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Abstract 

 

The electrical conductivity of both BaO-deficient and TiO2-deficient BaTiO3 ceramics shows non-

ohmic, low field characteristics at temperatures > ~ 200 oC in contrast to stoichiometric BaTiO3 for 

which the electrical conductivity is independent of applied voltage. The non-linearity is observed in 

both bulk and grain boundary resistances of ceramics that are both porous (~82%) and non-porous 

(~98%) and is not associated with interfacial phenomena such as Schottky barriers and memristors 

nor with charge injection from the electrodes. Results, shown as a function of time over the 

temperature range 200 to 750 °C with field gradients in the range ~ 0.5 to 20 Vmm-1, indicate that 

an excited state is reached that is time-, temperature- and field-dependent. This effect appears to be 

caused by departures from local electroneutrality in the defect structure of non-stoichiometric 

BaTiO3 which are reduced by electron transfer on application of a dc bias, leading to a more 

conducting, low-level excited state in which holes associated with underbonded oxygens, 

presumably as O– ions, are the principal charge carriers. Ceramics gradually return to their ground 

state in two stages on removal of the dc bias and the conductivity decreases overall by 2-3 orders of 

magnitude. 
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Introduction 

 

The electrical properties of resistive materials in bulk form generally show linear voltage-current, 

V-I, behaviour at small applied voltages although at high voltages, insulating materials exhibit 

dielectric breakdown.1  For materials in which conduction takes place by a hopping mechanism, of 

either ions or electrons, the conductivity can be modelled using random walk theory2 and the effect 

of a small dc voltage is simply to apply a slight bias to the random motion of the conducting 

species, leading to a net drift in a particular direction.  A small dc bias is insufficient to force ions or 

electrons to move; consequently, the V/I response obeys Ohm’s Law. 

 

In contrast to bulk properties which obey Ohm’s Law, non-linear characteristics are commonly 

associated with interfacial effects, such as electrode-sample contacts which give rise to Schottky 

barriers.1 There is also current interest in memristor effects in which, for the specific case of TiO2 / 

TiO2- interfaces, coupled electronic and ionic charge transfer occurs across the interface giving rise 

to non-linear phenomena.3  

 

We have recently reported three examples of hopping electronic conduction in bulk ceramics of 

acceptor-doped BaTiO3 (BT) that exhibit non-linear characteristics at low field and at temperatures 

in the range 140 to 650 ºC.4-6 The dopants were Zn2+, Mg2+ and Ca2+ which substituted for Ti4+ in 

the octahedral sites of the perovskite structure, with concentrations in the range 0.003 to 3 mole%.  

Both bulk and grain boundary conductivities increased by 1 to 2 orders of magnitude, at a rate that 

was dependent on temperature, on applying a dc bias in the range ~ 0.5 to 20 Vmm-1 at the same 

time as the ac impedance measurements were made.  On removal of the dc bias, conductivities 

gradually returned to their original values. In all three cases, the dopants may be regarded as 

divalent acceptors that substitute for tetravalent Ti and are compensated by oxygen vacancy 

creation. Similar effects were not seen when Ca2+ replaced Ba2+ as an isovalent dopant.6  
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In the defect structure of divalent acceptor-doped BT, charge compensation is achieved by the 

creation of an equal number of oxygen vacancies adjacent to the acceptor ions, giving highly polar 

defect complexes, written ideally as  eg  O
''
Ti VMg , in which, using Kroger-Vink notation, '  and   

refer to charges of –1 and +1, respectively. It was proposed that charge polarisation in the defect 

complexes could be reduced by internal electron transfer, leading to low level, and more highly 

conducting, excited states. The key to this process appears to be underbonded oxide ions in the 

immediate vicinity of the defect complexes. 

 

Although the electron affinity for the reaction   OeO  is negative, the electron affinity to add 

a second electron,   2OeO , is positive (in the gas phase) and the O2– ion is stabilised in the 

solid state only by the high lattice energies of crystal structures. For underbonded O2– ions in the 

vicinity of polar defect complexes, the stabilisation of the O2– ions may be much reduced giving the 

possibility of easy ionisation to form O– ions.  The energy required to ionise these O2– ions may be 

provided readily by application of a dc voltage, especially if the dc voltage across the entire sample 

takes the form initially of a high potential gradient at the electrode-sample interface.  

 

Evidence for this mechanism was obtained from impedance measurements and in particular, from 

data analysis using the M’’ formalism, which indicated that a nucleation and growth process was 

involved in forming the excited state.4,5 The volume fraction of the excited state regions was found 

to increase with time until eventually, the entire sample was in the excited state. 

 

There have been no other reports of non-linear bulk resistance phenomena at low fields in either 

pure or doped BT and clearly, it is essential to determine the conditions under which such an effect 

occurs. Also, as far as we are aware, no other material has been reported to show this effect. Here 

we show that, whereas linear bulk V–I behaviour is shown by stoichiometric, undoped BaTiO3, 
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non-stoichiometric BT containing a deficiency of either Ti or Ba, also shows non-linear enhanced 

conductivity on application of a small dc bias. The results can be interpreted by extending the polar 

defect cluster model proposed earlier for acceptor-doped BT. 

 

Strategy for Materials Synthesis and Ceramic Fabrication 

A major difficulty in evaluating composition-property relations in BT-based electroceramics 

concerns compositional control of high density ceramics.  There is a vast literature on BT-based 

ceramics but it is commonly the case that compositions are not accurately stoichiometric.   Thus, a 

slight excess of TiO2 above the 1:1 BaO to TiO2 ratio is often present together with sintering aids 

such as SiO2.   In addition, it is often suspected that contamination from the milling media occurs.   

