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The Log of Gravity Revisited 
 
Abstract 

This paper evaluates the performance of alternative estimation methods for gravity models 

with heteroskedasticity and zero trade values. Both problematic issues, recently addressed by 

Santos Silva and Tenreyro in an influential paper, are re-examined here. We use Monte Carlo 

simulations to compare the Pseudo Poisson Maximum Likelihood (PPML) estimator 

recommended by Santos Silva and Tenreyro, a Gamma pseudo-maximum-likelihood 

(GPML), a Non-Linear Least Squares (NLS) estimator and a Feasible Generalized Least 

Squares (FGLS) estimator with more traditional techniques. Additionally, estimates of the 

gravity equation are obtained for three different data sets with the abovementioned methods. 

The results of the simulation study indicate that, although the PPML estimator is less affected 

by heteroskedasticity than others are, its performance is similar, in terms of bias and standard 

errors, to the FGLS estimator performance, in particular for small samples. GPML presents 

however the lowest bias and standard errors in the simulations without zero values. The 

results of the empirical estimations, using three different samples containing real data, 

indicate that the choice of estimator has to be made for each specific dataset. There is not a 

general �“best�” estimator and it is highly recommended to follow a model selection approach 

using a number of tests to select the more appropriate estimator for any application. 

JEL classification: C5, F10 

Keywords: Simulations; Poisson regression; constant-elasticity models; heteroskedasticity; 

Feasible Generalized Least Squares (FGLS); maximum likelihood 
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1. Introduction 

Trade patterns can be extremely well described by the gravity model. The model, in its 

simplest form, states that bilateral trade between two countries is directly proportional to the 

product of the countries�’ income and negatively related to the distance between them. This 

model has been very successful empirically, mainly due to its high explanatory power. The 

most common practice in empirical applications has been to transform the multiplicative 

model by taking natural logarithms and to estimate the obtained log-linear model using 

Ordinary Least Squares (OLS)1. Despite the extensive use of this practice, some econometric 

problems arise from the prevalence of zero values in trade flows and from heteroskedastic 

residuals. 

Santos Silva and Tenreyro (2006, 2011) propose a Pseudo Poisson Maximum Likelihood 

(PPML) estimation technique that is consistent in the presence of heteroskedasticity and 

provides a way of dealing with zero values of the dependent variable. PPML is a special case 

of the generalized linear model (GLM) framework, in which the variance is assumed to be 

proportional to the mean. The authors recommend estimating constant-elasticity models using 

the PPML estimator, instead of applying traditional OLS estimation techniques to the log-

linearized models. In their paper, the gravity equation for international trade is taken as an 

example of constant-elasticity models. Although the general practice has been to estimate the 

log-linearized version of the gravity model2, in the related empirical literature, we can also 

find several attempts to deal separately with heteroskedasticity (e. g., Porojan, 2001) and zero 

values (e. g., Helpman, Melitz and Rubinstein, 2008).  

Martin and Pham (2008) state that the PPML estimator is less subject to bias resulting from 

heteroskedasticity, but does not prove robust to the joint problems of heteroskedasticity and 

zero trade flows. Therefore, it could be appropriate for other typical applications of 

                                                           
1 See Oguledo, V.I. and Macphee (1994) for a review of gravity studies using aggregated trade and Martínez-
Zarzoso, Pérez-García and Suárez Burguet (2008) for an application using sectoral trade data. 
2In Chapter 5, Feenstra (2004) presents a revision of articles applying the gravity model for international trade. 
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multiplicative models with relatively few zero observations, such as the estimation of 

consumer-demand systems, Cobb-Douglas-type production functions and the STIRPAT 

(Stochastic Impacts by Regression on Population, Affluence and Technology) model in 

environmental economics. 

 In this paper we consider cases with none or with a low percentage of zero values in the 

dependent variable and focus on the heteroskedasticity problem. Given the extended use of 

the Feasible Generalized Least Squares (FGLS) estimator to correct for heteroskedastic errors, 

it seems important to examine and compare its performance with the PPML estimator and 

with alternative GLM.   

The novelties of the present research are threefold. First, we argue that the performance of the 

PPML estimator should be also compared to FGLS techniques applied to the linearized model 

and not only to OLS techniques. Second, we consider two different ways of dealing with zero 

values of the dependent variable; we generate a dependent variable that becomes zero with a 

certain probability (p) and that remains continuous with probability (1-p), and zeros are 

randomly created depending on a threshold value of 1 of the regressors to imitate some 

minimum conditions that are necessary for a positive trade value. Deviating from Santos Silva 

and Tenreyro (2006, 2011) and Martin and Pham (2008), we will evaluate the performance of 

the estimators not only by looking at the bias of the estimates, but also by computing their 

expected loss. Third, estimates of the gravity equation are obtained for three different data 

sets with two classes of estimators: traditional methods derived from least squares estimators 

for the log-linearized model and GLM for the unlogged model. For completeness we also 

estimate a Heckman sample-selection model.  In the context of the gravity model of trade, the 

presence of zeros in the dependent variable is due primarily to the absence of trade, rather 

than to missing values. This presence raises a problem of selection bias. Heckman-type 

models are able to tackle the problem of sample selection bias (there are different motives for 
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participating or not participating in a certain economic activity that have to be identified 

before running the regression for the agents participating).  

 

In line with Santos Silva and Tenreyro, we use Monte Carlo simulations to evaluate the 

performance of alternative estimation methods (OLS, FGLS, Nonlinear Least Squares (NLS), 

Gamma Pseudo Maximum Likelihood (GPML) and PPML) for multiplicative and log models 

with heteroskedasticity. The results of the simulation study indicate that although the Pseudo 

Poisson Maximum Likelihood estimator is less affected by heteroskedasticity than other 

estimators, its performance is similar, in terms of bias and standard errors, to the FGLS 

estimator performance.  

In addition, the results of the empirical estimations, using three different samples containing 

real data indicate that the choice of estimator has to be made for each specific dataset. There 

is not a general �“best�” estimator and it is highly recommended to follow a model selection 

approach using a number of tests to select the more appropriate estimator for any application. 

The next section focuses on a discussion of the PPML and FGLS estimation techniques and 

their consistency in the presence of heteroskedasticity. Section 3 presents the simulation 

results in the presence of homoskedasticity and heteroskedasticity, and with a dependent 

variable that can take on zero values. Section 4 applies the PPML and other alternative 

estimation techniques to real data and discusses the estimation results. In Section 5, some 

conclusions are drawn. 

2. Alternative Estimators 

Let us assume that the original stochastic model is given by 

iiiii xxy )()(exp ,         (1) 

where 1)|( xE i . 

Assuming that yi is positive, the model can be linearized by taking logs: 
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iiii xy lnln ,          (2) 

where 00 xExE ii |ln;)|(ln . 

The original multiplicative model given by Equation 1 can be directly estimated using NLS or 

maximum likelihood techniques, whereas Model 2 can be estimated simply by OLS. The 

inequality 0xE i |ln  is known as Jensen�’s inequality. In the presence of 

heteroskedasticity, Least Squares (LS) estimation is no longer efficient. This problem can be 

resolved by controlling for heteroskedasticity.  

The estimation technique proposed by Santos Silva and Tenreyro (2006) is a pseudo 

maximum likelihood estimator based on some assumptions about the functional form of the 

conditional variance. Under the assumption that the conditional variance is proportional to the 

conditional mean, ß can be estimated by solving a set of first-order conditions: 

0~exp
1

i

n

i
ii xßxy ,         (3) 

where yi is the dependent variable, xi are the explanatory variables, and ß are the parameters to 

be estimated. The estimator based on Equation 3 gives the same weight to all observations, 

whereas the LS and NLS estimators give more weight to observations with large exp(xiß).  

The data do not have to follow the Poisson distribution and the dependent variable does not 

have to be an integer. Since the assumption of proportionality between the conditional 

variance and the conditional mean does not always hold, inference should instead be based on 

a robust covariance matrix estimator that specifically corrects for heteroskedasticity in the 

model.  

