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Abstract: Fiber-reinforced elastomeric isolators (FREIs) are composite devices consisting of an
alternation of elastomer layers and fiber reinforcement layers. They have mechanical properties
comparable to those of conventional Steel-Reinforced Elastomeric Isolators (SREIs). The mechanical
and construction characteristics of FREISs, together with their lower cost, make them potentially
usable on a large scale. However, for their actual use, it is necessary to take into account the current
regulations regarding seismic isolation. The application of FREIs provides the absence of anchoring
to the structure, but the European Technical Standard UNI EN 15129 requires that the isolators are
attached to the structure by mechanical fastening only. In this research work, a constraint device that
fulfills this requirement but, at the same time, does not significantly alter the mechanical behavior of
FREIs is investigated. The properties of the selected device and its installation method are presented.
The results of both a simple compression test and a combined compression and shear test performed
on two isolators reinforced by quadri-directional carbon fiber fabrics and two isolators reinforced
by bi-directional fabrics are presented. The tests were performed in the absence and presence of the
constraint device in order to investigate the modifications produced by the device.

Keywords: fiber-reinforced elastomeric isolator; constraint device; horizontal sliding; compression
test; shear test; bond test

1. Introduction

In the last century, high-intensity earthquakes have occurred in seismically active
regions around the world, evidencing the importance of designing buildings capable of
coping with the forces that these events produce on their structures to avoid the loss of
human lives. To attain this goal, a relatively recent and undoubtedly effective seismic
risk prevention and mitigation strategy is represented by structural control. Among the
passive control techniques, seismic isolation [1-3] and energy dissipation [4-9] have found
greater application in recent years. The present research concentrates on seismic isolation,
which involves the interposition of devices, the isolators, between the structure and the
foundation, with low horizontal stiffness and high vertical stiffness. The presence of the
isolators modifies the building dynamic response to seismic events; it aims to decouple the
building from ground motions. In particular, this research is focused on fiber-reinforced
elastomeric isolators, which involve the use of fiber fabrics as reinforcements, like those
employed in the retrofitting of existing structures [10], instead of the steel plates used for
conventional steel-reinforced elastomeric isolators. Moreover, FREIs do not have steel
end plates for anchorage to the sub- and superstructures, but they are simply interposed
between them. For this reason, they are also called unbonded-FREIs (U-FREIs).

There are several studies on the behavior of U-FREIs in the literature, and these
isolators are still under development. For evidence, it is sufficient to consider the review
of Van Engelen [11], which alone contains mentions of 80 publications. This is because
U-FREISs are particularly promising for widespread utilization, while SREI use is limited
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to specific categories of buildings of strategic importance or bridges, due to their high
cost. The high cost of SREISs is connected to their production method, the thick steel plates
used for anchoring to the sub- and superstructures, and their heavy weight, involving
transportation and installation technical difficulties. The absence of plates for anchoring
and the use of fiber fabrics, much lighter than steel reinforcements, make U-FREIs lighter
than SREIs and easier to move and install [12,13]. Moreover, U-FREIs can be produced
in the shape of long strips and then cut to obtain isolators of the desired dimensions [14].
Thus, overall, U-FREIs are cheaper than SREIs and may be employed widely for buildings,
as well as in poor developing countries, allowing for the protection of human lives against
earthquakes all over the world [15-17]. The good isolating behavior and effectiveness of
U-FREIs in isolated buildings have already been widely demonstrated by experimentation
on the devices [18-21], by tests on small-scale buildings isolated by U-FREIs on a shake
table [22,23], and by numerical simulations [24-29].

In this research work, the differences in behavior between SREIs and U-FREIs are
highlighted. The regulatory constraints for the application of U-FREISs in real buildings are
outlined. From this analysis, it results that the main problem to be addressed for the use of
U-FREISs in real structures is the necessity to restrain them against horizontal sliding. To
this end, a possible constraint system is investigated. The proposed device has the objective
to restrain the horizontal sliding of U-FREIs, without producing relevant modifications
of their base behavior. An experimental methodology is used to investigate the method
to install the device, its influence on the behavior of the U-FREIs and its effectiveness in
counteracting the isolator horizontal sliding.

Tests under simple compression and combined compression and shear on FREIs in
both unbonded and horizontally constrained configurations are carried out. A comparison
of the results obtained from these configurations is performed to evaluate the variation in
the behavior of FREIs due to the constraint system.

