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ABSTRACT In several domains, systems generate continuous streams of data during their execution,
including meaningful telemetry information, that can be used to perform tasks like preemptive failure
detection. Deep learning models have been exploited for these tasks with increasing success, but they hardly
provide guarantees over their execution, a problem which is exacerbated by their lack of interpretability.
In many critical contexts, formal methods, which ensure the correct behavior of a system, are thus necessary.
However, specifying in advance all the relevant properties and building a complete model of the system
against which to check them is often out of reach in real-world scenarios. To overcome these limitations,
we design a framework that resorts to monitoring, a lightweight runtime verification technique that does not
require an explicit model specification, and pairs it with machine learning. Its goal is to automatically derive
relevant properties, related to a bad behavior of the considered system, encoded by means of formulas of
Signal Temporal Logic (STL). Results based on experiments performed on well-known benchmark datasets
show that the proposed framework is able to effectively anticipate critical system behaviors in an online
setting, providing human-interpretable results.

INDEX TERMS Machine learning, formal methods, runtime verification, monitoring, failure detection,
explainable AI.

I. INTRODUCTION
In many application domains, during its operation a system
produces several data streams, that may contain valuable
telemetry information. This is the case, for instance, with the
logs generated by web servers, smart sensors, and industrial
machinery. Such data can be used for tasks like predictive
maintenance and early failure detection, typically carried out,
due to their complexity, by means of machine or deep learn-
ing approaches. Despite their success, these methods hardly
provide any guarantees over their execution, a problemwhich
is exacerbated by their lack of interpretability, which is an
essential requirement in many critical domains, such as, for
instance, healthcare and avionics. In those scenarios, formal
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methods can, in principle, be used to automatically verify
software and hardware systems. However, the presence of
different operating conditions combined with the complexity
of the system components and their interactions make it quite
difficult to define in advance all the relevant conditions that
must be guaranteed (or avoided) during execution; moreover,
the specification of a complete system model against which
to check these properties may be simply impossible [1].

To overcome these limitations, various methods, that com-
bine classic exhaustive formal verification techniques with
model-based testing and monitoring, have recently been pro-
posed in the literature (see, e.g., [2], [3]). Here, we focus on
the latter. Monitoring [1] is a runtime verification technique
which is receiving more and more attention from the formal
verification community. It allows one to detect the fulfilment
or violation of a property (usually expressed by a temporal
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logic formula) by evaluating a single system run, without
requiring amodel of the system being considered. This makes
it naturally applicable to data streaming scenarios.

In this paper, we present a novel online system verifica-
tion framework that combines monitoring with supervised
machine learning and can be used for tasks like preemptive
failure detection over streams of data. The framework starts
its operation by considering a limited set of properties encod-
ing bad behaviors, to be monitored against the system, learnt
during a warmup phase and/or specified with the help of
domain experts. Then, during the runtime phase, by means of
an iterative refinement process, the framework autonomously
discovers new relevant properties, becoming able, over time,
to identify undesired behaviors in advance, and with a signifi-
cantly higher level of detail and coverage than the initial spec-
ifications. The process of property discovery and extraction is
carried out by means of an original bi-objective evolutionary
algorithm.

The distinctive features of the proposed solution are the
following:
• the framework poses as a monitoring-based tool to per-
form preemptive failure detection;

• its operation relies on the seamless and automatic inter-
action between formal methods and machine learning
approaches;

• thanks to its modularity and flexibility, the framework
can be adapted to different application domains and
contexts; in particular, Signal Temporal Logic (STL)
can possibly be replaced by other logical formalisms for
property specification;

• interpretability is a distinguishing feature of the frame-
work, as the produced responses can be easily read by
domain experts; this allows people to validate the overall
behavior of the framework, and to gain insights about the
causes that led to a failure;

• the framework works in an online fashion, and it can
adapt to changes in the behavior of the system, due, for
instance, to updates or upgrades.

The framework has been evaluated against three public
datasets, and it has shown to be able of actually predicting
in advance system failures. Results are on par with those
obtained from other state-of-the-art solutions that, however,
suffer from a lack of interpretability.

The rest of the paper is organized as follows. Section II
analyses related work. Section III provides background
knowledge about monitoring, STL, and evolutionary algo-
rithms. Section IV describes the implementation of the evo-
lutionary algorithm used in the property extraction phase.
Section V shows how such an algorithm has been incorpo-
rated in the proposed framework. The experimental evalua-
tion of the framework is reported in Section VI. Section VII
provides a critical assessment of the work done and dis-
cusses its strengths and limitations. The last section sum-
marizes the main contributions and outlines future research
directions.

II. RELATED WORK
Learning techniques for the real-time detection of unde-
sired behaviors (failures) of complex systems are getting
increasingly popular. A significant line of research makes
use of machine learning and deep learning, that realize fail-
ure detection via black-box models rather than by providing
explicit properties capable of characterizing bad behaviors of
a system. Despite their lack of interpretability, that makes
it difficult to understand and validate the resulting verdicts,
these approaches have been employed in several domains
due to their effectiveness. For instance, machine learning
strategies based on Logistic Regression (LR), Support Vector
Machine (SMV), Random Forest (RF), and K-Nearest Neigh-
bours (KNN) applied to the domains of aircraft components
post-flight reports, gearbox failures in industrial robots, high-
performance computing, and cloud systems are described
in [4], [5], and [6]. Deep learning solutions are typically
exploited to extract temporal relations in time series data,
as witnessed in [7], [8], [9], and [10], where Long Short-Term
Memory (LSTM) and Recurrent Neural Networks (RNNs)
are applied to the domains of job failures in large-scale
cloud data centers, turbofan engine degradation, hard drive
telemetry data, and heart atrial fibrillation detection on rou-
tine screening electrocardiogram (ECG) signals. A common
limitation of all these solutions is that historical data used
for the predictions are often defined through a time window
of fixed size, which may be inadequate when heterogeneous
failure behaviors have to be captured.

In the attempt to cope with the interpretability require-
ment, which is fundamental in many critical domains, some
approaches for the extraction of properties that distinguish
between failure and normal execution traces of a system
have been recently proposed in the literature [11], [12], [13],
[14], [15], [16], [17]. However, learning temporal properties
from the observed system traces is a challenging task that
involves intractable optimization problems [11]. To overcome
them, heuristics were suggested [11], [12], [13], [14]. In this
spirit, some ad hoc, domain-specific solutions have been
devised to assess the condition of electrical rotating machines
through real-time vibration measurement and analysis instru-
ments [18], to discover temporally-constrained alarm sets
from dynamic systems’ logs [19], to diagnose rolling bearings
faults through a hardware architecture with a reconfigurable
logic based on field programmable gate arrays (FPGAs) [20],
to detect system intrusions through temporal logic specifica-
tions [21], and to ensure the safety of synthesized policies for
robotics through model predictive shielding [22]. Nonethe-
less, a general technique, applicable to different domains and
contexts, is still missing. A step towards such a goal was
taken in [23], where an STL-based solution to the problem
of detecting ineffective respiratory effort in intensive care
patients, which includes a learning phase supporting some
adaptive behaviors, is outlined. Still, the generative data mod-
els employed in the learning phase are tailor-made, thus lim-
iting the flexibility and generality of the proposed solution.
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With the goal of generalizability in mind, approaches
explicitly aimed at combining the points of strength of
machine learning and formal methods have been recently
proposed. Specifically, in [15], [16], and [17], techniques
for the mining of STL properties that distinguish between
two different sets of time series data are presented. The
proposal in [15] relies on a genetic algorithm combined
with parameter learning through Gaussian process confi-
dence upper bound. The solution originally presented in [13],
and then extended with online learning in [16], exploits a
decision tree learner based on STL primitives. Finally, the
approach in [17] relies on a reinforcement learning-based
property extractor that combines data- and knowledge-driven
methodologies. Still, the aforementioned proposals signifi-
cantly differ from what is presented in this work, as they
are not designed to work iteratively, managing a pool of
properties in real-time. Beyond STL, in [24], a failure pre-
diction method for cloud data centers, based on message
pattern recognition via Bayesian probability, is described.
As for failure detection in cyber-physical systems, a Rip-
ple down rule-based (RDR) framework was proposed in
[25], that exploits a machine learning technique based on
the algorithm InductRDR [26]; the result is then main-
tained by domain experts, who refine the RDR knowledge
base.

