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Emotion recognition plays an essential role in human—human interaction since it is a key to understanding the
emotional states and reactions of human beings when they are subject to events and engagements in everyday
life. Moving towards human—computer interaction, the study of emotions becomes fundamental because it is
at the basis of the design of advanced systems to support a broad spectrum of application areas, including
forensic, rehabilitative, educational, and many others. An effective method for discriminating emotions is
based on ElectroEncephaloGraphy (EEG) data analysis, which is used as input for classification systems.
Collecting brain signals on several channels and for a wide range of emotions produces cumbersome datasets
that are hard to manage, transmit, and use in varied applications. In this context, the paper introduces the
Empatheia system, which explores a different EEG representation by encoding EEG signals into images prior
to their classification. In particular, the proposed system extracts spatio-temporal image encodings, or atlases,
from EEG data through the Processing and transfeR of Interaction States and Mappings through Image-
based eNcoding (PRISMIN) framework, thus obtaining a compact representation of the input signals. The
atlases are then classified through the Empéatheia architecture, which comprises branches based on con-
volutional, recurrent, and transformer models designed and tuned to capture the spatial and temporal aspects
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of emotions. Extensive experiments were conducted on the Shanghai Jiao Tong University (SJTU) Emotion
EEG Dataset (SEED) public dataset, where the proposed system significantly reduced its size while retaining
high performance. The results obtained highlight the effectiveness of the proposed approach and suggest new
avenues for data representation in emotion recognition from EEG signals.

Keywords: Emotion recognition; image encoding; spatio-temporal atlases; multi-branch architecture; EEG;

PRISMIN framework; CNN; LSTM; GRU; ViT.

1. Introduction

Emotions are a key human trait that can be defined
as a biological state associated with neurophysio-
logical changes that are linked with thoughts, feel-
ings, behavioral responses, pleasure, or displeasure
sensations' and can affect almost every aspect of our
existence, such as, among others, social interactions,
relational life, work productivity, and even human—
computer interactions. Although different commu-
nication channels can be used to express emotions,
e.g. facial expressions, voice pitch, and posture, it
can be difficult to understand these cues that convey
additional information about a person.? As a conse-
quence, emotion recognition through automatic
approaches can be extremely useful in diverse rele-
vant scenarios. A first example regards the diagnosis
of depressive states or post-traumatic stress disorders
(PTSD)? to identify if a patient is experiencing pain
during a treatment,* another interesting case study
concerns the diagnosis of Parkinson’s Disease (PD)”
to understand if a patient exhibits emotional
impairments when emotionally elicited, a last ex-
ample is the detection of fake emotions during an
interrogation in court.® Actually, nowadays, this
type of technology finds interest in an increasingly
wide range of application fields. As a matter of fact,
many works in the current literature try to address
the emotion recognition task by exploiting facial
traits,”® body movements,”!" speech,'! multimodal
approaches, 24
brain electrical activity.'”'” Concerning the latter, it
can be measured through ElectroEncephaloGraphy
(EEG), which extracts brainwaves through the use

or even more complex data such as

of surface electrodes. Five different waves are re-
trieved with the EEG, i.e. delta, § € [1.5-4Hz],'®
theta, 6 € [5-8Hz|,"’ alpha, o € [9-14Hz],” beta,
B € [15-40Hz],*! and gamma, v € [25-140 Hz].””
These waves respond to specific activities, including
daydreaming or active thought, via working memory
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and attention. What is more, brainwaves are also
related to emotion processing, where specific pat-
terns in high-frequency bands are associated with
positive, neutral, and negative feelings through time-
frequency analysis.”® As can be observed in Fig. 1,
positive emotions show an increment in energy for
beta and gamma frequency bands, whereas neutral
and negative emotions present decreased beta and
gamma energy. While the neural patterns of negative
and neutral emotions have similar patterns in beta
and gamma bands, the latter have higher energy of
alpha oscillations. Although in this work, we utilize a
collection of EEG signals previously acquired by
another research group, it remains important to ex-
plain how these databases are typically created. This
is also to introduce the motivations behind the ap-
proach proposed in this paper.

Brainwaves are commonly acquired through
Brain—Computer Interfaces (BCIs), devices that

There exist specific neural patterns in high frequency
bands for positive, neutral and negative emotions
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Fig. 1. Emotions captured via EEG signals. The differ-

ential entropy (DE) energy feature (scaled in [0,1]) is
represented for each frequency band (in Hz) over time
(in ms), highlighting specific patterns in higher frequency
ranges corresponding to specific emotions.
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enable the capture of brain signals through a set of
electrodes. Depending on their proximity to the
brain tissue, these electrodes can be invasive or
noninvasive. Specifically, invasive electrodes, which
are more accurate, require neurosurgery to implant
them directly into the brain tissue. On the other
hand, noninvasive electrodes are less accurate, as
they are based on an external EEG helmet posi-
tioned on the subject’s scalp, but users more com-
monly accept them. In addition, recent advances in
the accuracy of noninvasive electrodes make these
interfaces comparable to invasive ones in several
practical contexts.”* % Anyway, regardless of the
electrode typology, BCIs are being used by a wide
audience in many applications, including emotion
recognition.?” More specifically, these devices are
used to acquire extensive data for training classifiers.
Unlike other types of digital information, collecting
EEG data can quickly become complex and cum-
bersome, depending on the number of channels and
the range of emotions that need to be monitored. As
for other digital resources, compression techniques
can support several critical aspects, including the
reduction of storage space, which assumes particular
importance in contexts where storage is expensive or
limited, such as in mobile devices, drones, robots,
and in general, embedded systems; transmission ef-
ficiency, which becomes crucial in environments
where bandwidth is bounded or communication
channels are constrained, such as in long-distance
monitoring; compatibility and scalability, where
data compression allows us for easy scaling or con-
version of data to different formats that can be
compatible with various devices, applications, or
protocols; among other advantages.

