digitization of pathology laboratories represents a val-
uable opportunity to promote automation and standardization of the di-
agnostic process. This can be perceived through the progressive intro-
duction of artificial intelligence (AI) algorithms for the most disparate 
tasks 1, even in highly sub-specialized fields 2-5, showcasing the incred-
ible potentialities of these new technologies in reducing interobserver 
variability and optimizing time-consuming tasks. On the other hand, the 
modifications of the pathology workflow towards a fully tracked and con-
trolled system through the implementation of innovative instruments 6,7 
and increasing attention to the sample archives 8,9 is significantly twisting 
our routine practice, leading international societies to promote guide-
lines and recommendations to guide in this intricate transition  10. The 
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introduction of standardized structured reports (SSR) 
represents another milestone of the digital pathology 
transition in the precision medicine era, either full 11 or 
partial  12,13,14. Waiting for the progressive adoption of 
SSR in our routine practice, the application of natural 
language processing (NLP) methods for the automat-
ed labeling of retrospective series with Systematized 
Nomenclature of Medicine Clinical Term (SNOMED-
CT) is a promising alternative to untap the goldmine 
of the digital pathology archives (Fig. 1). The retrieval 
of this information holds the potential for conducting 
high-quality analyses and research, aiming to en-
hance standards of care and diagnosis, ultimately 
leading to improved patient outcomes 15, being poten-

tially integrable within our laboratory information sys-
tems (LIS) 16.
The identification of robust supports for data mining 
and curation may be the turning point for building da-
ta lakes projects in pathology, as a test possibly ex-
pandable to many other hospital departments. Here 
we investigate whether an automated NLP approach 
for the SNOMED-CT code labeling on a prospective 
cohort of structured and unstructured reports from an 
Italian Digital Pathology Department with two different 
AI algorithms can optimize the processing of highly 
specialized languages by developing a scalable, light-
weight, and efficient model. 

Figure 1. The multiple benefits of labeling diagnosis. Standardization and Structured Data: labeled diagnoses can be con-
sistently categorized, making it easier to analyze and compare data across different cases and institutions. Data Retrieval and 
Analysis: with structured data, specific diagnoses can be quickly searched and extracted, allowing pathologists and research-
ers to access relevant cases more easily. Enhanced Research and Collaboration: researchers can perform retrospective stud-
ies by extracting cases with specific diagnosis from digital archives, enabling large-scale analyses and exploration of various 
research questions. Automated Data Processing: by having structured labels, it becomes possible to develop algorithms and 
machine learning models that can automatically process pathology data. Digital Archives and Data Mining: digital archives 
can be organized and indexed based on diagnoses, enabling efficient retrieval and utilization of archived cases. Translation of 
Labels to Images: labeled diagnoses can be translated to images, opening avenues for weakly supervised machine learning 
projects, even without explicit pixel-level annotations.
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Materials and methods

Data extraction and filtering

Narrative and structured reports, along with their cor-
responding SNOMED-3 codes, were extracted from 
the LIS Athena (Version 4.3.0, Dedalus, Florence, Ita-
ly) at the Pathology Department of Fondazione IRCCS 
San Gerardo dei Tintori, University of Milano-Bicocca, 
Monza, Italy for cases diagnosed from January 2023 
to November 2023. The dataset underwent a series of 
filtering steps aimed to clean it from cases lacking a 
SNOMED code and those containing multiple lesions 
within the same diagnosis text resulting in multiple 
coding. Specifically, only diagnosis (D) and morphol-
ogy (M) codes were retained and appropriately trans-
lated to SNOMED-CT codes. 

Ad hoc ontology 

Ad hoc ontology was constructed based on the Inter-
national Classification of Diseases SNOMED-CT. In 
instances where a report contained multiple morpho-
logical codes, we selected the one that indicated more 
advanced disease progression or held greater clinical 
significance as the primary representation. Converse-
ly, cases where multiple lesions with equivalent poten-
tial for malignancy or not linked by a single pathoge-
netic process were excluded from the analysis. 

Preprocessing

The dataset underwent a series of preprocessing 
steps to prepare it for testing on the models trained 
as demonstrated in the following repository: https://
github.com/Gizmopath/SVM-LSTM-models-for-auto-
mated-SNOMED-CT-labeling. This process included 
retaining the 50 most frequent codes along with their 
corresponding diagnoses. Outliers, such as unusual-
ly lengthy diagnosis texts exceeding 750 characters, 
were removed. Additionally, class balancing tech-
niques were implemented to address potential biases 
in the data, ensuring equal representation of different 
classes. Stopwords, special characters, and punctua-
tion marks were removed and text was converted into 
lowercase. Italian lemmatization and tokenization pro-
cesses were also performed. 

Natural language processing models performances

Two different models, long short-term memory (LSTM) 
and support vector machine (SVM), were tested for 
their ability to assign the correct SNOMED-CT code 
to the relative diagnostic report. The models’ perfor-
mances were evaluated keeping track of accuracy, 
precision, recall and F1 score as metrics, providing 
insights into their predictive capabilities. 

