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A B S T R A C T

We propose a novel methodology to validate software product line (PL) models by integrating Statistical Model
Checking (SMC) with Process Mining (PM). We consider the feature-oriented language QFLan from the PL
engineering domain. QFLan allows to model PL equipped with rich cross-tree and quantitative constraints,
as well as aspects of dynamic PLs such as the staged configurations. This richness allows us to easily obtain
models with infinite state-space, calling for simulation-based analysis techniques, like SMC. For example, we
use a running example with infinite state space. SMC is a family of analysis techniques based on the generation
of samples of the dynamics of a system. SMC aims at estimating properties of a system like the probability of
a given event (e.g., installing a feature), or the expected value of quantities in it (e.g., the average price of
products from the studied family). Instead, PM is a family of data-driven techniques that uses logs collected
on the execution of an information system to identify and reason about its underlying execution process. This
often regards identifying and reasoning about process patterns, bottlenecks, and possibilities for improvement.
In this paper, to the best of our knowledge, we propose, for the first time, the application of Process Mining
(PM) techniques to the byproducts of Statistical Model Checking (SMC) simulations. This aims to enhance the
utility of SMC analyses.

Typically, if SMC gives unexpected results, the modeler has to discover whether these come from actual
characteristics of the system, or from bugs in the model. This is done in a black-box manner, only based on the
obtained numerical values. We improve on this by using PM to get a white-box perspective on the dynamics of
the system observed by SMC. Roughly speaking, we feed the samples generated by SMC to PM tools, obtaining
a compact graphical representation of the observed dynamics. This mined PM model is then transformed into
a mined QFLan model, making it accessible to PL engineers. Using two well-known PL models, we show that
our methodology is effective (helps in pinpointing issues in models, and in suggesting fixes), and that it scales
to complex models. We also show that it is general, by applying it to the security domain.
1. Introduction

Software product lines (SPL), and feature models in general, as
well as Product Line Engineering (PLE), play a very important role
in modern society, where customization capabilities are expected even
for commodity products. Very often, these products are equipped with
software that is expected to follow the customization of the product
itself. As a consequence, it becomes necessary to ensure that the prod-
uct lines are properly designed and that the models indeed capture the
intentions of the modelers. This paper presents a novel methodology
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to validate the behavior of SPL models by offering simple tools to ‘‘see
and compare’’ the actual behavior of a model with the expected one.

To validate models that present quantitative aspects in their behav-
ior, we often use exact or statistical analysis techniques. The formal
verification of the dynamics of a system via exact techniques provides
precise values of the (quantitative) properties being analyzed. These
typically require reasoning upon the whole behavior of the system,
which might not be feasible for complex models. Indeed, as the pos-
sible dynamics of the system increase, these techniques tend to suffer
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from the well-known state-space explosion problem, rendering them
inapplicable when the state-space becomes infinite (see, e.g., ter Beek
et al., 2021). On the other hand, statistical analysis techniques, such as
Statistical Model Checking (SMC) (Agha and Palmskog, 2018), rely only
on limited but statistically relevant samples of executions of a model:
simulations. Therefore, statistical analysis techniques can be used to
analyze complex dynamical systems, potentially with infinite state
spaces, at the cost that analysis results are not exact anymore but are
only statistically reliable estimations, e.g., equipped with confidence
intervals.

When the overarching behavior of a system is unknown, and it
is impossible to make assumptions about its transition structure, the
system is referred to as a black-box system. An SMC that analyzes the
dynamics of a black-box system without prior knowledge of the system
is referred to as a black-box SMC (Younes, 2005). These simulation-
based approaches return numerical estimates, plots, and occasionally
counterexamples of the studied properties. However, they typically do
not provide behavioral explanations for the results obtained. Without
clear explanations, the modeler can only make informed guesses about
how to adjust the model to fix unwanted behaviors. For example, let
us assume that we consider an SPL model for a family of vending
machines, a classic PLE model (see, e.g., Vandin et al., 2018; ter Beek
et al., 2012; Classen et al., 2010; ter Beek and de Vink, 2014; ter Beek
et al., 2015a; Muschevici et al., 2016; ter Beek et al., 2017). Let us
further assume that we use SMC to study the probability that machines
from the family contain dispensers for cappuccino and that we get 0.
nteresting questions about this analysis are:

• What is the reason behind such an extreme value?,
• Was the model intended to express this dynamic, or is there a bug?

n our view, the numeric value 0 is a black-box analysis result. Meaning
hat we do not know why we got 0, we do not know if it comes from
n issue in the model, nor how to fix it. The core of our proposal
s to enrich the analysis results obtained by SMC to study this query
y automatically adding explicit visual information pinpointing any
isalignment between the model and the two bullet points above. This

pproach not only facilitates model refinement but also serves as
method for conducting comprehensive testing. Experimenting with

iverse settings within the same model structure enables the evaluation
f the correctness of the simulated model.

Our proposal involves in enriching SMC analyses by conducting ad-
itional post-processing and analyzing the byproducts of SMC, i.e., log
iles on the computed simulations, using popular data-driven tech-
iques known as Process Mining (PM). Given that SMC is able to
andle models with infinite state-space, our approach can similarly
ddress such scenarios. PM is a process-oriented data-driven technique
hat analyzes the executions (i.e., traces) of activities generated by
nformation systems, allowing the identification of process patterns,
ottlenecks, and other issues in a model (van der Aalst, 2016). Visualiz-
ng the flow of activities helps identify opportunities for improvement
e.g., unexpected loops or unexpected dependencies).