Shear tests for different values of compression are also performed, to assess the ability
of the proposed constraint system in counteracting the sliding of the isolators for low values
of compression.

The key study contributions regard the demonstration of feasibility of using the device,
highlighting its limits and suggestions for possible improvements.

2. Similarities and Differences between SREIs and U-FREIs

The behavior of U-FREISs is similar to that of SREIs but with some differences, both
under simple compression and under combined compression and shear.

SREIs, whose reinforcements are rigid, when subjected to compression action, show
only the bulging of the elastomer layers between two consecutive steel layers without
deformation of the latter (Figure 1a) [30]. However, in U-FREIs, whose fiber fabrics are not
pre-tensioned, the elastomer deformation is initially accompanied by the deformation of
the fiber fabric layers. Only when the fibers come into traction do they begin to exert the
containing action on the contiguous elastomeric layers (Figure 1b). Hence, when U-FREIs
are subjected to an increasing compression load, they show a low initial vertical stiffness,
and only after the fibers have been reorganized and put into traction does the vertical
stiffness become higher and comparable with that of SREIs [14,19,31].

Regarding their behavior under compression and shear loads, SREIs are subjected to
the stresses shown in Figure 2a. In particular, compression is applied in the overlap region
between the top and bottom surfaces, and the unbalanced moment, generated by the acting
forces, is transferred by the tension stresses in the regions outside of the overlap. Under
great horizontal deformation, these stresses can damage SREIs, producing delamination
between the steel and elastomer layers [32].

In U-FREIs, the moment created by the offset of the resultant compressive load, P,
balances the moment created by the shear, V, as shown in Figure 2b [31]. As it can be
seen in this figure, since U-FREIs are not anchored to the sub- or superstructure and their
reinforcements are flexible, they can roll off the support surfaces, and no tension stresses
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are produced, which is different from SREIs. Hence, U-FREIs can deform without damage
under displacements of seismic magnitude. While the detached portions are approximately
unstressed in U-FREIs, the portion remaining in contact performs a nearly pure shear
deformation. By increasing the maximum imposed shear strain, the area of the 1sol tor
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to horizontal sliding, depending on the amount of applied horizontal force, the acting
compression load, and the friction conditions at the isolator-support contact surface.

3. Regulatory Constraints for the Possible Use of U-FREIs

Given the ceneral cood behavior of 1J-FRFEIs as isolatine devices as confirmed bv
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force acting on the bearing. In particular, UNI EN 1337-3 requires that the fastening devices
limit the movement between the structure and the supporting surfaces to within 5 mm
or less. Moreover, the devices must be such that the support can be removed with the
structure raised by no more than 10 mm, unless otherwise agreed upon with the designer
of the structure.

UNI EN 15129 [34] covers the design of devices that are provided in structures with
the aim of modifying their response to seismic action. It states that all types of isolators
shall be attached to the structure by mechanical anchorages only, and at least 75% of the
horizontal load shall be supported by the anchorage, unless the minimum vertical load on
the isolators during seismic action has been determined by dynamic analysis.

According to the two above-mentioned standards, U-FREIs, for their utilization,
should have a constraint system against at least horizontal forces, thus becoming Horizontal
Sliding Constrained FREIs (HSC-FREIs).

4. Investigated Constraint System

In the case of U-FREISs, transfer of the seismic horizontal force from the superstructure
to the sub-structure occurs thanks to the friction present at the isolator contact surfaces.
Since U-FREIs undergo roll-over deformation, the contact areas decrease with increases in
the superstructure displacement (Figure 2b). Moreover, the axial load acting on the isolator
varies during earthquake events, depending on the position of the isolator in the plane
and on the direction of the seismic action. The friction coefficient, which depends on the
materials of the contact surfaces, and the axial load determine the maximum horizontal
force that can be transferred by the isolator.

When this force is reached, the isolator shear strain does not increase anymore, and
the isolator starts to slide with respect to the contact surfaces. Consequently, the transferred
horizontal force decreases to smaller values. To prevent the isolator from sliding and to
take account of the guidelines of UNI EN 1337-3 [34], a constraint system at least against
horizontal forces is required.