Samples may be slightly oxygen non-stoichiometric, especially if quenched from high temperatures, 

whereas if they are cooled more slowly, then gradients in oxygen concentration may result giving 

rise to core-shell structures.  Dopants/impurities may also be present/added either deliberately or 

inadvertently. 

 

If the goal of a particular programme of work requires preparation of high density ceramics with 

optimised properties, then accurate control of composition, free from a number of additives, may 

have to be sacrificed.  If, on the other hand, accurate compositional control is required so as to 

facilitate proper investigation of composition-property relations, it may be necessary to forego the 

fabrication of high density ceramics provided the presence of a certain level of porosity does not 

have a major influence on properties.    

 

Our strategy falls into the second category.  We work with high purity chemicals and avoid the use 

of mechanical milling.  It is then certainly possible to obtain ceramics with > 80% density but 

which rarely achieve full density.  Nevertheless, they are perfectly acceptable for most electrical 

property measurements, particularly conductivity.  In addition, for the present study, samples were 

1 
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prepared from two entirely different sets of chemicals and used two very different synthesis routes.  

The fact that the resulting properties were largely independent of synthesis route and chemicals 

used but did vary greatly with composition indicated that composition was the main variable in 

controlling the properties of samples.   

 

We have not attempted chemical analysis of samples since the properties were largely independent 

of chemicals used and synthesis route.  In addition, the levels of non-stoichiometry in BaO-deficient 

and TiO2-deficient samples were very small and would be difficult to determine accurately by 

chemical analysis methods; in particular, it would be extremely difficult to determine accurately the 

oxygen content of the non-stoichiometric samples.  Our approach, therefore, has been to use high 

purity chemicals and work to avoid contamination as much as possible.  We do not use sintering 

aids although it is much more difficult to prepare high density ceramics. However, we feel that this 

strategy is justified by the results which show high sensitivity of the electrical properties to 

composition.  

 

Experimental 

 

Samples of three compositions, BT, BaTi0.99O2.98 and Ba0.99TiO2.99, were prepared by two routes, by 

sol-gel synthesis using chemicals and procedures described previously7 and by solid state reaction. 

For the sol-gel method, powders were decomposed and given a final firing at 1400 °C for 2 hours 

after which they were ground, pressed into pellets, fired at increasing temperatures with a final 

firing at 1400 ºC for 12 h in air and then cooled naturally by switching off the furnace. During 

firing, pellets were placed on a bed of sacrificial powder of the same composition in Pt foil boats. 

The purpose of the sacrificial powder was to prevent possible contamination on reaction of the 

pellets with Pt.  
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For solid state synthesis, powders of BaCO3 (99.98% pure, Aldrich; dried at 180 °C overnight prior 

to weighing) and TiO2 (99.9% pure, Sigma-Aldrich; dried at 800 °C overnight prior to weighing) 

were mixed, pressed into pellets and placed on sacrificial powder of the same composition in Pt foil 

boats. Initial firing was at 1000 °C for 6h to eliminate CO2 after which the pellets were ground, 

repressed, fired at 1250 °C for 6 hours, ground, pressed isostatically at 200 MPa, given a final firing 

at 1400 °C for 12h in air and then cooled slowly by switching off the furnace. We avoided the use 

of ball milling systems and media to mix samples since these are prone to the introduction of 

contaminants; all samples were, instead, hand-mixed and milled using an agate mortar and pestle. 

Using our normal procedures (10-15 min mixing, with acetone added periodically to form a paste), 

typical pellet densities after firing sol-gel derived samples were ~82%, Table I. Given the necessity 

to demonstrate that the results presented here were not, in some way, influenced by ceramic 

porosity, samples prepared by the solid state route used more extended hand-milling times (~1h) 

and in this way, pellets with densities as high as 98% were achieved, Table I. The electrical 

conductivity results, especially field-dependent conductivities, were found to be similar for samples 

of a given composition for pellets densities in the range ~82 to 98%, indicating that the electrical 

properties were essentially uninfluenced by ceramic porosity. 

 

The phases present were analyzed by X-Ray Powder Diffraction, XRD, using a Stoe StadiP 

Diffractometer, CuK1 radiation with a linear position-sensitive detector. Lattice parameters were 

determined from X-ray powder data by least-squares refinement for reflections in the range 15 < 

2< 70º, using the software WinXPow version 1.06. Angle correction was carried out using an 

external silicon standard. 

 

Scanning electron micrographs (SEMs) of the pellet surfaces were taken on a SEM JEOL 7001F 

model, equipped with a spectrometer for energy dispersive analysis of X-rays (EDX), using the 

following operation parameters: probe current 0.05 pA, acceleration voltage 15 kV, measuring time 
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20 s and working distance 10 mm. The samples for microstructure determination and microanalysis 

were deposited on an Al holder and coated with graphite.   

