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A B S T R A C T

The adoption of electric vehicles is expected to soon widespread to cope with energy transition needs; however,
concerns on battery lifetime arise, especially related to charging behaviors, vehicle usage habits, vehicle-to-
grid and weather conditions. In fact, lifetime battery modeling is a challenging dynamic to characterize, as
it involves complex chemical processes related to charging, discharging and temperature dynamics over long
time spans that are often difficult to dominate, given the large uncertainties. Having a fatigue-like behavior,
the battery aging has sometimes been modeled using rainflow-counting algorithms, yet traditional modeling is
not holistic and approximations are used, especially when considering temperature or current dynamics. Based
on experimental data, this paper aims at developing a holistic battery degradation model based on rainflow-
counting algorithm to properly account for all major determinants of capacity loss, namely cycling usage,
calendar lifetime, dynamic temperature and battery current. The approach is coupled with a physical-electro-
thermal modeling of the vehicle system, developed in Modelica language, to accurately simulate the intertwined
thermal and electrical behavior of the system subject to different usage charging behaviors, including slow
and fast charging, as well as vehicle-to-grid application. The proposed case study shows the expected lifetime
of electric vehicles to be comparable with of traditional cars (10–20y) and that the proposed temperature-
dependent battery modeling enables reducing estimation errors up to 27%. A sensitivity on different climate
zones has been considered and results suggest that cool climates can increase life expectancy by 30% with
respect to hot climates in typical Italian contexts.
1. Introduction

1.1. Motivation

Electromobility is now enjoying a renewed interest due to the
increased attention towards environmental issues, so the penetration
of electric vehicles is now beginning, at last. However, the so-called
‘‘range anxiety’’ [1], the different usage patterns, e.g. commuter or
highway, different weather conditions and charging rate [2] are all
concerns that are affecting the acceptance of the technology, as they
lead to uncertainties in the lifetime of batteries that is a critical element
for consumers. On the other hand, models for the battery lifetime
estimation are anything but a known science: several techniques have
been proposed but the significant chemical-dependent properties, the
physical processes and the various stresses the batteries are subject to
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make battery estimation a very complex task. Range anxiety can be
reduced by implementing fast charging options, yet they can have a
toll on battery lifetime; weather conditions can affect the operating
temperature of the battery, in agreement to the cooling system of the
vehicle, and the typical operating conditions of the vehicle, e.g. urban
or extra-urban contexts, can reduce the expected lifetime as well.
Combining all these factors is complex and rarely it has been addressed
in the literature.

In this study, we propose a methodology to estimate the expected
life of vehicular batteries subject by using a novel battery degradation
model to account for all the relevant degradation factors mentioned
above. Based on existing literature and experimental tests, a novel
battery degradation model is discussed and used to estimate the life-
time of electric batteries subject to various cycling operation, charging
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patterns, vehicle-to-grid and weather conditions. A case study using
realistic Italian usage patterns and weather conditions is proposed. The
methodology is expected to advice policy makers, companies and scien-
tists on modeling techniques for battery estimation and suggesting that
expected electric vehicle lifetimes are already comparable to traditional
fuel-powered cars.

1.2. Battery degradation

Given the paramount importance of batteries for achieving the
energy transition, battery modeling and degradation have been exten-
sively studied to characterize physical, thermal and chemical proper-
ties [3,4], especially for vehicle applications [5], for operation and
planning purposes. Future research is ongoing and novel chemistries
have been proposed with strong potential [6], though currently lithium-
ion batteries systems are expected to dominate the market [5,7] and in
this study we focus on their modeling.

The literature is rich of both theoretical and empirical approaches.
In theoretical models, chemical properties of materials and diffusion
dynamics are accurately described to derive numerical or mathematical
models [8]. These models are usually very complex as they require a
large number related to parameters of the materials, the construction
process and geometries, that are often unknown and hard to com-
pute [9]; moreover, the physics and chemistry theory involve complex
equations to handle. Empirical approaches tend to be simpler but they
require the execution of several tests lasting several months to properly
capture the degradation dynamics of batteries subject to different types
of stress [10,11]: temperature, current, cycling operation and calendar
life, or time [12]. Once the measurements have been performed, a
numerical model is fitted over the experimental results to reproduce
the measured degradation dynamics. Hybrid models, instead, lay in
the between: they are generally empirical models that partially inherit
the physics of the degradation by using fitting functions that resem-
ble theoretical diffusion functions, properties of materials or speed
of reactions, such as the Arrhenius function that is well known in
chemistry [13,14]. Given these properties, hybrid models can reduce
the need for experimental tests, as theoretical knowledge improves the
fitting rate of the model, and improve the overall accuracy. For these
reasons, in this study we focus on hybrid models.

The battery aging can be described as the superimposition of differ-
ent degradation factors, namely time, temperature, and the operating
power profile, which are usually grouped into two categories [15,16]:
the so-called calendar life, referring to the aging effect involving time,
and cycle life, related to the cyclical operating conditions of the battery;
temperature conditions affect the degradation rate of both. Traditional
empirical techniques are based on simple polynomial fitting to capture
the nexus between a single aging factor and the capacity degrada-
tion [9], such as the State-of-Charge (SoC) [17], Depth-of-Discharge
(DoD) [10], or the temperature; rarely they consider the combined
effect of multiple degradation factors. Better performances could be
achieved by hybrid models that use function shapes inherited by theory,
such as the Arrhenius [13,14], to characterize the cycling aging of
batteries [18], also when subject to variable conditions [19].

According to the literature, the battery degradation can be charac-
terized by fatigue-related dynamic in which the application of diversi-
fied and repetitive stresses lead to the reduction of the State-of-Health
(SoH), similarly to mechanics [20]. In this view, some studies have
considered not only the cycling operation of charging/discharging be-
haviors [10] but also the combinations of multiple stresses [19,21,
22]. The study in [19] proposed the calculation of the degradation
by using an iterative approach to account for the cycling operation
and temperature degradation, also including the Arrhenius equation.
In [22], inspired by the exponential function well used in the Ar-
rhenius equation, the authors proposed a weighted-sum approach to
account for the cycling operation using exponential and logarithmic
2

functions, modeled as a function of the average SoC and its standard
deviation, and the temperature. Again, also in [22], the Arrhenius
function has been used to model the temperature-related dynamics.
Moreover, the hybrid methodology described in [23], inspired by [21],
proposes a rainflow-based methodology to capture the combined effects
of cycling, temperature effects and calendar life by using a modi-
fied Arrhenius function, logarithmic/exponential fitting for combining
different stresses and polynomial fitting to characterize specific phe-
nomena of the battery degradation. The rainflow-counting algorithm,
used in mechanical standards to quantify fatigue [24], identifies the
cycling operation of the battery, whereas a customized function to
model calendar aging keeps track of the dynamics related to time.
Given the ability of the model to characterize various degradation
phenomena, this approach has been considered and improved in this
study.