Considering the peculiar behavior of U-FREIs, the constraint system should allow the
upper and lower surfaces of the isolator to detach from the supports and the lateral surfaces
to tilt and lean on them in a similar way to what happens in the absence of constraints. This
to avoid the occurrence of additional stresses in the isolator and to maintain decreases in
the horizontal stiffness with increases in the isolator deformation. Moreover, the constraint
system should not preclude the return of the isolator to its initial configuration at the
end of the seismic event. Finally, the device used to realize the constraint system should
withstand the seismic actions for which the isolator is designed and allow their transfer to
the contact surfaces.

Some research works already exist on Partially Bonded FREIs (PB-FREIs) [35-39], and
bonded [40] or restrained FREIs [41]. In a PB-FREI, two thick steel mounting plates were
bonded to portions of the outer surfaces at the top and bottom of the isolator. The mounting
plates were then bolted to the top and bottom contact supports of the isolator. Thus, the
vertical lift and horizontal sliding of the PB-FREIs were restrained.

In this research work, a different system, restraining only the horizontal sliding of
FREISs, is investigated. The constraint to up-lift is not considered herein, because this
event is limited generally to isolated tall buildings [42], isolated buildings with vertical
setbacks [43], and short piers of isolated bridges with piers of different lengths [44]. In
low /medium-rise isolated buildings, this phenomenon usually does not occur or can occur
only for a very short time in the accelerogram time history. Moreover, this solution, in
comparison with the partial bonding, produces negligible detachment traction between
elastomeric layers and fibers. The main criterion used to select the constraint device was to
choose a device which is able to maintain these advantages, restraining at the same time
the horizontal sliding.

In this research work, attention has been concentrated on reclosable hook and loop
fastening systems, similar to the Velcro® system, as possible devices for the constraint sys-
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5. Test Specimens

The test specimens were built by ILPEA Industries, Italy. They are made out of layers
of elastomer material alternating with reinforcement elements consisting of sheets of carbon
fiber fabrics.

As an elastomer material, two different types of rubber were used to make the iso-
lators: low-damping neoprene (Idn) with Shore A, durometer hardness of 60 & 5, and
G = 1.15 MPa, and high-damping natural rubber (hdnr) with Shore A, Durometer hardness
of 54.5 + 5, and shear modulus G = 0.8 MPa. As reinforcement, two types of fabrics were
used: a bi-directional (bd) fabric and a quadri-directional (gd) one. The bd fabric had fibers
along two principal directions, at 0° and 90°, and the gd fabric had them in four direc-
tions, at 0°, 45°, 90°, and 135°. The superficial density was 200 g/ m? for the bd fabric and
380 g/m? for the gd fabric, and the thicknesses were 0.112 mm and 0.212 mm, respectively.
The Young’s modulus was 230,000 MPa, and the ultimate fabric strength was 3500 MPa for
both fabrics.
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Constraint System Configuration

The constraint system should guarantee the transfer of at least horizontal forces,
but it should also allow the roll-over deformation of the fiber-reinforced isolator, i.e.,
the detachment of the isolator ends. The last requirement can be fulfilled through a
constraint that does not involve the entire isolator contact surface. The realization of a
partial constraint was, therefore, sought.

By considering U-FREIs under roll-over deformation, the length of the isolator portion
detaching from the contact surface depends on the applied displacement [39]. By neglecting
the isolator vertical deformation due to the compression force, it can be assumed that the
detaching length is equal to the applied displacement. Therefore, to allow the isolator to
roll over in all directions of the seismic motion, the constraint device should be placed in
the central portion of the isolator and should extend for a length equal to

lc =1- deax (1)
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A two-compomentt hixetnopic epoxy resim with a pasty consistency was chosen to
bond the constraint system to the concrete blocks (Figure 5b). Im the application of the
resin, attention was paid to avoid the formation of cavities between the metal strips and
the concrete surface and to prevent excess resin from emerging through the holes and
enveloping the individual metal hooks.

6. Test Setup and Instrumentation

All of the tests were performed in the laboratory for tests on materials and structures
at the University of Udine. The specimens were tested to assess the suitability of the
studied device to simultaneously counteract the sliding of the UFREIs without modifying
the isolator mechanical behavior.

Two typical tests were performed: simple compression and combined compression
and shear (the latter is simply called the shear test hereafter). Both of them were carried
out with and without the constraint device to evaluate whether and/or how the isolator
behavior was influenced by the device.
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6.1. Compression Test Setup
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shanteniegrfrifaelipgsimens, evaluated as the average of the four transducers’ readings.

(b)
Figure 6. Compression test set-up: (a) overview; (b) details.