 

For electrical property measurements, pellets were coated with electrodes made from Pt paste that 

was decomposed and hardened by heating to 900 ºC.  Impedance measurements used an Agilent 

4294A impedance analyser over the frequency range 40 Hz to 7 MHz and from room temperature to 

900 ºC.  The ac measuring voltage was 100 mV; in addition, a dc bias in the range 0.5-15 V was 

applied for selected experiments.  Impedance data were corrected for the overall pellet geometry 

and for the blank capacitance of the conductivity jig.  Resistance and capacitance data are, 

therefore, reported in units of cm and Fcm–1, respectively. While these data for the bulk 

component, R1 and C1, essentially represent the bulk resistivity and permittivity (corrections for 

ceramic porosity were not made), the grain boundary data are not corrected for the grain boundary 

geometry.  It would therefore be a serious error to refer to the grain boundary data, corrected only 

for overall pellet geometry, as resistivities and permittivities. We therefore present all resistance and 

capacitance data in units of cm and Fcm–1 to show that they are corrected for pellet geometry but 

do not refer to the grain boundary data as resistivities and permittivities.  The ratio between the 

sample permittivity and the permittivity of free space ('/0) is the dielectric constant (k) or relative 

permittivity ( '
r ).  We prefer use of the term relative permittivity since the alternative term, 

dielectric constant, tends to be restricted to frequency-independent bulk permittivities, sometimes 

also known as the limiting high frequency permittivity, '
 , or capacitance, C, which is an intrinsic 

property of the sample. 

 

Results 

 

The non-stoichiometric BT ceramics that were studied contained either a deficiency of TiO2, with 

nominal formula BaTi0.99O2.98 or a deficiency of BaO, Ba0.99TiO2.99.  Samples were phase-pure by 

2 

Page 7 of 50

Journal of the American Ceramic Society

Journal of the American Ceramic Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 8 

XRD with the tetragonal BT structure. Ceramic densities were 82-98%, depending on processing 

and firing conditions (discussed later), Table I. Grain sizes, determined by SEM were 20-150 m, 

Fig 1, Table I. Sol-gel samples showed comparable grain size, ~20-150 m, independently of the 

composition whereas in solid-state samples the grain size decreased from Ba0.99TiO2.99 to BT and 

BaTi0.99O2.98. There was no evidence of variation in Ba/Ti ratios nor of the occurrence of any 

secondary phases by EDX.  It was concluded, therefore, that both non-stoichiometric samples were 

single phase solid solutions. Since the perovskite structure of BT contains no suitable space for 

interstitial cations, it is assumed that the solid solution mechanism(s) responsible for the variable 

composition of the non-stoichiometric samples is a vacancy mechanism, with vacancies on both the 

oxygen and Ba/Ti sublattices.  To prove this experimentally would be extremely difficult given the 

low vacancy concentrations but, given that solid solutions do form, there appears to be no 

alternative mechanism. 

 

Direct evidence for solid solution formation was provided by fixed-frequency plots of relative 

permittivity against temperature, Fig 2. These showed that the Curie temperature, TC, associated 

with the tetragonal to cubic phase transition decreased from 135 ºC (sol-gel) and 133 °C (solid 

state) for stoichiometric BT to 129 and 128 ºC with deficiencies of TiO2 and BaO, respectively, 

Table I. The similarity in results from two entirely different sets of samples and prepared from 

different starting materials is evidence that the permittivity maximum, max, passes through a 

maximum for stoichiometric BT and decreases with deficiency of other Ba or Ti. The '
r data above 

TC showed linear Curie–Weiss plots (Fig 2c,d) with T0 values independent of measuring frequency; 

the value of TC–T0 was greater for Ba-rich samples than for stoichiometric and Ti-rich samples, 

Table I. 

 

We note that a range of values for TC of BT is quoted in the literature, but there is no accepted 

consensus as to the ‘ideal’ value, nor until now, convincing explanation for the variations in TC. It is 

3 
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also the case that the BT that formed the basis of the literature reports was often not accurately 

stoichiometric but frequently had a small variation in the Ba:Ti ratio, together with the presence of 

sintering aids. Data obtained on our samples, Fig 2, indicate that TC may vary by at least 7 oC, 

depending on the Ba:Ti ratio and this may contribute to the origin of the discrepancies in the 

literature data. It is generally accepted in the literature that a certain level of non-stoichiometry can 

occur, especially for BaO-deficient compositions in which the temperature of the cubic-hexagonal 

phase transition at ~1470 °C appears to be sample- and, therefore, composition-dependent. Present 

results, indicating a level of nonstoichiometry of at least 1% to either side of the BT composition, 

are therefore consistent with variations in literature TC data; further studies to determine accurate 

solid solution limits and their possible temperature-dependence are desirable but are beyond the 

scope of this work. 

 

Impedance measurements were used to characterise the electrical microstructure of ceramics using 

the standard techniques and data analysis methodology of impedance spectroscopy.  A selection of 

typical impedance data for stoichiometric BT prepared by both sol-gel (pellet density 82%) and 

solid state (pellet density 90%) methods, with measurements taken both before and after application 

of a dc bias of 10V is shown in Fig 3. First, consider the data without an applied dc bias. 

 

There are two components in the impedance complex plane plot of the sol-gel sample (a), a high-

frequency arc (inset) with approximate resistance R16 kcm, which is attributed to the sample 

grains and a much larger, lower frequency arc with R2360 kcm, attributed to the grain 

boundaries. In the solid state sample, there are again two components (d), but they are less-well 

resolved, and have comparable resistances of ~100–200 kcm. Assignment of the two impedance 

arcs to grain and grain boundary regions is supported by presentation of the same impedance data as 

spectroscopic Z"/M" plots, Fig 3 (b,e); the largest peak in the M" plot corresponds to the region of 

the sample with the smallest capacitance and therefore, to the sample grains.8 This M'' peak 
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coincides with the high frequency peak or shoulder in the Z'' plots and therefore, R1 represents the 

bulk resistance of the sample. For both samples, the impedance data may be represented ideally by 

an equivalent circuit containing two parallel RC elements in series, Fig 3d(inset). 