A related field is that of specification mining, whose goal
is to generate/integrate the formal specification of a sys-
tem by analyzing its execution traces. Various approaches to
this problem have been proposed in the literature. In [27],
a Linear Temporal Logic (LTL) property template miner,
based on support and confidence thresholds, is devised.
A Bayesian inference-based probabilistic model that gen-
erates LTL task specifications from examples, by exploit-
ing a Markov Chain Monte Carlo algorithm, is outlined
in [28]. In [29], an algorithm to infer LTL specifications
by combining the representational power and interpretabil-
ity of temporal logic with the generalizability of inverse
reinforcement learning is proposed. The problem of mining
finite state automata to generate formal specifications in the
context of software applications and libraries is dealt with
in [30]. To this end, the authors make use of prefix tree
acceptors, language models based on recurrent neural net-
works, and clustering algorithms to merge similar automaton
states. Despite the relevance of specification mining, the
proposed solutions extract non-contrastive properties from
the observed executions of a system, and thus they cannot
be naturally applied to failure detection, where properties
able to discriminate between good and bad behaviors are
needed.

As a final remark, we would like to mention that the
solution described in detail in this paper was first outlined in
two short preliminary contributions [31], [32]. In this paper,
we fully work out the proposed framework, revise and extend
it in various ways with respect to its original formulation, and
largely improve its experimental evaluation.

III. BACKGROUND KNOWLEDGE
In this section, we recall some basic notions about monitor-
ing, STL, and evolutionary algorithms.

A. MONITORING
While classic verification techniques, like, for instance,
model checking [33], perform an exhaustive analysis of the
behaviors of a system, monitoring [1] aims at establishing
satisfaction or violation of a property by analyzing a finite
prefix of a single behavior (trace/run), and then issuing an
irrevocable verdict [1]. It is thus a lightweight technique,
but the gain in efficiency is paid in terms of expressivity:
monitorable properties are a subset of those expressible in
temporal logics commonly used for automated verification.

We say that a property is positively (resp., negatively)
monitorable if every trace satisfying (resp., violating) it fea-
tures a finite prefix that witnesses the satisfaction (resp.,
violation). A monitorable property is a property that is either
positively or negatively monitorable. Safety properties, infor-
mally requiring that ‘‘something bad will never happen’’,
are negatively monitorable, as their violation is witnessed
by a finite prefix exhibiting a violation; dually, co-safety
properties, stating that ‘‘something required will eventually
happen’’, are positively monitorable. Notably, there are
meaningful properties, like, e.g., ‘‘a good state is accessed
infinitely often’’ (an essential ingredient of strong fairness
requirements [34]), which are clearly neither positively nor
negatively monitorable.

Aswewill see in SectionV, the online nature ofmonitoring
makes it a natural candidate for the proposed framework.

B. SIGNAL TEMPORAL LOGIC (STL)
Signal Temporal Logic (STL) [35] extends propositional
logic with future modalities that allow one to express tempo-
ral properties over linear structures. It can be directly applied
to time series data characterized by continuous values.

Let N>0 (resp., N[t,t ′]) be the set of positive naturals (resp.,
naturals in between t and t ′, for all t, t ′ ∈ N) and Rn be the
n-dimensional Euclidean space over reals. A discrete-time
STL signal (or trace) is a function x : N→ Rn, for some
n ∈ N>0; a partial signal is a function x : N[0,t]→ Rn, for
some n ∈ N>0 and t ∈ N.1 We denote the length of a (partial)
signal x by len(x). For a signal x, it holds that len(x) = ∞,
whereas len(x) = t + 1 for a partial signal x : N[0,t] → Rn.
Let X (resp., X̄ ) be the set of signals (resp., partial signals).
If the codomain of a (partial) signal x is Rn, then n is the
dimension of x, denoted by |x|. Let x ∈ X ∪ X̄ . We denote by
xi, with 1 ≤ i ≤ |x|, the function from the domain of x to R
such that xi(t) is equal to the i-th component of x(t), for all t .
Moreover, we denote by x[j, k], with 0 ≤ j ≤ k < len(x), the
restriction of the function x to the domain N[j,k].

1As a matter of fact, STL allows one to deal with continuous-time signals
by simply redefining x as x : R≥0 → Rn, where R≥0 is the set of non-
negative reals. Here, we restrict ourselves to the discrete-time case given that
a sampling is required to represent time series data within a dataset.
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The syntax of STL is given by the grammar:

φ ::= ⊤ | xi ≥ c | ¬φ1 | φ1 ∧ φ2 | φ1UIφ2,

where x is a signal, 1 ≤ i ≤ |x|, c ∈ R, and I is an interval
of the form (a, b), (a, b], [a, b), or [a, b], with a ∈ N, b ∈
N ∪ {∞}, and a ≤ b. Modality U (until) is paired with an
interval I which defines its validity scope. For every t ∈ N
and interval I = (a, b), we denote by t + I the interval (t +
a, t + b) (the same for intervals of the forms (a, b], [a, b),
and [a, b]). Derived modalities are defined as usual. As an
example, modalities eventually and globally are defined as
FIφ = ⊤UIφ and GIφ = ¬FI¬φ, respectively.

STL pairs the standard Boolean semantics with a quantita-
tive one, which measures the robustness of the satisfaction of
φ by a signal x at a time t ∈ N.

The quantitative semantics of STL is inductively defined
as follows:
• ρ(⊤, x, t) = +∞;
• ρ(xi ≥ c, x, t) = xi(t)− c;
• ρ(¬φ, x, t) = −ρ(φ, x, t);
• ρ(φ1 ∧ φ2, x, t) = min{ρ(φ1, x, t), ρ(φ2, x, t)};
• ρ(φ1UIφ2, x, t) = maxt1∈t+I min{ρ(φ2, x, t1),
mint2∈[t,t1) ρ(φ1, x, t2)}.

The Boolean semantics of STL is defined on the basis of the
sign of ρ(φ, x, t):

x, t |H φ if and only if ρ(φ, x, t) ≥ 0.

Finally, given a partial signal x ∈ X̄ over N[0,t], the set
of completions of x is defined as C(x) = {x̂ ∈ X | x̂(t ′) =
x(t ′) for all t ′ ∈ N[0,t]}.

STL monitoring is formally defined by the function mon :
X̄ × STL → {⊤,⊥, ?} such that mon(x, ϕ) returns ⊤ iff
x̂, 0 |H ϕ for all x̂ ∈ C(x) iff ρ(ϕ, x̂, 0) ≥ 0 for all x̂ ∈ C(x);
⊥ iff x̂, 0 ̸|H ϕ for all x̂ ∈ C(x) iff ρ(ϕ, x̂, 0) < 0 for all
x̂ ∈ C(x); ? otherwise.
The choice ofSTL as the formalism for the specification of

the properties to monitor has various advantages. First of all,
STL allows one to directly deal with real values, still featur-
ing quite compact and interpretable formulas. Moreover, its
quantitative semantics provides one with an additional tool to
evaluate the behavior of the extracted formulas, a feature that
will be described in detail in Section IV.