To address the issues reported above, this paper
introduces the novel Empétheia® system, which
encodes EEG data into images, referred to as atlases
in this work, before classifying the underlying emo-
tion. In detail, the proposed approach pre-processes
multichannel EEG signals and generates spatio-
temporal atlases using an encoder based on Proces-
sing and transfeR of Interaction States and Map-
pings through Image-based eNcoding (PRISMIN)
framework.?® This framework compresses brain sig-
nals into a coarse visual representation, i.e. an image.
Then, the system uses a deep learning-based pipeline
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as a classifier that recognizes the emotion. Specifi-
cally, the architecture is composed of branches based
on convolutional, recurrent, and transformer models
designed and tuned to capture the spatial and tem-
poral aspects of an emotion represented by the atlas.
Extensive experiments were conducted for both the
encoder and classifier. In particular, two encoding
types, i.e. short-rainbow (SR) and grayscale (GS),
and four different models, i.e. one-based exclusively
on a convolution neural network (CNN), two based
on mixtures of CNN and RNN, and a last based on a
transformer, were tested to find an effective emotion
recognition method. The Empdtheia system was
evaluated on the Shanghai Jiao Tong University
(SJTU) Emotion EEG Dataset (SEED).”*" The
proposed approach significantly reduced the dataset
size, thus enabling the implementation of less com-
putationally intensive models. In addition, it allows
us a faster training while retaining high performance
on the emotion recognition task. What is reported
highlights the effectiveness of the proposed method
and, at the same time, suggests new pathways for
EEG signal management and processing. The main
contributions of this work can be summarized as
follows:

e A novel spatio-temporal atlas representation for
EEG data thanks to a custom encoder based on
the PRISMIN framework.

e The development of the Empétheia system, a
multi-branch classifier made up by four indepen-
dent classifiers, each one designed to capture spa-
tial and temporal features of an image-encoded
emotion.

e An alternative way to treat and manage large
collections of EEG signals to support several crit-
ical issues, including storage space, embedded
systems, transmission efficiency, and many others.

e Exploring different encoding strategies and
classifiers to retain high performance on the SEED
benchmark dataset despite the significant
data quantization produced by the PRISMIN
encoder.

The remainder of this paper is structured as follows.
Section 2 presents an overview of related work
addressing the emotion recognition task. Section 3
describes the Empéatheia system, providing details on

aFrom ancient Greek en-, “inside”, and pathos, “sentiment, feeling”. Today is translated as “Empathy”.
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the PRISMIN encoder and Empatheia classifier.
Section 4 introduces the SEED public dataset and
discusses the results obtained via different encoding
strategies and classifiers, as well as a comparison
with the current state-of-the-art. Finally, Sec. 5
draws a conclusion to the presented work.

2. Related Work

An important aspect of EEG emotion recognition is
the feature extraction from brain signals, which can
affect classification accuracy. After signal pre-pro-
cessing, for instance, downsampling®” and band-pass
frequency filtering,”’ EEG features can be divided
into single-channel and multichannel features. The
former class was generally the most common choice
in earlier works due to its proven effectiveness,*”
includes, among others, Power Spectral Density
(PSD),* DE,* and Wavelet Features.** The second
class has instead become the preferred option in re-
cent years, especially with the evolution of deep
learning approaches for EEG emotion recognition,
resulting in various solutions available in the litera-
exploiting CNN, RNN, or graph-based
architectures.®” Although single-channel and multi-

and

ture

channel features can be employed with deep learning
approaches, the feature extraction in this work dif-
fers from these methods. Specifically, a multichannel
atlas, i.e. an image associated with an emotion, is
used to extract features automatically using a deep
learning model.

Regarding CNN-based approaches, they tend to
focus on spatial information derived from multiple
EEG channels. Liu et al.,*® for instance, apply a
Butterworth band-pass filter to the EEG channels
and reorganize the data to be used in a custom deep
neural network (DNN) composed of a CNN, a sparse
autoencoder (SAE), and a DNN, which are trained
separately to enhance convergence speed. Instead,
Liu et al.’" utilize an attention mechanism to inte-
grate spatial information into input signals and em-
ploy both a pre-trained convolutional capsule
network for feature extraction and a secondary
double-layer capsule network. A different example is
discussed in Li et al.,*® which focuses on the frontal
lobe using Papez circuit theory. The authors utilize a
frontal lobe double dueling DQN (FLD3QN) proce-
dure based on reinforcement learning with EEG
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channels and a Dbifrontal lobe residual CNN
(BiFRCNN) for emotion recognition. Miao et al.*’
present a 3D deep residual learning framework for
analyzing EEG signals across multiple frequency
bands. They use group sparse regression for optimal
frequency band selection and a 3D deep residual
network for feature classification. Finally, Hu et al.*’
introduce a scaling layer in their convolutional net-
work to extract spectrogram-like features from EEG
signals. This layer uses varied convolutional kernels to
identify patterns across different scales, eliminating
the need for other feature extraction methods like DE.

Concerning RNN-based methods, they tend to
focus on spatial and temporal information, which can
be naturally captured by recurrent architectures. For
example, Li et al*' investigate the emotional ex-
pression differences between the brain’s left and right
hemispheres, using four RNNs across two brain
regions to analyze spatial relationships. They design
a subnetwork to integrate these hemispheres, thus
enhancing emotion recognition feature extraction.
Similarly, Zhang et al.*’
RNN to analyze long-range contextual cues in EEG
data for capturing spatial variations in human
emotions. They use projection matrices on spatial
and temporal states to identify emotion-rich regions.
The study described by Guo et al.*® leverages the
domain adaptation (DA) concept and aims to reduce
the inter-session variability of EEG signals by de-
signing a spatio-temporal feature extractor. The

utilize a multidirectional

extracted features are then aligned to classify emo-
tions. Yang et al.** use a combination of LSTM and
CNN networks to analyze spatio-temporal features
in raw EEG signals. The LSTM captures contextual
data, while the CNN identifies inter-channel corre-
lations via a 2D signal representation. Finally, Du
et al.*> develop an attention-based LSTM with do-
main discriminator (ATDD-LSTM) for spatial fea-
ture extraction across EEG channels. This approach
focuses on nonlinear relations among electrodes to
optimize EEG channel selection and minimize feature
discrepancies across different subjects and sessions.
In relation to graph-based approaches, they ex-
ploit the natural configuration of BCI devices to
model graph-like architectures. For instance, Liu
et al."® introduce a global-to-local feature aggrega-
tion network (GLFANet) that uses topological
graphs to analyze spatial and frequency domain
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features in EEG channels. The network employs
both global (graph convolutional blocks) and local
(convolutional blocks) learners to extract EEG sig-
nal features. The work described by Zhong et al.*’
focuses on left and right hemisphere coupling in
emotion recognition using a regularized graph neural
network (RGNN). They analyze local and global
EEG channel relations, finding pre-frontal, parietal,
and occipital regions notably informative. Song
et al.®® use a dynamic graph convolution neural
network (DGCNN) to model multichannel EEG
features, learning an adjacency matrix during train-
ing to represent relationships among EEG channels
for feature discrimination. Differently, Zhou et al.*
introduce a progressive graph convolution network
(PGCN) for identifying coarse and fine-grained
Their dual-graph module
encapsulates dynamic functional connections and
static spatial brain region data. Finally, Yin et al.”’
present a system combining graph convolutional
neural network (GCNN) and LSTM network to an-
alyze EEG signals. The GCNNs generate domain
features from DE processed signal segments, and the
LSTMs then extract temporal features and classify
emotions by channel relationship.

emotional features.