 

Capacitance data can be calculated from the maxima in the Z''/M'' plots, using the relation: 2fRC = 

1, but are seen more directly in plots of capacitance C' against frequency, as shown for the same 

data in Figs 3(c,f). All samples and measurements show a high frequency plateau at ~30 pFcm-1 

which represents the bulk capacitance, C1, (or C), of the samples. Such values are typical of BT 

ceramics above the Curie temperature with relatively high permittivity, '
r of ~340. A dispersion 

occurs at frequencies below ~105 to 106 Hz with clear evidence of a second, but less well resolved, 

low frequency plateau, C2, at ~1 nFcm–1 in (c) and ~0.4-0.5 nFcm–1 in (f). The values of C2 are 20–

30 times the value of C1 and therefore, C2 is attributed to thin grain boundary regions of the 

samples. 

 

The effect of a dc bias of 10V on the impedance response of stoichiometric BT is also shown in Fig 

3. Very little dependence is seen:  R1, R2, C1 and C2 are essentially unchanged for the sol-gel 

sample; for the solid state sample, R1 and R2 show a small decrease, but C1 is unchanged and C2 

shows a small increase. 

 

From the impedance data, Fig 3(a,b,d,e), values of the bulk, 1 and grain boundary, 2 

conductivities were extracted and are shown in Arrhenius format in Fig 4. There is a significant 

difference in the bulk conductivities of the sol-gel and solid state samples but for both samples the 

application of a dc bias had almost no effect on the magnitudes of either bulk or grain boundary 

conductivities. The reason for the difference in bulk conductivities of sol-gel and solid state samples 

is not known.  
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For non-stoichiometric BaTiO3, the impedance data are very different with and without dc bias, 

Figs 5-10; both R1 and R2 are much reduced and are time-dependent with a dc bias, Figs 5,8. The 

temperature-dependence of the capacitance C', was readily obtained by replotting impedance data as 

log C vs log f, Figs 5(c,f),8(c,f); although the real, resistive part of the impedance was too high to 

measure with the available instrumentation for temperatures below 300 ºC, capacitance data were 

readily obtained and show temperature dependence characteristic of paraelectric behaviour above 

Tc, Fig 2.  For the grain boundary, it was unclear from the impedance data whether C2 was 

ferroelectric or non-ferroelectric since data could be obtained only at high temperatures and were 

not sufficiently sensitive, within experimental errors, to show whether or not a Curie–Weiss 

temperature dependence was apparent.  For more accurate analysis of capacitance data, full 

equivalent circuit analysis, with the inclusion of constant phase elements to model departures from 

ideality, would be required and are beyond the scope of this work. 

 

Conductivity data as a function of time at constant temperature are shown in Figs 6a,9a for a 

selection of temperatures after a bias voltage of 10V [~14.5 Vmm-1] was applied; conductivities rise 

rapidly at first but gradually level off after sufficiently long times.  The difference between initial 

and final conductivities was at least two orders of magnitude at lower temperatures but decreased 

with increasing temperature.  The initial increase in conductivity occurred more rapidly with 

increasing temperature and the time required to achieve the final value decreased.  Final 

conductivity values as a function of dc bias at constant temperature are shown in Figs 6b,9b.   The 

magnitude of the steady state conductivity increases with dc bias, but reaches a limiting value above 

~10Vmm-1. 

 

On removing the dc bias, conductivity values gradually decreased with time, Figs 6d,9d, and 

eventually reached steady state values.  These steady state values at measuring temperatures < 450 

oC were, however, higher than the initial values before application of the dc bias.  With increasing 

4 
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temperature, the difference between these steady state and initial values decreased and the initial 

values could be fully recovered by raising the temperature to e.g. 800 ºC for 1 hour.  This shows 

that there are two excited states which can be separated on removal of the dc bias although, on 

application of the dc bias a clear separation of the two excited states is not seen. 

 

Data for R1 (i.e. 1
1
 ) are shown in Arrhenius format in Figs 7a,10a for non-stoichiometric samples 

that are both TiO2-deficient and BaO-deficient.  The data show linear Arrhenius behaviour of both 

final and initial conductivities, with and without a dc bias.  The activation energy decreased 

significantly with dc bias and as a consequence, the conductivity increased by 2-3 orders of 

magnitude, depending on temperature.  Similar effects were seen for R2 (i.e. 1
2
 ), Figs 7b,10b; 

activation energy data, together with conductivities ( 1
1R   and 1

2R  ) at an example temperature, are 

summarised in Table II. 

 

Confirmation that the conduction mechanism in both sets of non-stoichiometric samples is p-type is 

shown by measurements in different atmospheres, Fig 11. In both cases, the conductivity decreases 

with decreasing 
2OP  in the measuring atmosphere; since electrons are injected into the sample as a 

consequence of desorption of oxygen from the sample surface according to: 

 

e4OO2 2
2            (1) 

 

This indicates that the injected electrons act to neutralise the p-type principal charge carriers. 

 

Discussion 

 

The results presented here on non-stoichiometric BT extend significantly those recently reported for 

BT ceramics doped with divalent cations,4-6 Mg2+, Zn2+ and Ca2+.  The dc bias-dependence of the 
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bulk (and grain boundary) conductivity at low bias fields in acceptor-doped and non-stoichiometric 

BT is, we believe, a novel phenomenon. It is not an effect related to dielectric breakdown at very 

high voltages; in fact, the characteristics are the opposite of dielectric breakdown since the 

conductivity increases at small dc biases before reaching an essentially constant value with a bias 

(depending on temperature) of 5-10 Vmm–1. In contrast, high field non-ohmic behaviour has been 

observed in single crystals of BT and SrTiO3,
 9-12 but only above a threshold field of 50 Vmm–1.  In 

the present materials, the dc bias dependence was observed at fields as low as 0.7 Vmm–1, although 

the conductivity changes occur much more slowly at small biases.  It is also not associated with 

charge injection from the electrodes into a conduction band since conduction in both ground and 

excited states is an activated process.   