Explainability

Explainability was incorporated into the models using 
the Local Interpretable Model-agnostic Explanations 
(LIME) library. This approach allowed the identifica-
tion of the most relevant terms associated with each 
SNOMED-CT code category. Before the analysis with 
LIME library, words such as “eventual”, “useful”, “evalu-
ation”, “confirm”, “appears”, etc. were therefore gradually 
eliminated during the preprocessing phase to achieve 
a smoother workflow and avoid classification errors 
stemming from words that are semantically important 
but not medically/diagnostically relevant. By examin-
ing the explanations provided by LIME, insights were 
gained into the features and patterns that influenced 
the model’s predictions.  

Results

Cases

A total of 1163 reports from 2023 were retrieved and 
used to test the two different NLP algorithms. The 
translation of SNOMED-3 codes to SNOMED CT re-
sulted in a total of 46 ‘Morphologic abnormality’ codes, 
1 ‘Disorder’ code, 2 ‘Finding’ codes and 1 ‘Quantitative’ 
code. The most frequent codes were associated with 
dermatopathology and gastroenterology, as well as 
more generic codes such as “Normal tissue morphol-
ogy” or “chronic inflammation”, reflecting the case fre-
quencies in the Department (Supplementary Tab.  I). 
The restriction of the dataset to the most 50 used 
codes allowed us to work on codes where we had a 
substantial sample size still being able to cover 81% 
of the initial dataset. The choice to narrow down the 
dataset to the top 50 cases was made to strike a bal-
ance between maintaining a high dataset coverage 
percentage and ensuring consistent accuracy results. 
Expanding the dataset to 70 or 100 cases would have 
increased the coverage from 81% to 86% and just un-
der 90%, respectively (Fig. 2).

NLP models performances

The comparison of the performances obtained with 
LSTM and SVM models on the prospective 2023 co-
hort test set is reported in Table I. Although not reach-
ing statistical significance, the SVM model showed 
similar or even better results as compared to the 
LSTM one in terms of accuracy, precision, recall and 
F1 score. The code assigned with worst performance 
was M-09410 (in SNOMED-CT: ‘Negative for residual 
tumor (Finding)’, F1 score: 0.26). This is related to a 
common difficulty in NLP when dealing with negations, 
which needs to be treated with specific techniques.

https://github.com/Gizmopath/SVM-LSTM-models-for-automated-SNOMED-CT-labeling
https://github.com/Gizmopath/SVM-LSTM-models-for-automated-SNOMED-CT-labeling
https://github.com/Gizmopath/SVM-LSTM-models-for-automated-SNOMED-CT-labeling
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Explainability AI for SNOMED-keywords 
correspondence

The application of explainability algorithms for the de-
tection of human interpretable features within the nar-
rative report certified the genuinity of the SNOMED-
CT prediction by the NLP approach, highlighting the 

reasons for the missed ones as demonstrated in the 
examples reported in Figure 3. In particular, with-
in different semantic domains (e.g. breast, skin and 
general pathology) the NLP algorithms demonstrated 
fluctuant accuracy in predicting the correct SNOMED-
CT based on the availability of sufficient keywords for 
the correct assignment. As a result, cases of atypi-
cal fibroadenomatoid proliferations of the breast were 
correctly (Atypia, suspicious for malignancy) or in-
correctly (Benign fibroadenoma) classified due to the 
presence/absence of concurrent keywords such as 
“atypical” or “unknown malignant potential”. The same 
was noted for in situ squamous lesions of the skin, 
where the term “Bowen” complicated the assignment 
task, and in inflammatory conditions where terms like 
“acute” or “chronic” were key for the correct SNOMED-
CT assignment. 

Discussion

One of the major challenges that our discipline is 
facing within the digital pathology revolution is linked 
to the archiving phase, and specifically for reports, 

Figure 2. The restriction of the dataset to the most 50 used codes allowed us to work on codes where we had a substantial 
sample size still being able to cover 81% of the initial dataset. The original number of unique codes in our dataset was 1251, 
representing about 1.4% of the sum of all morphological abnormality (M-) and disease (D-) SNOMED-3 codes.

Table I. Comparison of metrics achievement between LSTM 
and SVM models. SVM outperformed LSTM achieving bet-
ter results. LSTM, long short-term memory; SVM, support 
vector machine; SD, standard deviation; 95%CI, 95% con-
fidence interval.