C. MONITORING BOUNDED STL FORMULAS
Monitoring properties that refer to both the current and the
future behavior of a system is a challenging task since their
evaluation at a given time t may also depend on the observed
inputs at some time t ′ > t . In Section III-A and Section III-B,
we introduced the notion of monitorable properties and pro-
vided syntax and semantics of STL, respectively. To the
best of our knowledge, no tool supporting the monitoring of
arbitrary STL formulas is available. Luckily, in most appli-
cation domains, the properties to monitor can be expressed
by means of bounded-time STL (bSTL) formulas, and a tool
to deal with such a class of formulas has been developed in
[36]. Basically, the fragment bSTL constrains the interval I

associated with modality U to be finite, that is, I = [a, b],
with both a and b belonging to N (b = ∞ is excluded).

Let φ be a bSTL formula. By analyzing its syntactic
structure, one can compute a temporal horizon H (φ), that
intuitively represents the maximum number of (future) time
points that one must take into consideration to establish
whether or not φ is true. In the following, when evaluating
a bSTL formula φ, with temporal horizon H (φ), at a given
time t , the monitor will wait until time t + H (φ) is reached,
since at that time all the data necessary for the quantitative
evaluation of the formula and the possible formulation of a⊤
or ⊥ verdict have surely been observed. As an example, the
horizon of the bSTL formula φ = x ≥ 3U[0,3] x ≥ 5 is 3, and
thus only after 3 time units we can complete its (quantitative)
evaluation.

Formally, the temporal horizon H (φ) of a bSTL formula φ
is defined as follows:
• H (⊤) = 0;
• H (xi ≥ c) = 0;
• H (¬φ) = H (φ);
• H (φ1 ∧ φ2) = max{H (φ1),H (φ2)};
• H (φ1 U[a,b]φ2) = b+ max{H (φ1)− 1,H (φ2)}.

Notice that the monitor, when applied to a bSTL formula φ,
may output the truth values ⊤ or ⊥, as well as the undefined
verdict ? when the horizon of φ still has to be reached.
As previously mentioned, a ⊤ or ⊥ can always be reached
when the horizon is met.

Formally, bSTL monitoring is defined by the function
b-mon : X̄ × bSTL → {⊤,⊥, ?} such that b-mon(x, ϕ)
returns ⊤ if mon(x, ϕ) returns ⊤ and len(x) ≥ H (ϕ) + 1; ⊥
if mon(x, ϕ) returns ⊥ and len(x) ≥ H (ϕ)+ 1; ? otherwise.

FIGURE 1. eb-mon run on a partial signal x . The execution of b-mon over
all the suffixes of x longer than the horizon is also reported.

Now, we observe that, by the definition of monitor-
ing and the nature of bSTL formulas, monitors evalu-
ate bSTL formulas only based on prefixes of signals of
bounded length, the bound depending on the temporal
horizon of the formulas. As an example, formula ϕ =
F[0,3] temperature ≥ 3 states that there must exist at least
one time point where temperature ≥ 3 among the first 4
(i.e., H (ϕ) + 1) time points of the signal, that is, in the set
of time points {0, 1, 2, 3}. This limits the applicability of
monitoring in real-world scenarios where one is interested
in detecting the possible occurrence of a given condition at
any time point of a signal. This is the case, for instance, with
the property: ‘‘in 25 time units from now the temperature
will exceed 30 degrees’’. To accommodate for that, we extend
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the notion of monitoring by making it possible to apply it to
any time point, that is, to any suffix of a signal. To this end,
building upon function b-mon, we define function eb-mon :
X̄ × bSTL→ {⊤,⊥, ?} such that:

eb-mon(x, ϕ)=


? if len(x) < H (ϕ)+ 1∨

0≤i≤len(x)−1−H (ϕ)
b-mon(x[i, len(x)− 1], ϕ)

otherwise

We are interested in identifying signals exhibiting bad
behaviors, which are encoded by means of bSTL properties.
As noted before, a conclusive verdict can be issued for a sig-
nal only if it is longer than the horizon of the bSTL property
under consideration. Therefore, given a partial signal x and a
bSTL property ϕ, function eb-mon(x, ϕ) returns ? whenever
x is no longer than the horizon of ϕ. Otherwise, we monitor
(through b-mon) ϕ against all suffixes y of x longer H (ϕ): if
at least one such monitoring procedures returns ⊤, then so
does eb-mon(x, ϕ), meaning that the signal is considered a
bad-behaving one (see Figure 1).

Themonitoring tool we used to realize the above-described
approach is rtamt, a Python library for monitoring discrete-
and dense-time bSTL properties [36].

D. EVOLUTIONARY ALGORITHMS
Evolutionary Algorithms (EAs) are population-based meta-
heuristics inspired by the process of biological evolution and
genetics, that excel in the solution of combinatorial optimiza-
tion problems [37]. Unlike classic random search, EAs make
use of historical information to direct the search into the most
promising regions of the search space.

In nature, a population of individuals tends to evolve to
adapt to its environment. Similarly, EAs are characterized by
a population, where each individual represents a candidate
solution to a given optimization problem; each solution is
evaluated with respect to its degree of ‘‘adaptation’’ to the
problem through a single- or multi-objective fitness function.
The EA population iteratively goes through a series of

generations. At each generation, individuals chosen by a
selection strategy undergo a process of reproduction. Such a
selection strategy is the fundamental factor that distinguishes
one evolutionary based approach from another, although,
typically, individuals with a high degree of adaptation are
more likely to be chosen (elitism). In this way, the elements of
the population progressively evolve toward better solutions.
Reproduction involves the application, with a certain degree
of probability, of suitable crossover and mutation operators.
As a result, an offspring is generated, which is finally merged
with the previous population, and the cycle repeats until a
stopping condition is met, e.g., a condition based on a given
fitness threshold.

Crossover is the EA counterpart of natural reproduction,
by which the characteristics of two individuals are combined
by generating one or two offspring. As a general rule, a high
crossover probability tends to pull the population towards
a local minimum or maximum. Mutation applies random
changes to the encoding of the selected solution, with the goal

of maintaining genetic diversity in the individuals; it prevents
premature convergence of the algorithm to a local optimum,
thus allowing it to explore the search space more broadly.

In this work, we deal with a specific kind of optimization
task, that is, genetic programming. Such a technique evolves
programs starting from a population of random solutions [38].
Each individual is encoded by means of a computation tree,
where each leaf represents an input value (either a vari-
able or a constant) and internal nodes encode operators.
The output value is generated by the primitive encoded in
the root. Typical crossover/mutation operations applied on
computation trees are subtree exchange and node/leaf addi-
tion/removal/replacement.

As for the task of property extraction, we will rely
on a multi-objective evolutionary algorithm. The reason
is twofold. First, such an EA is able to simultaneously
follow different optimization goals, producing a set of
Pareto-optimal solutions as a result which one can subse-
quently combine. Second, it is a flexible approach, as it allows
one to customize the syntax of the generated formulas by
constraining the computation trees, e.g., enabling/disabling
specific operators or allowing only some kinds of combina-
tions among them.

IV. THE EVOLUTIONARY ALGORITHM
The Evolutionary Algorithm we are going to exploit relies on
DEAP (Distributed Evolutionary Algorithms in Python) [39],
a framework that provides practical tools for the prototyping
of custom evolutionary algorithms. In this section, we will
illustrate how the different components of the optimizer have
been developed.

The algorithm receives a set of finite traces X (all of the
same length) as input, then, it partitions each trace into a
normal behavior prefix and a failure behavior suffix, and,
finally, it generates a bSTL formula which is able of discern-
ing between the two cases.

A. POPULATION AND ITS INITIALIZATION
Each individual belonging to the population consists of a pair
(ϕ,w), where ϕ encodes a computation tree representing a
syntactically correct bSTL formula and w is its associated
normal behavior window length.

As for ϕ, it is generated following DEAP’s genHalfAnd-
Half method, which outputs a random tree with a maximum
height of 6, as suggested by Koza in his seminal work [40].
More precisely, half the time a tree whose leaves have all
the same depth is returned; in the remaining cases, different
leaves may have different depths.