 

On removal of the dc bias, the conductivities gradually decrease before levelling off at intermediate 

values.  However, the initial (ground state) conductivities are fully recovered after an anneal at e.g. 

800 °C.  These results on conductivity changes on application, and removal, of a dc bias, indicate 

that significant changes in the electronic structure must occur, with an activation barrier to changes 

on both application of a dc bias and its subsequent removal.  The characteristics are therefore quite 

different to the interface-controlled rapid changes observed with, for instance, ZnO-based varistors.  

The effect is not associated with the nature of the electrode material (similar effects are seen with 

both Pt and Au) nor with the atmosphere during measurements (air and N2). It is not an interface-

controlled effect, therefore, such as occurs with Schottky barriers at sample-electrode contacts.   

 

It is not an ac effect associated exclusively with local structural changes such as dipole reorientation 

within defect complexes: impedance data show that the long range conductivity of the samples is 

affected whereas dipole reorientation is only a local process.  It is not associated with a gradient in 

chemical potential since the samples are chemically homogeneous and there is no evidence of 
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sample decomposition under a dc bias.  The effect is therefore, an intrinsic property of the 

materials. 

 

Previously, we have observed similar dc bias dependence in three sets of acceptor-doped ceramics, 

Zn-, Mg and Ca-doped BT,4-6 in which the divalent acceptor dopants are charge-compensated by the 

creation of an equal number of oxygen vacancies according to, e.g.: 

 

  O
''
Ti

x
O

x
Ti VZnOTi           (2) 

 

For the present materials, we may consider the nonstoichiometry as arising also from acceptor 

dopants but in this case, the acceptors are zero-valent cation vacancies, i.e.: 

 

      O
''''

Ti
x
O

x
Ti V2VO2Ti           (3) 

     or 

      O
''

Ba
x
O

x
Ba VVOBa           (4) 

 

Consideration of the local defect structure in both acceptor-doped and non-stoichiometric BT 

indicates large departures from local electroneutrality.  The defect structure of TiO2-deficient BT is 

shown schematically in Fig 12.  It contains a Ti vacancy with two adjacent O vacancies.  A large 

excess negative charge (nominally 4–) is associated with the Ti vacancy; excess positive charge 

(nominally 2+) is associated with adjacent oxygen vacancies in either trans or cis (shown) 

configurations. 

 

Consideration of the large departures from local electroneutrality in the defect complexes leads to a 

possible mechanism to explain the enhanced conductivity under a dc bias.  First, it is proposed that 

the charge polarity is reduced by electron transfer and specifically, by ionisation of electrons from 
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2p orbitals on oxygens adjacent to the cation vacancies. Second, long-range conduction of the 

resulting holes through the BT lattice occurs. Two electronic defects are created on formation of the 

excited state, therefore: the ionised electrons which are trapped at sites that, as yet, are unidentified 

and holes on oxygens adjacent to cation vacancies. 

 

The key to the non-ohmic conductivity appears to be the departure from local electroneutrality in 

the defect structure.  In the case of Mg, Zn, Ca doping, the dopants which substitute for Ti have a 

nominal net charge 2–.  In the TiO2-deficient sample studied here, we may regard the BT structure 

as doped with a non-existent, zerovalent ion that has nominal charge 4–. 

 

In the case of BaO-deficient BT, a similar polar defect structure may be proposed that consists of 

Ba vacancies and associated oxygen vacancies.  The Ba vacancies have net charge 2– and the 

surrounding oxygens may again act as the source of electrons that are ionised, leaving holes on 

oxygens.  The similarity in the Arrhenius plots of the two non-stoichiometric samples indicates a 

similar conduction mechanism, with and without a dc bias, in both cases. 

 

The mechanism by which the electrons are ionised (and subsequently trapped) appears to be one of 

nucleation and growth which commences at the electrode-sample interface where the relatively 

small dc bias becomes a significantly higher potential gradient; this high potential gradient is 

responsible for electron ionisation. As a consequence, the p-type conductivity rises and the region 

of high potential gradient gradually moves into the interior of the ceramic, leading to growth in size 

of excited state domains of higher conductivity.  This nucleation and growth mechanism was 

illustrated in spectroscopic M" plots derived from the experimental impedance data of Mg-doped 

BT.5  The initial M" peak associated with the sample grains decreased in size as its volume fraction 

decreased; a new peak appeared at higher frequency which grew in size as a function of time until it 

dominated the spectrum and the entire sample was in the excited state.   
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A characteristic of the materials that show this bulk, low field non-linear effect is that their defect 

structure has significant departures from local electroneutrality associated with either aliovalent 

cation doping (Zn2+, Mg2+, Ca2+ instead of Ti4+) or charged defect states such as cation vacancies.  

In all these cases, the oxygens surrounding the defective cation site are underbonded and appear to 

readily lose an electron via the ionisation process,   eOO2 .  This is consistent with the 

positive electron affinity13 for adding a second electron to a gas phase oxygen atom; the resulting 

O2– ion is stabilised in the solid state only as a consequence of the extra lattice energy associated 

with doubly-charged oxide ions. Hence, oxide ions surrounding either cation vacancies or 

substitutional, lower valence cations do not have the same degree of lattice energy stabilisation and 

may act as a ready source of ionised electrons and holes. 