This paper, which extends a preliminary work (Casaluce et al.,
023) where we sketched the potential of enriching SMC techniques
ith PM, presents a white-box technique to enable the evaluation of
ehavioral aspects of a feature model. The technique leverages the
pplication of process mining techniques on event logs produced by
simulations generated by) statistical model checking. The goal is to
rovide insights into the system behavior, such as discovering new
atterns, identifying bottlenecks, and improving the general model
ccuracy. Therefore, integrating SMC with PM paves the way to a more
omprehensive understanding of the overall behavior of the model
nd can help identify issues or suggest actionable improvements to
he modeler. To the best of our knowledge, our methodology is the
irst attempt in automatically explaining the results of SMC using PM-
ased approaches. In our preliminary previous work (Casaluce et al.,
023), we exemplified the capabilities of analyzing traces generated
2

by SMC with PM using a preliminary version of our methodology.
However, the identification of issues was entirely delegated to the
modeler’s visual skills and hence highly subjective. Furthermore, the
preliminary methodology had low accessibility, as the mined model
was given using a PM formalism different from the one used to create
the original model. This had the additional disadvantage that, in the
presence of a large model, mining the simulations would result in a
complex mined PM model, making it difficult for the modeler to locate
issues. In this paper, we overcome these limitations by fully developing
the methodology to automatically discover and visualize undesirable
behaviors. Such findings are then shown directly in the model spec-
ification itself. This is accomplished by highlighting the differences
between the expected behavior of the model, the model specification,
and the actual behavior discovered by mining its simulations. In fact,
by highlighting the specific behaviors causing issues in the model,
the modeler can make more targeted and effective adjustments to the
model to fix those issues. Furthermore, in Casaluce et al. (2023) we did
not tailor the SPL domain, but only the cybersecurity one, while we
now explicitly target the SPL domain by applying the approach on the
feature-oriented language QFLan (ter Beek et al., 2020; Vandin et al.,
2018).

Fig. 1 illustrates an abstract example of a model validated using
our method. The input model is a representation of an abstract model.
This abstract model includes different states and actions used to move
between those states. In this example, the simulator would start from
the node A and with the ActionB move to the node B, and from there
can move to another node by choosing the corresponding action. With-
out our methodology, an SMC user would need to validate the input
model using only the obtained numerical results (e.g., if interested in
‘‘estimating the probability of reaching a specific node in the model’’).
With our approach, however, the modeler can inspect the results of the
simulation once they are synthesized into new models, thus using the
same language (i.e., models-to-model rather than models-to-numbers).
The first graph in the ‘‘output models’’ box of Fig. 1 depicts the
reconstructed model after applying Process Mining to the simulations.
Instead, the rightmost model depicts the graph obtained by comparing
the input model and the reconstructed one. This final representation,
in particular, highlights the differences between the input model and
the simulated behavior, allowing the modeler to quickly identify is-
sues, such as unexpected or missing behaviors. The exact semantics
of the different colors of the edges is explained in Section 3. It is
worth mentioning that this method can, in principle, be applied to any
discipline where discrete-state simulation models are used, enhancing
the capabilities of related modeling and analysis tools. On the other
hand, the methodology is particularly useful for domains where the
complexity of models is high, as in the case of highly-parametric models
from PLE. In particular, SMC, and therefore our approach, which post-
processes its results, is particularly useful for models with very large or
infinite state space models.

It is important to stress that the methodology depends on the input
model, but also on the chosen studied property, as this will drive the
simulation process. This is somehow reminiscent of the so-called CE-
GAR (counterexample guided abstraction and refinement Clarke et al.,
2000) approaches from qualitative model checking (and applied only
in very limited way to probabilistic settings Hermanns et al., 2008).
In classic qualitative model checking, if the studied property does
not hold, we get counterexamples of systems’ dynamics that showcase
executions that falsify the formula. CEGAR involves the use of such
counterexamples to refine the model. In our methodology, we proceed
similarly, by using mined process models as counterexamples. This is
orthogonal to static analysis approaches like, e.g., ter Beek et al. (2022),
which aim at identifying issues of the model in general, not tailored to
the verification of a single property.

To validate our methodology we provide positive answers to the

following research questions:
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Fig. 1. Example of the input and output produced by the technique presented in this paper. The input model is simulated with SMC techniques and corresponding traces are used
to synthesize a new model which is then compared to the original one and an easy-to-read output is returned to the modeler emphasizing the differences. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
Q1. (effectiveness) Can the developed techniques be employed for
a comprehensive evaluation aimed at thoroughly studying the
behavior of models and identifying any errors within them? To
answer this question, we apply our methodology to the feature-
oriented quantitative modeling and analysis framework QFLan (ter
Beek et al., 2020; Vandin et al., 2018). We demonstrate the
effectiveness of the proposed method by applying it to a model
describing a family of beverage Vending machines product line
from Vandin et al. (2018), a classic case study in PLE. Our
experiments, in more challenging settings of previous experi-
ments (Vandin et al., 2018), demonstrate the effectiveness of
our method: We can automatically conduct a comprehensive
evaluation of the behavior of the model.

Q2. (scalability) Are the developed techniques scalable to large models
considered challenging by the SPL community? To answer this
question we apply our methodology to a case study of an Ele-
vator product line from ter Beek et al. (2020), initially proposed
by Plath and Ryan (2001), which is a well-known case study used
to test the scalability in PLE. Furthermore, it is worth noting the
variant of Vending machines product line considered in this paper
is infinite state space. Our experiments show that our methodol-
ogy tends to have a runtime in the same order of magnitude of
SMC analysis, and it never exceeds more than 5 times its runtime.