1.3. Battery thermal model

Battery degradation is significantly affected by its temperature. The
evolution of the battery temperature depends on the ambient tempera-
ture as well as the battery working condition. Indeed, EV battery pack
systems can produce high amounts of heat (e.g., during fast charging
process), which increase the battery temperature, directly affecting
battery performance, lifetime and safety [2]. To consider this aspect,
the analysis performed include a battery thermal model.

Several thermal models have been presented in literature, i.e.
electrochemical–thermal coupled model, electro-thermal coupled
model, thermal abuse model, 1D model, 2D model, 3D model, etc. [25,
26]. The first two models (electrochemical–thermal and electro-thermal
model) are more common than the others because they can calcu-
late battery external characteristics such as charge–discharge curves
and temperature distributions [27]. Electrochemical–thermal models
analyze the influence of electrochemical parameters on thermal prop-
erties taking into consideration the cell materials, yet they require a
large number of electrochemical parameters [28]. In contrast, electro-
thermal models adopt empirical equations focusing on the electrical
properties of the cell. They require fewer parameters and less calcula-
tion [29]. The need for a low computational burden lead us to choose
electro-thermal model.

1.4. Battery lifetime of electric vehicles

The lifetime of an electric vehicle battery is deeply influenced by
several aspects related to the way the vehicle is used, such as the
driving pattern, the acceleration pattern, the charging habits, and even
the ambient temperature [30,31]. All these factors impact the battery
life through different degradation phenomena, which are reflected
into a progressively decay of the vehicle overall performances, the
most important of which is the available driving range, caused by a
progressively degradation of the battery capacity over time. As a de-
facto rule, the life of an EV battery is considered to have reached its
End-of-Life (EoL) as soon as its available capacity drops below the
threshold of the 80% of what is called the Beginning-of-Life (BoL)
capacity. To quote one meaningful example which shows how the
lifetime of a battery could be deeply affected by the use of the vehicle it
is installed in, Lehtola et al. [32] have highlighted that when a battery
is cycled with a DoD of only 5%, an expected lifetime of more than
20 years is guaranteed; on the contrary, when the same battery is
cycled with a DoD of 80%, the expected lifetime drops to no more than
10 years. Moreover, Saldaña et al. [33] have concluded that driving
environment plays a key role in determining the degradation of EV
batteries. Specifically, urban driving scenarios show around 75% longer
lifetime than highway driving scenarios, because of the greater power
needed, which reflects in greater C-rate the battery is subjected to
and deeper discharging rates. In addition, charging power rate has
been analyzed as well, displaying that, when compared with a 22 kW
rate recharge power, a 7-kW rate extends battery life by around 50%,
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while a 43-kW one reduces the battery life of about 12%. Anyhow,
one important fact which these studies agree on is that even for the
highest stressed batteries analyzed, the expected lifetime still remains
beyond the typical battery lifespans guaranteed by EV manufacturers,
which appear aligned around 8 years. Indeed, Volkswagen ID3 battery
is guaranteed for 8 years or 160 103 km [34], Tesla model S and X are
guaranteed for 8 years and 257 103 km (150 103 miles) [35], while
8 years and 160 103 km are available for Renault Zoe [36].

1.5. Main contributions

According to the proposed literature analysis and to the authors’
best knowledge, the main contributions of this paper are listed below:

1. Development of a battery degradation model based on rainflow-
counting algorithm to account for calendar and cycling aging,
cold environments, C-rate degradation effects, and dynamic tem-
perature cycling and calendar aging, also with extensive resting
periods; the model has been calibrated using experimental aging
tests.

2. Estimation of the battery lifetime subject to different electric
vehicle behaviors, fast charging and vehicle-to-grid (V2G) appli-
cations.

3. Evaluation of different weather conditions impact on the lifetime
of vehicles’ batteries.

4. Italian case study.

1.6. Organization

Section 2 describes the methodology for vehicle modeling and the
battery degradation, Section 3 details the case study and Section 4
reports the results. Finally, the conclusions are drawn.

2. Battery degradation model by physical-thermo-electrical simu-
lations

2.1. The approach

Fig. 1 describes the procedure used to perform the complete physical
-electrical modeling to simulate the battery degradation of the vehicle
system with an holistic approach. In particular, after a preliminary
processing of the major inputs of the vehicle characteristics, the usage
pattern and the weather conditions, an iterative approach is executed to
simulate each day of operation at hourly time resolution. The physical
modeling is captured by using a detailed model developed in Modelica
language [37] that aims at capturing the mechanical dynamics of the
vehicle and the electrical and thermal behavior of the battery, given the
vehicle usage pattern and the weather condition of each simulated day
𝑑. The SoC profile and the battery temperature calculated by the model
are then used by the proposed rainflow-based battery degradation
model to estimate the battery capacity after each time step (1 s). The
procedure is iterated until EoL is reached.

To reduce computational requirements, especially considering the
complex thermal, electrical and physical model of the hybrid vehicle
model, the weather data have been clustered into 𝑁 days, which
enables pre-processing the load profiles and reduce the computational
burden of the analysis.

2.2. Vehicle model

One of the objectives of the present study consists in assessing the
influence of the driving patterns over the battery operation. To this
aim, a numerical simulation model has been developed, as reported in
Fig. 2. The considered vehicle model comprehends different sub-parts:
the driver model, the mechanical model, the electric drive, and the
storage system.
3

Fig. 1. The holistic physical-electrical-thermal approach to model battery degradation.

The driver model is implemented as a proportional speed controller
that outputs the motor torque (traction or braking) required to follow
an input driving cycle. The mechanical part models the longitudinal
dynamic of the vehicle according to (1), where 𝑚𝑒𝑞 is the equivalent in-
ertia of the vehicle, 𝐹𝑥 is the resistance force, 𝐹𝑡𝑜𝑟𝑞𝑢𝑒 is the longitudinal
force derived from the application to the wheels of the electric machine
torque, through a gear ratio, and ẍ is the longitudinal acceleration that
is the second derivative of the longitudinal distance 𝑥 traveled by the
vehicle.