LSTM SVM p-value
Accuracy 0.83 0.84
Precision

mean (SD) 
[95%CI]

0.85 (0.21)
[0.19-1]

0.87 (0.22)
[0.20-1]

0.64

Recall 
mean (SD) 

[95%CI]

0.83 (0.26)
[0.15 -1]

0.83 (0.21)
[0.21-1]

1

F1-Score
mean (SD) 

[95%CI]

0.82 (0.26)
[0.15-1]

0.82 (0.23)
[0.21-1]

1
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whose standardized and systematic organization 
would allow efficient retrieval and storage of patient 
information  17. The progressive prospective adoption 
of SSR, eventually associated with NLP able of ex-
tracting granular information from structured and 
narrative reports, will probably solve this issue when 
adequately integrated within our LIS and widely em-
ployed in our departments. However, while SSR are 
largely available and applicable in the oncological 
setting 18,19, their application in other pathology fields 
(e.g. inflammatory conditions) is still delayed, due to 
the higher variability and complexity of these reports 
and to the lack of standardization 18 20,21. Moreover, the 
extraction of specific features from structured reports 
through NLP can be computationally demanding. To 
overcome this challenge, restricting the research to 
smaller disease groups through appropriate coding 
(e.g. SNOMED-CT) can prospectively facilitate the 

information extraction process. Finally, the complexi-
ty that our reports are reaching through the integra-
tion of molecular and genomic big data incorporation 
represent a further source of information overload, 
requiring a strong standardization effort (e.g. with 
health informatics standards as CDA or FHIR) ensur-
ing that the data are computer identifiable, retrievable 
and processable. In this direction, the Italian Society 
of Pathology (SIAPEC) is working on the creation of 
a standard dataset for reporting, moving from free-
text narrative reports (level 1 according to the Ontario 
scale)22 to synoptic reports (level 3) to fully structured 
reporting, which should include discrete data embed-
ded in LIS and structured messaging/data exchange 
standards (level 6), culminating in the creation of 
common and shared data lake 23. Meanwhile, our ar-
chives are already hosting a large quantity of narra-
tive reports whose retrieval is often inaccurate or com-

Figure 3. Examples of correct (left column) and missed (right column) SNOMED-CT prediction in different domains (breast, 
skin and surgical/general pathology are reported here). Each box reports the most probable SNOMED-CT code attributable to 
the case by the NLP model, the predicted code and the ground truth, the most relevant keywords used by the model to predict 
the code and examples of the narrative text with most relevant keywords highlighted in progressively dark colors.
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pletely lacking due to their intrinsic “analog” nature. 
In this setting, the employment of SNOMED-CT can 
represent a solution for labeling cases to help in their 
retrospective retrieval and organization 24,25. Although 
limited by the partial adoption of SNOMED-CT among 
departments and its need for progressive updates 
(e.g. for molecular and omic terms)  26,27, leveraging 
on these codes can potentially help us in re-organiz-
ing the retrospective pathology archives 8,28,29. In this 
direction, the application of rule-based approaches 
have already been proposed to overcome the intrinsic 
limits (time-consuming process, prone to human error 
and interobserver variability) of manual SNOMED-
CT coding 30-32. The present study demonstrates that 
the application of SVM and LSTM AI tools can be a 
valid alternative to manual rule engineering, showing 
proficiency in capturing complex patterns that sim-
pler techniques may overlook, improving automation 
in the setting of NLP, and providing a temporary fix 
while SSR are more widely adopted in our depart-
ments. Moreover, interpretability analysis highlighted 
the impact of specific words of the pathology report 
on the final decision. In particular, this visual analysis 
demonstrated the need for additional keywords that 
may contribute to the final assignment of a SNOMED-
CT code together with the “defining” words of particu-
lar entities. In this setting, emblematic is the example 
of breast pathology domain, where the coexistence of 
uncertainty keywords (e.g. “atypical” or “unknown ma-
lignant potential”), along with specific terms indicating 
the disease (e.g. “fibroadenomatous”), were essential 
to avoid misassignment of the code (benign, fibroad-
enoma), allowing the correct identification of the case 
(Atypia, suspicious for malignancy). Finally, the pres-
ence of narrative/descriptive reports can be a source 
of variability in the final code assignment, as docu-
mented by the example reported in acute vs chronic 
inflammation and atrophy. The proposed NLP-based 
methods can thus represent a valid supporting tool for 
the retrospective labeling of narrative reports, waiting 
for a more comprehensive implementation of tandem 
SSR/NLP approach in our LIS. However, the further 
expansion of alternative language/vocabularies 33, the 
fine-tuning of SVM to account variations across lan-
guages 34, the extension to more “rare” codes that goes 
beyond the 50 tested here can help to overcome the 
limits of generalizability with rarer diagnosis, improv-
ing this tool for the actual employment by researchers 
and pathologists  35. Challenges faced by SNOMED 
CT in its widespread use, such as redundant codes, 
manual errors, and difficulties in creating user-friendly 
labeling modules, also impact the dataset’s reliabili-
ty.36 The future implementation of automatic coding 
through LIS-integrated SSR promises a more robust 

and reliable future dataset on which these algorithms 
can be fine-tuned 23.

Conclusions 

The application of AI tools allows the automatic 
SNOMED-CT labeling of the pathology archives, pro-
viding a retrospective fix to the large lack of organiza-
tion of narrative reports. This rescue solution can pave 
the way a the combined NLP and SSR prospective 
approach through adequate LIS implementation for 
improving patients’ care.
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