6.2. Shear Test Setup

Figure 7a shows a geneirall view of the shear test setuip. Note that, in this case, to obtain
a symmetrical setup, two identical specimens were vertically oriented and subjected to
tests adtthhsamamtimie Fighiraife) 7Bpc specipaimas pasitioosidionedntactovithcthe ceniad
cenergtecblade anisl ocle oh therateraitel ogkesrhishveky) shigwra Tntbiginralateshdinplacemeit
pehvepihpstibeameheupstimdtsiiperstructures.

Compressive force was applied to the isolators using two horizontal hydraulic jacks
acting on the two lateral concrete blocks. These blocks were placed upon steel rollers
to leave them free to move horizontally under the force applied by the hydraulic jacks.
These latter operated in load control to maintain the average compressive stress at a
constant value.

Shear displacements were applied to the specimens using the central concrete block,
which was connected to a vertical 300 kN INSTRON hydraulic actuator (Instron, Norwood,
MA, USA). The vertical actuator operated under displacement control (the corresponding
force was continuously recorded). Clearly, the shear force acting on each isolator was
obtained by halving the force applied by the actuator. Four potentiometric displacement
transducers were vertically positioned at the corners of the bottom face of the concrete
central block to record the vertical displacements.

Two sheet papers with graduated scale were glued on the front surface of the lateral
blocks to aid in the immediate visual observation of the test evolution and in the detection
of any possible relative displacement between the blocks and the isolators (Figure 7b).
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7 ﬁgﬁyocglsﬂtacements were applied to the specimens using the central concrete block,
whiche w f;esg%gfq%ﬁo a Vertlcal 300 kN INSTRON hydrauhc actuator (Instron,

Norw A, USA). The Vertl ctuator rated unde dlS eme Control I(lthe
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CO”&?E%‘%@%?“% RO m’I‘R“S Praxtmuin v rSs%n?eaEtr‘éES ek fach
1%@@3&@% obfaiped by alving the force applied by the actuator Four potentiometric
displacement transducers were vertically positioned at the corners of the bottom face of
the concrete central block to record the vertical displacements.

Two sheet papers with graduated scale were glued on the front surface of the lateral
blocks to aid in the immediate visual observation of the test evolution and in the detection
of any possible relative displacement between the blocks and the isolators (Figure 7b).
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The parameter used to make the comparison among the compression tests was the
compression stiffness, Ky, calculated with the following formula [35]:

_ Pmax — Pmax/3

Ky =
OPmax — OPpac/3

()
where Prnax and op,, are the maximum axial force applied and the corresponding axial
displacement, respectively, and op__ /3 is the displacement corresponding to one-third of
the maximum axial force. The considered displacements are measured at the first load cycle.

7.2. Shear Test (ST)
The shear tests were performed in the following order:

- Bond test;
- Quasi-static shear test;
- Dynamic shear test.

The bond test was performed under a monodirectional load, while the quasi-static
and dynamic tests were of the cyclic type.

Both the quasi-static and dynamic tests were performed by first subjecting the speci-
mens to an average compressive stress equal to 6 MPa, applied using the horizontal yellow
jacks in Figure 7, and then to shear deformation, applied by the vertical Instron actuator
under displacement control.

7.2.1. Bond Test

The bond test consisted of applying increasing shear strains up to a value of y = 1
to the specimens, and then unloading. The test was repeated for different values of
compression stresses: 6 MPa, 3 MPa, 1 MPa, 0.5 MPa, 0.375 MPa, and 0.25 MPa. The
test was used to evaluate for which compression stress values isolator sliding instability
occurred. This type of failure involves uncontrolled sliding of the isolator during lateral
loading. It can be recognized from the force-displacement curves, which, in the presence of
sliding instability, present a zero or negative slope beyond a certain displacement value.

7.2.2. Quasi-Static Shear Test

The quasi-static shear test consisted of three loading—unloading cycles up to a shear
strain (Y = dmax/te) equal to 1, at a loading rate of 0.4 mm/s. This test was used to evaluate
the isolator static secant stiffness, Ksec, calculated from the third cycle by means of the
following formula [34]:

Fosst, — Foart
Keee = ——&——="=¢ 3
¢ 0.58te — 0.27te ©)

where Fy s, and Fy o7, are the forces corresponding to the relative displacement between
the isolator contact surfaces, equal to 0.58 t. and 0.27 te, respectively.