𝐹𝑡𝑜𝑟𝑞𝑢𝑒 − 𝐹𝑥 = 𝑚𝑒𝑞 ⋅ 𝑥̈, (1)

The resistance force 𝐹𝑥, in flat condition, is composed of the rolling
resistance and the aerodynamics drag. Accordingly, it is calculated in
(2), where 𝑚𝑒𝑞 is the vehicle mass, 𝑔 the gravitational acceleration, 𝑓0
the rolling resistance coefficient, 𝜌 the air density, 𝑆 the frontal area,
𝐶𝑥 the aerodynamic coefficient, and 𝑥̇ is the linear speed of the vehicle,
calculated as the first derivative of the linear distance 𝑥 traveled by the
vehicle.

𝐹𝑥 = 𝑚𝑒𝑞 ⋅ 𝑔 ⋅ 𝑓0 +
1
2
𝜌 ⋅ 𝐶𝑥 ⋅ 𝑆 ⋅ 𝑥̇2, (2)

The electric drive, which consists of the electric machine and the
relative power converter, is modeled as being algebraic, i.e. with maps
containing operating efficiency and regions. Since the powertrain dy-
namics are slower than the electric ones, the only dynamic considered
is the mechanical dynamic related with the mechanical inertia of the
rotating parts, while the electrical dynamics have been neglected. Thus,
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Fig. 2. Conventional power train scheme.
Fig. 3. Equivalent circuit model of the battery system.

the electric drive applies the mechanical torque requested from the
driver to the inertia. The applied torque and the speed determine the
operating point of the electric drive, which is used in an efficiency
map to calculate the drive losses. This approach has been verified by
the authors in [38,39], proving that average errors of the model can
be below 5% with respect to experimental data. Moreover, for the
present study, the efficiency maps of the electric drive have been tuned
in order to align the energy consumption of the simulated vehicle to
the today standards of main EV manufactures, as further specified in
Section 3.3. As shown in Fig. 3, the storage system is modeled by
an equivalent electric circuit composed of an electromotive force and
an inner resistance. The electromotive force is parameterized by the
Open Circuit Voltage (𝑉𝑜𝑐) as a function of the SoC, relationship that
is depicted in Fig. 4(a) based on the experimental testing procedure
described in Section 3.4. The value of the inner resistance (𝑅𝑖) is
calculated as a function of the SoC and the temperature, according
to the trend reported in Fig. 4(b). Although much more sophisticated
battery models exist, which include the dynamic behavior of the main
electrical phenomena occurring inside the battery itself (as already
investigated by the same authors in [40] and widely in literature [41]),
given the goal of this paper, we considered a static battery electrical
model as a trade-off between accuracy and computational time. The
detailed reasons are the following: (a) for the purpose of the present
paper, we are not interested in the internal electrical dynamics of
the battery, because they are in the order of minutes, while the time
horizon of our simulations is in the order of days, and (b) the static-
algebraic model of Fig. 3 includes all the major elements to capture the
thermal model equations: indeed, the model with a single resistance
parameter 𝑅𝑖 enables representing the temperature dynamics of the
battery with an acceptable error, as demonstrated in [42].

The thermal model of the EV battery pack has been developed
starting from the equation of the heat generation rate model proposed
by Bernardi [43]: an energy balance is applied to estimate the battery
temperature. Assuming that the thermal distribution inside the cell
is uniform and that the conduction resistance inside the battery cell
is negligible compared with the convection and radiation heat trans-
fer [44], the temperature variation depends on the battery thermal
capacity (𝐶𝑝) and the difference between the generated heat and the
dissipated heat. Generated heat comprises two sources, irreversible heat
generation by means of the effective ohmic resistance of the cell’s
material, and reversible generated heat due to the entropy change in
both cathode and anode. The total entropy changes in the battery
cell can be considered as zero according to [45]. According to [46],
4

Fig. 4. (a) Open Circuit Voltage as a function of the SoC; (b) Inner resistance 𝑅𝑖 as a
function of the SoC and the temperature.

assuming that the temperature differences between the cells in the
single battery module are small, the battery temperature behavior can
be described with (3). 𝛥𝑇 is the difference between the battery cell
(𝑇 𝐵) and the ambient temperatures (𝑇𝐴), ℎ is the natural convection
coefficient, 𝑀 is the total battery mass, and 𝐼𝐵 is the battery current. 𝑅𝑖

is the battery internal resistance shown in Fig. 2 which generates heat,
𝐴 is the surface area of the cells blocks in the single battery module, 𝜎
is Stefan–Boltzmann constant, and 𝜖 is the emissivity of heat.

𝑀 ⋅ 𝐶𝑝 ⋅
𝑑𝑇 𝐵

𝑑𝑡
= 𝑅𝑖 ⋅ 𝐼

𝐵2 − ℎ ⋅ 𝐴 ⋅ 𝛥𝑇 − 𝜖 ⋅ 𝜎 ⋅ 𝐴 ⋅ (𝑇 𝐵4 − 𝑇𝐴4) (3)

In particular, Saw et al. [47] has pointed out to the contribution of
the contact resistance in heat generation, yet when the cell connectors
are welded, as considered in this study, the contact resistance can be
neglected.
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2.3. The battery degradation model

2.3.1. Description
The model proposed in this activity improves the methodologies

discussed in [21,48] by (a) improving the representation of battery
degradation at low temperatures, (b) considering time-variable tem-
perature profiles, (c) including the cycling degradation at microcyles
with low DoD and (d) modeling the C-rate dependency of capacity
degradation. The mathematical modeling of the battery degradation is
reported in (4)–(6).

Eqs. (4) and (5) clarify the actual value of the battery capacity
𝐸𝐵,𝐴
𝑡 for every time step 𝑡, where 𝜉𝑡 represents the specific degradation

rate. Expression (5) clarifies that the degradation rate is an exponential
function of the linearized degradation variable 𝑓 𝑑

𝑡 , with parameters
𝛼𝑠𝑒𝑖 and 𝛽𝑠𝑒𝑖 that model the degradation effects related to the initial
creation of the solid-electrolyte interphase (sei), both being zero for
modeling used batteries [21]. Similarly to [48], 𝑓 𝑑

𝑡 is modeled with (6)
as the sum of the contributes due to the calendar aging (𝑓 𝑑,𝑐𝑎𝑙

𝑠,𝜏 ) and the
cycling aging (𝑓 𝑑,𝑐𝑦𝑐

𝑟 ), however, their complete expressions have been
significantly improved as detailed in the following subsections.