3. Proposed Method

The Empatheia system EEG
emotion recognition task using a reduced amount of
data. It can be divided into two modules: PRISMIN
atlas encoder and Empatheia classifier. The first

addresses the

module, discussed in Sec. 3.1, compresses EEG sig-
nals into atlases. These atlases serve as coarse visual
representations of the EEG signals. The second
module, presented in Sec. 3.2, performs the classifi-
cation of the generated atlases, effectively achieving
EEG emotion recognition. The architecture of the
Empatheia system is reported in Fig. 2.

3.1. PRISMIN encoder

The first step, typically adopted by many works in
the literature, involves direct EEG data pre-proces-
sing or feature extraction to remove signal artifacts,
e.g. ocular artifacts, or extract specific features from
the original data, e.g. extracting specific frequency
bands. In contrast, the Empatheia system takes a

different approach, conducting a pre-processing
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phase using the PRISMIN framework to transform
raw EEG signals into coarse spatio-temporal image
atlases that describe emotions. In particular, the
open-source PRISMIN framework®® encodes data,
such as attributes and user states, into compact and
lightweight 2D images, making them easy to ma-
nipulate and transfer. The framework offers methods
to encode session data into image atlases, including
runtime accessories that can be employed in inter-
active sessions to capture and encode specific attri-
butes. Regarding signal compression, as detailed in
Fanini and Cinque,?® the temporal layout combined
with lossless image formats in scenarios where
smooth variations of neighboring pixels are present”’
produce optimal compression ratios. This is also
performed by maintaining computationally simple
and fast encoding/decoding routines that may op-
erate on both CPUs or GPUs.

In the presented work, the main focus is to design
an encoder based on PRISMIN that can transform
large EEG datasets into compact, time-driven image
atlases.”” To achieve this, PRISMIN allows to define
the prism class, i.e. a custom data encoder. Specifi-
cally, a given prism P provides:

e A refract method to define how incoming data are
encoded as well as the layout adopted in the final
image atlas. In this work, we use spatio-temporal
atlases, although different methods can be used to
implement the refract method.

o A bake method to write the actual atlas on disk,
using specific image format and bit-depth. This
can be implemented as on-demand routine, for
instance, to control write accesses on server-side
storages within service-based deployments of
PRISMIN framework.

To adapt P to handle EEG signals, they must be
described so that the refract method can accept
them. Intuitively, EEG records are represented by
streams of voltage values captured by the C channels
of a BCI device over a given time period T for a
specific EEG session. Formally, a session S contain-
ing the brain signals can be defined via the following
matrix:

S(c,t) = v, (1)

where v € R corresponds to the voltage value of a
given channel ¢ € C' at a given time instant ¢t € T
With this formalization, the session matrix S can be
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Fig. 2.

Architecture overview of the Empatheia system. The PRISMIN encoder transforms EEG signals associated with

emotions into 2D atlases, which are then utilized by the Empatheia classifiers for emotion recognition.

used to define a time-driven layout for the generated
atlases, where rows and columns of the encoded
image represent, respectively, the channels and time
frames of the EEG signals.

A quantization error is indeed introduced by
refraction of voltages (values v) on both SR and GS.
Quantization error in PRISMIN depends on this
specific scenario on: (1) voltage ranges, (2) color
space adopted, and (3) image bit-depth. An in-depth
analysis is described in Fanini and Cinque.?®°? Spe-
cifically, given A, as voltage range and bit-depth b to
encode incoming values, the maximum quantization
errors for GS (eqg) and SR (egg) are given by

A,

€as = + €SR — iﬁ (2)

v .
2b+1"7

After defining the refract and bake methods, a
quantized voltage session prism P, can be initialized

to encode EEG signals into atlases. By applying P,
over the EEG dataset, the atlases A = (A}, As, ...,
A,) can be computed, where n corresponds to the
number of samples in the EEG collection. Examples
of P,-generated atlases using two different color
spaces are shown in Fig. 3.
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Fig. 3.

(Color online) Examples of P, -generated atlases
using (top) a SR color space and (bottom) GS. Each row
represents a different EEG channel, pixel color is the
encoded voltage over time (z-axis).
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3.2. Empatheia classifier

To perform EEG emotion recognition on the encoded
atlases A, it is necessary to implement a classifier.
Given the novelty of the approach and the 2D image
representation of A, a natural choice for classifica-
tion would be the implementation of a CNN model.
However, the atlases encode spatio-temporal char-
acteristics of a given emotion, suggesting that
other architectures, such as RNN-based or trans-
former-based approaches, could also be effective. In
this context, several models that can serve as
Empatheia classifiers are described in the following
sections.

3.2.1. Conw classifier

The first classifier, depicted in Fig. 2(a), is a simple
CNN architecture since the encoded EEG signals are
effectively transformed into images. Specifically, it
consists of two convolutional layers, each followed by
batch normalization and max pooling operations, as
well as the ReLU activation function, which is de-
fined as follows:

xz if x>0,
0 otherwise.

o ={ 3)

The peculiarity of these convolutions lies in their
kernel size, which is large enough, e.g. 16 x 16, to
capture temporal aspects of the atlas. Moreover,
these layers are responsible for extracting feature
maps from the input atlases, which are then classi-
fied, after a flattening operation, using three dense
layers. The latter comprises fully connected layers
interleaved with dropout layers to enhance the ab-
straction capabilities of the model. Furthermore, the
first two dense layers employ a ReLU activation
function, while the last one uses a softmax function
to compute the probability distribution over the
available emotions via:

evi

- Zle en’

where z; indicates the ith class score, K corresponds to

(4)

o(z);

the number of classes, i.e. the emotions, while x; is
used to normalize the obtained score over all the
available classes. Finally, the model is trained using
the categorical cross-entropy loss, which is defined as

2450024-7
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follows:
K
Leg=— Z yi log y;, (5)

where y; and §; correspond to the ground truth and
predicted class probability, respectively, while K is
the number of classes.

3.2.2. ConvLSTM classifier

The second classifier, shown in Fig. 2(b), takes in-
spiration from methods that combine CNN and RNN
models to classify spatio-temporal characteristics of
EEG signals.*>** Differently from the first model, the
ConvLSTM uses three convolutions, which include
standard, depth, and separable convolutions. Addi-
tionally, to fully exploit the temporal aspect encoded
in the atlases A, the feature maps generated by these
layers are analyzed through a bidirectional LSTM
layer.”® This LSTM implements forward and back-
ward layers that inspect the provided input in both
directions. Regardless of the data flow direction, an
LSTM contains memory cells with input, forget, and
output gates, as well as cell and hidden states. For-
mally, the LSTM at a given time step t and the
previous hidden state h;_; is defined as

ir = o(Wi - [hi1, 2] + b)), (

fi=o(Wg - [hy_y,24] + by), (7
(
(

Oy = U(Wo : [htflvmt] + bo)a
g =fiOq 1 +i O,
h‘t = Oy @ tanh(ct), (10

where o is the sigmoid activation function; W;, W,
W,, and b;, by, b, indicate the weight matrices and
bias terms for the input, forget, and output gates,
respectively; [h;_;, 2] is the concatenation of the
previous hidden state h;,_; and the input at time step
t; © denotes element-wise multiplication; ¢, and ¢
correspond to the updated and candidate cell state at
time step t, respectively; while tanh is the hyperbolic
tangent activation function. Finally, the model is
trained using the same categorical cross-entropy loss
described in Eq. (5).