Q3. (multi-domain) Can the developed techniques generalize to further
domains beyond software product lines? To answer this question
we consider an additional domain, namely cybersecurity, using
the framework RisQFLan (ter Beek et al., 2021). It is an incar-
nation of QFLan to the cybersecurity domain. Thanks to this,
we successfully validate our approach on an example of a threat
model from ter Beek et al. (2021), demonstrating its applicability
to different domains. Indeed, we show how we automatically dis-
covered unwanted and unexpected behaviors. In addition, we also
got hints on how to fix such issues by obtaining a refined model
that does not show the issues. Notably, as emphasized in ter
Beek et al. (2021), the considered model has infinite state-space,
providing additional insights for addressing RQ2.

All models and replication material for this paper are available at
https://doi.org/10.5281/zenodo.8362717.

Synopsis. remainder of the paper is structured as follows. Section 2
introduces necessary background material, as well as the Vending
machine as a running example. After this, Section 3 presents our
methodology, while Sections Section 4–6 validate it on three case
studies, answering our research questions. Section 7 discusses related
works, while Section 8 concludes the paper and drafts future works.

Further discussion regarding the relationship with Casaluce et al. (2023).
this paper expands upon the preliminary research presented in that
3

work. Specifically, within this paper: We generalized the approach
from the security domain to the SPL one (we added native support
for QFLan); We complete the methodology by computing automatically
a diff model, given in the original model specification language, to
highlight the differences between the reference and mined models; We
evaluate the scalability, effectiveness, and generality of the approach
via proper experiments; We consider a more complex security model;
We added a related work section and an actual artifact to be used by
third parties.

2. Background

This section presents the fundamental notions needed throughout
the rest of the paper.

2.1. Modeling product lines with QFLan

QFLan (Quantitative Feature-Oriented Language) is a feature-
oriented language member of the FLan (Feature-Oriented Language)
family (Vandin et al., 2018; ter Beek et al., 2020, 2015b). It is based
on the principles of concurrent constraint programming and is used
to specify the configuration and behavior of product lines mixing
procedural and declarative aspects. To achieve this, QFlan employs
a constraint store to separate the declarative aspects of the model,
e.g., the constraints imposed by a feature diagram, from procedural
reconfiguration aspects typical of dynamic SPLs. In fact, QFLan can
deal with aspects of dynamic SPLs such as the staged configurations
known from dynamic SPLs (Czarnecki et al., 2004; Bürdek et al.,
2014) (e.g., adding and removing features as well as activating and
deactivating features at runtime). This allows the modeler to express
typical constraints from feature models in a declarative manner. These
two aspects are unified by the formal semantics of QFlan.

QFlan supports quantitative analysis, via the statistical analyzer
MultiVeStA discussed in Section 2.2. QFLan has been recently re-
cast for the security risk modeling domain, obtaining the language
RisQFLan (ter Beek et al., 2021). In this paper we consider both QFLan,
to show that our methodology can be of interest to the PLE community,
and RisQFLan, to show the multi-domain nature of our approach.

To ease the presentation of our ideas, we use as a running example
a classic case study in PLE presented in Vandin et al. (2018). This
is an adaptation of several proposals from the literature, commonly
used to present novel methodologies for PLE (e.g., ter Beek et al.,
2012; Classen et al., 2010; ter Beek and de Vink, 2014; ter Beek et al.,
2015a; Muschevici et al., 2016; ter Beek et al., 2017). This is a classic
example of a product line of vending machines that offer a selection
of tea and coffee-based beverages, including Coffee, Cappuccino,
Tea, and Chocaccino (Cappuccino with Cocoa). Each product of
this family is a concrete vending machine with an admissible subset of
beverages. Fig. 2 depicts graphically the feature model of our example.

It describes the structural constraints among the features that may be

https://doi.org/10.5281/zenodo.8362717
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Fig. 2. Feature model for hot beverage vending machines.
Source: Figure adapted from Vandin et al. (2018).
Fig. 3. Action constraints.
Fig. 4. Quantitative constraints.
present or not in valid instances of vending machines. Each node repre-
sents a feature, and the edges between nodes represent constraints that
define the admissible combinations of features. QFLan has two types
of features: concrete and abstract. The four leaves represent concrete
features. These can be installed or uninstalled explicitly. Instead, abstract
features are internal nodes. These are not explicitly (un)installed, rather
they are implicitly added or removed when their children nodes are.
Abstract features are mainly used to group related features. The root
node represents a complete product, which in this case is a specific
vending machine. The feature diagram imposes that concrete instances
of vending machines may or may not contain the optional feature
Cocoa (empty circle over it), but its presence excludes the possibility
of serving teas (and vice-versa, the dashed line connecting the two).
A concrete vending machine is required to have a beverage feature,
which can be either coffee-based or Tea (the edges with an empty
triangle connecting the three features). Coffee-based beverages can be
Coffee or Cappuccino, with the cross-tree constraint that the latter
need Coffee (the dashed arrow from Cappuccino to Coffee). QFLan
models are actually given using a textual representation in a specific
domain-specific language. The full model specification can be found
in Vandin et al. (2018). Here we provide the minimum information to
make the paper self-contained.