The window length w is used to partition each trace x ∈ X
into a normal behavior prefix of length w and failure suffix
of length len(x)−w (see the definition of the fitness function
below). Note that, in the generation process of the individual,
a formula ϕ with a horizon H (ϕ) ≥ len(x) − w might
be obtained. In such a case, the individual is discarded and
another one is generated. The process is iterated until a valid
individual is obtained.
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B. NODES OF THE COMPUTATION TREE
A node of the computation tree may represent a constraint,
e.g., xi ≥ c, a bSTL formula whose outermost operator is
a temporal one, e.g., ϕU[a,b]ψ , or a Boolean formula like,
for instance, ϕ ∨ ψ , where ϕ and ψ are bSTL sub-formulas
which are represented, in their turn, as trees. A node may also
encode the following terminal values: (i) interval bounds of
a temporal operator, i.e., [a, b], with a, b ∈ N and a ≤ b,
(ii) signal identifiers xi, with 1 ≤ i ≤ |x|, and (iii) constants c
occurring in formulas, with c ∈ Dom(xi) for some i. All these
terminals are implemented by means of DEAP’s Ephemeral-
Constants. As for the length of the normal behavior window,
it is implemented as an EphemeralConstant w, with 0 < w <
len(x), where len(x) is the length of the traces x ∈ X (they
are all of the same length).

C. FITNESS FUNCTION
In order to evaluate an individual of the population, each trace
x ∈ X is logically partitioned into a good behavior prefix
x[0,w− 1] and a failure suffix x[w, len(x)− 1], following a
windowing approach which takes w as the length of the nor-
mal behavior window. A bi-objective fitness function is then
defined by making use of the rtamt monitoring algorithm
for bSTL.

Formally, the first objective measures how good a formula
ϕ is in discriminating between the normal behavior prefixes
and the failure suffixes. For each trace x and each formula
ϕ, let us define the numerical counterpart of eb-mon(x, ϕ) as
follows:

NUM (eb-mon(x, ϕ))=
{
1 if eb-mon(x, ϕ) = ⊤,
0 otherwise.

The first objective measure is defined as follows:

Acc(X , ϕ)

=

∑
x∈X

1− NUM (eb-mon(x[0,w− 1+ H (ϕ)], ϕ))

+
∑
x∈X

NUM (eb-mon(x[w, len(x)− 1], ϕ))

2 · |X |
,

It is worth noticing that, to maximize Acc(X , ϕ), a formula ϕ
should evaluate to ⊥ on the normal behavior prefixes and to
⊤ on the failure suffixes. In this respect, it is very important to
be able to evaluate a formula ϕ to⊤ or⊥ till the last instant of
the good behavior prefix of a trace x. To this end, we simply
extend the prefix with the first H (ϕ) points taken from the
failure suffix. Intuitively, the reason is that, otherwise, there
may be some failure patterns beginning on the prefix and
ending on the suffix, that would not be captured (? verdict).

The second objective measures the robustness of the for-
mula (normalized in the [0, 1] interval) by means of bSTL
quantitative semantics. As a preliminary step, at the begin-
ning of the execution of the genetic algorithm, every signal in
X is normalized in the [0, 1] interval so that ρ ranges between
−1 and 1. This step is handled implicitly and it does not alter
the constant value c of constraints xi ≥ c in the generated

output formula, which are still represented with their raw,
non-normalized value.

This second objective is defined as follows:

Rob(X , ϕ)

=

2 · |X | −
∑
x∈X

max
0≤i≤w−1

{ρ(ϕ, x, i)}

+
∑
x∈X

min
w≤i≤len(x)−1−H (ϕ)

{ρ(ϕ, x, i)}

4 · |X |
.

Since two objectives are taken into consideration, no single
best-performing solution can be directly selected from a given
population by means of the fitness function. Rather, a Pareto
front of optimal solutions can be identified, containing all
non-dominated solutions.2

As a final note, observe that including the window length
w in each individual allows each bSTL formula to define its
own (optimal) way of splitting the traces: we may indeed
expect different kinds of failure, captured by different formu-
las, to be characterized by different temporal extensions.

D. CROSSOVER
Given two parent solutions, the crossover operation generates
two new individuals. As for their computation trees, they
are generated by one-point crossover (DEAP’s cxOnePoint).
The operator randomly chooses a node in each individual
and exchanges the subtrees rooted at it. To avoid bloat, that
is, an excessive increase in mean program size without a
corresponding improvement in fitness, we placed a static
limit of 17 on the children’s height (DEAP’s staticLimit),
following once more a suggestion from Koza [40]. When an
invalid (over the height limit) child is generated, it is simply
replaced by one of its parents, randomly selected. As for
the associated window lengths, they are randomly chosen
from the parents. Observe that, in performing the crossover
operation, non-valid individuals can be generated concerning
the relationship between their horizon and normal behavior
window w; given an individual with formula ϕ, if H (ϕ) ≥
len(x) − w, we replace it by one of the parents, randomly
chosen.

E. MUTATION
As for the mutation operation, two operators have been
used among those available in DEAP, each one chosen with
uniform probability: mutNodeReplacement, that replaces a
randomly chosen node in the individual, and mutEphemeral,
that changes the value of a single constant used within an
individual (including, possibly, the window length). As we
did for crossover, in order to control bloat we impose a
staticLimit constraint equal to 17 to the height of the tree.
Moreover, it must be checkedwhether the resulting individual

2A set S of solutions for an n-objective problem with fitness function f =
⟨fi, . . . , fn⟩ is said to be non-dominated if and only if for each x ∈ S, there
exists no y ∈ S such that (i) fi (y) improves fi (x) for some i, with 1 ≤ i ≤ n,
and (ii) for all j, with 1 ≤ j ≤ n and j ̸= i, fj (x) does not improve fj (y).
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is valid, with reference to its horizon and window length.
If this is not the case, the original individual is returned.

F. SELECTION
To promote population diversity, we rely on the elitist selec-
tion strategy implemented in NSGA-III [41], based on the
concepts of reference points and niche preservation (we refer
the reader to [41] for details).

G. TERMINATION CRITERIA AND EXTRACTION OF FINAL
SOLUTIONS
Let us now focus on the termination criteria of the algorithm
and on the extraction of the final solution. As it is commonly
done, we impose an upper bound on the number of genera-
tions. In addition, we define an early stopping strategy, based
on the hypervolume measure. According to it, the execution
of the algorithm is interrupted when no improvement over the
hypervolume is observed for a given number of generations.
Intuitively, the hypervolume of a Pareto front measures the
volume of the search space, bounded by a given reference
point, that is weakly dominated by the points on the Pareto
front [42]. The assumption is that populations of heteroge-
neous and well-performing solutions are characterized by a
high hypervolume.

Since the EA provides a Pareto front of optimal individuals
(ϕ,w) as its result, to determine the final solution to output we
first filter the last population’s front keeping all individuals
whose formula ϕ has an accuracy greater than 0.5, that is,
better than a random classifier. Then, among such individuals,
we return the formula ϕ of the individual with the highest
hypervolume. If no formula with accuracy greater than 0.5 is
present in the final front, we return null.

H. OTHER HYPERPARAMETERS
The other hyperparameters used by the EA have been estab-
lished a-priori through grid search tuning performed over a
specifically developed synthetic dataset of binary labelled
bSTL traces, with the two classes characterized by a hetero-
geneous set of formulas. They are as follows: population size
= 100 (tested values [50, 100, 500, 1000]); crossover proba-
bility = 0.7 (tested values [0.5, 0.6, 0.7, 0.8]); mutation prob-
ability = 0.5/ 2

√
num_gen (tested values [0.3, 0.4, 0.5, 0.6]);

max generations = 500 (a rather conservative upper bound);
hypervolume early stopping = 25 generations (tested values
[10, 25, 50]). Note that mutation probability starts rather high
to ensure an effective exploration of the search space; then,
it rapidly decays with the number of generations to foster the
exploitation of the most promising solutions that have been
found. Although we recognize that, in principle, each dataset
has a different and optimal set of hyperparameters, as we
will see, the above values still provide a solid basis when it
comes to the overall framework performance, and can thus be
considered default choices.