𝐸𝐵,𝐴
𝑡 =

(

1 − 𝜉𝑡−1
)

⋅ 𝐸𝐵,𝑁
𝑖 (4)

𝜉𝑡 = 1 − 𝛼𝑠𝑒𝑖 ⋅ 𝑒−𝛽
𝑠𝑒𝑖⋅𝑓𝑑

𝑡 −
(

1 − 𝛼𝑠𝑒𝑖
)

⋅ 𝑒−𝑓
𝑑
𝑡 (5)

𝑓 𝑑
𝑡 =

∑

𝑠∈𝑁𝑆 ,𝜏∈𝑁𝑇

𝑓 𝑑,𝑐𝑎𝑙
𝑠,𝜏 +

∑

𝑟∈𝑁𝑅

𝑓 𝑑,𝑐𝑦𝑐
𝑟 (6)

2.3.2. Calendar life degradation
The calendar aging, modeled using (7), aims at modeling the main

degradation phenomena related to the calendar degradation: time,
temperature and average SoC. Its mathematical description is charac-
terized by several non-linear functions here detailed: 𝑆𝑡(𝛥𝑠,𝜏 ) describes
the degradation effect related to the time since installation, 𝑆𝜎 (𝜎𝑠,𝜏 )
denotes the aging due to the SoC, 𝑆𝑇 ,𝑐𝑎𝑙(𝑇 𝐵

𝑠,𝜏 ) describes the accelerated
degradation due to temperature. With respect to the literature [21,48],
the traditional calendar aging model has been improved by including
(a) combined degradation of SoC and temperature and (b) a matrix-like
approach to quantify the main degradation stresses (𝛥𝐵

𝑠,𝜏 , 𝜎𝑠,𝜏 and 𝑇 𝐵
𝑠,𝜏 ),

as shown in Fig. 5.

𝑓 𝑑,𝑐𝑎𝑙
𝑠,𝜏 = 𝑆𝜎 (𝜎𝑠,𝜏 ) ⋅ 𝑆𝑡(𝛥𝐵

𝑠,𝜏 ) ⋅ 𝑆
𝑇 ,𝑐𝑎𝑙(𝑇 𝐵

𝑠,𝜏 (𝑇
𝐴, 𝐼𝐵)) (7)

The first novelty of the methodology relates to the modeling of the
calendar life to account for the non-linear dynamic behavior of both
temperature and SoC, which were missing in [21,48]. To this goal,
the quantities are quantized: the SoC and temperature intervals are
divided into intervals and the procedure calculates the duration the
battery has been operated in each interval of SoC (𝑠) and temperature
(𝜏). The proposed matrix structure is sketched in Fig. 5 to clarify the
approach and the mathematical formulation is reported in (8)–(10),
which quantifies respectively the duration 𝛥𝐵

𝑠,𝜏 , the average temperature
𝑇 𝐵
𝑠,𝜏 and SoC 𝜎𝐵𝑠,𝜏 the battery system operates in the temperature interval

𝜏, delimited by 𝑇 𝐵,𝑚𝑎𝑥∕𝑚𝑖𝑛
𝜏 , and SoC interval 𝑠, delimited by 𝑆𝑜𝐶𝑚𝑎𝑥∕𝑚𝑖𝑛

𝑠 .

𝑇 𝐵
𝑠,𝜏 = mean

({

𝑇 𝐵
𝑡 ∶ 𝑇 𝐵

𝑡 ∈
[

𝑇 𝐵,𝑚𝑖𝑛
𝜏 , 𝑇 𝐵,𝑚𝑎𝑥

𝜏

]

, 𝑆𝑜𝐶𝑡 ∈
[

𝑆𝑜𝐶𝑚𝑖𝑛
𝑠 , 𝑆𝑜𝐶𝑚𝑎𝑥

𝑠

]

,∀𝑡
})

(8)
𝜎𝑠,𝜏 = mean

({

𝑆𝑜𝐶𝑡 ∶ 𝑇 𝐵
𝑡 ∈

[

𝑇 𝐵,𝑚𝑖𝑛
𝜏 , 𝑇 𝐵,𝑚𝑎𝑥

𝜏

]

, 𝑆𝑜𝐶𝑡 ∈
[

𝑆𝑜𝐶𝑚𝑖𝑛
𝑠 , 𝑆𝑜𝐶𝑚𝑎𝑥

𝑠

]

,∀𝑡
})

(9)
𝛥𝐵
𝑠,𝜏 = sum

({

𝛥𝑡 ∶ 𝑇 𝐵
𝑡 ∈

[

𝑇 𝐵,𝑚𝑖𝑛
𝜏 , 𝑇 𝐵,𝑚𝑎𝑥

𝜏

]

, 𝑆𝑜𝐶𝑡 ∈
[

𝑆𝑜𝐶𝑚𝑖𝑛
𝑠 , 𝑆𝑜𝐶𝑚𝑎𝑥

𝑠

]

,∀𝑡
})

(10)

Finally, Eqs. (11), (12) and (13) depict the calendar degradation effects
due to temperature, the average SoC and time, respectively. With respect
to [21,48], the formulations have been improved to account for conjoint
temperature and SoC dynamics. 𝑘𝑇 , 𝑘𝑡, 𝑘𝜎 are experimental coefficients

𝐵

5

that can be tailored with the procedure described in [21], and 𝑇𝑟𝑒𝑓 and
Fig. 5. Matrix structure to capture the temperature-SoC-time dynamics. The orange
curve represents the evolution of SoC and temperature over time, and the blue square
represents an arbitrary cell in which values are averaged according to the time the
system operates in that region, as detailed in (8)–(10).

𝑠𝑖𝑔𝑚𝑎𝑟𝑒𝑓 are reference temperature (25 ◦C) and reference SoC (50%)
used to perform the experimental calibration of the before-mentioned
coefficients.