We note that Chocaccino does not belong to the feature diagram
in Fig. 2. This is because it is not a feature to be (un)installed. Instead,
it is a sort of implicit feature available when the machine can serve
both Cappuccino and Cocoa. This is encoded by the action constraint in
Fig. 3. QFlan allows to consider further classes of constraints, including
quantitative ones. E.g., the price of a sold vending machine could be
limited to a maximum cost computed by summing the cost of currently
installed concrete features (see Fig. 4). As we will see in Section 4, these
4

constraints considerably impact the dynamics of the model.
In addition to the discussed constraints, the declarative part, QFLan
models come with a procedural part. This specifies the dynamic behav-
ior of the model. Specifically, Fig. 5 lists the probabilistic process of the
Vending machine. This includes different states and transitions among
them. Transitions must be labeled with weights, used to compute the
probability of executing a transition and actions. Actions can be feature
names, which signal the use of installed features, or custom actions
(listed in Fig. 6). We also note that transitions might be further labeled
with side-effects which change the value of variables (see, e.g., line
10 where we set variable sold to 1). Variables are declared in the
variables block, see Fig. 6, and implicitly might have an infinite
domain. Notably, in ter Beek et al. (2021) we show that the fact that
variables can take infinite values easily leads to a model with infinite
state spaces. As discussed in ter Beek et al. (2021), this limits the
application of exact analysis techniques, and required to consider SMC.
As we can see from the init block, the first state is the factory,
and the machine is initialized with only the Coffee. According to the
transitions of state factory, e.g., Coffee can be replaced with Tea,
and the other two beverages can be installed. When the dispenser is
sold (line 10), it moves to state deposit. Notably, every time a deploy
action is performed, the variable deploys is increased by one, leading
potentially to an infinite state space. The end user can customize the
dispenser by installing or uninstalling one of the beverages. When
ready, the dispenser is deployed (line 16) moving into operating state
where the installed beverage can be served. Finally, the dispenser can
be sent back to the deposit.

This procedural specification can be graphically depicted as in
Fig. 7, automatically generated by QFLan, edited by hand to improve
readability, e.g., some loop edges have been removed. For instance, the
graph is missing replace (Coffee, Tea) and install/uninstall
(Cocoa) in factory and in deposit, despite these being present in

the actual model.
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Fig. 5. Probabilistic process of the model in QFLan.

Fig. 6. Actions and variables.

Fig. 7. Graphical representation of procedural part of the QFLan model of the vending machine. Automatically generated in dot format by QFLan (edited by hand to improve
readability). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. Sketch of SMC-based black-box validation.
S
2.2. Black-box analysis of simulation models with statistical model checking

QFLan models can be analyzed by black-box SMC (Agha and Palm-
skog, 2018) using the tool MultiVeStA which can be plugged into
existing simulators (Vandin et al., 2022). Given a quantitative property
of interest, e.g., the probability of installing a feature or the average
price of sold vending machines, MultiVeStA performs enough probabilis-
tic simulations of the model to obtain statistically reliable estimations
of the property. Black-box SMC is a simulation-based approach where
only probabilistic simulations of the model are performed, with no
assumption about the overarching behavior of the model. MultiVeStA
is an example of a black-box SMC tool that can perform statistical
analyses over multiple properties simultaneously and is highly scal-
able (Vandin et al., 2022; Pianini et al., 2014). The tool enables the
user to query for one or more properties of the model they want to
estimate and returns the estimation of those properties within con-
fidence intervals. For instance, if 𝑋 is a random variable giving the
price of sold bikes in a simulation, then MultiVeStA will estimate its
expected value 𝐸[𝑋] as the mean 𝑥 of 𝑛 independent simulations, with

large enough but minimal, to build a (1 − 𝛼) ∗ 100% of width at
ost 𝛿 centered on 𝑥. In other words, MultiVeStA guarantees that
[𝑋] belongs to the interval [𝑥 − 𝛿∕2, 𝑥 + 𝛿∕2] with statistical confi-

dence of (1 − 𝛼) ⋅ 100%. The generation of new samples ends when
he confidence interval size is less than or equal to 𝛿 (𝛼 and 𝛿 are
ser-specified parameters). MultiVeStA has been successfully applied
o various domains, including security risk modeling (ter Beek et al.,
021), economic agent-based models (Vandin et al., 2022), highly-
onfigurable systems (ter Beek et al., 2020; Vandin et al., 2018),
ublic transportation systems (Gilmore et al., 2014; Ciancia et al.,
017), lending pools in decentralized finance (Bartoletti et al., 2022),
usiness process modeling (Corradini et al., 2021), robotic scenarios
ith planning capabilities (Belzner et al., 2014), and crowd steering

cenarios (Pianini et al., 2014). Classic qualitative model checking,
here properties are either satisfied or not, is able to provide coun-

erexamples whenever a checked property does not hold. This is an
xample of system execution that falsifies the formula. Unfortunately,
ounterexamples are not common in quantitative variants of model
hecking, and even less in SMC. A common downside to most SMC
pproaches is that it does not provide behavioral explanations about
hy a property is estimated to a given value. This is what we want to

olve with our methodology.
We remark that QFLan allows to perform analyses on the overall

amily, and not of single products. For example, we can study the
robability of having a given feature installed in products of a family,
he average cost of products of a family, etc. QFlan does not directly
llow analyses of properties specific to an individual product within
hat family. However, studying properties of a single product could be
ccomplished by constraining the probabilistic process to focus solely
n that product rather than the entire product range within the family.
lternatively, defining the set of installed features in the init block
f the QFLan model in a manner that permits the analysis of a single
roduct is another approach.
6

tate-of-the-art SMC-based validation process. Fig. 8 illustrates the state-
of-the-art process adopted in a traditional SMC setting. The process
begins with the modeler, who creates the model and then instructs
the SMC to estimate properties of interest for the system being mod-
eled. SMC returns estimations of the properties without providing any
additional information on why the results were obtained. SMC might
provide single counter-examples, e.g., an interesting simulation, but
to the best of our knowledge, there are no SMC approaches that try
to combine simulations to obtain a representation of the dynamics
that led to and explain a given estimation. In case the estimates are
inconsistent with the expectations of the modeler, the modeler must
make an informed guess on how to modify and correct the model. We
call this process SMC-guided black-box validation. This is because any
decisions to alter the model are made in a black-box manner without
knowing the reasons behind the results of SMC. From this discussion, it
emerges the need for a methodology like ours that aims at identifying
unwanted behaviors and highlighting their origin.