Another hyperparameter, used by the EA in this specific
implementation, based on bSTL and rtamt, ismax horizon,

whose meaning is fairly natural. Intuitively, it sets an upper
bound on the horizon of the formulas that can be explored
within the EA. Enforcing a max horizon h has three effects:
first, formulas can capture phenomena that are temporally
extended at most h + 1 time points (in terms of the sam-
pling rate of the considered time series); second, given the
way rtamt (equivalently, eb-mon) works, at run time, when
evaluating the truth of a formula, the verdict will be ? for the
first h time points; third, it has been experimentally observed
that the execution time of rtamt grows more than linearly
with the size of the horizon of a formula. As we will see in
Section VI, multiple runs of the framework have been taken
into consideration in order to collect statistically relevant
data. Thus, to allow for faster experimentation, we set a small
value of 20 for max horizon on all datasets. Although this
might seem restrictive, it still allows us to extract meaningful
and well-performing properties. In a general usage scenario,
max horizon should be set by domain experts considering
the previously mentioned three aspects. The impact of the
horizon length on the framework performance is studied in
Section VI-C.

V. THE GENERAL FRAMEWORK
In the following, we describe the proposed framework for
preemptive failure detection. As already pointed out, it works
in an online fashion and it uses the rtamt monitoring
algorithm to check the incoming system trace for undesired
behaviors. As we will see, in terms of binary classification,
the occurrence of a bad behavior is considered as a positive
event. Thus, a false positive corresponds to an erroneous indi-
cation of a bad situation, while a false negative corresponds
to a missed detection. Bad behaviors are encoded by bSTL
formulas, which are collected in a monitoring pool P .

Operationally, we distinguish between two distinct execu-
tion phases of the framework: an optional warmup phase and
a runtime phase. In the first one, the pool P is populated with
an initial set of formulas encoding bad behaviors, following
a teacher forcing-like approach [43] on supervised training
data. In the second one, the framework online monitors the
system, starting with a non-empty pool P .

During both phases, P is iteratively refined by (i) adding
new formulas which are able to predict bad behaviors earlier
and with increased reliability and coverage, and (ii) removing
formulas that are ill-behaved or redundant. In addition to
this refinement process autonomously operated by the frame-
work, at any time, domain experts can, in principle, make
changes to the pool P , e.g., by manually specifying a new
formula encoding a bad behavior.3

A. WARMUP EXECUTION PHASE
In the warmup phase, we assume that a supervised learning
training dataset X is available, consisting of pairs (x, l),
where x represents a system execution trace of length len(x),

3It is worth noticing that this manual specification can complement the
warmup phase when limited supervised training data regarding the system
are available.
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Algorithm 1 Framework Execution (warmup phase)
input: initial pool P of formulas, training dataset X
1: for (x, l) ∈ X do
2: has_triggered ←⊥
3: S ← ∅
4: for i← 0 to len(x)− 1 do
5: y← x[0, i]
6: F ← {ψ ∈ P \ S | eb-mon(y, ψ) returns ⊤}
7: if F ̸= ∅ then
8: UPDATEPOOLINFORMATION(P \ S,F , y)
9: if l then
10: has_triggered ←⊤
11: Y ← generateTrainData(y)
12: φ← extractDiscrFormula(Y)
13: if φ ̸= null then
14: farφ ← 0
15: P ← P ∪ {φ}
16: end if
17: break
18: else
19: S ← S ∪ F
20: end if
21: end if
22: end for
23: if l and not has_triggered then
24: Y ← generateTrainData(x)
25: φ← EXTRACTDISCRFORMULA(Y)
26: if φ ̸= null then
27: farφ ← 0
28: P ← P ∪ {φ}
29: end if
30: end if
31: end for
32: return P

Algorithm 2 UPDATEPOOLINFORMATION

input: pool P of formulas, set F of failure formulas,
trace x

1: for φ ∈ F do
2: farφ ← (1− α)· newFAR(φ, x) + α · farφ
3: if farφ > farthr then
4: remove(φ,P)
5: end if
6: end for
7: handleRedundancy(P)

and l is its corresponding label (⊤, if x is a trace ending with
a failure; ⊥ otherwise). The overall idea is to monitor, one
after the other, all available system traces and, for each of
them, to simulate its point-by-point arrival.

The warmup phase is dealt with by Algorithm 1. The pro-
cedure gets, as input, a pool P of bSTL formulas and the set
X of training system traces.P may possibly be empty. This is
the casewhen no formula is inserted into it by domain experts.
For each training trace x, with label l, two variables are set:
has_triggered, which keeps track of whether the framework
has correctly identified the trace x as a failure one (when
l = ⊤); and a set S of suspended formulas. S includes

all formulas that, at some point, erroneously signalled a bad
behavior in x (when l = ⊥), and are thus ignored by the
framework for its operation on the remainder of trace x.

Next, the framework starts the iterative part of its exe-
cution, during which the trace x is monitored sequentially,
point-by-point. At each iteration i, with 0 ≤ i ≤ len(x)−1,
the system restricts its attention to the prefix y = x[0, i]
of trace x, and it computes the set F of formulas leading
to a violation (Algorithm 1, line 6). To this end, it executes
the monitoring algorithm rtamt that verifies each (non-
suspended) formula inP \S against the current trace y. Since
all formulas are meant to encode bad behaviors, we say that
a formula ψ leads to a violation if eb-mon(y, ψ) returns ⊤
(eb-mon is defined in Section III).

If at least one violation is detected, procedure UPDATE-
POOLINFORMATION is executed (Algorithm 2) to detect and
remove redundant or non-reliable formulas from the pool,
the latter being formulas issuing several false positives. The
procedure will be described in detail later.

Then, if x is an actual failure trace, P is updated (Algo-
rithm 1, lines 10–17) as follows. Training data to be used
for the extraction of a new formula are generated by the
function generateTrainData (Algorithm 1, line 11). The latter
perturbs the execution trace y by adding random Gaussian
noise as a counter-overfitting measure, thus producing a set
of augmented traces Y of size naug (global parameter of the
system). Next, function extractDiscrFormula (Algorithm 1,
line 12) extracts a (bSTL) formula φ that discriminates
between normal and failure (sub)traces obtained from those
in Y , by exploiting the evolutionary algorithm as described
in Section IV. Notice that φ may be null, an event that,
according to the proposed definition of EA, occurs if none
of the formulas in the final front has an accuracy greater than
0.5. If φ is not null, the initial false alarm rate (FAR) of φ
is set to 0, and the formula is added to P (Algorithm 1, lines
13–16).4 At this point, since the trace x was recognized as
a failure one by the framework, the execution on x is halted
(Algorithm 1, line 17), and the framework is applied to the
next trace in X .

On the contrary, if the framework detected a violation and
trace x was not a failure one, all involved formulas f ∈ F are
suspended, meaning that they are not going to be considered
by the framework for its execution on the remainder of trace
x (Algorithm 1, line 19). This prevents them from repeatedly
triggering the extraction of other ill-behaved formulas. Note
how formulas in F are not immediately removed from P ,
as such an approach would be too aggressive: their false posi-
tive detection might not be a generalized behavior, but some-
thing caused by random characteristics of trace x itself. As we
will see, false positive detections are still considered by the
procedure UPDATEPOOLINFORMATION for the maintenance of

4The False AlarmRate (FAR) is expressed as the ratio between the number
of negative events wrongly categorized as positive (false positives) and the
total number of actual negative events (false positives + true negatives).
Recall that, in our setting, a positive event represents a failure of the moni-
tored system. Formulas with a low FAR are to be preferred.
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the poolP . Suspended formulas are reactivated when the next
training trace is taken into account by the framework.