Within the GLM framework it is common to consider a more general form of the variance 

function given by  

))(()|( xkxyv           (4) 

where  is finite and non-negative and its value determines different GLM families. We 

obtain the NLS estimator when =0. We obtain the Poisson class when =1. We obtain the 
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gamma, the homoskedastic log-normal, the Weibull and the chi square in the case =2 with 

the appropriate specification of a distribution. Finally, when =3, the Inverse-Gaussian family 

is obtained. 

As mentioned above, the traditional way to estimate constant-elasticity models is to linearize 

the original multiplicative model using a log-log transformation. The rational for using a log-

log model can come from a desire to generate an estimate that easily yields elasticities or from 

a need to deal with dependent variables that are skewed to the right. Log transformation also 

improves precision and reduces the influence of outliers on the estimates. However, since no 

one is interested in log model results in the log scale per se, those results have to be 

retransformed to the original scale  in order to be able to quantify the average response to a 

covariate (Manning, 1998). 

Within the class of least squares estimators, the FGLS estimator is efficient in the presence of 

heteroskedasticity and can be applied to the linearized model. The FGLS estimator weighs the 

observations according to the square root of their variances3, and is given by 

yxxxFGLS
111 �ˆ'�ˆ' ,         (5) 

where �ˆ  is the weighting matrix. �ˆ  is estimated using the OLS squares residuals ( iu�ˆ ), to 

obtain an estimate for the variance of iu�ˆ ( rva iu�ˆ ). Then, iu�ˆrva/1�ˆ . 

It can be shown that even if the weights used in FGLS estimation are biased (resulting in a 

biased estimation of the residuals variance), FGLS would still provide consistent estimates 

when the appropriate retransformation technique is used4. In case of an unknown form of 

heteroskedasticity, FGLS can be applied and the variance of the disturbances must be 

estimated. This method should be well suited to estimating regression coefficients in the 

                                                           
3 Heteroskedasticity is assumed to be alinear function of the explanatory variables, as in Wooldridge (2009), 
pages 282-283. 
4 With transformed dependent variables, the mean response is the mean of the retransformed estimate of y, which 
depends not only on the mean of the x�’s, but also on their distribution (Manning, 1998). 
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presence of heteroskedasticity. Henceforth, the comparison should be made between FGLS-

like estimators and GPML, NLS or PPML estimation. 

The main difficulty encountered when dealing with log dependent variables is that log scale 

results are of little interest. Most economic policy decisions are taken based on monetary 

values requiring therefore retransformation of the log scaled predictions. Retransformation 

does not present any problem when errors are normal and homoskedastic, however, 

retransformation biases arise when one of these do not hold. A common practice in health 

economics has been to switch to GLM from log-transformed models when errors are 

heteroskedastic. However, although GLM can deal with heteroskedastic errors and do not lead 

to retransformation bias, OLS/FGLS of log-transformed variables could be more efficient in 

some cases (Manning and Mullahy, 2001). GLM can suffer substantial precision losses if the 

log-scale residuals have high kurtosis or if the variance function is misspecified5. The key 

question that remains is how to determine which method is best for specific empirical 

applications. Manning and Mullahy (2001) developed a method for determining which 

estimation method to choose for any empirical application which is based on using a number 

of tests that are easy to implement.  

 

3. Simulation Study 

A data set with the same properties as described by Santos Silva and Tenreyro (2006) is 

generated to compare different estimation techniques in the presence of heteroskedasticity. 

We extend the procedures used by the authors in two ways. First, we add an alternative 

estimation technique, the FGLS estimator, which is applied to the linearized model to correct 

for heteroskedasticity. Second, instead of using a rounding approach to generate zeros in the 

dependent variable6, two alternative methods are proposed; one consists of setting 

                                                           
5 However, estimates are still consistent. 
6 As done in Santos Silva and Tenreyro (2006). 
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observations to zero randomly and the other consists of setting observations to zero for 

particular groups. 

The multiplicative constant elasticity model considered is 

iiiiii XXxy )~()( 21
210 ,       (6) 

i is a log-normal random variable with mean 1 and variance 2
i , in the absence of 

heteroskedasticity. x1i is log-normal and x2i is dichotomous with values of e0 and e1 with a 

probability of 0.6 for the first value and a probability of 0.4 for the second value. 

Equation 5 can also be expressed as 

)lnln~exp(ln|: 22110 iiii xxxyEx ,     (7) 

where X1i := ln x1i; X2i := lnx2i and 00 :~ln . 

From distributional theory, it follows that X1i is drawn from a standard normal distribution 

and X2i is a binary variable that takes the value 1 with a probability of 0.4. The two covariates 

are independent and the true values for the coefficients are: ß0 = 0, ß1 = 1 and ß2 = 1.  

In line with Santos Silva and Tenreyro (2006), we assess the performance of different 

estimators (NLS, GPML, PPML, OLS and FGLS)7 under homoskedasticity and 

heteroskedasticity. We can distinguish four cases: 

Case 1: 12 xyVxV iii |;,)(  

Case 2: ,|;,)( iiii xxyVxV 1  

Case 3: 21 ,|;)( iii xxyVV  

Case 4: 2
2

1
2 ,exp,|;,exp)( iiiiiii xxxxyVxxV  

In Case 1, the NLS assumptions hold. In Case 2, the conditional variance equals its 

conditional mean, as in the PPML assumptions. OLS, FGLS and GPML conditions are 

fulfilled in Case 3 (homoskedasticity). And finally, in Case 4, the conditional variance does 
                                                           
7 Tobit and truncated OLS simulation results are not presented since these methods show a very poor 
performance. 
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not only depend on the mean, but is also a function of one of the explanatory variables 

(heteroskedasticity). We argue that in Case 4 of heteroskedasticity, which was identified as a 

severe problem in many applications (e.g., when analyzing trade flows in the framework of 

the gravity model), FGLS, rather than OLS, should be used for comparison purposes.  

In a first set of simulations, we study the performance of the estimators for the different 

models considered and for the four specifications of the disturbances outlined above. We 

focus on the estimators with a good performance in the experiments of Santos Silva and 

Tenreyro (2006), add the FGLS estimator and disregard those with a poor performance 

(Tobit, OLS (y+1), truncated-OLS). 

The truncated and the censored OLS models (in logarithms) produce results that are inferior 

to those obtained from the classical OLS model (that disregards the observation with zero 

values) in terms of bias and standard errors. This result is consistent with Martin and Pham 

(2008). 

Initially, we also considered the Tobit estimator which applies to situations in which 

outcomes can only be observed over some range, either because actual outcomes cannot 

reflect desired outcomes or because of measurement inaccuracy (rounding). However, the 

gravity equation only predicts zero trade if incomes of one or both countries are zero; 

therefore, desired outcomes are always positive. In addition, trade values are reported in 

COMTRADE even for very small amounts (up to $1). Therefore, zero flows seem to result 

from a binary decision-making process, rather than from censoring. This is also in accordance 

with the Helpman et al. (2008) model. 

Deviating from Santos Silva and Tenreyro (2006) and Martin and Pham (2008), we will 

evaluate the performance of the estimators not only by looking at the bias of the estimates, but 

also their expected loss. Most economic simulation studies consider unbiasedness or a small 

bias to be the most desirable property of an estimator. Therefore, the bias is used as the main 

criterion to compare the quality of different estimators. But this approach could be misleading 
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in some cases since �–due to the fact that over- and under-estimations cancel each other out�–

unbiased estimators are not necessarily good estimators8. A feature of our results for some of 

the considered estimators is the wide variation in the direction of the bias in parameter 

estimates; for example, the bias in the estimate of the slope coefficients resulting from use of 

the PPML estimator is not consistently negative. For this reason, although the bias is 

considered to be very low in some of the four cases, the expected loss is not. By considering 

the expected loss, the direction of the bias is also taken into account in evaluating the 

performance of alternative estimators. 