 

Stoichiometric materials are not expected to show this effect, nor are materials that contain 

isovalent dopants since these do not lead to departures from local electro-neutrality.  Hence, little or 

no bias dependence is seen for stoichiometric BT or for BT with Ca partially substituting for Ba6.   

It remains to be seen whether any effect is seen with donor dopants, especially those in which cation 

vacancies are generated via an ionic compensation mechanism.  Further studies are in also progress 

to establish whether this effect is of more general occurrence or is peculiar to BaTiO3. 

 

Finally, it is relevant to consider whether the non-stoichiometric materials studied here may be 

usefully analysed in terms of Schottky defect equilibria.   In stoichiometric BaTiO3, the main 

intrinsic ionic defects are likely to be Schottky defects involving a combination of cation and anion 

vacancies.  This is because the perovskite structure of BT is unable to accommodate interstitial 

species of the kind associated with Frenkel defects.  In the Schottky defect scenario, a number of 

cations and anions migrate to the sample surface leaving behind cation and anion vacancies.   An 

equilibrium develops whose equilibrium constant, K, is proportional to the product of the 

5 
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concentration of anion and cation vacancies.   One consequence of aliovalent doping is that, for 

instance, if the dopant acts to increase the concentration of, say, cation vacancies then this would be 

compensated by a reduction in the concentration of anion vacancies.   

 

Although such Schottky defect equilibria considerations have often been applied to BaTiO3 

ceramics, we believe that they are inappropriate for the present materials.   The cation and anion 

vacancies generated in the non-stoichiometric samples occur as a consequence of compositional 

change and not from intrinsic Schottky defect formation.  Thus, in the TiO2-deficient samples the 

local defect structure must contain two oxygen vacancies for every Ti vacancy; their relative 

concentrations are not constrained by the Schottky equilibrium constant, K; instead, their relative 

concentrations depend only on the overall composition.  Similarly, for BaO-deficient samples there 

must be equal numbers of Ba and oxygen vacancies whose actual number is given by the overall 

sample composition.   Whilst, Schottky equilibria considerations do provide a useful starting point 

in considering the defect structures of BT, they are limited to dilute, point defect structures in which 

K is unaffected by dopants or stoichiometry changes.   In the present materials, the solid solution 

thermodynamics are clearly not controlled by Schottky defect equilibria. 

 

Conclusions 

 

The electrical properties of BaO-deficient and TiO2-deficient BT (non-stoichiometric-BT) are very 

different from those of stoichiometric BT. The conductivity of stoichiometric-BT is insensitive to 

the application of a small dc bias in the range ~ 0.5 to 20 Vmm-1 for temperatures up to at least 700 

oC.  By contrast, the conductivity (both bulk and grain boundary) of non-stoichiometric-BT 

increases with a dc bias. The increase is time- and temperature-dependent and is reversible on 

removal of the dc bias. 
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The defect structure of non-stoichiometric-BT is not known in detail but probably consists of cation 

vacancies together with the required number of adjacent oxygen vacancies to achieve charge 

balance.  The resulting defect structure is highly polar with negatively charged cation vacancies and 

positively charged oxygen vacancies. It is proposed that the polarity may be reduced by electron 

transfer leading to creation of a more conductive exited state. The source of the electrons is likely to 

be underbonded oxide ions surrounding the cation vacancies. 

 

Non-linear low field bulk resistivity is not a phenomenon that is usually found, or expected, with 

moderately resistive materials that conduct by a mechanism of ion or electron hopping.  Its 

occurrence in both nonstoichiometric and Mg, Zn, Ca-doped BT, but not in undoped, stoichiometric 

BT, is believed to be a consequence of the acceptor doping mechanism [i.e. doping with lower 

valence cation and associated creation of oxygen vacancies]; in the case of non-stoichiometric-BT, 

the mechanism is the same because the acceptor dopants are, effectively, the zero-valent cation 

vacancies. 

 

The electrical properties of BaO-deficient and TiO2-deficient BT are similar.  This indicates that the 

electron transfer mechanism within the BT defect structure is more important than the nature of the 

acceptor dopant ( ''
BaV  or ''''

TiV ).  Since underbonded oxygens appear to be the critical component of 

the defect structure that are responsible for the non-linearity, similar effects may be anticipated with 

other ceramic materials containing acceptor dopants which have an oxygen vacancy charge 

compensation mechanism. 

 

Evidence for non-stoichiometry in BaTiO3 is obtained from TC data of both BaO- and TiO2- 

deficient samples, which are consistently a few degrees lower than that of stoichiometric BaTiO3.  

This is supported by the observed non-linear phenomena for which non-stoichiometry appears to be 

a necessary pre-requisite. 
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Table Caption 

 

Table I. Pellet density, Dr (%), lattice parameters (in ), grain size (in m), TC, T0, TC–T0 and CW 

(in oC) for all samples sintered at 1400 ºC. Estimated errors in TC and T0 are ~1 and 2 oC, 

respectively. 