The iterative phase of the framework on trace x ends when
either x is correctly recognized as a failure trace by a formula
in P , or x has run out of points without any failure detection.
In the latter case, if trace x was a failure one, we force
the formula extraction process (Algorithm 1, lines 23–30).
As the last operation of the framework (Algorithm 1, line 32),
after being run on every training system trace, the obtained
monitoring pool P is returned.
We would like to conclude this account of the operation

of Algorithm 1 by observing that the warmup mode draws
inspiration from the teacher forcing technique employed in
deep learning [43]. Such an approach is used here to correct
both false positive (Algorithm 1, line 9) and false negative
(Algorithm 1, line 19 and line 23) framework predictions.
As an example, as we already pointed out, the framework
starts its execution with a possibly empty pool P of proper-
ties. Thus, in the most extreme case (P = ∅), it cannot iden-
tify any bad behavior of the system. In such a case, the failure
is ‘‘detected’’ by observing the training label associated with
the training execution trace, an event that forcedly triggers
the pool update process. Intuitively, the whole scenario can
be thought of as having an oracle assisting and instructing
the framework. It is to be expected that, over time, the pool P
becomes large enough so as to allow for the effective detec-
tion of bad behaviors of the system, progressively substituting
the oracle in its role of correcting false positive and false
negative predictions.

Let us focus now on the procedure UPDATEPOOLINFOR-
MATION(P,F , x) (Algorithm 2). Operationally, for each for-
mula φ ∈ F that leads to a violation, the corresponding
FAR farφ ∈ [0, 1] is updated. Formulas whose FAR crosses
a given threshold farthr (a global parameter of the frame-
work) are removed from the monitoring pool (Algorithm 2,
lines 3–4). As already pointed out, a FAR equal to 0 is
associated with every formula when added to P . Then, the
value of FAR is suitably updated according to the exponential
moving average with smoothing constant α, which takes into
account the ‘‘historical’’ FAR and the newFARof the formula
(Algorithm 2, line 2); the latter is considered to be 0 if the
triggered formula actually anticipated a failure, 1 otherwise
(false positive case). In the absence of detailed historical data,
assigning an initial FAR equal to 0 to the formulas in the pool
is a sensible choice, as they are either defined by a domain
expert or generated by the evolutionary algorithm, which in
turn optimizes accuracy and robustness measures.

The choice of relying on FAR for the pool maintenance
instead of on other ‘‘symmetric’’ performance metrics, say
F1-score, is twofold. First, formulas providing several false
detections may cause a degradation of the monitoring pool,
where other ill-founded formulas are added as a result of their
triggering. Thus, they should be avoided at all costs. On the
contrary, formulas leading to false negatives do not bring any
adverse effect on the monitoring pool, except for increasing
its size. The second reason pertains to the very nature of

Algorithm 3 Framework Execution (runtime phase)
input: initial non-empty pool P of formulas,

non-empty set G of good behavior training
traces, incoming system trace x

1: while true do
2: F ← {ψ ∈ P | eb-mon(x, ψ) returns ⊤}
3: if F ̸= ∅ then
4: handleRedundancy(P)
5: X ← generateTrainData(x)
6: φ← extractDiscrFormula(X )
7: if φ ̸= null then
8: farφ ← FAR(G, φ)
9: if farφ ≤ farthr then
10: P ← P ∪ {φ}
11: end if
12: end if
13: end if
14: end while

F1-score and similar metrics. To calculate it, it is necessary
to establish when a formula experiences both false positives
and false negatives. False positives, that is, false detections of
bad behaviors, can be easily recognized: if a formula triggers
and the forecasted bad event does not occur, that can be
unequivocally considered as a false positive. The detection of
false negatives is, instead, more subtle, and not well-defined.
Indeed, it is perfectly admissible for the system to encounter
a total failure not anticipated by any formula in the pool,
since they may correctly model completely different failure
scenarios. In that case, formulas should not be penalized for
the missed detection.

Finally, procedure handleRedundancy(P) (Algorithm 2,
line 7) removes redundant formulas, i.e., it detects groups
of formulas with similar behavior and keeps a single repre-
sentative for the entire group (the formula with the lowest
FAR or the newest one, if the FAR is the same). To detect the
similarity of two formulas, we rely on the Jaccard/Tanimoto
test [44] that compares the histories of failures flagged by the
formulas along the framework execution.

As a last remark, note how procedure UPDATEPOOLINFOR-
MATION, in the way it is used by Algorithm 1, allows us to
continuously update the monitoring pool P as the training
instances are processed, ensuring its quality.

B. RUNTIME EXECUTION PHASE
Let us now concentrate on the runtime phase of the frame-
work which is implemented by Algorithm 3. Here, the frame-
work is used to continuously monitor an incoming trace x,
generated by a system during its execution. Other than the
trace, the procedure gets in input a pool P of properties,
that can be assumed to be non-empty, either because it is
returned by Algorithm 1 or hand-filled by domain experts.
In addition, it takes into consideration a non-empty set G of
past good execution traces of the system. The latter can be
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FIGURE 2. A simplified example of the framework operation. Good and failure behavior subtraces are represented in green and red,
respectively.

either extracted from the training warmup data, if available,
or derived directly from the execution history of the system,
restricting to those portions that are sufficiently far from
failure events, following the suggestions of domain experts.

Algorithm 3 behaves as follows. At each time step, the
set F of formulas leading to a violation is computed (Algo-
rithm 3, line 2) by executing the monitoring algorithm
rtamt, which checks each formula in P against the incom-
ing system trace x. If at least one formula is triggered,
P is updated (Algorithm 3, lines 3–13). First, procedure
handleRedundancy is called, to identify and remove from
the pool P possible redundant formulas, exactly in the same
way as in the warmup phase. Next, training data to be used
for the extraction of a new formula are generated by the
function generateTrainData(x). Finally, function extractDis-
crFormula(X ) extracts a (bSTL) formula φ that discriminates
between normal and failure (sub)traces by using the EA.
If the formula φ generated by the EA is not null, its FAR
is computed with respect to the reference set of good traces
G and, if such a value is less than or equal to the threshold
farthr , the formula is added to the pool P .
As it can be noticed, the main differences between the

warmup and runtime phases are that, in the latter, there is no
teacher forcing, and thus the entire failure detection task is
carried out by means of monitoring; moreover, the FAR of a
formula is established only once by considering all traces in
the reference set G, being the latter fixed.
As a final remark, note that Algorithm 3 (runtime)

can, in principle, be run independently from Algorithm 1
(warmup), if there is at least one property in P and a set
of good traces G of the considered system is available. This
allows one to use the framework in a runtime setting even in
the absence of supervised training data, as long as at least
one failure property has been provided by domain experts
and some (portions of) unlabeled past execution traces of the
system, that express good/normal behaviors, are accessible.

An intuitive account of the operation of the framework is
depicted in Figure 2. The framework is first attached to a trace
x generated by the system for its runtime monitoring, with a
pool P containing just the formula φ = F[7,9]y < 3 (left
picture). Function eb-mon(x, φ) is run against the incoming
trace and, specifically, b-mon(x[0, 9], φ) identifies a failure
occurring at time point 7. This leads to the extraction of a
new formula. To this end, trace x[0, 7] is augmented, and

then the EA is run on the set of resulting traces. In the middle
picture, just for illustrative purposes, an exemplary splitting
of the augmented traces based on a window length w = 4 is
reported. Each trace is partitioned into a good behavior prefix
and a failure suffix. For formula evaluation purposes, in the
EA each subtrace is considered as to be starting from index 0.
As a result, the formula ψ = F[0,2]y < 5, which is able
to distinguish between the augmented prefixes and suffixes,
is generated and added to the pool P . Finally, a subsequent
part of the operation of the framework is described (right
picture) Here, the recently discovered formula ψ identifies a
failure occurring at time point 53 (b-mon(x[51, 53], ψ) = ⊤).
Without such a formula, φ would have detected a violation
only with respect to time point 58.