In statistical decision theory, one therefore looks at the risk of an estimator, defined as its 

expected loss: 

 )�ˆ,()�ˆ,( LER .         (8) 

The way the loss function )�ˆ,(L  is defined depends on the individual needs in each 

statistical analysis. As argued above, we only consider the class of loss functions where over- 

and underestimations cannot cancel out, as in case of the bias. The simplest loss function 

which is adequate for our purposes is the absolute error loss: 

 �ˆ)�ˆ,(L .          (9) 

As an alternative loss function, the squared error loss could also be used. 

In a second set of experiments, we study how zero values in the dependent variable affect the 

performance of the estimators, using a data-generation mechanism that produces a percentage 

of observations with zero values in yi, but that differs from those used by Santos Silva and 

Tenreyro (2006)9 and Martin and Pham (2008). In Santos Silva and Tenreyro (2006), the 

zeros in the dependent variable are generated by rounding to the nearest integer the values of 
                                                           
8 We give a simple example to illustrate this: let the true parameter be 1 . We define an estimator 0�ˆ  

half of the time and 2�ˆ  the other half of the time. Clearly, this is a very bad estimator, but it is unbiased.  

The constant estimator 1.1�ˆ , in contrast, is biased but obviously better than the above estimator.  
9 In Santos Silva and Teneyro (2006), the dependent variable was generated by rounding the values of yi to the 
nearest integer. 
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yi obtained in the first set of simulations. The authors mention that zeros could be a result of 

rounding errors or of missing observations that are wrongly recorded as zeros. As they 

recognize, this procedure will bias the estimates and the purpose of the experiment is just to 

measure the magnitude of the bias. To check the robustness of the results we suggest a 

slightly different way to investigate cases of zero trade or related problems, namely setting a 

certain percentage of the dependent variable to zero. We do this in two different ways: first, 

we choose a certain percentage, say 15 percent10, of all observations and set it to zero, and 

second, we only create zeros in a certain group, assuming that there is an underlying pattern 

that is responsible for this, say half of the 30 percent poorest/smallest countries, according to 

one or more of the independent variables. This pattern is reasonable for many relevant real 

cases, including the gravity model, since zero trade mainly occurs among poor or small 

countries.  

Tables 1 and 2 summarize simulation results for sample sizes of 1,000 and 10,000 

replications. The expected loss, the bias and the standard error of the two parameters of 

interest ( 1 and 2) are presented. Table 1 shows the results for the first set of simulations.  

The NLS shows a lower bias and expected loss than the other estimators only in Case 1. In 

Cases 3 and 4, the expected loss and bias of the NLS estimator are the highest. The PPML is 

the best in Case 2, in which the underlying error structure is consistent with the PPML 

estimator. In Cases 3 and 4, the performance of FGLS and PPML are comparable. FGLS 

estimates display lower expected loss, biases and standard errors than PPML in Case 3. The 

bias in the estimate of 1 is only -0.0003 for FGLS and -0.0027 for PPML. For 2 the 

corresponding biases are 0.0001 and -0.0008. In Case 4, FGLS estimates also present lower 

expected loss and standard errors for 1 and 2, but PPML shows slightly lower biases. 

Table 1. Simulation results, regular case 

                                                           
10 Bilateral trade among developed countries presents this pattern. Around 10 to 15 percent of the bilateral flows 
are zeros.  
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Table 2 shows the results for the second set of simulations, in which the dependent variable is 

generated with a percentage of zero values (15 percent). The NLS estimator yields estimates 

that are strongly biased in Cases 3 and 4. Traditional OLS estimates also present large biases 

and expected losses in Cases 1, 2 and 4. However, correcting for heteroskedasticity using 

FGLS considerably reduces the expected losses and biases in Cases 1, 2 and 4. When the zero 

values are generated randomly, the Gamma and the FGLS perform quite well in Cases 3 and 

4, and both present lower expected losses and standard errors than the PPML estimation.  

However, when the zero values are generated with a given pattern, the Gamma estimator yield 

estimates that are strongly biased in all cases, especially for 1, which bias is around 25 

percent in all four cases.  FGLS shows lower expected losses and standard errors than PPML 

in Cases 2, 3 and 4. Also in terms of bias, the bias in the estimate of 1 for FGLS is always 

lower than for PPML and it is lower than 1 percent in Cases 2 and 3 and around 5 percent for 

Cases 1 and 4.  

Table 2. Simulation results with zeros 

Additionally, we repeated the simulations with higher percentages of zero values (40 percent 

and 60 percent). The results for FGLS and PPML are shown in the appendix. A similar 

pattern persists for the FGLS estimator, with 1 biases always lower than 2 percent for Cases 

2 and 3, and around 7 percent and 5 percent, respectively, for Cases 1 and 4. The 2 biases are 

consistently lower than 1 percent for Cases 3 and 4, and around 5 percent and 8 percent, 

respectively, for Cases 1 and 4. The biases of 1 and 2 for PPML increase with higher 

percentages of zero values11, and more rapidly than for FGLS. The expected losses are around 

10 percent for 1 and around 15 percent for 2 in Cases 3 and 4, with 40 percent being zero 

values.  

                                                           
11 Martin and Pham (2008), using different data-generating processes, also show that the PPML estimator is 
highly vulnerable to the presence of a high percentage of zero values in the dependent variable. However, these 
results have been challenged by Santos Silva and Tenreyro (2011). 
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As a robustness check, and as suggested by Santos Silva (personal communication), we 

increased the sample size to 10,000 observations, which amount is consistent with some of the 

cross-sectional analysis in the framework of the gravity equation. Whereas the bias of the 

PPML decreases, the FGLS bias remains almost constant. The standard errors of the PPML 

estimator is considerably lower, but still twice the FGLS standard errors. Therefore, using 

PPML when the sample is large and when there is measurement error in the dependent 

variable could be recommendable. However, for small samples, FGLS could be a perfect 

choice to deal with the problem of heteroskedastic disturbances. 

4. The Gravity Model: Estimation Results  

4.1 Original versus log-log version of the gravity model 

According to the generalized gravity model of trade, the volume of exports between pairs of 

countries in year t, Xijt is a function of their incomes (Yit, Yjt), their incomes per capita (YHit, 

YHjt), their geographical distance (DISTij) and a set of dummies that represents any other 

factors aiding or preventing trade between pairs of countries (Fij): 

ijtijijjtitjtitijt uFDISTYHYHYYX 654321
0  ,      (10) 

where uijt  is the error term.  

Equation (10) in its multiplicative form can be directly estimated using GLM. GLM assumes 

that there is a function that explains the relationship between the variance and the mean (see 

equation 4 above) and does not assume constant variance. 

However, the most prevalent modelling approach is to use OLS or similar techniques to the 

log-linearized model. Taking natural logarithms from Equation 10 and replacing Fij for a 

number of specific variables, the log-log model is given by 

ijt
k

ijkijtijijij

jtitjtitijijt

FTAZComlangBorderLDIST

LYHLYHLYLYLX

8765

4321
  (11)

  

where:  
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L denotes variables in natural logs, 

Xijt are the exports from country i to country j in period t in current US$,  

Yit, Yjt indicate the GDP of countries i and j, respectively, in period t in current PPP US$, 

YHit, YHjt denote incomes per capita of countries i and j, respectively, in current PPP US$ per 

thousand inhabitants in period t, 

DISTij is the Great Circle distance between countries i and j. 

Border  is a dummy that takes the value of 1 when countries i and j share a border, and 

Comlang is a dummy that takes the value of 1 when countries i and j speak the same 

language. 

Z are additional variables that could foster or prevent trade between pairs of countries and 

could be, in some cases, time variant, for example, a dummy that takes the value of 1 if the 

trading countries share a common currency, or a dummy that takes the value of 1 if they had a 

colonial relationship in the past, 0 otherwise. 

The model includes trading blocs' dummy variables, defined as FTAij, which evaluate the 

effects of free trading agreements (FTAs). Integration dummies are described in more detail 

below. ij are the specific effects associated with each bilateral trade flow. They are a control 

for all the omitted variables that are specific for each trade flow and that are time invariant.  