2.3. Synthesis of models from their executions using Process Mining

Process Mining (PM) is an interdisciplinary field that seeks to extract
insights from the actual executions of a process by bridging the gap be-
tween data science and process science (van der Aalst, 2016). The main
activities of PM include discovery, enhancement, and conformance
checking. Discovery involves identifying an abstract representation of
the executed process by combining all the observed instances into a
single model. Enhancement enriches the model with additional infor-
mation, such as the frequency of executed activities or paths. Finally,
conformance checking assesses the extent to which a normative model
deviates from actual executions.

In this work, we are interested in the discovery and enhancement
tasks of PM. Specifically, we aim to use execution traces (simulations)
obtained from SMC analyses to synthesize new models that capture the
behavior of the model as observed in the simulations, even for models
with infinite states. To accomplish this goal we employ the Heuristics
Miner (HM) algorithm (Weijters et al., 2006; van der Aalst, 2016). The
HM algorithm can provide an accurate and comprehensive understand-
ing of complex process dependencies, facilitating the alignment (the
comparison) of the generated and the expected behavior of a model. In
addition, the HM algorithm allows the user to adjust some parameters
to control the trade-off between model fitness and the inclusion of
infrequent paths, such as the noise threshold and dependency threshold
parameters. Adjusting these parameters increases the likelihood of
including infrequent paths in the discovered process model. In this
regard, we follow a conservative approach that preserves any behavior
observed during the simulations.

Fig. 9 depicts a Heuristic Net (HN) obtained by applying HM on the
simulations of our running example (for the constraint of the maximum
price of sold machines set to 10). As we can see, an HN consists of nodes
connected by edges labeled with frequencies. In HN jargon, states are
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Fig. 9. Heuristic Net simulation Vending machine model.

known as activities. In our methodology, QFLan activities and states get
flattened in the same notion of activity in an HN. As we can see, the
HN has two additional states, the green and red circles, that represent
the start and end state, respectively, of the mined process model.

3. Method

We propose a method that enriches SMC techniques with PM tech-
niques to overcome the limitations of the classic SMC black-box valida-
tion seen in Section 2.2. In our previous study (Casaluce et al., 2023),
we have demonstrated the effectiveness of combining SMC analyses
with PM techniques in identifying undesired behaviors in formal mod-
els. The integration of PM allows us to incorporate a white-box analysis
of the model’s behavior by leveraging mining techniques on simulated
model executions. However, our earlier work was preliminary and
not automated: it relied primarily on the modeler to visually identify
undesirable behaviors as depicted in the PM output. Furthermore, the
PM output was given in a formalism different from the one model
specification language, making our approach less accessible. To solve
these issues, in this current study, we go beyond a simple discovery
algorithm applied to event logs. Instead, we establish an integration
between SMC and PM techniques through a graphical component given
in the model specification language. This component takes SMC logs
as input, applies PM techniques to analyze them, and then visualizes
the results using the original model specification language. This new
approach facilitates the automatic discovery of missing or undesirable
behaviors in the model.

Fig. 10 illustrates the proposed methodology. It enhances SMC
with automatic white-box behavioral model validation. The presented
methodology incorporates several enhancements compared to our pre-
vious work. To begin with, prior to applying the discovery algorithm to
SMC logs, we now conduct a pre-processing step, which is described in
Section 3.3. We then mine a PM model and convert it into a graph that
represents the procedural aspect of the QFLan model. Subsequently, we
compare this mined model with the original graphical representation
of the procedural part of the QFLan model. The comparison yields
a diff model, which highlights any disparities in behavior between
7

the formal model designed by the modeler and the actually simulated
model. In our previous work, we demonstrated the potential of our
approach solely by applying a discovery algorithm to unprocessed SMC
logs in order to extract a PM model. An example of the outcome of our
previous work is the PM model depicted in Fig. 9, which was obtained
by mining the SMC logs of our running example with the maximum
price of sold machine set to 10 using the HN algorithm. In this process
model, it is not possible to visually evaluate whether those transitions
represent the entire behavior of the model or merely a subgroup of
the transitions. However, as discussed in Section 4.3, using our current
methodology, we can thoroughly evaluate whether the model behaves
correctly by identifying transitions that are absent in the simulated
model when altering the quantitative constraints within the model.

More precisely, our methodology consists of five steps, numbered in
Fig. 10. In step 1. Model creation, the modeler creates a model and the
graphical representation of its procedural part using a model specifica-
tion language. For example, QFLan, where the graphical representation
is generated automatically from the model description. Then, in 2. Logs
generation we use an SMC tool to run simulations of the model to study
a given property. Information on each simulation is stored as a log of
events (an event log), containing, e.g., time stamps, actions executed,
etc. In this paper, we consider the SMC tool MultiVeStA which has been
extended with log generation capabilities. Once the simulated event
logs are obtained, we pre-process them in step 3. Logs pre-processing. In
step 4. Process mining, we apply PM techniques on these logs to discover
the process model describing the behavior of the model as observed
in the simulation. In the figure, we call this the mined PM model. We
then post-process the PM result to convert it into (the procedural part
of) a QFLan model. Finally, in step 5. Automatic diff, we compare the
graphical representation of the original model with the one discovered
in our step 4. The result is a graphical representation, in terms of the
source modeling language, highlighting the differences between the
expected behavior of the model with the real one. We call this the diff
model. As we will see in our experimental section, the diff model can
explain the results obtained by SMC and suggest fixes if necessary. All
steps of our methodology (apart from the initial model design) are fully
automated.