3.2.3. ConvGRU classifier

The third classifier, represented in Fig. 2(c), follows
the same structure as the ConvLSTM introduced in
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Sec. 3.2.2 and is trained using the categorical cross-
entropy loss presented in Eq. (5). However, instead
of a bidirectional LSTM layer, ConvGRU exploits
the gated recurrent unit (GRU), another type of
recurrent neural network that can handle temporal
data but has fewer parameters than the LSTM and
can often perform similarly. In particular, the GRU
has simpler memory cells with update and reset
gates, as well as candidate and hidden states, that
are formally defined as follows:

2z, = o(W, - [hy_y, 3] + D), (11)
r, = o(W, - [he_1, %] + b,), (12)
hy = tanh(Wy, - [r, @ hy_y,z,]) + by, (13)
hy=(1—2)®h1+20h, (14)

where o is the sigmoid activation function; W,, W,
Wy, and b,, b,, b, are the weight matrices and bias
terms for the update gate, reset gate, and candidate
cell state, respectively; [h,_1,z;] is the concatenation
of the previous hidden state h;,_; and the input at
time step t; ® denotes element-wise multiplication;
while tanh represents the hyperbolic tangent acti-
vation function.

3.2.4. Vision transformer

The last classifier, shown in Fig. 2(d), is a fine-tuned
version of the Vision Transformer (ViT).”* The ViT
model, inspired by the NLP transformer, splits the
input images into patches to provide a sequence of
linear embeddings given as input to a transformer,
the same way as tokens in NLP applications. Start-
ing from the encoded atlas A as a 2D image
x € REXWxC it is handled into a sequence of flat-
tened squared patches x, € RV*(P “0), where H,W
are the image height and width, respectively, C
represents the number of channels, P is the dimen-
sion of each patch, and N = % is the total number
of patches. To embed each patch into the model di-
mension D, a trainable linear projection F is applied,
thus obtaining an embedding sequence z,, which is
defined as

Zo = [Xelass; XII,E; sz; e ;xéVE] + Epo, (15)

where E € RP*C)xD and B, € RWHXD Further-
more, a learnable 1D position embedding is added to
each patch embedding to retain positional informa-
tion, then a learnable class embedding (z{ = X, is

2450024-8

prepended to the patches sequence, representing the
image label y (Eq. (18)) at the output (z%) of the L-
layers transformer encoder. The resulting sequence of
embedding vectors is the input of the transformer.
The transformer uses a constant latent vector of size
D and is composed of alternating layers of Multi-
headed Self-Attention (MSA)”” and a two-layer
perceptron, both preceded by a Layernorm (LN)
layer and followed by a residual connection. Finally,
a classification head, implemented as a linear layer, is
attached to zY. Formally, the transformer blocks are
defined as follows:

z; = MSA(LN(z¢-1)) + 21, (16)
z) = MLP(LN(z})) + 2, (17)
y = LN(z9), (18)

where £ = 1... L. Finally, the model is trained using
the same categorical cross-entropy loss described in

Eq. (5).

4. Experimental Results

This section assesses the effectiveness of the proposed
approach in EEG emotion recognition. In detail,
Sec. 4.1 introduces the public dataset used to eval-
uate the Empatheia system. Section 4.2 reports the
implementation details required to reproduce the
experiments. Section 4.3 examines the performance
of the PRISMIN atlas encoder. Finally, Sec. 4.4
evaluates the Empatheia classifier through ablation
studies and a state-of-the-art comparison.

4.1. Dataset

The dataset used to train and test the Empéatheia
system is the SEED,?* a public collection focusing on
the EEG emotion recognition task. The dataset is
composed of 15 subjects, 7 males, and 8 females, all
right-handed students of Shanghai Jiao Tong Uni-
versity. A total of 6 clips have been shown to the
participants of the experiment, and each clip is as-
sociated with negative, neutral, and positive emo-
tions. Finally, each emotion has 5 corresponding
emotional clips. Each trial comprehends a 5s hint
before each clip, a roughly four-minute-long clip,
followed by 45 s for self-assessment, and is concluded
with 15 s of rest. The dataset is provided already pre-
processed by the authors. In detail, the original EEG
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data were downsampled to a sampling rate of 200 Hz.
Then, visual inspection of the data was performed on
the new EEG signals, and recordings significantly
affected by electromyographic (EMG) and electro-
oculographic (EOG) interferences were manually
excluded. EOG data, recorded during the experi-
ments, were also utilized to identify blink artifacts
within the recorded EEG data. To mitigate noise
and remove artifacts, the EEG data have been pro-
cessed using a bandpass filter with a range of 0.3—
50 Hz. Subsequently, to the preprocessing process,
EEG segments corresponding to the duration of each
movie were extracted. Each channel of the EEG data
was then divided into nonoverlapping epochs of
equal length, i.e. 1s. For a single experiment, ap-
proximately 3300 clean epochs were obtained.

The detailed acquisition protocol for a single trial
is summarized in Fig. 4.

Regarding the acquisitions, EEG signals were
collected using the 62-channel ESI NeuroScan Sys-
tem at a sampling rate of 1000 Hz, according to the
international 10-20 system for 62 channels. Fur-
thermore, the authors down-sampled the signals to
200 Hz and applied a 0-75Hz bandpass frequency
filter. The resulting EEG signal segments correspond
to the duration of each clip; therefore, their length
can slightly differ when considering distinct
segments.

4.2. Implementation details

The Empétheia system was implemented using the
PyTorch framework.” All experiments were per-
formed using 80/10/10% splits for training, valida-
tion, and test sets, respectively. All models were
trained using the AdamW optimizer for 100 epochs
using the same hyper-parameters, i.e. 1e—03 learning
rate and a batch size of 64. Standard classification

Hint of start P’ Movie clip H dbh:;;l![l;cn " H Rest

5 sec 4 min 45 sec 15 sec

Trial k-2 Trial k-1 H Trial k h Trial k+1 H

Fig. 4. Detailed protocol used during experiments on
SEED dataset.

Trial k+2 ‘
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metrics, i.e. accuracy, precision, recall, and F1-score,
were employed to assess the system.

The experiments were executed using an AMD
EPYC 7301 16-Core Processor with 64 GB of RAM
and an RTX QUADRO 6000 with 24 GB of RAM.