A high level of income in the exporting country indicates a high level of production, which 

increases the availability of goods for export. Therefore, we expect 1 to be positive. The 

coefficient of Yj, 2, is also expected to be positive since a high level of income in the 

importing country attracts higher imports. The coefficient for income per capita of the 

exporters, 3, may be negatively or positively signed depending on the type of goods 

exported. The coefficient of the importer income per capita, 4, also has an ambiguous sign, 

for similar reasons. Another factor that may influence these coefficient estimates is the 

composition effect that influences supply and demand. Each country produces and exports a 

different mix of commodities (supply) and the mix of goods demanded is also different for 
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each country. The distance coefficient is expected to be negative since it is a proxy of all 

possible trade costs.  

In some of the results presented below, specific trading bloc dummies are included to model 

trade-creation and trade-diversion effects of trade (see Soloaga and Winters (2001); Chen and 

Tsai (2005), Carrère (2005) and Martínez-Zarzoso, Nowak-Lehmann and Horsewood (2009)). 

The specification of the Viner�’s trade creation and trade diversion for a single period is given 

by 

 
,     (12) 

 

where LXij denotes exports from country i to country j in natural logarithms, and EVij is 

defined as the rest of explanatory variables of the gravity equation above. Dk is a dummy that 

takes the value 1 if both countries, i and j, belong to the same economic bloc, 0 otherwise. Dki 

is a dummy that takes the value 1 if i is a member of bloc k and j belongs to the rest of the 

world, 0 otherwise. Dkj is a dummy that takes the value 1 if j is a member of bloc k and i 

belongs to the rest of the world, 0 otherwise. k measures the extent to which trade exceeds 

normal levels if both countries, i and j, are members of the bloc, k measures the extent to 

which members�’ exports levels to non-member countries are higher than normal, and k 

measures the extent to which members�’ import levels from non-member countries are higher 

than normal. k and k could be interpreted as a measure for trade-diversion effects, but they 

might also combine trade-diversion and openness effects. 

 

4.2 Main results 

Different versions of Models 10 and 11 are estimated using two classes of estimators: least 

squares for models with logged dependent variables, and GLM with a logarithmic function.  

k
kjk

k
kik

k
kkijij DDDEVLX
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Within the first class we consider four estimators: OLS, FGLS, Harvey model12and the  

Heckman selection model. Within the second class, we use tree estimators: PPML, GPML 

and NLS. Observations with zero values are simply dropped when estimate the OLS, FGLS 

and Harvey models. The FGLS estimator is computed two steps. The squared OLS residuals 

are computed (e2) and regressed upon the gravity-model explanatory variables and a constant. 

Then 2�ˆ/1 e  are the weights used in the second step weighted least squares regression. 

The gravity model is estimated for three different data sets. The first one is a sample of 180 

countries over the period from 1980 to 2000 from Rose (2005). The second data set consists 

of a sample of 65 countries from Márquez, Martínez and Suárez (2007), with data for every 

five years over the period from 1980 to 1999. Finally, a third sample of 47 countries from 

Martínez-Zarzoso et al. (2009) is used, covering the period from 1980 to 1999. The 

percentage of zero export values in the three samples is 13, 15, and 23 percent, respectively. 

The traditional gravity model, as well as the theoretically justified gravity model (Anderson 

and van Wincoop, 2003) with multilateral resistance terms specified as exporter and importer 

dummy variables, are considered. 

The distribution of the dependent variable, total exports, in the three samples shows right-

skewness since there are no negative exports and some pair of countries do not trade to each 

other. The summary statistics for exports in the first sample for the year 1990 are mean= 

1.82e+08, variance= 3.29e+18, skewness= 28.59645, and kurtosis= 1155.022. An attempt to 

make the distribution more normal consists on taking natural logarithms. The equivalent 

summary statistics for log exports are mean= 14.17866, variance= 16.51199, skewness= -

.8381542, and kurtosis= 5.054987. Although transformation makes the distribution closer to a 

normal, the usual test still rejects the normality assumption. 

                                                           
12 Harvey�’s model of multiplicative heteroskedasticity (Harvey, 1976) has also been estimated since it is a very 
flexible and model that includes most of the useful formulations as special cases. The general formulation is 

'22 exp ii z . 
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In the other two samples with 65 and 47 countries respectively, whereas unlogged exports are 

badly skewed to the right, the log of exports is approximately normal for 1990 with skewness 

close to zero and kurtosis close to 3. According to Manning (1998), in such cases estimates 

based on logged models are usually more precise and robust than direct analysis of the 

unlogged original dependent variable. Retransformation presents no problem when errors are 

linear, normal and homoskedastic. One of the main reasons to switching to GLM from log-

transformed models in applied research has been due to heteroskedasticity of unknown form. 

But if errors are normally distributed, a transformation can still be applied that accounts for 

any form of heteroskedasticity (Baser, 2007). We applied the method proposed by Baser 

(2007) to calculate the retransformed expected value of exports. 

Table 3 shows the results for the traditional gravity model, as specified in Equations 9 and 10 

for the first data set13. With comparative purposes, we show the results for the year 1990, as in 

Santos Silva and Tenreyro (2006) (SST). However, the estimated parameters are not directly 

comparable since the number of countries is different; as is the definition of the dependent 

and some of the independent variables. Our purpose is only to present estimation results for 

different data sets in order to evaluate/put into perspective the use of the PPML as the 

proposed �“new workhorse�” for the estimation of gravity models14. 

Table 3. Estimation results: traditional gravity model 

The estimated coefficients for the income variables are closer to the theoretical value of 1 

when the equation is estimated using OLS and FGLS, Harvey and Heckman. The fact that the 

income elasticities for the exporter and importer countries are equal in magnitude, according 

to the PPML estimation, is not indicative of a correct specification. Asymmetries can also be 

theoretically justified. The standard errors are significantly lower for the least squares 

estimators and therefore the estimates are more accurate. 

                                                           
13 The theoretically modified gravity model was also estimated for this sample using OLS and FGLS techniques, 
but the PPML estimation presented some problems since the maximization algorism could not find a solution.  
14 SST page 649. 
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In contrast to SST (2006), the variable common border is also statistically significant when 

PPLM is used, compared to OLS and FGLS estimates. The OLS and FGLS estimates for 

FTA, indicates that the integration dummy is statistically significant, whereas using PPML, it 

is non-significant and much lower in magnitude than when using least squares methods. 

Instead, the GPML model produces a significant coefficient for the FTA dummy. Concerning 

geographical distance, in line with SST the estimated elasticity is significantly lower in 

magnitude in the PPLM estimation, whereas in the FGLS and Harvey model, it is lower than 

in OLS but higher than in PPML.  

Table 4 shows the results for the theoretically justified gravity model for the second and third 

data sets. The first three columns show the estimated coefficients for the OLS, FGLS and 

Harvey models. Column 4 shows the Heckman selection model results that control for zero 

values for the dependent variable. The last three columns present the results obtained using 

GLM (PPML, GPLM and NLS).  

Comparing the results of the different specifications, we observe for both samples that the 

role of distance is significantly reduced under Poisson and NLS. Trading countries having a 

common language always have a positive effect on trade, but the effect is also substantially 

reduced (halved) when using Poisson in comparison to OLS, FGLS, Harvey or Heckman. A 

common border consistently has a positive effect on exports in the first sample (65 countries) 

under all estimation techniques. However, for the second sample (47 countries) OLS and 

FGLS and Harvey predict no significant effects and Poisson produces a positive and 

significant effect. The coefficient is not shown in the fourth column because the variable 

common border was only used in the selection equation. 

With respect to the free-trade agreement variables, for the first sample only PPML and NLS 

predict a significant and positive effect. For the second sample, PPML predicts always 

positive effects but the estimate is not significant for the EU, whereas the additional 

techniques produce negative effects for the EU agreement and positive and significant effects 
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for the NAFTA, CACM and CARICOM agreements. However, as stated by some authors, the 

estimation of gravity models using cross-sectional data does not provide a good way to 

identify the effects of free trade agreements (Baier and Bergstrand, 2007). 