For the sake of convenience, all the global parameters of
the framework are listed in Table 1, with an intuitive account
and a short description of their expected behavior.

VI. EXPERIMENTAL EVALUATION
In this section, we give a detailed account of the experimental
evaluation of the framework on 3 public datasets. In addition,
we make a comparison with previous results from the liter-
ature. First, we introduce the datasets; then, we describe the
experimental workflow; finally, the obtained results are por-
trayed. We pay particular attention to interpretability issues.

A. DATASETS
We considered the datasets Backblaze Hard Drive,5 Ten-
nessee Eastman Process,6 and NASA C-MAPSS.7

The Backblaze Hard Drive dataset (also referred to as
SMART dataset hereafter) contains continuously updated
information on the ‘‘health’’ status of hard drives in the
Backblaze data center. Here, we focus on Self Monitor-
ing Analysis and Reporting Technology (SMART) attributes
of the ST4000DM000 hard drive model recorded daily
from 2015 to 2017. Each trace is described by the following
features: the date of the report, the serial number of the drive,
a label indicating a drive failure and 21 SMART parameters
with both discrete and real values. To compare the framework
with the literature, two training/test set splits are considered:

5https://www.backblaze.com/b2/hard-drive-test-data.html
6https://doi.org/10.7910/DVN/6C3JR1
7https://data.nasa.gov/dataset/C-MAPSS-Aircraft-Engine-Simulator-

Data/xaut-bemq
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TABLE 1. Global parameters of the framework.

FIGURE 3. Trace length distributions.

• Split S1: training set from October to November
2016 with 0.68% failure traces, test set December
2016 with 0.64% failure traces. The total number
of traces is 34970, and their length distributions are
depicted in Figure 3;

• Split S2: training set from January 2015 to Decem-
ber 2016 with 0.71% failure traces, test set January to
December 2017 with 0.66% failure traces. The total
number of traces is 36242, and their length distributions
are depicted in Figure 3;

The Tennessee Eastman Process (TEP) dataset contains
simulated data from a fictitious chemical plant. This dataset
includes 1000 training and 1000 test traces labelled with
Type 0 (normal behavior) or Type 1 (faulty behavior) sam-
pled every 3 minutes. Each training trace lasts for 25 hours,
whereas test traces last for 48 hours. There are 500 faulty

traces in both sets. Each simulation is represented by a multi-
variate time series with the following features: trace ID, fault
type, and 52 variables tracking data about the operating values
of plant components.

The NASA Commercial Modular Aero-Propulsion System
Simulation (C-MAPSS) dataset includes run-to-failure sim-
ulated data of turbofan jet engines. Specifically, in the con-
sidered dataset FD001, engines are simulated according to a
single operating condition (called Sea level) and their failures
are attributable to one possible cause (HPC degradation).
Each engine simulation is represented by a multivariate time
series obtained from 21 engine sensors. Although each trace
represents the simulation of a different engine, the data can
be considered to be from a fleet of engines of the same type.
Data are sampled at one value per second, and the trace length
distributions are depicted in Figure 3. The dataset includes
100 training traces, each ending with a failure, and 100 test
traces, each ending an arbitrary and known number of time
steps before the failure (gap). In order to compare our frame-
work with the literature [45], failure traces are generated by
considering the 30% suffix of each engine observation as
faulty, and the remaining 70% prefix as normal behavior.
Thus, this leads to 200 training traces. On the other hand,
43 failure and 100 normal behavior traces are generated for
the test set. The reason is that, given a test set trace, the 30%
suffix is computed over the trace length including the gap and,
thus, it may result to be empty.

B. EXPERIMENT SETUP
For each dataset, we performed the initial warmup phase
by running Algorithm 1 on a sample of training execution
traces related to both malfunctions (failure traces) and good
executions. The traces were considered by the framework one
after the other, according to a random ordering.

Once the warmup phase ended, the framework was evalu-
ated on test set traces (Algorithm 3) in two modes: the online
mode, where the framework continues to learn new properties
from the execution traces, and the offline mode, where the
properties in the monitoring pool are not updated, so that
only the properties learnt in the warmup phase are taken into
account when predicting failures on test set traces. This latter
mode was useful to compare the proposed solution with those
from the literature, while the former let us determine how
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TABLE 2. Experimental results.

the values of the considered metrics evolved over time. The
two test set evaluation modes were carried out on a random
ordering of both good and failure traces.

The performance of the two test phases was evaluated in
terms of precision (P), recall (R), FAR, and F1-score (F1).
Let TP be the number of true positives, that is, bad behaviors
identified as such, FP be the number of false positives, TN be
the number of true negatives, and FN be the number of false
negatives. The metrics are defined as follows:

P =
TP

TP + FP
,

R =
TP

TP + FN
,

FAR =
FP

FP + TN
,

F1 = 2 ·
P · R
P+ R

.

All experiments were run 10 times varying the random seed
governing the order in which execution traces are presented to
the framework during the warmup and the online test phases,
so as to collect statistical data regarding the considered
metrics.

C. RESULTS
To begin with, the global parameters of the framework,
chosen through grid search optimization on training set
data, are shown in Table 1. In the remainder of the sec-
tion, we will assess the framework performance in several
respects. First, we will present the results of the offline and
the online evaluation, as described in Section VI-B. Then,
we will focus on the impact of teacher forcing and formula
max horizon.

1) OFFLINE EVALUATION
As for the offline evaluation mode, we compared the pro-
posed solution with other state-of-the-art approaches to fail-
ure detection on the three previously-described datasets.
Given the continuously updating nature of the Backblaze
dataset, we focused our analysis on two studies that take
into account the specific versions we consider, namely, those
reported in [46] and [47]. The first one [46] makes use of a
feed-forward neural networkmodel on split S1, while the sec-
ond one [47] evaluates a Long-Short Term Memory (LSTM)
recurrent neural network on split S2. In addition, we took
into account a third proposal [9], that is, a model obtained
by combining a convolutional neural network (CNN) and an
LSTM recurrent neural network, applying it to both S1 and
S2 splits, following the setup outlined by the authors for the
SMART features group. As for the case of fault detection on
the TEP dataset, we considered an approach based on image
processing techniques along with feed-forward and radial
basis function neural networks [48], and a solution based on
a nonlinear support vector machine [49]. Finally, as for the
C-MAPSS case study, we compared our framework with a
solution based on a CNN model presented in [45].

Results achieved by the above solutions are reported in
Table 2, together with those of the proposed framework (label
our). Our solution exhibits an average performance on par
with the considered state-of-the-art ones. This is even more
relevant if we also bear in mind that all the contenders provide
no explanation for the predicted failures. On the contrary,
a distinguishing feature of the proposed approach, compared
to previous ones, is that it is interpretable: it relies on the
extraction of properties expressed as temporal logic formulas,
that provide an understandable explanation of the undesired
behaviors of the system. Moreover, they can be subsequently
exploited for tasks such as root cause analysis, diagnosis, and
preemptive failure detection.

2) ONLINE EVALUATION
As for the online evaluation mode, results for the SMART,
TEP, and C-MAPSS datasets are shown in Figure 4. Note
that, as the number of traces seen by the framework increases,
a slight but consistent improvement of the metrics occurs.
This is not obvious, since in such a case maintaining a good
performance requires the ability to discover new properties
able to reflect the evolution of the behavior of the monitored
system over time.

Figure 5 illustrates, for each considered dataset, the aver-
age number of formulas in the monitoring pool at each
warmup and runtime iteration. Note that, at certain iterations,
there is a decrease in the pool size. This happens when
formulas are removed because they are redundant.

As an example of removal from the pool, we present the
case in which two properties, F[30,45]SENSOR11 < 49.60
and F[36,41]SENSOR11 < 49.77 ∧ F[45,52]SENSOR11 <

49.39, were extracted in a framework execution on the
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FIGURE 4. Metrics average and standard deviation for the considered
datasets. The vertical dashed line represents the transition from warmup
to online traces.