We refer to this methodology as white-box behavioral model validation
because, thanks to the union of SMC and PM, we can access the
internal workings of the system by shedding light on its actual behavior.
Therefore, the modeler can now rely on more than just an informed
guess to fix the model, the diff model. In the remaining parts of this
section, we describe how we implement each of these steps.

3.1. Model creation

The first step of our methodology starts with creating the (QFLan)
model where the modeler defines all the components of the system,
e.g., features, variables, a list of constraints, and its procedural part.
QFLan will then automatically generate a graphical representation of the
procedural part of the QFLan model. The one for our Vending machines
running example is sketched in Fig. 7. This is what in Fig. 1 we call the
‘‘input model’’.

3.2. Logs generation

In this step, the modeler chooses the properties of interest for the
model and evaluates them using MultiVeStA (Vandin et al., 2022;
Sebastio and Vandin, 2013). For example, we might be interested in the
average price of the sold vending machines. MultiVeStA will instruct
the simulator to run the required simulations, saving information on
them as event logs.

MultiVeStA has a clear interface to plug into new simulators only
involving three functionalities: reset to perform a new simulation, perform
one step of simulation, evaluate an observation in the current simulation
state (Vandin et al., 2022; Sebastio and Vandin, 2013). To enable
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Fig. 10. The new methodology presented in this paper, combining SMC and PM for automatic white-box behavioral validation. Green activities/data-objects/sequences identify
novel aspects introduced in this paper. The main steps of the procedure are numbered.
log generation, we added two new functionalities to the interface of
MultiVeStA: create an empty log file, invoked once per SMC analysis,
and add row to log, invoked whenever an event (of interest) is to
be recorded. These functionalities have to be implemented whenever
integrating MultiVeStA to a new simulator. When implementing the
latter functionality, the modeler might decide to record all events, i.e.,
all simulation states, or only selected events of interest. In QFLan, we
add a row whenever we perform one step of a simulation. The recorded
information includes the incremental counter of steps (i.e., the time
stamp), the unique random seed used by the current simulation (used
as case ID, the unique identifier of the simulation/case), the executed
action (i.e., the activity), the target state of the executed transition, and
any relevant additional information (features currently installed, and
values of variables). All information is stored in separate columns and
saved in a CSV file.

3.3. Logs pre-processing

In this step, we pre-process the event logs stored before applying
PM techniques. The pre-processing consists of merging the columns
that record the target states and the actions used to move from one
state to another. This means that states and actions will be treated as
activities when we apply the PM discovery algorithm. In Section 2.3,
we showed an example of the HN mined from event logs generated
from our Vending machines running example, and pre-processed as
discussed here. Connected to the merging of the two columns, in order
to preserve the correct order to avoid losing information about the
transition that executed a given action, we change the name of the
actions by adding the names of the origin and target states. Renaming
an action is essential because the same action can appear in different
transitions across different states. Without such renaming, we would
loose information on the actual executed process. For instance, in the
‘‘input model’’ of Fig. 1, when choosing ActionC to move from B to
C, we change the name of the action from ActionC to ActionC_B_C.
Instead, in the case of execution of the action to move from E to C, we
would get ActionC_E_C.

3.4. Process mining

We now mine the pre-processed event logs using the Heuristic Miner
(HM) algorithm (Weijters et al., 2006; van der Aalst, 2016) discussed in
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Section 2.3. We use the library PM4PY1 (Berti et al., 2019), a versatile
Python library that can help in using different PM algorithms. Once the
Mined PM model is discovered, we then parse it to extract edges and
nodes and use them to convert it from a PM model (i.e., a Heuristic
net mentioned in Section 2.3) into a mined QFLan model (actually, the
procedural part of a QFLan model). In Fig. 1, this corresponds to the
left graph of the ‘‘output model’’. In this process, we revert the names of
the actions to their original ones. This helps in comparing the original
QFLan model with the mined one.

3.5. Automatic diff

The last step of our methodology starts by parsing the graphical
representations of (the procedural part of) the original QFLan model
from step 1 and of the mined one from step 4. This allows us to compare
the two models, and create a diff model that highlights the existing
differences. The diff model is built as follows: it includes the edges and
nodes present in both models, without highlighting them (i.e., it uses
the same color and style as in QFLan). Then, we add all edges and nodes
that appear in only one of the models, this time highlighting them in
red. The rightmost graph of the ‘‘output model’’ of Fig. 1 depicts the
diff model for the other two graphs in the figure. We can see that the
red dashed edges (e.g., from node C to node D) denote edges present
in the original model, but missing in the mined one. Vice versa, red
continuous edges (e.g., from node C to node F) denote edges not present
in the original model, but present in the mined one.