 

Table 4. Estimation results: Theoretically justified gravity model 

A panel data version of the gravity model is also estimated, adding to the traditional 

specification dyadic random effects and time effects. The results are shown in Table 5. The 

first column presents the result for the random effects model assuming homoskedasticity and 

uncorrelated errors. The second column allows for heteroskedastic errors and the third 

assumes autocorrelation of first order. Columns four to seven show the GLM estimates: 

PPLM, GPLM and NLS respectively. The log-linear models (columns 1 to 3) show more 

accurate coefficients than the GLM.  

Table 5. Estimation results for panel data (1980-1999) 

Since many other issues come into play when estimated gravity equations with panel data, as 

for example what is the correct way to control for multilateral resistance, we refer to the 

results obtained in Martínez-Zarzoso et al. (2008) for the 47 country sample. 

4.3 Robustness check 

In this section, we first present the results obtained when testing for the pattern of 

heteroskedasticity. In addition, we investigate the out-of-sample forecast performance of the 

alternative estimates. 

To determine if the pattern of heteroskedasticity assumed by the different models is 

acceptable, a Park-type test is used to check for the adequacy of the log-linear model versus 

alternative GLM. The Park-type test can be directly derived from Equation (4) in Section 2 

above. The test consists of estimating the equation specified as 

iiii yyy �ˆln)ln(�ˆln 10
2 .        (13) 
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Acceptance of the null hypothesis: H0: 1=2, based on a robust covariance estimator, would be 

in support of the log-linear model. The results of the test performed for the 65 countries 

sample are presented in the first part of Table 6. The point estimate for 1 in 1990 is 1.829 and 

the estimates for other years are very similar. Below the point estimates, the 95 confidence 

intervals are also reported in Table 6. Although those intervals do not contain the value 2, 

they are closer to this value than to value 1, that will be in support of the PPML assumption 

(the variance is proportional to the mean). 

Since log-linerization of equation (4) is valid only under restrictive conditions of the 

conditional distribution of yi, we also used a robust alternative. As suggested by Manning and 

Mullahy (2001) and Deb, Manning and Norton (2008) we have also estimated the modified 

version of the Park test as a GLM with log link where the dependent variable is 2�ˆ ii yy  and 

the explanatory variable is �ˆx  from each one of the GLM estimators of y on x, using a robust 

variance covariance matrix. The second part of Table 6 shows the results for several years 

using Rose data. Among the GLM estimators we have chosen the Gamma family since it 

presents the lowest AIC and BIC values. The results are presented in the second part of Table 

6. The point estimate for 1 in 1990 is 1.586 and the estimates for other years are slightly 

higher. Below the point estimates, the 95 confidence intervals are also reported. According to 

those results, the variance always exceeds the mean and a Gamma family (within the GLM 

models) would be more appropriate than a Poisson family. We also estimated �ˆx  using the 

Poisson and Gaussian families, and the confidence intervals did not contain 1 and where 

always closer to 2. For the 65 country sample the results for 1 lie on the 95% confidence 

interval (1.66-1.75) and for the 47 country sample, the estimated confidence interval for 1 is 

(1.77-1.85). According to these results the more appropriate GLM family could be the 

gamma. 
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SST used instead the results from a Gauss-Newton regression to test for the proportionality 

assumption (the conditional variance is proportional to the conditional mean). The Gauss-

Newton regression is given by 

iiiiiii yyyyyy �ˆ�ˆln1�ˆ�ˆ�ˆ 100
2 .     (14) 

The proportionality hypothesis can be checked by testing for the significance of 0 ( 1-1) in 

Equation 14. The hypothesis will be accepted if the parameter is statistically insignificant. 

Equation 14 is derived using a Taylor series expansion around 1=1 (which is an 

approximation) and assuming that the variance is proportional to the mean to choose the 

appropriate weights in equation (14).  We consider that the approach proposed by Manning 

and Mullahy (2001) and Deb, Manning and Norton (2008) is more straightforward and gives 

a confidence interval for 1 which is more useful to choose the more appropriate GLM 

estimator. 

As pointed out by SST, the proportionality assumption is unlikely to hold; therefore, the 

PPLM does not fully account for the heteroskedasticity in the model. The authors mentioned 

that the inference should then be based on a robust covariance matrix estimator.  However, 

another alternative is to specify the variance in a more accurate way: using a gamma family if 

1 is close to 2, for example. 

In this context (with 1 close to 2) FGLS could also be a good method. The shortcoming of 

standard FGLS techniques is that the relationship between the residuals and the independent 

variables is restricted to a linear model. In the presence of Jensen´s inequality, as well as for 

other functional forms different from the linear model, this simplifying assumption lowers 

estimation quality. Nevertheless, for most practical purposes, this problem could be solved by 

using more sophisticated methods based on the results obtained in Carroll (1982), Robinson 

(1987) and Delgado (1992 and 1993). These authors propose a semi-parametric version of 

FGLS that consists of estimating the relationship between the residuals and the independent 

variables, allowing for an unknown functional form and using non-parametric techniques.    
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The performance of the log-linearized models can be compared using the root mean squared 

error (RMSE) reported in Tables 3 and 4 (in the first and second half of the table). Among 

those models, the estimates of the FGLS model present the lowest RMSE. In order to use the 

RMSE to compare log-log models with GLM models15, we have re-calculated the RMSE for 

log-log models using the retransformed predicted values (retransformation proposed by Baser, 

2007). The results presented in Tables 3 and 4 (RMSE retrans) indicate that NLS presents the 

lowest value.  

In order to compare different GLM models, the Deviance and Dispersion of the different 

families can also be compared (See Tables 3 and 4, left hand side). The large Dispersion 

shown by the Poisson estimates is another indicator that the Poisson distribution is not a good 

choice. Since the distribution of exports presents signs of overdispersion (the variance is 

larger than the mean), we scaled the standard errors using the square root of the Pearson chi-

square dispersion. The coefficients were identical to the previous analysis but the standard 

errors were significantly higher in magnitude.  The GPLM present (in all cases) the smaller 

deviance and dispersion out of the three GML methods considered. 

SST show the results obtained from a Ramsey-RESET test of specification error of functional 

form that supported the PPML estimator. We also computed it, and the PPML estimator did 

not pass the test. None of the models estimated for a single year pass the RESET test, apart 

from the probit model estimated in the first step of the Heckman model. These results could 

be due to the fact that relevant variables have been omitted. This problem is solved by using 

panel data since the introduction of exporter-and-year and importer-and year fixed effects in 

addition to dyadic fixed effects is an accepted way to control for the omission of relevant 

variables in gravity models (Baldwin and Talglioni, 2006; Martínez-Zaroso et al., 2009). 

We also computed the Akaike information criterion (AIC) and the Bayesian information 

criterion (BIC). Although the results obtained for log-linear models and for GLM are not 
                                                           
15 Following Joao Santos Silva recommendation we retransform the predicted values obtained from log-.log 
models to make a valid comparison. 
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comparable, we can use those two criteria to compare models within the first and second 

class. Whereas the FGLS and Harvey models always present the lowest AIC and BIC among 

the log-linear models. The Gamma always presents, for the three samples, the lowest AIC and 

BIC16. 

Finally, we do some cross-validation. We use the estimates of the gravity model for the year 

1990 to calculate the predicted values in 1999. The fitted values are compared with the actual 

values in 1999. In order to compare log-linearized models with GLM, we use for the log-

linear models the heteroskedasticity adjusted retransformation proposed by Baser (2007). 

Then the Root Mean Squared Predictor Error (RMSPE) is calculated. The results are 

summarized at the bottom of Tables 3 and 4 (first and second part) under RMSPE (1999). The 

RMSPE of different models can be compared directly, the model producing the smaller 

RMSPE being the better one. We repeat the same experiment for the three samples. Our 

findings indicate that for the first dataset (Table 3) the Heckman and Harvey models present 

the smaller RMSPE, for the second  dataset (first part of Table 4, last row) the PPLM present 

the smaller RMSPE  and for the third (second part of Table 4, last row) the NLS present the 

smaller RMSPE.  