7.2.3. Dynamic Shear Test

The dynamic shear test consisted of three reversal loading cycles of the sinusoidal type
with a maximum shear strain equal toy = £1 and a loading rate equal to 70 mm/s (0.35 Hz).
This test was used to evaluate the isolator dynamic stiffness, Ky, and the equivalent viscous
damping ratio, &, calculated from the third cycle by means of the following formulae,
respectively [35]:

Fr —F~
T e @
2H
fe=—— (5)

7TKb (d+ — d_)
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where d™ and d~ are the maximum and minimum values of displacement in the third
cycle, F* and F~ are the values of force at these displacements, respectively, and H is the
area of the hysteresis loop at the third cycle.

7.3. Chronological Order of Tests

All of the specimens were subjected to the compression test (CT) and shear tests
(ST). The tests were carried out first without and then with the constraint system. Table 2
reports the list of the tests carried out, where the increasing Roman numbers denote the test
chronological order, and the number after the name of the test has the following meaning;:
0 for no constraint, 1 for constraint only on one isolator contact surface, and 2 for constraints
on both the contact surfaces.

Table 2. List of tests with their chronological order.

Q1 and Q2 B1 and B2
I CT-0 I CT-0
III ST-0 v ST-0
\% CT-1 VI CT-1
vl ST-1 VIII ST-1
- IX CT-2
- X ST-2

Specimens Q1 and Q2 were damaged after tests ST-1 of the bond type, so they were
not subjected to the last tests.

8. Test Results and Observations
8.1. Compression Test Results

Figures 8 and 9 show the load—displacement curves of all the performed compression
tests. In all cases, it can be observed that the loading path presents a low slope in the first
part, which corresponds to high deformability, with a high slope (low deformability) in
the second one. This is because the carbon fiber fabrics were not pre-tensioned during the
isolator production process. Hence, the fabrics need the elastomer to be deformed to be put
under tension and to exert their containing action to elastomer deformations. This occurs
in the first part of the loading path. After the fibers were put under tension, the slope of the
loading path became steep.

At the end of every cycle, a residual displacement was observed due to the viscous-
elastic properties of the elastomer. The residual displacement increased from the first to the
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Table 3 reports the vertical stiffness values, Ky, calculated according to Equation (2)
at each loading cycle for all of the tested specimens and configurations. In this table,
the specimen’s name is followed by a dash and a number, where the number has the
same meaning as in Table 2. Table 3 also reports the average of the Ky values obtained
from identical specimens at the third cycle, and these values’ variations between the test
configuration with one constRlint and the configuration with no constraint (AKy-0), and
Bidureet) Foreatisptaiatseandionesconsbrajpredddiatdsks for specimens Q1 and Q2: (a) without

constraint; (b) with constraint on one contact surface.

(a)

(a)

(b)

Figure 9. Cont.
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percentage difference between the identical specimens, calculated on the lower value, is
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on one contact surtace are considered. lhese difrerences lie In a range that can be
attributed to the isolator building process, because the fiber fabric pieces are cut and
inserted into the mold by hand. Due to this, the isolators may exhibit little differences.
Considering the average vertical stiffness values calculated at the third cycle, it can
be observed that the spec1mens w1th quadn d1rect1ona1 fabncs (Q) were Vert1cally ﬁgﬁfgg

10).
Considering the average Ky, vallues iim the presence of the constraints, the following
observations can be made:

- For both specimens Q and B, the presence of one constraint had negligible influence
on the vertical stiffness; indeed, the Ky pencemiizge waniziiions wene lower tiham 3%.

- For sypeiinetssBBinithdlprepeasernfewb tomstraisisdintse Weredewmsasdednedsestifintse
byfateon tl3d dband 32% avith 32%pecitho rdspeatsds whthoaseandtithitht cavedcovistraing,
cesptrdive yrdspeetieelin Hosveasey, the tbdsl taseprthin flesuitedvgréhindlarmagedrisiucbd
itnthegpivinesd hy the shecntestsby the shear tests.

For greater clarity, tiese resiulls ane dhowmalboimgreaphffoimimbiguree 110.

Figure 10 Average Ky values at third eyele and Ky vanintions due o the presence of the eonstraints.