 

Table II. Conductivity values obtained at 400 ºC, by interpolation/extrapolation, and activation 

energy of R1 and R2 components for all samples sintered at 1400 ºC. 
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Table I. Pellet density, Dr (%), lattice parameters (in ), grain size (in m), TC, T0, TC–T0 and CW 

(in oC) for all samples sintered at 1400 ºC. Estimated errors in TC and T0 are ~1 and 2 oC, 

respectively. 

 
lattice parameters 

 Dr 
a c 

grain 
size 

TC T0 TC–T0 CW 

BaTi0.99O2.98 83 3.9893(8) 4.0329(13) 15–150 129 113 16 68000 

Ba0.99TiO2.99 82 3.9899(10) 4.0321(16) 15–150 128 117 11 87000 Sol-gel 

BaTiO3 87 3.9953(2) 4.0313(3) 15–150 135 125 10 128000 

BaTi0.99O2.98 98 3.9963(3) 4.0362(4) 1–3 129 79 50 130000 

Ba0.99TiO2.99 94 3.9947(2) 4.0352(3) 15–150 130 120 10 124000 
Solid 
state 

BaTiO3 90 3.9966(6) 4.0357(9) 15–50 133 123 10 124000 
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Table II. Conductivity values obtained at 400 ºC, by interpolation/extrapolation, and activation 

energy of R1 and R2 components for all samples sintered at 1400 ºC. 

 
    BaTi0.99O2.98 Ba0.99TiO2.99 BaTiO3 

0V 1.30(4) 1.34(5) 0.71(1) 
Ea /eV 

10V 0.80(1) 0.82(1) - 

0V 4.22x10-6 7.09x10-6 6.39x10-5 
R1 

 /Scm-1 
10V 6.03x10-4 5.39x10-4 - 

0V 1.28(3) 1.30(2) 1.49(2) 
Ea /eV 

10V 0.72(1) 0.77(1) - 

0V 5.21x10-7 1.62x10-6 2.38x10-7 

Sol-gel 

R2 

 /Scm-1 
10V 3.31x10-5 4.97x10-5 - 

0V 1.08(4) 1.18(3) 1.15(4) 
Ea /eV 

10V 0.76(3) 1.24(6) 1.05(4) 

0V 5.89x10-6 2.61x10-6 1.36x10-6 
R1 

 /Scm-1 
10V 4.08x10-5 3.74x10-5 2.51x10-6 

0V - 1.59(5) 1.24(4) 
Ea /eV 

10V - 1.11(3) 1.25(4) 

0V - 7.79x10-7 6.10x10-7 

Solid state 

R2 

 /Scm-1 
10V - 1.10x10-5 7.34x10-7 
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Figure Captions 

 

Fig 1. SEM of the pellet surface sintered at 1400 ºC of BaTiO3, Ba0.99TiO2.98 and BaTi0.99O2.98 

prepared by sol-gel (a, c and e, respectively) and solid state reaction (b, d and f, respectively). Scale 

bars: a, b, d: 10m; c, e: 100m; f: 3m. 

 

Fig 2. Permittivity data '
r  and Curie-Weiss plot at 100 kHz as a function of temperature for 

BaTi0.99O2.98 (), Ba0.99TiO2.99 (), and BaTiO3 () prepared by sol-gel (a,c) and (b,d) solid state 

reaction at 1400ºC.  Estimated errors in TC and T0 are ~1 and 2 oC, respectively. 

 

Fig 3. Impedance complex plane plots, M” spectroscopic plots and capacitance data at 472ºC for 

stoichiometric BaTiO3 prepared by sol-gel (a, b, c) and solid state reaction (d, e, f), before and after 

a voltage of 10V [6.7 and 7.1 Vmm-1, respectively] was applied. 

 

Fig 4. Arrhenius plots of (a) 1 and (b) 2 for stoichiometric BaTiO3 measured without a dc bias 

and with an applied voltage of 10V [6.7 and 7.1 Vmm-1 for solid state and sol-gel samples, 

respectively] after a steady state had been reached.  Activation energies in eV, with errors in the 

range 0.02–0.05 eV, are shown beside each data set. 

 

Fig 5. Impedance complex plane plots, M” spectroscopic plots and capacitance data at 485ºC and 

477ºC for BaTi0.99O2.98 prepared by sol-gel (a, b, c) and solid state reaction (d, e, f), before and after 

a voltage of 10V [15.1 and 9.52 Vmm-1, respectively] was applied.   Note: for the sample prepared 

by solid state reaction, there is no evidence for a separate grain boundary resistance R2. 

 

Fig 6. BaTi0.99O2.98, sol-gel sample: (a) Bulk conductivity, 1, at different temperatures vs time after 

a voltage 10V [15.1 Vmm-1] was applied; (b) 1 vs time for different applied voltages at constant 
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temperature, 335 oC; (c) limiting bulk conductivity vs bias voltage measured at 335 ºC; and (d) 1 at 

different measuring times after removal of the dc bias measured at 385 ºC, 432 ºC and 482ºC (lines 

indicate the ground state for each temperature). 

 

Fig 7. Arrhenius plots of (a) 1 and (b) 2 for BaTi0.99O2.98 measured without a dc bias and with an 

applied voltage of 10V [9.52 and 15.1 Vmm-1 for solid state and sol-gel samples, respectively] after 

a steady state had been reached. Activation energies in eV, with errors in the range 0.02–0.05 eV, 

are shown beside each data set. 

 

Fig 8. Impedance complex plane plots, M” spectroscopic plots and capacitance data at 469ºC and 

475ºC for Ba0.99TiO2.99 prepared by sol-gel (a, b, c) and solid state reaction (d, e, f), before and after 

a voltage of 10V [13.7 and 8.7 Vmm-1, respectively] was applied. 