A matter of further research, outside the scope of the paper, is to check the accuracy and 

goodness of fit of two-part models. These models, the first part consisting of a probit or logit 

equation to distinguish between zero and positive outcomes and the second part using log-log 

models or GLM models on the positive values, allows different parameters and variables to 

determine the two parts of the data-generating process. Those models could be more 

appropriate than the Heckman model when the zeros represent outcomes of interest, as in the 

case of trade flows. This is recommendable when working with sectoral data, for which the 

                                                           
16 Although AIC and BIC are not appropriate, strictly speaking, to evaluate models estimated by pseudo 
maximum likelihood, as stated by Santos Silva (personal communication), the criteria available based on the 
pseudo-likelihood function (PAIC, PBIC) add a penalty term that is very unstable and makes the PAIC and PBIC 
very inaccurate. 



 25

amount of zero values in export flows is much higher than when working with aggregated 

trade data.   

5. Conclusions 

The extended use of gravity models to predict international trade flows has generated an 

ongoing discussion concerning the estimation techniques to be applied. In particular, the 

issues concerning zero trade values and heteroskedastic residuals are controversial. Both 

issues also extend to gravity models used in social sciences to predict certain behaviour that 

mimic gravitational interactions, namely migration, or capital flows. Immigration between 

pairs of countries may be zero in a substantial percentage of observations, and omitting those 

zero observations biases the regression results. Bilateral flows of international migrants also 

exhibit tremendous variance both across destination countries and over time. Bilateral foreign 

direct investment data contains also many zero values and the residuals of the related models 

are in general heteroskedastic. This paper compares a number of estimation techniques that 

have been proposed in the economic literature to deal with both problems. The results of the 

simulations indicate that in these settings, PPML shows a similar performance to FGLS and 

Gamma estimates when the bias and the expected loss are used as the criteria to evaluate the 

performance of different estimators. The results also indicate that although the PPML is less 

affected by heteroskedasticity than other estimators, its performance is similar, in terms of 

bias and standard errors, to the FGLS estimator performance and in the case of no-zeros in the 

dependent variable, the GPLM present the lowest biases.  

Nevertheless, it is worth noting that conclusions drawn from this type of simulation studies 

should be made with care, and that the winning estimation method should not be labelled �“the 

new workhorse�” for the estimation of constant-elasticity models. We have shown that small 

changes of the simulation setting can lead to different outcomes. Hence, one should be 

cautious and inspect each applied situation carefully in order to find the appropriate 

estimation method.  
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The results obtained when estimating the gravity model of trade using three different samples 

indicate that finding the best estimator for a given dataset requires carrying out a large 

number of tests and specification checks.  

The use of transformed least squares methods trades robustness for some improvement in 

efficiency, whereas the use of GLM methods provides an easy way to deal with 

heteroskedastic errors but the researcher should choose the best variance function and in some 

cases the best GLM model cannot be estimated with adequate precision. These considerations 

are not only valid for gravity models of trade; they can also be extended to gravity models 

used to explain other types of inter-regional and international flows, including migration, 

development aid, investment and transport. 
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Table 1. Simulation results, regular case 

  absolute error loss bias standard deviation
  1 2 1 2 1 2 

Case 1      
OLS (y>0) 0.3894 0.3560 0.3894 0.3560 0.0390 0.0529
NLS 0.0059 0.0137 0.0000 0.0002 0.0075 0.0173
Gamma 0.0535 0.0652 0.0139 0.0084 0.0672 0.0827
Poisson 0.0121 0.0215 -0.0001 0.0000 0.0161 0.0274
FGLS (y>0) 0.0943 0.0879 0.0795 0.0504 0.0737 0.0956
Case 2         
OLS (y>0) 0.2105 0.1992 0.2105 0.1992 0.0294 0.0497
NLS 0.0259 0.0452 0.0003 0.0012 0.0327 0.0569
Gamma 0.0336 0.0508 0.0043 0.0023 0.0431 0.0638
Poisson 0.0156 0.0321 0.0001 0.0000 0.0196 0.0401
FGLS (y>0) 0.0571 0.0931 0.0164 0.0008 0.0751 0.1285
Case 3         
OLS (y>0) 0.0213 0.0424 0.0001 -0.0001 0.0267 0.0532
NLS 0.2734 0.2331 0.1295 0.0255 3.4097 0.7309
Gamma 0.0253 0.0522 0.0003 -0.0006 0.0315 0.0650
Poisson 0.0551 0.0807 -0.0027 -0.0008 0.0721 0.1021
FGLS (y>0) 0.0219 0.0450 -0.0003 0.0001 0.0274 0.0564
Case 4         
OLS (y>0) 0.1327 0.1280 0.1326 -0.1247 0.0385 0.0754
NLS 0.9386 0.5972 0.7411 0.1663 20.5992 9.6913
Gamma 0.0463 0.0855 0.0030 -0.0022 0.0589 0.1073
Poisson 0.0777 0.1151 -0.0062 -0.0055 0.1030 0.1466
FGLS (y>0) 0.0591 0.1017 0.0492 -0.0881 0.0506 0.0861

Note: The absolute error loss is defined in Equations 7 and 8 in the main text. 
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Table 2. Simulation results with zeros in the dependent variable 

 absolute error loss bias standard deviation
zeros at random  1 2 1 2 1 2 
Case 1         
OLS (y>0) 0.3900 0.3556 0.3900 0.3556 0.0429 0.0586
NLS 0.0694 0.0889 0.0043 0.0080 0.0907 0.1226
Gamma 0.0583 0.0721 0.0154 0.0072 0.0738 0.0920
Poisson 0.0290 0.0422 -0.0003 -0.0003 0.0379 0.0530
FGLS (y>0) 0.0979 0.0903 0.0826 0.0539 0.0760 0.0975
Case 2         
OLS (y>0) 0.2104 0.1993 0.2104 0.1993 0.0322 0.0529
NLS 0.0743 0.1038 0.0045 0.0073 0.0963 0.1371
Gamma 0.0372 0.0570 0.0045 0.0026 0.0473 0.0719
Poisson 0.0299 0.0486 -0.0011 0.0004 0.0383 0.0610
FGLS (y>0) 0.0575 0.0941 0.0195 0.0033 0.0749 0.1301
Case 3         
OLS (y>0) 0.0225 0.0462 -0.0003 0.0007 0.0282 0.0577
NLS 0.4154 0.3285 0.2529 0.0829 5.6568 2.4460
Gamma 0.0292 0.0596 -0.0002 0.0004 0.0366 0.0750
Poisson 0.0643 0.0937 -0.0036 -0.0028 0.0836 0.1185
FGLS (y>0) 0.0237 0.0483 0.0001 0.0008 0.0299 0.0607
Case 4         
OLS (y>0) 0.1322 0.1299 0.1321 -0.1254 0.0417 0.0830
NLS 0.8055 0.5406 0.5860 0.1639 7.8462 3.2434
Gamma 0.0495 0.0976 0.0046 0.0000 0.0626 0.1229
Poisson 0.0863 0.1281 -0.0084 -0.0045 0.1149 0.1649
FGLS (y>0) 0.0613 0.1053 0.0500 -0.0878 0.0536 0.0941
zeros with pattern 1 2 1 2 1 2 
Case 1       
OLS (y>0) 0.3408 0.2877 0.3408 0.2877 0.0448 0.0520
NLS 0.0116 0.0140 0.0112 0.0009 0.0082 0.0176
Gamma 0.2651 0.0801 0.2620 0.0097 0.0967 0.1014
Poisson 0.0669 0.0221 0.0668 0.0008 0.0166 0.0279
FGLS (y>0) 0.0760 0.0765 0.0571 0.0416 0.0714 0.0862
Case 2         
OLS (y>0) 0.1938 0.1776 0.1938 0.1776 0.0336 0.0488
NLS 0.0273 0.0468 0.0118 0.0021 0.0330 0.0586
Gamma 0.2490 0.0634 0.2487 0.0027 0.0644 0.0799
Poisson 0.0664 0.0335 0.0664 0.0010 0.0205 0.0420
FGLS (y>0) 0.0542 0.0889 0.0111 0.0054 0.0730 0.1227
Case 3         
OLS (y>0) 0.0248 0.0465 0.0002 -0.0007 0.0311 0.0583
NLS 0.3080 0.2827 0.1818 0.0921 3.6995 2.0455
Gamma 0.2405 0.0622 0.2405 0.0011 0.0408 0.0777
Poisson 0.0736 0.0834 0.0633 -0.0027 0.0716 0.1054
FGLS (y>0) 0.0258 0.0491 0.0001 0.0010 0.0325 0.0616
Case 4         
OLS (y>0) 0.1200 0.1545 0.1199 -0.1529 0.0448 0.0794
NLS 0.5178 0.4039 0.3373 0.1053 4.9428 3.1924
Gamma 0.2512 0.0999 0.2508 -0.0011 0.0773 0.1261
Poisson 0.0870 0.1194 0.0601 -0.0081 0.1047 0.1521
FGLS (y>0) 0.0584 0.1078 0.0465 0.0929 0.0540 0.0914
Note: The absolute error loss is defined in Equations 7 and 8 in the main text. 
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Table 3. Estimation results for 1990: traditional gravity model 