𝑆𝑇 ,𝑐𝑎𝑙(𝑇 𝐵
𝑠,𝜏 ) = 𝑒

𝑘𝑇 ⋅
(

𝑇 𝐵
𝑠,𝜏−𝑇

𝐵
𝑟𝑒𝑓

)

⋅
𝑇𝐵𝑟𝑒𝑓
𝑇𝐵𝑠,𝜏 (11)

𝑆𝜎 (𝜎𝑠,𝜏 ) = 𝑒𝑘𝜎 ⋅(𝜎𝑠,𝜏−𝜎𝑟𝑒𝑓 ) (12)

𝑆 𝑡(𝛥𝑠,𝜏 ) = 𝑘𝑡 ⋅ 𝛥𝑠,𝜏 (13)

2.3.3. Cycle life degradation
The cycling degradation is instead modeled using (14), which is a

non-linear function that accounts for DoD (𝑆𝛿(𝛿𝑟)), average SoC (𝑆𝜎(𝜎𝑟)),
and temperature 𝑆𝑇 ,𝑐𝑦𝑐 (𝑇 𝐵

𝑟 ) of each cycle of operation calculated using a
rainflow counting procedure [24]. Conversely to [21,48], the proposed
model accounts for (a) degradation dynamics at low battery temperature,
by using a modified function 𝑆𝑇 ,𝑐𝑦𝑐(𝑇 𝐵

𝑟 ), (b) an accurate modeling of the
operating temperature of each degradation cycle, by using a weighted
average procedure that also enables avoiding idling periods, and (c) the C-
rate degradation dynamics by modeling the battery temperature 𝑇 𝐵

𝑟 using
the physical-electro-thermal model in Section 2.1, which depends on the
ambient temperature (𝑇 𝐴) and the battery current (𝐼𝐵).

𝑓 𝑑,𝑐𝑦𝑐
𝑟 = 𝑆𝛿(𝛿𝑟) ⋅ 𝑆𝜎 (𝜎𝑟) ⋅ 𝑆𝑇 ,𝑐𝑦𝑐 (𝑇 𝐵

𝑟 (𝑇 𝐴, 𝐼𝐵)) (14)

The function 𝑆𝜎 (𝜎𝑟) used to model the degradation effect in (14) is
equivalent to the one used in the calendar life in (12), whereas the other
formulations are presented below.

As introduced, the proposed approach aims at identifying the average
operative temperature that occurred specifically for every battery cycle
when the battery was stressed also accounting for the current-related
effects that increase the battery temperature, which represent an addi-
tional novelty of the study. These temperature-related dynamics have
been captured by using the weighted average procedure shown in (15)
that quantifies the average temperature the battery is operated at for
every rainflow cycle. In the equation, 𝑇 𝐵(𝑇 𝐴, 𝐼𝐵) is the temperature of
the battery, computed using the physical battery model described in the
previous subsection that incorporates the C-rate dynamics, 𝑃 is the power
exchanged with battery (positive when discharging), and 𝑇𝑟 denotes the
time ranges in which a cycle is active. By using this definition, the
procedure successfully identifies the average temperature weighted by
the power exchanged with the battery when the battery is operated, thus
quantifying the net temperature effect when the charging or discharging
stress has occurred, contrary to previous models [21,48]. Note that for
every time step 𝑡, only a cycle can be active to avoid counting twice the
same interval, thus 𝑇𝑖 ∩ 𝑇𝑗 = ∅ , ∀𝑖, 𝑗 ∶ 𝑖 ≠ 𝑗.

𝑇 𝐵
𝑟 =

∫𝑡∈𝑇𝑟 |𝑃 | ⋅ 𝑇
𝐵(𝑇 𝐴, 𝐼𝐵)𝑑𝑡

(15)

∫𝑡∈𝑇𝑟 |𝑃 | 𝑑𝑡
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Fig. 6. Methodology to identify conjoint temperature-current dynamics of the cycling
degradation.

Fig. 7. Comparison of the empirical degradation rates from [49] and the proposed
model.
Note: the proposed model discussed in this paper (in green) and the original model (in
red) by [21,48] has been re-scaled to be superimposed on the model from [49]. The
blue and red dots denote the experimental model from [49]. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

To clarify the above, let us consider the battery cycling in Fig. 6 char-
acterized by a first battery discharge, followed by a period of resting
and a recharge. In the example, the charging and discharging of the
battery occur only at higher temperature, whereas the resting occurs
at lower temperature. The proposed procedure successfully obtains the
higher temperature value 𝑇 𝐵

𝑟 as weighted average temperature, whereas
traditional approaches based on averaging the temperature between the
beginning and end of the cycle, such as [21], would disregard such
phenomenon and obtain 𝑇 𝐵,𝑀

𝑟 , which is not the net battery temperature
when the cycling dynamics occur.

Another improvement relates to characterizing the modeling in cold
weathers. In agreement with the literature [50], in cold environments
the cycling aging of the battery degrades significantly, similarly to high
temperature conditions as studied in [49], yet the original model only
considered high temperature phenomena [21,48]. To account for cold
environments, in alignment to [49,50], we then propose the modified
degradation model as reported in (16), whose parameters are equivalent
to those at (13). The overall comparison between the proposed model, the
original model in [21,48] and the raw experimental data in [49] is shown
in Fig. 7. The figure clearly shows the ability of the proposed approach to
capture the dynamics at low temperature, whereas the models in [21,48]
cannot.

𝑆𝑇 ,𝑐𝑦𝑐(𝑇 𝐵) = 𝑒𝑘
𝑇 ⋅||
|

𝑇 𝐵
𝑟 −𝑇 𝐵

𝑟𝑒𝑓
|

|

|

⋅
𝑇𝐵𝑟𝑒𝑓
𝑇𝐵 (16)
6

𝑟

Fig. 8. Comparison of the absolute (solid line) and specific (dashed line) degradation
rate of 𝑆𝛿 of the proposed model (in green) with respect to literature [21] (in red).
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Another improvement of the cycle life degradation model consists
in the appropriate selection of a fitting function to properly describe
the degradation rate over the entire range 0%–100% DoD, and in the
introduction of appropriate constraints to adhere to experimental data of
degradation rates. The proposed DoD effects have been captured using
(17), subject to constraint (18) that guarantees that the specific degra-
dation rate at low DoD is a monotone increasing function, conversely
to [21]. The authors in [21] calibrated the model at higher DoD ranges
(10%–100%), and limited description at low DoD ranges may have lead
to lower precision and higher specific degradation rates, whereas the
literature suggest lower specific degradation rates in that same range [10].
Fig. 8 compares the proposed model (in green) with the one in [21] (in
red) calibrated on the same data and confirms that the proposed approach
successfully meets the desired goal. Often, this topic is disregarded, yet
it may lead to unexpected behaviors in cycling dynamics with low DoD,
which can be critical for energy systems with high renewable penetration,
such as for estimating EV battery lifetimes of urban cycles at low DoD (see
Section 3).