 

Fig 9. Ba0.99TiO2.99, sol-gel sample: (a) Bulk conductivity, 1, at different temperatures vs time after 

a voltage 10V [13.7 Vmm-1] was applied; (b) 1 vs time for different applied voltages at constant 

temperature, 306 oC; (c) limiting bulk conductivity vs bias voltage measured at 306 ºC; and (d) 1 at 

different measuring times after removal of the dc bias measured at 386 ºC, 431 ºC and 486ºC (lines 

indicate the ground state for each temperature). 

 

Fig 10. Arrhenius plots of (a) 1 and (b) 2 for Ba0.99TiO2.99 measured without a dc bias and with an 

applied voltage of 10V [8.7 and 13.7 Vmm-1 for solid state and sol-gel samples, respectively] after a 

steady state had been reached. Activation energies in eV, with errors in the range 0.02–0.05 eV, are 

shown beside each data set. 

 

Fig 11. Impedance complex plane plots in different measuring atmospheres for (a) BaTi0.99O2.98 and 

(b) Ba0.99TiO2.99 prepared by solid state reaction. 
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Fig 12. Idealised defect structure for non-stoichiometric BaTiO3 with titanium and oxygen 

vacancies.  The oxygen vacancies are shown cis but could also be trans. 
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Fig 1. SEM of the pellet surface sintered at 1400 ºC of BaTiO3, Ba0.99TiO2.98 and BaTi0.99O2.98 

prepared by sol-gel (a, c and e, respectively) and solid state reaction (b, d and f, respectively). Scale 

bars: a, b, d: 10m; c, e: 100m; f: 3m. 
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Fig 2. Permittivity data '
r  and Curie-Weiss plot at 100 kHz as a function of temperature for 

BaTi0.99O2.98 (), Ba0.99TiO2.99 (), and BaTiO3 () prepared by sol-gel (a,c) and (b,d) solid state 

reaction at 1400ºC.  Estimated errors in TC and T0 are ~1 and 2 oC, respectively. 
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Fig 3. Impedance complex plane plots, M” spectroscopic plots and capacitance data at 472ºC for 

stoichiometric BaTiO3 prepared by sol-gel (a, b, c) and solid state reaction (d, e, f), before and after 

a voltage of 10V [6.7 and 7.1 Vmm-1, respectively] was applied. 
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Fig 4. Arrhenius plots of (a) 1 and (b) 2 for stoichiometric BaTiO3 measured without a dc bias 

and with an applied voltage of 10V [6.7 and 7.1 Vmm-1 for solid state and sol-gel samples, 

respectively] after a steady state had been reached. Activation energies in eV, with errors in the 

range 0.01–0.05 eV, are shown beside each data set. 
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Fig 5. Impedance complex plane plots, M” spectroscopic plots and capacitance data at 485ºC and 

477ºC for BaTi0.99O2.98 prepared by sol-gel (a, b, c) and solid state reaction (d, e, f), before and after 

a voltage of 10V [15.1 and 9.52 Vmm-1, respectively] was applied.   Note: for the sample prepared 

by solid state reaction, there is no evidence for a separate grain boundary resistance R2. 
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Fig 6. BaTi0.99O2.98, sol-gel sample: (a) Bulk conductivity, 1, at different temperatures vs time after 

a voltage 10V [15.1 Vmm-1] was applied; (b) 1 vs time for different applied voltages at constant 

temperature, 335 oC; (c) limiting bulk conductivity vs bias voltage measured at 335 ºC; and (d) 1 at 

different measuring times after removal of the dc bias measured at 385 ºC, 432 ºC and 482ºC (lines 

indicate the ground state for each temperature). 
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Fig 7. Arrhenius plots of (a) 1 and (b) 2 for BaTi0.99O2.98 measured without a dc bias and with an 

applied voltage of 10V [9.52 and 15.1 Vmm-1 for solid state and sol-gel samples, respectively] after 

a steady state had been reached. Activation energies in eV, with errors in the range 0.01–0.05 eV, 

are shown beside each data set. 
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Fig 8. Impedance complex plane plots, M” spectroscopic plots and capacitance data at 469ºC and 

475ºC for Ba0.99TiO2.99 prepared by sol-gel (a, b, c) and solid state reaction (d, e, f), before and after 

a voltage of 10V [13.7 and 8.7 Vmm-1, respectively] was applied. 
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Fig 9. Ba0.99TiO2.99, sol-gel sample: (a) Bulk conductivity, 1, at different temperatures vs time after 

a voltage 10V [13.7 Vmm-1] was applied; (b) 1 vs time for different applied voltages at constant 

temperature, 306 oC; (c) limiting bulk conductivity vs bias voltage measured at 306 ºC; and (d) 1 at 

different measuring times after removal of the dc bias measured at 386 ºC, 431 ºC and 486ºC (lines 

indicate the ground state for each temperature). 
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Fig 10. Arrhenius plots of (a) 1 and (b) 2 for Ba0.99TiO2.99 measured without a dc bias and with an 

applied voltage of 10V [8.7 and 13.7 Vmm-1 for solid state and sol-gel samples, respectively] after a 

steady state had been reached. Activation energies in eV, with errors in the range 0.01–0.05 eV, are 

shown beside each data set. 
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Fig 11. Impedance complex plane plots in different measuring atmospheres for (a) BaTi0.99O2.98 and 

(b) Ba0.99TiO2.99 prepared by solid state reaction. 
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Fig 12. Idealised defect structure for non-stoichiometric BaTiO3 with titanium and oxygen 

vacancies.  The oxygen vacancies are shown cis but could also be trans. 
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