 LOG-LOG MODELS  TWO PART 
HECKMAN 

GENERALISED LINEAR 
MODELS 

 OLS FGLS Harvey Heckman Poisson Gamma NLS 
Dep. Var. log(exports) log(exports) log(exports) log(exports) exports exports exports exports 
lyi 1.08 0.932 1.077 1.069 0.38 0.799 0.739 0.86 
 0.016 0.009 0.014 0.017 0.012 0.037 0.037 0.07 
lyj 0.951 0.899 0.958 0.948 0.144 0.798 0.744 0.91 
 0.016 0.008 0.014 0.016 0.011 0.03 0.032 0.079 
lyhi 0.777 0.791 0.793 0.774 0.143 0.549 0.596 0.587 
 0.028 0.019 0.025 0.027 0.019 0.08 0.043 0.129 
lyhj 0.585 0.574 0.552 0.58 0.218 0.614 0.462 0.745 
 0.029 0.016 0.025 0.027 0.019 0.054 0.055 0.183 
ldist -1.326 -0.903 -1.226 -1.316 -0.398 -0.713 -1.066 -0.797 
 0.033 0.015 0.029 0.033 0.026 0.038 0.043 0.119 
border 0.714 0.26 0.554 0.712 0.398 0.427 0.457 0.194 
 0.136 0.04 0.132 0.154 0.162 0.113 0.151 0.124 
comlang 0.329 0.335 0.396 0.325 0.085 0.585 0.211 0.551 
 0.062 0.029 0.054 0.06 0.043 0.109 0.078 0.333 
colony 1.635 0.679 1.377 1.627 8.598 0.101 1.219 -0.11 
 0.112 0.042 0.124 0.165 8.14E+06 0.144 0.125 0.428 
landl -0.187 -0.3 -0.206 -0.19 0.059 -0.589 -0.268 -0.091 
 0.051 0.027 0.046 0.05 0.034 0.108 0.092 0.474 
island 0.008 0.354 0.048  0.126 0.391 -0.016 0.652 
 0.05 0.024 0.046  0.035 0.077 0.069 0.18 
landap -0.047 -0.052 -0.058 -0.047 -0.027 -0.057 -0.016 -0.001 
 0.011 0.005 0.009 0.01 0.007 0.024 0.019 0.066 
regional 0.915 0.15 0.443 0.918 0.517 0.077 0.459 0.36 
 0.145 0.037 0.155 0.171 0.187 0.093 0.151 0.156 
custrict 1.714 0.698 1.851 1.691 0.529 -0.084 0.689 -0.015 
 0.185 0.047 0.204 0.236 0.195 0.203 0.207 0.433 
comcol 0.664 0.766 0.624 0.662 0.17 0.811 0.643 1.671 
 0.101 0.076 0.085 0.085 0.053 0.296 0.121 1.124 
_cons -37.875 -36.377 -38.289 -37.5 -11.26 -28.51 -22.46 -36.549 
 0.685 0.342 0.537 0.628 0.448 1.231 0.76 5.546 
R-squared 0.619 0.862 0.679                 
N 12134 12134 12134 13974  13974 13974 13974 
ll -28189.5 -18299.6 -26833.8 -32312.3  -

7.90E+11 
-234853 -302957 

rmse 2.4716 1.093957 2.210317 2.5114                
aic 56409.08 36629.1 53697.61 64686.49  1.13E+08 33.615 43.36218 
bic 56520.13 36740.15 53808.67 64920.39  1.58E+12 -86841.5 5.54E+21 
RMSE 
retrans 

1.81E+09 1.87E+09 1.70E+09 1.56E+09  7.39E+08 2.31E+09 6.30E+08 

RMSEP 9.94E+10 3.70E+09 3.40E+09 3.26E+09  4.22E+09 1.26E+10 5.61E+09 
Note: Lyi (Lyj) and Lyhi (Lyhj) denote income and income per capita in country i (j), respectively. Border is a 
binary variable that is unity if countries i and j share a common border, 0 otherwise. Comlang is a binary 
variable that is unity if countries i and j share a common language, 0 otherwise. Colony is a dummy that takes the 
value of 1 if country i ever colonized j or vice versa, 0 otherwise. Island takes the value of 1 if country i or 
country j or both are islands. Landl is the number of landlocked countries in the country pair. Landap is the total 
area of both countries, i and j. FTA is a dummy that takes the value of 1 when the trading partners belong to the 
same trade agreement, 0 otherwise. Custrict is a dummy that takes the value of 1 when the trading partners share 
a common currency, 0 otherwise. Comcol is a dummy that takes the value of 1 if i and j were ever colonies after 
1945 with the same colonizer, 0 otherwise. Standard errors reported below each estimate.  
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Table 4. Estimation results for 1990: Theoretically justified gravity model 