8.2, Shear Test Results
8.2.1. Bond Test

Figure 11 shows the load=displacement eurves of all the performed bond tests. Each
diagram reperts the results relative te pairs of identical speeimens aecording to the test
setup (Figure 7), where the foree has been divided by twe to represent the single iselater
behavier. Henee, on the diagrams; the letter Q is reperted for specimens Q1 and Q2, and
the l%ﬁ%&%ff&w&mﬁéﬁaﬂd% Ttisoatrd dhahthnLoRrgsimanmy siesubiggiedenbaty
t%f@%@%&ﬁ%&%ﬁﬁ%ﬁ%@%&%ﬁ%%éﬁéf%?f%%ﬂ%laaﬁ%glaﬁ%t&%
famamsn gsevpediineths plndremsicand thsrtahheskaooithaualb thasedarassnles
arssused inrdheiR wecBnepadining theday withiene sanstrptclsipih RQeQpRiTaivs
W ISRCAVIRT A4S en s sresineis Es iR Snesinens thedasisny drnesiormed
pot e mmtetRiopoi iR i Jo ML 3t w&&e&g%mﬂ filHre8rgt e occurred.

The isolator sliding 1nstab111ty due to bond failtre occurs when the force-displacement
curve reaches a maximum force and then shows a softening branch. For the Q specimens, in
the case without constraints, this occurred at a compression stress of 0.375 MPa (Figure 12a),
while it occurred at 0.25 MPa in the case with one constraint (Figure 12b). Therefore, it can
be said that the presence of the constraint improved the isolator bond behavior, moving
bond failure to lower compression stresses.

For the B specimens, bond failure occurred at the compression stress of 0.5 MPa in all
cases (Figure 12c). The best performance was given by the case with one constraint, for
which increases of 13% of the maximum force and 15% of the corresponding displacement
were observed. The improvement given by two constraints was a little lower, probably due
to the damage that occurred during the test with one constraint.

In the specimens subjected to sliding due to bond failure, it was observed that the
hooks with less stiffness and flexural strength in the direction parallel to the load application
bent and ceased to resist (Figure 13a).
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Wothdomeheonstyaintvirig bt Byjlane tbdvingrradatpdedseonalatsse 90 degrees with respect
to the loading direction, the test with two constraints was performed (Figure 11c). The
observed behavior was similar to that obtained by the configuration with one constraint
for compression stresses greater than 0.5 MPa. This means that the damage on the external
elastomer layers did not greatly influence the isolator behavior under shear deformation.
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For the B specimens, bond failure occurred at the compression stress of 0.5 MPa in all
cases (Figure 12c). The best performance was given by the case with one constraint, for
which increases of 13% of the maximum force and 15% of the corresponding displacement
were observed. The improvement given by two constraints was a little lower, probably
due to the damage that occurred during the test with one constraint.

In the specimens subjected to sliding due to bond failure, it was observed that the
hooks with less stiffness and flexural strength in the direction parallel to the load
application bent and ceased to resist (Figure 13a).

(a) (b)
Figure 13: Damage to the (a) hooks and (b) elastomer.

8.2.2. (@unssiqgenttyslbarndekttor began to slide, and its external elastomer layer in contact

Withﬁ%gfahé.lqt@%mwe%fafar%ﬂ@ﬁ&?ﬁéﬁa&dm@%? g diblareated By heareias.
Recksiaithsegonalie Bheprdine @1&9@;@%@’ Ratbanckebhisditne af damasaseut

be avoided if the hooks have the same stiffness and ﬂexural strength in both directions.
Regardless, for the B specimens, after having straightened the hooks bent during the test
with one constraint (Figure 11b), and having rotated the isolators 90 degrees with respect
to the loading direction, the test with two constraints was performed (Figure 11c). The
observed behavior was similar to that obtained by the configuration with one constraint

£ rAatrrvrocctin cfroccoce orontor Fharn N S ANAPA Thic mvonarnce that theo Aarsoo A Fho oviaraal
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with one constraint, because during the previous bond test, one of the external elastomer
layers was damaged by the metal hooks. Hence, for the quasi-static shear test, the Q
specimens were constrained only on the surface that had not been damaged. Although
these damages also occurred in the B specimens during the bond test, quasi-static shear
tests with two constraints were also carried out on these specimens. In Figure 14, it can
be observed that, in all cases, the isolator behavior stabilized at the third cycle in terms of
both the wideness of the cycle, i.e., dissipated energy, and maximum force, after having
undergone the Mullins effect. A residual displacement is observed at the end of everg %cle
e

&

in the specimens after performing the quasi-static shear tests.