FIGURE 5. Average and standard deviation of the pool size for each
framework iteration in the case of the SMART S1, SMART S2, TEP, and
C-MAPSS datasets, in both warmup (transparent area) and runtime
(opaque area) phases. The x-axis is on a logarithmic scale.

C-MAPSS dataset. After a series of iterations, their failure
detection histories were, respectively, [1, 0, 0, 1, 0, 1, 1, 0, 0,
1, 0, 1, 1, 0, 0, 1, 1, 1] and [1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1],
while the FAR values were 0.07 and 0.0. Since both prop-
erties were considered to be redundant according to the Jac-
card/Tanimoto test, the framework kept only the second one,
by reason of its lower FAR. From a domain perspective, the

two formulas refer to a similar behavior of the same sensor
(SENSOR11) which indicates a loss of static pressure in the
high-pressure compressor outlet.

Let us now consider some examples of the bSTL for-
mulas used within the framework. An example for the
Backblaze dataset is formula (G[0,2]SMART194>45.6) ∧
(F[2,3]SMART198>0.32). Such a formula makes evident a
bad behavior where the hard drive maintains a temperature
exceeding 45.6 ◦C in the first 3 days, and then, in the follow-
ing 2 days, its uncorrectable sector count becomes greater
than 0. As another example of framework execution, con-
sider the formula f1 = F[0,19]SMART198 > 2.59, extracted
(and added to the monitoring pool) during an iteration of
the framework. According to the definitions of the SMART
attributes, sensor SMART198 is a critical one and f1 expresses
the fact that the threshold 2.59 of sector read/write errors
is exceeded. During a later iteration of the warmup phase,
a failure prediction is issued thanks to the triggering of f1. As a
consequence, f2 = F[1,16]SMART189 > 8.28 is extracted,
meaning that a certain number (8.28) of unsafe fly height
conditions is reached before the critical number of sector
read/write errors is exceeded. This pattern is quite reasonable,
as it describes a case in which the disk head is operating
at an unsafe height, ultimately damaging a disk sector and
consequently causing read and write errors. Notice that the
framework allows us to predict a failure based on sensor
SMART189, which is not considered to be critical in the
SMART specification, by uncovering a pattern linking it to
the critical sensor SMART198.
Turning to the TEP dataset, an extracted formula is

(G[1,4]XMEAS21 > 94.6) ∧ (G[2,4]XMEAS20 > 341).
It reveals a bad behavior where the compressor is operating
with a power greater than 341 kW, while the temperature of
the reactor of the plant exceeds 94.6 ◦C.

As for the C-MAPSS dataset, the formula (SENSOR10 <
1.3) ∧ (F[4,6]SENSOR11 < 47.62) was generated, which
signals a bad behavior where a loss of pressure in the high-
pressure compressor outlet follows a loss of pressure in the
engine. Notice that the subformula SENSOR10 < 1.3 does
not contain any time operator, meaning that it is evaluated at
the currently observed time point.

3) IMPACT OF TEACHER FORCING
Figure 6 reports the number of teacher forcing interventions
during the warmup phase, as more and more failure traces
are encountered. Specifically, for each amount of encountered
failure traces, the sum over multiple (10) framework execu-
tions is reported. As expected, teacher forcing triggers mainly
at the beginning of the warmup phase, when the monitoring
pool is empty. As formulas are learned over time, teacher
forcing interventions decrease till a stationary behavior is
reached. Of course, the latter depends on the specific dataset,
and it confirmswhat was to be expected from the performance
reported in Table 2. As an example, on the TEP dataset, where
an F1-score of 1.0 is achieved, the number of teacher forcing
interventions rapidly approaches 0.
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FIGURE 6. Teacher forcing interventions during the warmup phase. For
each amount of encountered failure traces, the sum over multiple (10)
framework executions is reported.

FIGURE 7. Impact of maximum horizon value in test F1-score for different
datasets.

4) IMPACT OF MAX HORIZON
Figure 7 reports, for a single execution of the framework, the
offline mode performance on each dataset, as obtained by
varying the max horizon value. Once more, different datasets
exhibit different behaviors. Although results might appear
rather counterintuitive (setting a large max horizon does not
prevent, in principle, the discovery of formulas with shorter
horizons), following a preliminary analysis, they are likely

due to an overfitting effect. Indeed, formulas with a larger
horizon have the capability of capturing more detailed and
extended phenomena, that could be highly trace-dependent.
Moreover, we would like to recall that the concept of horizon
does not apply to the framework in general, but is tied to the
particular kind of logic and monitoring tool employed here.

VII. STRENGTHS AND LIMITATIONS
The proposed framework relies on approaches originating
from the two fields of machine learning and formal methods,
combining their strengths in an effective way. More precisely,
the former domain provided us with tools and techniques for
the extraction of properties from temporal data, while the
latter allowed us to formalize such properties by means of
logic formulas and to online monitor a given system against
them in a principled manner. The key feature of the proposed
approach is its interpretability: as shown in Section VI-C,
by means of the extracted logical formulas, the framework
gives an understandable account of settings leading to future
failures, allowing domain experts to take appropriate action
and enriching their overall knowledge. While contributions
from the literature show that interpretability is often achieved
at the expense of prediction accuracy, e.g., by relying on a
simple white-boxmodel instead of amore complex black-box
one, quantitative results showed that the performance of the
proposed approach is on par with previous, non-interpretable
solutions.

As a final note, while in this work we applied the proposed
framework to the domain of failure detection, similar ideas
can in principle be employed to detect and predict any type
of event or anomaly, whether positive or negative in nature.
Among the first, we mention a spike in the history of sales
of a retail store, or a generalized increase in the grade point
average of students enrolled in the latest edition of a course;
among the latter scenarios, the detection of seizures in hos-
pitalized patients based on their continuously recorded vital
signs, or the identification of violations of a level of service
agreement in the context of a contract between a service
provider and a customer.

We would like to conclude this section by pointing out
some limitations of the framework. First, in the considered
datasets, all traces come from the same plant (resp., hard
disk, jet engine model) operating under the same conditions.
To deal with more than one type of system, separated moni-
toring pools have to be employed to prevent conflicts among
formulas. Second, the considered datasets only deal with
numerical data. It is worth evaluating the proposed approach
on datasets encompassing categorical data, naturally leading
to the usage of other logics, like, for instance, LTL. Third,
Algorithm 3 operates in a sequential fashion: (i) the system
is monitored until a formula is satisfied by the incoming
data; (ii) such an event triggers the phase of the property
extraction, that results in the addition of a new formula to
the pool; (iii) then, the monitoring of the system resumes.
Although this behavior is perfectly acceptable for a prototype
implementation applied on benchmark datasets, as the one
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described here, a multithreaded version, able to update the
property pool asynchronously, while monitoring the system,
remains to be developed. Finally, Algorithm 3 makes use of a
fixed reference set of good behavior traces to prevent formu-
las with a high FAR to be added to the monitoring pool. This
is definitely a reasonable approach, but it does not take into
account changes in the behavior of the monitored system, that
may happen due to, for instance, updates, upgrades, or degra-
dation phenomena. To overcome this limitation, wemay think
of extracting new normal behavior traces from runtime data
and adding them to the reference set.

VIII. CONCLUSION AND FUTURE WORK
In this paper, we proposed a novel general framework for
runtime system verification that combines monitoring with
machine learning, to be used for early failure detection over
streams of data. Experimental results showed that it is able to
issue failure warnings in an anticipatory and effective manner
and to incrementally learn new specifications to be monitored
against the considered system.

As for future work, we would like to underline the fol-
lowing directions: (i) the application of the framework to
other datasets; (ii) user tests to assess the quality of inter-
pretability (iii) the experimentation with other logics, includ-
ing an extension of STL dealing with categorical data [50];
and (iv) the development of a multithreaded version of the
framework, able to asynchronously deal with the update of
the property pool while monitoring the system.
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