65 Countries'  LOG-LINEAR MODELS  TWO PART HECKMAN GENERALIZED LINEAR MODELS 
 OLS FGLS Harvey Heckman  Poisson Gamma NLS 
Dep. Var. log(exports) log(exports) log(exports) log(exports) exports exports exports exports 
Ldist -1.134 -1.121 -1.081 -1.095 -0.97 -0.539 -1.191 -0.454 
 0.045 0.042 0.04 0.039 0.078 0.044 0.057 0.085 
Comlang 0.639 0.587 0.645 0.623 0.592 0.271 0.946 0.448 
 0.085 0.077 0.073 0.084 0.136 0.064 0.101 0.101 
Border 0.393 0.113 0.245 0.402  0.658 0.533 0.588 
 0.151 0.136 0.137 0.148  0.089 0.168 0.187 
FTA -0.064 -0.106 -0.073  0.172 0.287 -0.017 0.540 
 0.045 0.041 0.037  0.120 0.050 0.056 0.072 
Constant 12.824 15.036 14.236 12.388 6.429 11.761 16.464 10.335 
 0.55 0.573 0.542 0.505 0.771 0.559 0.693 0.863 
R-squared 0.801 0.835 0.853  Deviance  4.96E+8 5168 2.01E+15  
RMSE 1.395448 1.182354 1.14222  Dispersion 5.92e+8 13158 2.01E+15    
Nobs 3230 2938 3230 3220 3804 3804 3804 3804 
Ll -5593.633 -4595.019 -4946.855 -6211.515  -2.48E+08 -41675.05 -56731.24 
AIC 11445.27 9448.038 10151.71 12939.03  130566 21.979 29.89497 
BIC 12229.62 10220.17 10936.06 14549.93  4.97E+08 -25127.24 2.00E+15 
RMSE retrans 12056872 4673505.5 3431688 8477757  978886.81 22653696 725514.25 
RMSPE (1999) 15804256 8104227.5 8640781 7839773.5  3661013.5 20849120 4846363 
47 countries'  OLS FGLS Harvey Heckman  Poisson Gamma NLS 
Dep. Var. log(exports) log(exports) log(exports) log(exports) exports exports exports exports 
Ldist -1.064 -1.04 -1.06 -0.841 -0.705 -0.564 -1.396 -0.294 
 0.058 0.044 0.05 0.09 0.055 0.052 0.069 0.078 
Island -0.37 -0.284 -0.279 -0.099 -0.161 -1.034 -1.024 -0.825 
 1.529 0.877 0.435 1.612 0.076 0.403 0.472 0.469 
Comlang 1.416 1.184 1.259 1.23 0.51 0.775 1.74 0.745 
 0.122 0.089 0.103 0.141 0.119 0.069 0.147 0.07 
Border -0.354 -0.347 -0.349  -1.526 0.246 -0.218 0.213 
 0.215 0.162 0.176  0.258 0.079 0.207 0.077 
EU -0.369 -0.462 -0.461 -0.479 5.722 0.04 -1.729 -0.189 
 0.191 0.122 0.142 0.199 . 0.09 0.199 0.101 
NAFTA 1.071 0.478 0.657 0.668 6.476 1.322 -0.037 2.571 
 0.642 0.426 0.598 0.671 . 0.184 0.456 0.363 
CACM 1.805 1.765 1.841 1.884 -0.118 1.481 1.245 1.909 
 0.388 0.246 0.281 0.401 0.559 0.34 0.328 0.84 
CARIC 1.393 1.44 1.447 1.763 -1.205 0.917 2.158 0.662 
 0.231 0.233 0.228 0.255 0.13 0.331 0.289 0.9 
Constant 11.968 15.402 12.092 10.185 6.797 18.786 26.599 17.334 
 1.677 1.426 0.822 0.801 0.485 0.457 0.654 0.587 
R-squared 0.817 0.903 0.878  Deviance 1.78E+8 3153 5.67E+14    
RMSE 1.468021 1.005774 0.0003035  Dispersion 1.99E+8 7910 5.67E+14    
Nobs 1656 1656 1656 2162  2162 2162 2162 
Ll -2933.42 -2307.191 11116.21   -8.91E+07 -21359.71 -31491.06 
AIC 6068.839 4816.382 -22032.42 .  8.24E+04 19.85265 29.22484 
BIC 6615.467 5363.011 -21491.21 .  1.78E+08 -12672.58 5.68E+14 
RMSE retrans 13452503 6886919.5 9055090 12829089  666638.63 61030884 512352.28 
RMSPE (1999) 11174116 5939834 7465615.5 10453723  4320483 58862776 4307895.5 

Note: The effects of income and income per capita variables cannot be estimated since exporter and importer 
effects are added as regressors. Border, Comlang, Island and FTA are defined as in Table 3. EU, NAFTA, 
CACM and CARICOM denote trade creation effects. Standard errors reported below each estimate. 
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Table 5. Estimation results for panel data (1980-1999) 

47 
countries' 
Sample 

LOG-LINEAR MODELS GENERALIZED LINEAR MODELS 

 OLS FGLS, het FGLS, het 
ar1 

Poisson Gamma NLS 

Dep. Var. log(exports) log(exports) log(exports) exports exports exports 
Lyi 0.941    0.889    0.907    0.782    0.848    0.759    
 0.006 0.012 0.014 0.036 0.040 0.043 
Lyj 0.889    0.849    0.824    0.824    0.698    0.701    
 0.005 0.01 0.01 0.034 0.034 0.039 
Lyhi 0.870    0.435    0.915    0.191 1.025    -0.033 
 0.036 0.065 0.073 0.185 0.152 0.111 
Lyhj 0.217    -0.367    -0.300    -0.205    0.390    -0.256    
 0.012 0.017 0.016 0.052 0.04 0.069 
Ldist -1.176    -1.276    -1.533    -0.618    -0.941    -0.470    
 0.012 0.021 0.024 0.067 0.065 0.04 
Border -0.061  0.006 0.091 0.448    0.348 0.478    
 0.028 0.049 0.071 0.115 0.211 0.108 
Comlang 0.896    0.721    0.629    0.625    1.185    0.618    
 0.023 0.049 0.057 0.113 0.279 0.086 
Island -0.048  -0.021 0.012 0.055 -0.075 0.12 
 0.019 0.039 0.047 0.115 0.198 0.111 
EU 0.952    0.521    0.561    0.339   0.889    -0.081 
 0.026 0.031 0.032 0.123 0.151 0.095 
EUX 0.125    -0.270    -0.160    -0.522   0.113 -0.510    
 0.022 0.031 0.028 0.163 0.121 0.207 
EUM 0.902    0.864    0.998    0.252 0.827    -0.052 
 0.033 0.052 0.062 0.179 0.184 0.193 
NAFTA 0.702    0.171 0.037 0.468 1.437    0.650    
 0.182 0.127 0.123 0.257 0.354 0.153 
NAFTAX -0.288    -0.137    -0.140    -0.551    -0.397   -0.621    
 0.03 0.031 0.03 0.132 0.134 0.113 
NAFTAM 0.463    0.326    0.425    0.163 0.384   -0.206 
 0.04 0.057 0.061 0.256 0.132 0.178 
Constant -35.748    -23.336    -26.421    -23.470    -32.502    -17.947    
 0.37 0.663 0.721 2.05 1.851 2.154 
Nobs 12507 12506 12506 13264 13264 13264 
Deviance    6.10E+09 24015.77 4.62E+16 
Chi2_dev    7.18E+09 50382.26 4.62E+16 
Dispersion     3.798421 3.48E+12 
Chi2_dis    541439.1 3.798421 3.48E+12 
Note: Lyi (Lyj) and Lyhi (Lyhj) denote income and income per capita in country i (j), respectively. Ldist, Border, 
Comlang and Island are defined as in Table 3. Ldist, Border, Comlang and Island are defined as in Table 3. EU 
and NAFTA denote trade creation effects, EUM, NAFTAM, CACMM and CARICOMM denote import-
diversion effects; and EUX and NAFTAX denote export diversion effects. Standard errors reported below each 
estimate.  
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Table 6. Test for the implicit assumption in PPML and OLS/FGLS (Rose data, various years) 

PARK TEST LOG-LOG 1980 1990 1995 2000 
1 1.803 1.829 1.834 1.856 

95% Confidence Interval 1.786,1.820 1.816,1.842 1.822,1.846 1.846,1.865 
St. error 0.011 0.008 0.007 0.007 
Nobs 11852 13974 17616 15110 
PARK TEST GAMMA 1980 1990 1995 2000 

1 1.68 1.586 1.639 1.646 
95% Confidence Interval 1.534,1.826 1.451,1.722 1.571,1.708 1.472,1.819 
St. error 0.074 0.069 0.035 0.088 
Nobs 11852 13974 17616 15110 
(Rose Data)         

Note: 1determines the relationship between raw-scale mean and variance functions.  
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Appendix 

A.1 Simulations 40 percent zeros 

40% Zeros 
  

Absolute error loss 
  

Bias 
  

Standard deviation 
  

1 2 1 2 1 2 
Case 1 Poisson 0.0673 0.0221 0.0673 0.0010 0.0002 0.0003 
  FGLS 0.0944 0.0873 0.0787 0.0507 0.0008 0.0009 
Case 2 Poisson 0.0539 0.0788 -0.0018 -0.0014 0.0007 0.0010 
  FGLS 0.0621 0.0989 0.0231 0.0054 0.0008 0.0014 
Case 3 Poisson 0.0850 0.1237 -0.0068 -0.0028 0.0011 0.0016 
  FGLS 0.0289 0.0574 -0.0003 0.0000 0.0004 0.0007 
Case 4 Poisson 0.1066 0.1605 -0.0114 -0.0101 0.0014 0.0020 
  FGLS 0.0667 0.1159 0.0504 -0.0884 0.0006 0.0011 
 

 

  

 
 