(a)

(b)

(c)
Fighre 14 Force-dinplocement Sthkess Off Gt Sheak sl (@) Wittt comttain; (1) with

CORStiRint SR SRS SSRfast SHFRASE: (8) with constaint on Both contact uriaces:

Considering the configuration without constraint (Figure 14a), the Q specimens
performed wider loading cycles than the B specimens, thus showing a greater capacity for
dissipating energy. This is due to the different elastomer type used to make the specimens,
which was high-damping natural rubber for the Q specimens and low-damping neoprene
for the B specimens.
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Considering the configuration without constraint (Figure 14a), the Q specimens per-
formed wider loading cycles than the B specimens, thus showing a greater capacity for
dissipating energy. This is due to the different elastomer type used to make the specimens,
which was high-damping natural rubber for the Q specimens and low-damping neoprene
for the B specimens.

In the graphs, no horizontal strokes or instantaneous force decreases are obsgrved,
which suggests breakage phenomena, such as delamination of the internal layers, or sliding

of the isolators with respect to the contact surfaces.

Table 4 reports the secant stiffness values, Ks, calculated in the third loading cycle
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Régther T6).the one-surface configuration nor for that of the two surfaces (see also Figure 15).

Figure 135 Cérapwpiismt cptleyitlef ihe qiashstagieatiestotdst shearg tisfermicngstiffiereonfiganatioint
configurations.
Table 4. Ko values and percentage variations in the presence of constraints.

K («N/mm) AK.0(%)  AK.-1(%)
Q 0 sec mm ) og sec= () sec= o
Q-0 Q1 1.20 -
Q-1 B-0 - 1.03
B-0 B-1 1.03 1.08 4.85
B-1 B-2 108 1.02 4 8?5'56 —0.97
B-2 1.02 -5.56 -0.97

For the Q specimens, by simply calculating the secant stiffness between the point
at zeFofekee@bpaeinseandingibiphrkand dha ik atamaininess loses éseethigpamt ab
they abees of Bddddbhiameabehhdl KNV menpurie slefrrminadiosibe Gpecimerns Withthe
cansés et and WiRRE sppstraiB ikreapestivele Methintaed therdikierepesienakoith oo
constFRmdairdinviablié eemshon, iregsaphvermiinhigersd hidanréhin fgwies Husa sy
be strpgsedhathah @Ab e R WA $hi ek Shaw BrliANsgiiess. From this figure, it can also
be stressed that Q-0 specimens are stiffer than B-0 specimens.
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Sheagimens were more dissipative than the B specimens, as observed in the quasi-static

shear test.

No further damages due to the dynamic shear tests were observed in the specimens.

Table 5 reports the isolator stiffness, K3, and viscous damping ratio, ¢, calculated in
the third loading cycle according to Equations (4) and (5), respectively. Table 5 also reports
the Kj, and ¢, variations between the test configuration with one constraint and the config-
ke IR p9yeqestraint (el And A ke QresRsctinelyd and hetween: o souptiaints
and one constraint (AKp-1, and Aé&y,-1, respectively). These resulfs are shown also in graph
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shepp test. 1.03 15.04
Q-1 1 291 14.96 —053
B-0 0.83 9.47
B-1 0.82 ~1.20 10.33 9.08
B-2 0.79 ~3.66 482 10.17 ~155 7.39

(a)
7

Figure 17. Cont.
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- Regarding the damping rati@) the variation in the presence of one constraint was
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No further damages due to the dynamic shear tests were observed in the specimens.
Table 5 reports the isolator stiffness, Ki, and viscous damping ratio, &, calculated in
the third loading cycle according to Equations (4) and (5), respectively. Table 5 also reports
the Kv» and & variations between the test configuration with one constraint and the
configuration with no constraint (AKe-0, and A&p-0, respectively) and between two
constraints and one constraint (AKe-1, and Afb-1, respectively). These results are shown

also in graph form in Figure 18.

Table 5. Kv and & values for all the tested specimens and configurations and percentage variations
in the presence of the constraints.