Therefore, dashed red edges denote transitions that the simulator
has never taken, implying that the formal model includes some con-
straints that might always prevent those transitions. We remark that
this information might also help the modeler when testing the effect
of new constraints, by modifying the model and observing the result
of our methodology. As demonstrated in the experiments in Section 4,
in some cases, the modeler could be interested in intentionally varying
some constraints, such as quantitative constraints, to understand their

1 We use the parameters, i.e., dependency_threshold = 0.5,
and_threshold = 0.65, loop_two_threshold = 0.5 and
dfg_pre_cleaning_noise_thresh = 0. See https://pm4py.fit.fraunhof
er.de/documentation.
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effective impact on the behavior of the model. Indeed, by using a classic
SMC black-box validation approach, it might not be possible to detect
the impact of a constraint on the obtained numerical values that only
summarize the estimations of some properties of interest. In Appendix,
we provide an example of an analysis conducted on the Elevator model,
which is discussed in Section 5. This instance emphasizes how a minor
typo in the probabilistic process of the model can cause unexpected
behavior which impacts the model evaluation via SMC, and how our
methodology can spot this issue.

Instead, continuous red edges, such as the edge between nodes C
and F, represent transitions present only in the mined model. In QFLan,
this can only happen in case the simulator gets stuck in a deadlock
state, i.e., it is in a state where there would be transitions to execute,
but they are all disabled by the constraints. In other domains, instead,
we might in principle have further classes of continuous red edges.
Alternatively, there might be cases in which one implements the add
row to log functionality of MultiVeStA such that it adds extra rows under
predetermined conditions. The presence of continuous red edges in the
diff model might signal errors that could compromise the validity of
the results obtained by SMC. This is exemplified in detail in Section 6,
where we consider the security domain. There, we demonstrate that a
property has a low probability (probability of an attacker succeeding
in a robbery) just because of bugs in the model. This bug is identified
and fixed thanks to our methodology. This gives new opportunities
to improve the model that were not possible with the classic SMC
black-box validation method.

In the following sections, we apply the presented methodology
to answer our research questions. We consider the running example
(effectiveness), a parametric SPL model (scalability), and a security
model (multi-domain).

4. Experimental evaluation: RQ1 effectiveness

To answer RQ1, we consider our running example from Section 2.1:
an SPL model of vending machines from Vandin et al. (2018). The goal
of this section is to illustrate the effectiveness of our methodology.

4.1. Domain description - Coffee Vending machine

Besides the hierarchical, cross-tree, and action constraints, QFLan
allows for another essential class of constraints: quantitative constraints
exemplified in Fig. 4 for the considered case study. In this case, the
quantitative constraints specify the maximum price that a vending
machine might have. In particular, Fig. 4 imposes that no machine will
be produced that costs more than 10 or 15 euros (depending on which
of the two constraints is used). Changing such constraints changes
the behavior of the model. This is because some beverages cannot be
installed in the dispenser if this is too low.

For instance, in Vandin et al. (2018) the authors focus on sold
machines, i.e., those obtained after executing action sell from state
factory in Fig. 7. For such machines, the authors show that if the
maximum price is 10, then the probability of a sold machine having
a Cappuccino dispenser is zero. This is because the hierarchical
constraints in Fig. 2 impose that, in order to have Cappuccino, a
machine must serve Coffee. The latter costs 5, while Cappuccino
costs 7 (Fig. 2), for a total cost of 12 that would falsify the constraint on
price. It is also shown that the probability of installing a Cappuccino
increases if the constraint on the price is relaxed to a maximum of 15.

Our experiments follow a strategy similar to that of Vandin et al.
(2018), but considering a more challenging setting: we add an unin-
stall(Cappuccino) transition in the factory state. This has the
effect that a probability 0 of having Cappuccino after sell action
(Line 10 of Fig. 5) does not guarantee that Cappuccino has not been
installed at all, because it might have been uninstalled. Therefore, the
black box analysis in Vandin et al. (2018) would not guarantee that the
constraint has never been violated before selling the machine. Instead,
we show here that our white-box approach can guarantee this.
9

Table 1
Numerical results experiments Vending machine experiments.

Maximum price Studied properties

Avg price Tea Coffee Cocoa Cappuccino

10 5.53 0.64 0.33 0.19 0.00
15 7.45 0.54 0.46 0.42 0.22

4.2. Experiments

We run two experiments for two configurations obtained by setting
to 10 and 15, respectively, the maximum accepted price. We study
the probability of having Cappuccino installed right after the sell
action. We also study the average price of sold machines, as well
as the probability of having Tea, Coffee, and Cocoa. To run the
experiments, we invoke MultiVeStA using the QFLan GUI. We consider
the two queries in Fig. 11. Query 1 instructs MultiVeStA to evaluate
the properties on the first simulation state in which the variable sold
has value 1. This variable is set when factory performs action sell
(see Line 10 in Fig. 5). We also set the two parameters specifying the
required confidence interval, 𝛼, and 𝛿, to 0.05 (for the price we use
𝛿 = 0.5). Therefore, we ask MultiVeStA to compute 95% confidence
intervals of width at most 0.05 (0.5 for price).

As a second set of experiments, we study the same properties, but
at the varying of the simulation steps, from 1 to 500. This is obtained
using Query 2 in Fig. 11. We do this because this analysis regards a
larger portion of the dynamics of the model, allowing us to further
exemplify the advantages brought by our methodology.

4.3. Results

Considering Query 1, MultiVeStA instructed the QFLan probabilis-
tic simulator to perform 1440 and 1600 simulations to estimate all
properties for the case of maximum price 10 and 15, respectively.