4.3. PRISMIN encoder evaluation

The first component to be evaluated is the PRISMIN
encoder tasked with the atlas generation. In partic-
ular, since the primary focus of the encoder is to
reduce the SEED dataset size, its assessment
revolves around the compression rate (C-Rate) of the
input dataset. To achieve this goal, this paper
explores the effectiveness of two different encodings,
i.e. linear GS and SR mappings, during the imple-
mentation of the refract and bake methods discussed
in Sec. 3.1. The resulting compressed datasets are
reported in Table 1. In detail, for each sample trial in
the SEED collection, the devised PRISMIN encoder
generates a PNG atlas containing either its GS or SR
encoding. The resulting atlas represents the entire
EEG trial and has a final shape of 62 x 10,800,
corresponding to the number of channels and re-
cording length of the captured EEG signals. Note
that the width of the generated atlases depends on
the corresponding session length. Therefore, to en-
sure that all image-encoded signals have the afore-
mentioned shape, the atlases are cropped on the left
and right sides by up to 10% of their width. These
portions are generally less relevant for emotion rec-
ognition as they are associated with the start and
end of an EEG acquisition. From this procedure, the
PRISMIN encoder effectively constructs two new
datasets, i.e. Dgg and Dgg, corresponding, respec-
tively, to the GS and SR encodings, that both
maintain the number of samples of the original
SEED dataset, i.e. 675. However, due to the per-
formed compression, the resulting collections manage

Table 1. Dataset reduction using PRISMIN encoding.

D Baseline C-Rate Augmented C-Rate
Dgs 998 MB 6.9% 744 MB 9.2x
Dsr 670 MB 10.3x 907 MB 7.6x

bSource code is available at: https://github.com/Prometheus-Laboratory /2024 _prismin.
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to significantly reduce the original dataset size by a
factor of 10.3x and 6.9x, attesting to a disk space of
670 MB and 998 MB for the GS and SR encoding,
respectively.

The direct conversion of the SEED dataset using
the described PRISMIN encoder effectively reduces
the collection size. Despite that, the generated
atlases depict a coarse representation of the original
EEG signals and do not allow deep learning models
to learn the emotion recognition task. What is more,
even works analyzing EEG signals from the SEED
dataset tend to suffer from this issue, which is gen-
erally addressed by applying a data augmentation
strategy through slicing of the original record-
ings.*%"% Thus, following this rationale, starting from
the beginning of the generated atlases, they are se-
quentially split into smaller ones by extracting sub-
frames of shape 62 x 1000, as depicted in Fig. 5, with
a 200 pixels overlap on the z-axis among subsequent
sub-frames. This approach, already used in different
literature works,>¢:3%-%6
serve middle information among subsequent frames,

is adopted to partially pre-

limiting emotions cut-off. With this configuration,
the resulting Dgg and Dgr datasets, used to evaluate
the Empatheia classifiers, contain 9450 samples in-
stead of 675 and enable the implemented models to
perform emotion recognition, as reported in Sec. 4.4.

Even after the reported data augmentation strat-
egy, Dqg and Dgp, still considerably reduce the original
SEED dataset size by factors of 9.2x and 7.6 x for the
GS and SR encodings, respectively. Interestingly, for
the GS encoding, when considering smaller image
portions, the PRISMIN encoder further compresses
the atlases, resulting in an even smaller collection.
This outcome is possibly due to the reduced amount of
noise in the GS sub-frames and suggests that addi-
tional encoding strategies can be explored in the fu-
ture to improve the atlas generation. Summarizing,

the PRISMIN encoder generates coarse atlases con-
taining emotions from EEG signals and significantly
reduces the SEED dataset size with both GS and SR
encodings even when applying a data augmentation
strategy, thus satisfying the need for a smaller col-
lection to train different types of deep learning models.

4.4. Empatheia classifier evaluation

This section presents ablation studies and a state-
of-the-art comparison to demonstrate the effectiveness
of the Empétheia system. Specifically, the former is
discussed in Sec. 4.4.1, which examines various
aspects of the implemented architectures. The litera-
ture comparison is presented in Sec. 4.4.2.

4.4.1. Ablation study

Extensive experiments were performed to fully
evaluate the Empdtheia classifiers as they are being
applied to a novel input, i.e. the PRISMIN generated
atlases. Specifically, ablation studies have been con-
ducted on both GS and SR encodings, i.e. datasets
Das and Dgg, with different kernel sizes
(K € {3,5,16}), learning rates (LR € {le—3, 2e—3,
5e—4}), and, for recurrent models, hidden units
number (U € {30,50,70}). Regarding the ViT
model, the study has been conducted with different
learning rates (LR € {le—4, le—5, le—6}) and
number of heads (H € {8, 16, 32}) using a 16 x 16
patch size, and a 12-layers transformer encoder. The
results obtained on the development set are reported
in Table 2 for the Conv classifier, Tables 3—5 for the
ConvLSTM classifier, Tables 6—8 for the ConvGRU
classifier, and Table 9 for the ViT classifier. The best
model in each table for the GS encoding is
highlighted in green, while the best for the SR is in
blue.

Fig. 5. Data augmentation strategy example.
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Table 2. Conv classifier ablation.

D K LR Acc Prec  Recall F1

Dgs 3 1le=3 69.7% 70.5% 69.7% 70.1%
Dsr 3 le—-3 66.6% 65.9% 66.6% 66.3%
Dgs 3 2e-3 581% 57.0% 58.0% 57.5%
Dsp 3 2e-3 71.1% 71.5% 71.1% 71.5%
Dgs 3 be—4 635% 67.7% 63.5% 65.6%
Dsp 3 be—4 T71.6% 71.3% 71.6% 71.5%
Dgs 5 le—3 66.8% 66.9% 66.8% 66.9%
Dgr 5 le=3 70.6% 72.6% 70.7% 71.6%
Dgs 5 2e-3 57.1% 71.8% 57.1% 63.6%
Dsp 5 2e-3 622% 72.4% 62.8% 67.3%
Das 5 5¢—4 68.9% 69.6% 68.9% 69.3%
Dsp 5 be—4 T71.1% 71.5% 71.1% 71.3%
Dgs 16 1le—3 63.4% 64.7% 63.4% 64.1%
Dy 16 le=3 71.7% 728% 71.7% 71.3%
Dgs 16 2e—3 54.8% 60.4% 54.8% 57.4%
Dgp 16 2e—3 64.6% 65.7% 64.6% 65.1%
Dgs 16 be—4  65.1% 65.9% 65.1% 65.5%
Dgp 16 bHe—4 67.1% 69.5% 67.1% 68.3%

The choice of using a convolutional approach for
extracting the features from the atlas comes from the
benchmark presented in Avola et al°” In such
benchmark, raw EEG signals have been tested with
vanilla CNN, LSTM, and GRU, highlighting that
CNNs achieve the best accuracy with such type
of data. As observed in the various tables, all

Table 3. ConvLSTM classifier ablation, LR = le — 3.