Ko (AN/mm) AKo-0 (%) AKe-1(%) & (%) A&-0(%)  ALs-1(%)
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FlgurElﬁl%lm(a)a%e@ag@Iﬁ@yalmlﬁ HydndIKandﬂﬁ)tmai%éﬂhe fortserpesdrtbe ebtstredntdraints;

(b) ay gal&g h H}dnm%drtq,tmaimmhe ﬂ&éﬁm@éﬁk@g&ﬁs&r@@n&ramm
—4.82 10.17 -1.55 7.39

9. ConcluBRﬁesl on the values reported in Table 5, the following observations can be drawn:
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(B), the presence of one constraint had a negligible influence on the vertical stiffness;
indeed, the Kv percentage variations were lower than 3%.

Regarding the ability of the proposed constraint system to prevent the isolator from
sliding horizontally, the presence of one constraint improved the bond behavior of the Q
isolator’'s moving bond failure to lower compression stresses (from 0.375 MPa to 0.25
MPa). For isolator B, the compression stress at which bond failure occurs remained the
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In the presence of two constraints, the increase in the damping ratio in comparison to
the configuration without constraints was 7.4% for the B specimens.

9. Conclusions

In this research work, a possible FREI constraint system made out of metal strips with
duck head hooks was investigated. The strips are bonded to the sub- and superstructures
and the hooks penetrate the external elastomer layers of the isolator in such a way that it
is constrained against the horizontal sliding. Experimental tests were performed, and the
following conclusions can be drawn.

For both the specimens with quadri-directional fabrics (Q) and bi-directional ones (B),
the presence of one constraint had a negligible influence on the vertical stiffness; indeed,
the Ky percentage variations were lower than 3%.

Regarding the ability of the proposed constraint system to prevent the isolator from
sliding horizontally, the presence of one constraint improved the bond behavior of the Q
isolator’s moving bond failure to lower compression stresses (from 0.375 MPa to 0.25 MPa).
For isolator B, the compression stress at which bond failure occurs remained the same
as that without constraint. However, an improvement was observed in the maximum
horizontal force exerted by the isolator before bond failure, which increased by 13%, and
in the corresponding displacement, which increased by15%. The improvement given by
two constraints was a little lower, due to damages that occurred during the test with
one constraint.

In the bond test under low compression stress, the hooks with less flexural strength
in the direction parallel to the load application bent and the isolator slid. The hooks with
greater flexural strength orthogonal to the loading direction did not bend; hence, the isolator
that slid was superficially cut by these hooks. After this damage, for compression stresses
greater than that producing bond failure, the B isolators” behavior with two constraints
under shear was similar to that obtained with one constraint.

For both specimens Q and B, the introduction of one constraint did not substantially
affect the secant stiffness measured under the quasi-static cyclic tests. Indeed, the secant
stiffness variations were lower than 5% for the B specimens and 9% for the Q specimens.
For the B specimens, the introduction of two constraints produced variations in the stiffness
lower than 6%.

In the case of the dynamic cyclic tests, for both specimens Q and B, the introduction of
the constraint system did not substantially affect the horizontal stiffness, whose variations
were lower than 5%.

Regarding the damping ratio measured under the dynamic cyclic tests, the variation
in the presence of one constraint was negligible for the Q specimens, while it was lower
than 10% in the presence of both one and two constraints for the B specimens.

In conclusion, the advantage of the proposed constraint system is the improvement
in the bond behavior under low compression stresses, even if this improvement is limited
by the shape of the hooks of the constraint device. Moreover, for undamaged isolators,
the constraint system does not substantially modify the isolator’s behavior, neither under
simple compression nor under combined compression and shear.

It is underlined that the use of a commercial product (Metaklett®), created with
completely different purposes from those pursued herein, obviously shows limitations.
The present study essentially investigated the feasibility of using a constraint device of
the described type and, from this point of view, represents a valid basis for a specific and
more advanced design of a device based on the same principle. The current shape of the
hooks themselves, equipped with protrusions, has proven to be favorable in achieving the
retention objective for which the constraint itself was created. However, it is suggested
that the stiffness and flexural strength of the hooks should be the same in the two principal
directions, not different, as in the presented case. Moreover, the use of hooks of different
lengths is suggested. In fact, the penetration of the hooks at different levels would involve
different layers of fibers and elastomer, thus obtaining better attachment to the device. In
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general, besides optimizing the hook design, it could be useful to explore also alternative
materials or device typologies, as well as methodologies to connect them to the supports.
Moreover, other experimental tests should be performed under a wider range of conditions,
also to investigate the long-term performance and durability of the constraint device and
its interaction with FREISs.
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