𝑆𝛿(𝛿𝑟) = 𝑘𝛿1 ⋅ 𝛿𝑘𝛿2𝑟 + 𝑘𝛿3 ⋅ 𝛿𝑟 (17)

𝜕 𝑆𝛿 (𝛿𝑟)
𝛿𝑟

𝜕𝛿𝑟
≥ 0 (18)

2.3.4. Calibration of the model
To properly calibrate the model described in this subsection, standard

curve fitting tools available in any scientific processing software can be
used using the information detailed as follows:

1. Calendar experiments at different temperature. These curves en-
able calibrating the temperature model and to identify parameters
𝑘𝑇 and 𝑇 𝐵

𝑟𝑒𝑓 in (11) and (16).
2. Calendar experiments at different SoC. These curves can support

the calibration of the SoC dependence parameters 𝑘𝜎 and 𝜎𝑟𝑒𝑓 of
(12).

3. Calendar experiments. The calendar experiments at different tem-
peratures and SoC are then used for calibrating the calendar degra-
dation coefficients 𝑘𝑡 of (7).

4. Cycling tests. The traditional curves given by manufacturers that
describe the expected lifetime of the battery with respect to the
DoD can be used for the calibration of 𝑘𝛿1, 𝑘𝛿2 and 𝑘𝛿3 of (17).

The rational behind these test matrix is that in every testing procedure
a single degradation phenomenon is considered at a time and hence it is
easy to perform the curve fitting calibration. For example, in calendar
tests, only calendar degradation occurs, hence only the left-hand side of
(6) contains non-null values. More details on the calibration procedure
can be found in [21].
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Fig. 9. Italian climate zones.

Table 1
Minimum (min), average (avg) and maximum (max) temperatures for
the representative climates by zone.

Zone Min temp. Avg. temp. Max. temp.
[◦C] [◦C] [◦C]

B 5.1 18.8 33.0
C 0.5 17.1 35.5
D −4.0 14.6 33.0
E −5.7 12.2 30.9
F −10.8 11.8 32.4

3. Case study

3.1. Description

This section describes the case studies used for performing the tech-
nical analysis on the battery lifetime for an Italian case study. The
parameters of the electrical and aging model of the battery vehicle are
defined according to data based on experiments and previous works. The
vehicle characteristics, the charging modes and the vehicle usage have
been adapted from the literature in order to highlight the main issues
that cause battery degradation and estimate EV battery lifetimes.

3.2. Daily temperatures clustering

The technical analysis takes into account the impact of the ambient
temperature, as shown in Fig. 1. In Italy, the weather conditions are
usually classified in six climate zones, named from A to F, where A
represents the area with the highest temperature and F if the area with
the lowest temperature, with the geographical distribution depicted in
Fig. 9. The climate zone A, which corresponds to the island Lampedusa
in the south of Italy, is not reported, neither considered in the case study
because is not representative enough. Aiming to obtain general results
for typical Italian conditions, three main weather zones (B, E and F) have
been considered that map the majority of the territory. More details on
the reference temperature profiles are denoted in Table 1.

Moreover, in order to dominate the computational efforts needed
for performing multi-years analysis on several case studies, the yearly
temperature data of each climate zone have been clustered into six
typical days, as shown in Fig. 1, using kmeans algorithm. The ambient
temperature profiles of each climate zone have been taken from [51] at
1 h time resolution. As example, Fig. 10 details the clustered six profiles
for climate zone F.
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Fig. 10. Temperature profiles of the six typical days for the climate zone F.

3.3. Usage pattern of the hybrid vehicle

The load profile has been selected by considering driving conditions on
the standardized WLTC driving cycle [52], which represents typical use
conditions in urban, extra-urban roads and highways. In this study, the
WLTC has been used to create a typical driving pattern for a commuter
(30 km/day) and for a highway driver (500 km/day). The composition
and number of repetitions of the WLTC cycle have been selected by
analyzing typical characteristics of trips in Italy during 2019, derived
from [53]. Main results directly taken from the report have been shown
in the following Table 2.

Based on these indicators, four different mission profiles have been
defined accordingly. The first three case studies relate to short trips
mainly in urban and extra-urban contexts, named as ‘‘commuter’’ usage.
In particular, urban and extra-urban portions of the WLTC cycle have
been considered, neglecting the highway part. In this way, a road cycle of
about 15 km, repeated twice a day to simulate the way forward and the
way back, was implemented. After determining the vehicle usage pattern,
different charging modes were taken into account. In particular, charging
phase was executed according to the following main three options, in
order to compare the effects on the battery lifetime. The fourth case
is instead a much more stressed long-driving profile, named ‘‘highway’’
usage. All these cases are here listed below:

• Case 1: daily home charging at 3 kW-rated power at the end of every
day (vehicle usage: commuter).

• Case 2: public charging located at workplace, at 11 kW of con-
stant rated power, before the return trip to home (vehicle usage:
commuter).

• Case 3: public charging located at workplace as before, with the in-
troduction of Vehicle-to-Grid function. In this way, charging profile
is different from before, since it is made by multiple charging and
discharging phases (vehicle usage: commuter).

• Case 4: vehicle driving on highway at constant speed (120 km/h),
with the main goal to cover a full distance of about 500 km. During
the trip, at least two fast charging operations are needed, performed
at the constant rated power of 120 kW (vehicle usage: highway).

The main characteristics of the vehicle under simulation are shown in
the next Table 3. As noticeable, characteristics are of a average medium
car, equipped with a typical battery size, nearly about 50 kWh. With this
configuration, the simulated vehicle energy consumption under the WLTC
standard cycle is 14.8 kWh/100 km, which is in line with the today EV
standards [54].

In the activity, all set of temperature profiles have been applied to Case
1, while the other cases have been simulated just for one single geographic
area, e.g. limiting to 6 different temperature profiles.



Journal of Energy Storage 59 (2023) 106458D. Fioriti et al.
Table 2
Average characteristics of trips in Italy during 2019.

Weekday Weekend

Average number of trips per day [–] 2.5 2.5
Average length of trips [km] 11.2 14.1
Fraction of urban trips [%] 73.9 72.6
Fraction of extra-urban trips [%] 26.1 27.4
Per capita time on mobility per day, mobile population only [min] 58 61
Average speed [km/h] 29 34
Average speed of extra-urban car journeys [km/h] 22
Average speed of urban car journeys [km/h] 52
Fraction of trips during peak times (7–19 and 17–19) [%] 37.7 32.3
Fraction of trips during other times [%] 62.3 67.7
Fraction of trips by car [%] 62.5 65.6
Fraction of trips by other means (including public transport) [%] 37.5 34.4
Table 3
Vehicle parameters.