D K U Acc Prec Recall F1

Des 3 30 77.3% 77.5% 77.3% 77.4%
Dsr 3 30 73.7% 73.4% 73.8% 73.6%
Des 3 50 791%  797%  791%  79.4%
Dsr 3 50 75.4% 75.5% 75.1% 75.3%
Des 3 70 80.1% 80.1% 80.1% 80.1%
Dsr 3 70 76.4% 75.8% 76.1% 76.0%
Des 5 30 77.7% 78.5% 77.8% 78.2%
Dsr 5 30 74.5% 74.3% 73.9% 74.2%
Das 5 50 77.5% 78.0% 77.6% 77.8%
Dsr 5 50 74.5% 73.8% 73.7% 73.8%
Des 5 70 74.8% 74.2% 73.9% 74.0%
Dsr 5 70 71.6% 70.2% 70.2% 70.2%
Des 16 30 80.0% 80.6% 80.0% 80.3%
Dsr 16 30 76.4% 76.3% 76.0% 76.2%
Das 16 50 79.7% 79.5% 79.8% 79.6%
Dsr 16 50 76.4% 75.3% 75.8% 75.5%
Des 16 70 82.1% 82.0% 82.1% 82.1%
Dsr 16 70 77.6% 77.8% 77.7% 77.8%

Spatio-Temporal Image-Based Encoded Atlases

Table 4. ConvLSTM classifier ablation, LR = 2e—3.

D K U Acc Prec Recall F1

Decs 3 30 75.9% 76.4% 76.0% 76.2%
Dsr 3 30 62.1% 62.2% 62.1% 62.2%
Des 3 50 78.6% 78.6% 78.6% 78.6%
Dsr 3 50 69.5% 69.5% 69.4% 69.5%
Dgs 3 70 77.0% 77.2% 77.0% 77.1%
Dsr 3 70 68.1% 68.3% 68.0% 68.2%
Dcs 5 30 75.6% 75.5% 75.7% 75.6%
Dsr 5 30 66.8% 66.8% 66.9% 66.8%
Dcs 5 50 75.0% 75.0% 75.0% 75.0%
Dsr 5 50 66.3% 66.3% 66.3% 66.3%
Dgs 5 70 77.8% 78.2% 77.9% 78.0%
Dsr 5 70 68.8% 69.2% 68.8% 69.0%
Des 16 30 74.0% 74.3% 74.1% 74.2%
Dsr 16 30 65.4% 65.7% 65.5% 65.6%
Des 16 50 77.2% 77.8% 77.2% 77.5%
Dsr 16 50 68.3% 68.8% 68.2% 68.5%
Das 16 70 76.8% 76.6% 76.8% 76.7%
Dsr 16 70 73.0% 73.2% 73.0% 73.1%

Empatheia classifiers achieve significant performance
on the emotion recognition task using the generated
atlases, reaching up to 83.5% accuracy. Regarding
convolutional-based classifiers, the Conv model falls
slightly behind the ConvLSTM and ConvGRU
architectures, reporting accuracy gaps of 13.8% and
8.6% on the Dqg and Dgy datasets, respectively.

Table 5. ConvLSTM classifier ablation, LR = 5e—4.

D K U Acc Prec Recall F1

Dcs 3 30 80.6% 80.7% 80.6% 80.7%
Dsr 3 30 73.9% 74.2% 74.0% 74.1%
Das 3 50 80.6% 80.5% 80.6% 80.6%
Dsr 3 50 76.3% 74.4% 74.4% 74.4%
Des 3 70 80.5% 80.9% 80.7% 80.8%
Dsr 3 70 75.5% 74.8% 74.5% 74.6%
Decs 5 30 78.7% 78.4% 78.7% 78.6%
Dsr 5 30 74.4% 72.5% 72.7% 72.6%
Dgs 5 50 82.8% 83.0% 82.9% 82.9%
Dsr 5 50 76.4% 76.7% 76.6% 76.6%
Des 5 70 76.1% 76.2% 76.2% 76.2%
Dsr 5 70 71.6% 70.4% 70.4% 70.4%
Decs 16 30 79.6% 80.0% 79.7% 79.8%
Dsr 16 30 75.4% 73.9% 73.6% 73.7%
Dgs 16 50 80.0% 80.7% 80.0% 80.3%
Dsr 16 50 75.4% 74.6% 73.9% 74.2%
Dgs 16 70 81.7% 81.8% 81.8% 81.8%
Dsr 16 70 76.0% 76.1% 76.1% 76.1%
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Table 6. ConvGRU classifier ablation, LR = le—3.

D K U Acc Prec Recall F1

Das 3 30 71.7%  75.3% 71.7% 73.5%
Der 3 30 67.8% 681% 67.8%  68.0%
Des 3 50 76.5% TT.T%  76.5% 77.1%
Dsr 3 50 733% 73.6%  74.3% 73.4%
Dgs 3 70 80.3% 80.7%  77.8%  79.2%
Dsr 3 70 77.5%  76.5%  75.5% 75.4%
Das 5 30 792% 79.5%  79.3% 79.4%
Der 5 30 763% 75.3% 77.0%  75.6%
Des 5 50 79.7%  79.7%  79.8% 79.8%
Dsr 5 50  77.0% 75.5%  77.5% 76.0%
Das 5 70 771%  8.0%  T7.1% 77.6%
Dsr 5 70 74.3%  73.9%  74.9% 73.9%
Des 16 30 793% 79.6%  79.4% 79.5%
Dgr 16 30 76.3% 75.4% 77.1%  75.5%
Des 16 50 77.7%  T7.8%  77.8% 77.8%
Dsr 16 50 753% 73.7%  75.5% 74.1%
Das 16 70 75.5% 76.6% 75.6% 76.1%
Dsr 16 70 753% 75.9%  75.3% 75.6%

The results obtained indicate that recurrent models
can better capture the time evolution of emotions
within the generated atlases through their recurrent
layers. However, the kernel size in convolutional
layers seems to play a fundamental role in achieving
higher performance. In fact, when examining
ConvLSTM and ConvGRU models, they tend to
consistently achieve higher performance with wider

Table 7. ConvGRU classifier ablation, LR = 2e — 3.

D K U Acc Prec Recall F1

Des 3 30 76.7% 76.5% 76.7% 76.6%
Dsr 3 30 71.9% 71.4% 72.0% 71.7%
Dgs 3 50 73.9%  T46%  T40%  T4.3%
Dsr 3 50 67.1% 67.8% 67.0% 67.4%
Des 3 70 66.1% 69.7% 66.1% 67.9%
Dsr 3 70 59.8% 63.4% 59.8% 61.6%
Des 5 30 73.0% 72.8% 73.0% 72.9%
Dsr 5 30 66.2% 66.2% 66.1% 66.1%
Das 5 50 73.8% 73.7% 73.9% 73.8%
Dsr 5 50 67.1% 67.0% 66.9% 66.9%
Deg 5 70 73.0% 74.9% 73.0% 73.9%
Dsr 5 70 66.2% 68.1% 66.1% 67.0%
Des 16 30 81.9% 82.5% 81.9% 82.2%
Dsr 16 30 74.3% 75.0% 74.2% 74.5%
Das 16 50 82.8% 83.0% 82.9% 82.9%
Dsr 16 50 75.1% 75.5% 75.1% 75.2%
Des 16 70 81.7% 82.1% 81.8% 82.0%
Dsr 16 70 71.6% 72.9% 71.6% 72.2%

Table 8. ConvGRU classifier ablation, LR = 5e—4.

D K U Acc Prec Recall F1

Des 3 30 822% 82.5% 822%  82.4%
Dgr 3 30 734% 73.7%  734%  73.6%
Des 3 50  79.6% 80.9% 79.7%  80.3%
Dsr 3 50  724% 79.4%  79.6%  79.5%
Dgs 3 70 835% 83.9%  83.6%  83.7%
Dgr 3 70  80.3% 78.1% 76.6%  77.3%
Dcs 5 30 778% 78.0% 76.8%  77.4%
Dgr 5 30 69.6% 72.6% 704%  T1.5%
Des 5 50 71.8% 73.5% 71.9%  72.7%
Dsr 5 50 65.1% 68.4% 65.9% 67.2%
Das 5 70 TT.0%  771.3% 1. 0%  T7.2%
Dgr 5 70 69.6% 72.0% 70.6% @ 71.3%
Des 16 30 755% 75.3%  75.6% 75.4%
Dsr 16 30 68.7% 70.1% 69.3% 69.7%
Des 16 50 722% 74.2%  72.3%  73.2%
Dsr 16 50 65.2% 69.1% 66.3%  67.6%
Das 16 70 81.0% 81.5% 81.0% 81.2%
Dgr 16 70 69.8% 75.1%  69.8%  72.4%

kernels (i.e. K = 16). This suggests that temporal
information is still captured by their convolutional
receptive fields. Other relevant hyper-parameters
that strongly impact the final performance include
the learning rate and, for recurrent models, the
number of hidden units. Regarding the learning rate,
it directly affects model convergence and shows im-
proved metrics when smaller LR values are

Table 9. ViT classifier ablation.

D H LR Acc Prec Recall F1

Dos 8 le—4 564% 51.5% 53.8%  52.6%
Dyr 8 le—4 57.1% 523% 54.3%  53.3%
Das 8 le—5 55.7% 52.4% 52.12% 52.78%
Dsr 8 le—5 60.0% 56.7% 57.5% 57.1%
Das 8 le—6 56.1% 53.3% 53.5% 53.4%

Dyn 8 le—6 537% 524% 520%  52.2%
Dgs 16 le—4  582% 55.2% 55.4%  55.3%
Dgn 16 le—4 59.7% 57.7% 58.4%  58.1%
Dgs 16 le—5 56.2% 53.8% 544%  54.1%
Dgn 16 le—5 588% 55.7% 56.6%  56.1%
Dgs 16 le—6 54.7% 52.8% 532%  53.0%
Dgn 16 le—6 527% 50.5% 51.3%  50.9%
Dos 32 le—4 57.3% 57.7% 56.9%  57.3%
Dgn 32 le—4 60.0% 59.0% 59.6%  59.4%
Dgs 32 le=b 55.0% 56.3% 54.6%  55.4%
Dgn 32 le=b 555% 56.0% 55.3%  55.6%
Dgs 32 le—6 60.0% 59.7% 59.6%  59.6%
Dgn 32 le—6 53.9% 53.0% 53.6%  53.3%
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associated with larger kernels and vice versa. This
result indicates that moving more slowly along the
error surface during training, i.e. with smaller LR
values (e.g. be—4), allows the model to thoroughly
analyze the broader receptive fields along with the
temporal information. On the other hand, moving
faster along the error surface, i.e. with larger LR
values (e.g. 2e—3), avoids fixating on details cap-
tured by the smaller kernels that might be associated
with noise since the atlases provide a coarse repre-
sentation of the EEG signals. With respect to the
hidden wunits size of recurrent architectures, i.e.
ConvLSTM and ConvGRU, a U value of either 50 or
70 appears to be the preferred size to capture all
emotion-related details within an atlas, especially
when combined with lower LR values, as can be
observed, among others, in Table 8. Regarding ViT,
it falls behind all Conv-based architectures, report-
ing an accuracy downgrade of 23.5% and 20.3%
compared to the ConvGRU on the Dgg and Dgg
datasets, respectively. However, the number of heads
seems to play a significant role in achieving higher
performance. In fact, as can be seen in Table 9, ViT
tends to achieve higher performance with a higher
number of attention heads (i.e. H = 32). This sug-
gests that a more complex model is likely to perform
better on the proposed encodings. The last aspect

affecting model performance is related to the type of

Neutral
Predicted label

Spatio-Temporal Image-Based Encoded Atlases

encoding used to create the atlases. Specifically, the
Conv model achieves higher performance when using
atlases from Dgr as input. On the other hand, re-
current classifiers, namely, ConvLSTM and Con-
vGRU, yield better metrics when evaluated on Dgg.
This suggests that the temporal evolution of emo-
tions, which is better captured by architectures with
recurrent components, is more effectively encoded
through GS mapping. This also implies that
employing alternative encodings could potentially
yield significantly different results based on the un-
derlying architecture.

Independently of the hyper-
parameters configuration, all Empétheia classifiers
demonstrate stable performance across all classifi-
cation metrics. In fact, accuracy, precision, recall,
and F1 show aligned values suggesting that the
models provide balanced performance without bias
towards any particular class, avoiding false positives
and effectively identifying positive instances for each
emotion. This indicates that the learned weights are
robust and can correctly abstract the emotion
represented in the PRISMIN-extracted atlas. This
outcome can also be observed in Figs. 6 and 7, which
depict, respectively, accuracy curves during training
using the best hyper-parameters for each model and
the confusion matrices computed on the test set. As
shown in Fig. 7, recurrent models maintain high