Parameter Value

Mass 𝑚 1700 kg
Wheel radius 0.34 m
Gear ratio 7
Aerodynamic coefficient 𝐶𝑥 0.27
Equivalent Frontal Section 𝑆 2 m2

Rolling resistance coefficient 𝑓 0.015

Table 4
Parameters of the BESS degradation model, calibrated on the experimental tests
performed using the procedure in Section 3.4.

Symbol Value Symbol Value

𝛼𝑠𝑒𝑖 0 [–] 𝛽𝑠𝑒𝑖 0 [–]
𝑘𝛿1 1.8716E−4 [–] 𝑘𝛿2 4.0585 [–]
𝑘𝛿3 8.6848E−6 [–] 𝑘𝜎 0.6835 [–]
𝜎𝑟𝑒𝑓 0.5 [–] 𝑘𝑇 5.9965E−2 [–]
𝑇 𝐵
𝑟𝑒𝑓 25 [C] 𝑘𝑡 2.835E−10 [s−1]

3.4. Aging test

Several aging test have been performed on lithium-ion cell for EV
application in order to get enough results to build the electrical model de-
scribed in subsection Section 2.2 and the degradation model here detailed.
In particular, nine NMC pouch cells manufactured by EIG, model ePLB
C020B, have been tested for 2 years. The cells have a nominal capacity of
20 Ah, a voltage range between 3 and 4.15 V, a maximum charge current
of 20 A and discharge current up to 60 A. The manufacturer declares
more than 3000 equivalent cycles at 20 ◦C with DoD 80%. Fig. 11 shows
the working station used for testing all the cells at the same time. It was
equipped with a bidirectional multi-channel cycler, Chroma 17212R-5-
100, with 12 independent channels. Two cells were tested at 40 ◦C in a
climate chamber of Angelantoni Discovery, model DY250 BT, while seven
cells were located in a steel box at 20 ◦C. In all the cases, the ambient
temperature was kept within +/- 2 ◦C.

The test procedure described in [55] has been used to create a useful
dataset for building a degradation model.

3.5. Degradation model

The parameters of the battery degradation model, calibrated using the
experimental data obtained from the aging test and the procedure in [21],
summarized in Section 2.3.4, are reported in Table 4.

Moreover, in order to clarify the contribution to the battery degrada-
tion by (a) the seasonalities of the ambient temperature and (b) the C-rate
dynamics of the proposed model, in this study we compare the following
three degradation models:

1. Full: the complete proposed model as described in Section 2;
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Fig. 11. Working station used to perform the aging test on lithium-ion cells.

2. No C-rate: the model described in Section 2 where the battery is
assumed to be kept constantly at the ambient temperature, which
means, no C-rate dynamics are considered;

3. AvgTemp: the model described in Section 2 where the battery is
assumed to kept at the average yearly temperature throughout
the year, which is the general assumption typically done in the
literature [21].

3.6. Setup of the simulations

To summarize, the characteristics of the simulations performed in this
study are described in Table 5.

4. Results

This section describes the results of the proposed approach, detailed
in Section 2, on the case study discussed in the previous section calibrated
using the aging tests described in Section 3.4. The next subsection details
the physical thermo-electric simulations of the system, developed in
Modelica, and the other subsections detail the degradation behavior of
the system.
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Table 5
Main characteristics of the simulations.
Case Vehicle usage Recharge type V2G Weather Degradation model

1 Commuter (30 km/d) 3 kW home no B/E/F Full/No-Crate/TempAvg
2 Commuter (30 km/d) 11 kW work no E Full/No-Crate/TempAvg
3 Commuter (30 km/d) 11 kW work yes E Full/No-Crate/TempAvg
4 Highway (500 km/d) 120 kW+home no E Full/No-Crate/TempAvg
Fig. 12. Case 1, Climatic Zone E, winter day.

4.1. Thermal simulation of the vehicle battery system

As previously discussed, the thermal behavior of the vehicle battery
system depends on various factors, such us the driving pattern, the battery
power during traction and recharge, as well as the ambient temperature.
By means of the developed simulation model, it is investigated the thermal
behavior of the vehicle battery under different use cases and ambient
temperature variation. This section shows the temperature variation of
the vehicle battery with regard to the vehicle usage, recharge rate and
ambient temperature. The trend results of two use cases for the climate
zone E are depicted. In particular, Fig. 12 depicts the behavior of the
battery for Case 1, during a winter day. As shown, the SoC variation is
very limited, since the car travels just for 30 km per day with moderate
speed. It is interesting to notice that the slow recharge at 3 kW does not
affect the battery temperature which follows the ambient temperature
trend. By contrast, the battery thermal profile under Case 4 is very
different. As reported in Fig. 13, the battery is subjected to important SoC
variation, due to higher distances and speed regime. During the drive at
a constant speed of 120 km/h, the battery delivers around 26 kW and the
temperature remains aligned with the ambient temperature. During the
recharge phase, it is clear how the higher power level affects the battery
temperature which increases by 5–6 ◦C with respect to the ambient.

4.2. Degradation by recharging strategy

Fig. 14 describes the expected degradation of the battery for the
selected 4 usage cases (1–4) in the same climate zone E (average temper-
ature of 18.5 ◦C). The image clearly shows that the different usage case,
namely commuter (cases 1–3) and highway (case 4), and the intensity
9

Fig. 13. Case 4, Climatic Zone E, summer day.

Fig. 14. Degradation of the case studies 1E, 2E, 3E and 4E at 80% DoD subject to
different battery recharging patterns.

of the recharging system, from slow (case 1) to fast (case 4), can affect
the lifetime of the battery. The image clearly shows that in the typical
behavior of a commuter (cases 1–3) the battery vehicle is less stressed
than in the highway case (4), which leads to expected lifetime of around
25 years in the cases 1–4, whereas of around 2 years in the usage case 4.
However, the lifetime in terms of total kilometers driven is comparable:
around 300 103 km in all cases, as confirmed in Table 7, the commuter
case leading the way. In fact, while the battery lasts around 20 times more
in terms of time in the commuter (cases 1–3), the daily kilometers covered
every day in the commuter case (30 km a day) are less than one tenth of
those covered in the highway case (500 km a day).