underlying

250

Neutral
Predicted label

Fig. 6. Test set confusion matrices, from left to right: results of Conv, ConvLSTM, ConvGRU, and ViT models.
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Fig. 7. Training set accuracies, from left to right: results of Conv, ConvLSTM, ConvGRU, and ViT models.
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performance on the development set throughout
their training. Conversely, ViT and Conv classifiers
suffer from more prominent overfitting and result in
reduced metrics compared to the other models. Re-
garding CNN; this behavior becomes more apparent
in the confusion matrices related to the test set,
where the Conv classifier makes more mistakes.
Concerning ViT, as pointed out in Khan et al.,”®
transformer architectures lack inherent encoding of
inductive biases (prior knowledge) for handling vi-
sual data. They typically require large amounts of
training data to discern the underlying modality-
specific rules. This increased complexity is a result of
the larger number of parameters, as shown in
Table 10. For this reason, the ViT model presents
the highest overfitting value (around 40%), requiring
much more data to generalize better. In fact, unlike
CNN-based models equipped with built-in transla-
tion invariance, weight sharing, and partial scale
invariance, transformer networks are required to
deduce these image-specific concepts from the pro-
vided training examples autonomously. Based on the
experimental results, the ViT architecture is proved
to be unsuitable for the scope of the work. In fact,
compared to other models, ViT not only exhibits the
lowest classification accuracy but also demands
heavy computational resources for parameter and
weight management, as reported in Table 10. Inter-
estingly, all models seem to mismatch samples that
are mostly associated with negative and neutral
emotions. This suggests that these categories share
common patterns in the generated atlases, indicating
that further exploration on the atlas generation by
the PRISMIN encoder might improve the final clas-
sification. Finally, Table 10 compares the best

configurations among the reported ablation studies
to underline the effectiveness of the devised solutions
in classifying the GS and SR encodings. As can be
observed, recurrent models achieve the highest per-
formance, with ConvGRU being the best model on
both Dgr and Dgg datasets. This demonstrates that
temporal information is preserved in the coarse re-
presentation of EEG signals transformed into
atlases, indicating that architectures with recurrent
elements can exhibit varying performance depending
on internal design but should be the preferred choice,
especially when applied to the proposed input re-
presentation.

4.4.2. State-of-the-art comparison

To conclude the evaluation of the Empatheia clas-
sifier, a state-of-the-art comparison was conducted
using the SEED dataset. The results are presented in
Table 11. As can be observed, the Empatheia system
achieves comparable performance with many exist-
ing works in the literature. This result is intriguing,
considering that the generated atlases represent a
coarse transformation of the EEG signals used by
other approaches. This suggests potential room for
improvement in the presented PRISMIN encoder.
Furthermore, existing solutions, even the highest-
performing ones, employ advanced yet complex
models to handle the fine-grained details of EEG
signals. However, this complexity comes at the cost
of increased computational demands and the need
for larger datasets. In contrast, as demonstrated in
Table 1, the Empatheia classifiers achieve the
reported performance with a dataset of lower quality
that requires less disk space to be stored, enabling

Table 10. Best ablation configurations comparison.

Model D Acc Prec  Recall F1 FLOPS* Params
Conv Das  69.7% 70.5% 69.7% 70.1% 0.1G 28.6M
Conv Den  TLT% 728% TL1% 71.3%

ViT Dgs  75.5% 75.4% 755% 75.4% 40.16G 86M
ViT Den  T2.6% T721% T722% 72.2%

ConvLSTM Dgg 82.8% 83.0% 82.9% 82.9% 0.037G 0.13M
ConvLSTM Dgp T77.6% 77.8% 77.7% 77.8%

ConvGRU Das  83.5% 83.9% 83.6% 83.7% 0.035G 0.14M
ConvGRU Dsr  80.3% 781% 76.6% 77.3%

Note: *Number of floating point operations per input.
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Table 11. State-of-the-art performance comparison.

Model Acc Prec Recall F1
MFBPST-3D*  96.79% — —
DNN-SAE?*® 96.77% — — —
TANN® 93.34% — — —
SVM?* 86.65% — — —
DBN? 86.08% — — —
ConvGRU 83.50% 83.90% 83.60% 83.70%
DTCW-SRU®®  83.13% 82.24% 81.53% 81.24%
ConvLSTM 82.80% 83.00% 82.90%  82.90%
LRM* 82.70% — — —
KNN3 72.60% — — —
Conv 71.70% 72.80% 71.70% 71.30%
ViT 60.00% 59.70% 59.60%  59.60%

Table 12. State-of-the-art computational comparison.

Model Params Time* GPU FLOPS

MFBPST-3D*  9M 33s RTX3090 —

DTCW-SRU®® 245M  2Ts RTX3090 —

ConvGRU 0.3M  0.66s Quadro 0.6G
RTX6000

Note: *Training time required to analyze a single trial.

the use of lightweight models. For instance, Table 12
compares the best-performing Empatheia classifier,
ConvGRU, with existing architectures from a
computational point of view. Not only is the pro-
posed model noticeably smaller than existing solu-
tions, but it also processes individual trials
significantly faster, i.e. about 45 times faster, using
similar hardware. This emphasizes the rationale be-
hind the Empatheia system and highlights the ad-
vantage of its PRISMIN encoder, which reduces the
dataset size and, consequently, improves computa-
tional efficiency in terms of model size and training
speed, thereby demonstrating the effectiveness of the
proposed approach.

5. Conclusion

This paper presents the Empéatheia system, which
performs emotion classification from EEG signals
using a reduced amount of data. The proposed ap-
proach consists of two main components: the PRIS-
MIN encoder and the Empatheia classifier. The

Spatio-Temporal Image-Based Encoded Atlases

PRISMIN encoder generates coarse atlases — 2D
images encoded using GS or SR mapping — to rep-
resent the captured emotion within EEG signals.
This representation significantly reduces the input
dataset, enabling the implementation of lightweight
models and faster training times. The second com-
ponent, the Empatheia classifier, utilizes DNNs tai-
lored to capture spatio-temporal characteristics
present in the atlases to perform emotion classifica-
tion. Multiple and different tests on public reference
datasets, i.e. SEED, have been performed to define
the most accurate network that could classify emo-
tions. The PRISMIN encoder reduced the dataset
size by up to 10.3 times. The Empatheia classifiers
achieved competitive performance in line with sev-
eral existing literature works. However, due to the
coarse nature of the atlas representation, they fell
short of the best-performing approaches. Neverthe-
less, these results suggest ample room for improve-
ment in both the PRISMIN encoder and Empatheia
classifier. Furthermore, ablation studies on various
Empatheia classifier hyper-parameters revealed sta-
ble performances across all experiments. The mixed
models exhibited higher metrics due to their internal
configurations, demonstrating the atlas ability to
accurately represent emotion from EEG signals. The
performed experiments showed that, among the
tested models, the ConvGRU is the one achieving
the best results.

As a potential avenue for future research, ex-
ploring additional encoding strategies is war-
ranted, given their varying performance depending
on the underlying architecture. This indicates that
new strategies for the PRISMIN encoder could
yield improved results. Additionally, implementing
more advanced models as Empatheia classifiers
could potentially compensate for the coarse repre-
sentation derived from the atlases, for example,
integrating the capability of recurrent archi-
tectures to capture temporal information with the
attention mechanism.’*%! Also, some recent tech-
niques, e.g. Neural Dynamic Classification (NDC)
algorithms,"> Dynamic Ensemble Learning (DEL)
approaches,’ Finite Element Machine (FEM),%
DA strategies,” Functional Connectivity (FC),%°
and self-supervised learning®” could provide a
guideline about possible strategies to apply to
compressed signals.
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