In specific, for the commuter case, the slower recharging during the
night (case 1) enables improving the battery lifetime the most up to 32y,
or around 340 103 km, at 80% conventional EoL, yet faster recharging
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Fig. 15. Degradation of the case studies 1B, 1E and 1F at 80% DoD subject to different
climate zones (B, E and F).

processes at 11 kW slightly drop lifetime by around 0.3% and 4.5% for
cases 2 and 3, with respect to case 1, as shown in Fig. 14. The main reason
of the drop is related to (a) increased temperature due to faster recharging
processes (cases 2 and 3) and (b) increased battery cycling during V2G
(only case 3).

4.3. Degradation by weather zone

In Fig. 15, the sensitivity analysis over the meteorological zones
(zones B, E and F) are compared for the usage case 1, as explained in
the case study. The picture clearly shows that despite the usage case
is the same (case 1), the temperature affects aging for up to 24.4%:
the colder temperatures (zones E and F) enable the battery to survive
24.4% longer than in the warmer regions of Southern Italy (zone B). With
colder weather, the effects of the calendar aging, taken into considerations
with the improvements in Section 2.3, are reduced. On the other hand,
since zones E and F are similar, the corresponding degradation is nearly
equivalent, as suggested by the two overlapping lines in Fig. 15.

It is interesting to notice in the zoomed area of Fig. 15 the ‘‘S’’-like
curve of the degradation, which is due to the monthly periodicity in
the temperature. During summer, in fact, the higher temperatures lead
the battery to age faster than during the winter and this is reflected
by a steeper degradation during the same time period. In particular,
while colder temperatures facilitate longer calendar life, the cycling life
is instead more affected (see Section 2.3). However, since in the usage
case 1 the battery is not significantly stressed, as the corresponding DoD
is only 6%, the calendar aging is expected to play the major role in this
case, as confirmed by the results in Fig. 15.

4.4. Degradation by dynamic thermal modeling

Table 6 denotes the benefits of using the proposed C-rate degradation
model combined with the physical thermo-electric simulations of the
vehicle system to estimate the lifetime of the batteries (first column)
versus simplified methodologies to address the temperature: the model
without the C-rate dynamics (second column), hence assuming the bat-
tery is constantly kept at ambient temperature, or its approximation
(third column) that assumes only the average yearly temperature, as
done in [21] that disregards daily and seasonal dynamics. It turns out
that considering only the average yearly temperature generally leads to
overestimating the battery lifetime by about 1%–18%, in most scenarios,
except the coldest one (case B). The model without C-rate dynamics but
that considers the seasonalities (second column) is similar to the proposed
approach in cases 1–3 with low stress, but in the high-power conditions
of the highway case (case 4), the higher power charging and discharging
process leads the battery to significantly increase in temperature which
leads to an incremental degradation loss of about 12%, which would
be neglected without the proposed approach. These results suggest that
seasonal dynamics shall be considered for estimating battery lifetime and
that the proposed dynamic C-rate modeling is strongly recommended for
estimating the battery lifetime of high power intensity conditions.
10
Table 6
Expected lifetime of the battery storage by thermal degradation model, case and
weather zone; see Section 3.5 for the description of the acronyms of the battery
degradation models.

Deg. model Fulla No C-rate AvgTemp
Case [103 km] [103 km] [103 km]

1E 345.2 345.0 (−0.1%) 406.7 (+17.8%)
2E 344.1 343.9 (−0.1%) 408.3 (+18.7%)
3E 329.6 329.8 (+0.1%) 389.5 (+18.2%)
4E 230.8 203.3 (−11.9%) 223.2 (−3.3%)
1B 260.8 260.8 (−0.0%) 245.6 (−5.8%)
1F 343.8 343.5 (−0.1%) 437.9 (+27.3%)

aProposed model and reference case.

Table 7
Expected lifetime of the battery storage by End-of-Life; units are in years.

Time Time Path Path
[y] [y] [103 km] [103 km]

EoL [%] 80 70a 80 70a

Case

1E 31.5 49.8 345.2 545.8
2E 31.4 49.6 344.1 543.1
3E 30.1 47.5 329.6 520.2
4E 1.3 1.8 230.8 335.8
1B 23.8 38 260.8 415.6
1F 31.4 49.6 343.8 543.2

aAssuming no second-life phenomena kick-in.

4.5. Effect of the End of Life (EoL)

Table 7 shows the expected lifetime of the battery, both in terms of
years of operation and total path covered, of the vehicle for all usage
conditions (cases 1–4) and tested weather zones, also including a sensi-
tivity analysis over the conventional EoL of the battery (80% and 70%),
under the assumption that no second-life behaviors occur. Increasing the
conventional EoL of the battery from 80% to 70% enables increasing the
timespan by around 15 years. However, it is worth noticing that after
these long lifespan and deep discharges, non-linearities related to second-
life behavior, which are not the focus of this study, are more likely to kick
in than at 80% EoL.

5. Conclusions

This study has successfully proposed a methodology to estimate the
lifetime expectancy of electric vehicle battery systems subject to arbitrary
weather conditions, vehicle uses and charging strategies, including fast
charging, vehicle-to-grid and home recharge. A novel rainflow-based
degradation model has been proposed and calibrated to consider cold
and warm environments, the effects of the C-rate, the temperature-related
calendar life and resting periods, alongside with the traditional cycling
degradation performances. A physical-electro-thermal model of the vehi-
cle system has been included to cope with the C-rate dynamics of the
battery usage.

The results suggest that lifetimes in the range of 10–20y (200–300
103km) are realistic for vehicle battery systems used by commuters with
expected daily usage in the range of 30 km a day, regardless of the
weather zone, as compared with commercial data and other studies.
More heavy usage of the battery, such as in highway conditions, can
lead to drop in the expected calendar lifetime in the range of 1–2y, but
limited reductions in terms of total traveled kilometers, with respect to
the average commuter.

Results suggest that accurate temperature and C-rate modeling are
required to avoid estimation errors beyond 18%–27% in the battery
lifetime expectancy, especially when approximating the battery dynamics
to the average yearly value. The C-rate related effects have shown to
impact battery estimation lifetime up to 12% for the highway case, as
the heavier charging and discharging processes lead to increased battery
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temperatures. Therefore, results suggest modelers to account for C-rate
considerations to properly estimate the lifetime of vehicle battery systems.

Further studies shall address the suitability of the model for different
battery chemistries, supported by large experimental data, and the possi-
ble interaction of the vehicle battery system with the recharging station,
to account for the degradation costs during the recharging process.
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