Table 1 lists the numerical results obtained by MultiVeStA for the
two considered maximum prices. As shown in the first row in Table 1,
the results confirm that with maximum price 10 the probability of
having Cappuccino installed in sold machines is zero. Instead, for
the case of a maximum price of 15, the probability increases to 0.22.
This is in line with the results in Vandin et al. (2018). This is an
example of potentially unexpected behavior resulting from the richness
of QFLan’s constraints: the model either allows or prohibits the feature
Cappuccino depending on the strictness of a constraint. Thanks to
the methodology proposed in this paper, in addition to the numerical
results, we can show graphically the behavior of the Vending machine
model and how a different constraint on price can change the behavior
of the model.

Fig. 12 depicts the diff models obtained by comparing the original
QFLan model, and the ones mined using the simulation logs. Similarly
to Fig. 7, to improve readability we have edited the images to drop
some edges irrelevant to this paper. We did not drop any red edges.
Fig. 12 (Left) refers to the case of maximum price 10. Here, we can
see that the edges for install and uninstall of Cappuccino are
marked in red (as well as node factory). This means that, even if
those transitions are included in the model, they do not appear in its
behavior (see Section 3). Fig. 12 (Left) confirms our aforementioned
hypothesis that the simulator never completes this transition because
of the quantitative constraints.

Fig. 12 (Right) considers the case in which the maximum value
for the price is 15. We can see that all the edges are now black.
This means that the behavior of the model now also allows to install
and uninstall Cappuccino. We can, therefore, effectively execute all
transitions present in the part of the model specification relevant to
this query (i.e., the transitions from state factory).

We now move our attention to Query 2 from Fig. 11. This time we
do not focus only on transitions executed in state factory, but on all
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Fig. 11. Two MultiVeStA queries to analyze the Vending machine model.
Fig. 12. Diff models for Query 1 of Fig. 11. (Left) Model for maximum price 10. (Right) Model for maximum price 15.
Fig. 13. Diff model for Query 2 of Fig. 11 for maximum price 10.
Fig. 14. Diff model for Query 2 of Fig. 11 for maximum price 15.
ransitions executed in the first 500 simulation steps. We chose 500
ecause, from preliminary investigations, these are enough to allow the
odel to express all parts of its behavior. As for Query 1, we consider

he two cases of maximum prices (10 and 15). For both experiments,
ultiVeStA instructed the QFLan simulator to run 1440 simulations.

Figs. 13 and 14 depict the diff models obtained by comparing the
riginal model behavior, and the ones mined on the simulation logs.
ig. 13 considers the case of maximum price 10, while Fig. 14 15.
mages were edited similarly to Fig. 12 to improve readability. We can
ee that the case of maximum price 10 presents several red edges (and
odes). Node factory presents the missing transitions related to Cap-

puccino discussed for Query 1. Furthermore, all transitions related to
Cappuccino in other nodes are missing as well. E.g., we never enter in
tate prepareCappuccino, as we need to execute action Cappuccino

to get there, but this action is enabled only if the corresponding feature
is installed. Likewise, we cannot serve Chocaccino, because it requires
to have both Cappuccino and Cocoa (see Fig. 3).

Conversely, Fig. 14 does not contain any red edge. Therefore, the
more permissive constraint on maximum price does not prevent any
10

part of the behavior of the machine.
Discussion. These experiments demonstrate the effectiveness of our
method, which, thanks to the integration of SMC and PM techniques,
enables us to thoroughly evaluate visually unexpected deviations be-
tween the behavior intended by the modeler, and the actual one
obtained simulation the model. Such discrepancies might not be ap-
parent in the model, as they might occur due to the richness of
constraints present in QFLan. The application of PM techniques aids
in exploring and uncovering these unexpected behaviors. Therefore,
we can positively answer to RQ1.

5. Experimental evaluation: RQ2 scalability

To answer RQ2, we consider a classic SPL example with parametric
complexity: the elevator product line introduced in Plath and Ryan
(2001). This has become a widely-used benchmark in PLE, especially
as regards scalability studies for novel methodologies (see, for in-
stance, Dimovski et al., 2017a; Cordy et al., 2013c; Chrszon et al., 2018;
Classen et al., 2014; Apel et al., 2013; ter Beek et al., 2020; Classen
et al., 2011a; Macedo et al., 2016; Meinicke et al., 2016; Sabouri et al.,

2012). This case study is considered particularly challenging by the
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a

Fig. 15. Runtime analysis: Runtime of our methodology (blue line). Runtime of
MultiVeStA analysis (red line). Times are averaged over 10 replications of the analysis
of the same MultiVeStA query over increasingly complex versions of the elevator SPL
with 5, 10, . . . , 40 floors. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

community. It has 9 independent and unconstrained features, yielding
512 products. More importantly, it allows to consider instances with an
increasingly large number of floors. In this section we use it with the
same goal: to illustrate the scalability of our methodology.

5.1. Domain description - Elevator

The elevator SPL has been provided in several incarnations. Here we
consider the one from ter Beek et al. (2020). Product line engineers
often encounter challenges when designing and developing products
with numerous independent and unconstrained features. The Elevator
SPL fits well for this scope. Furthermore, this case study is especially
useful for product line engineers who need to consider instances of
increasingly larger complexity, as it is possible to parameterize the
model for different numbers of floors. The Elevator SPL consists of mul-
tiple platform and cabin buttons, one per floor, used to summon/direct
the elevator. Once a button is pressed, it remains active until the
elevator has served the corresponding floor by opening and closing its
doors. The specific case study we consider focuses on nine key features
that can alter the behavior of the elevator. For example, the feature
AntiPrank makes it necessary for a button to be kept pushed, while
Park makes the elevator return to the first floor when empty (see ter
Beek et al., 2020 for the full list of considered features).

In ter Beek et al. (2020), the authors use this benchmark to study
the scalability of QFLan at the varying of the number of floors from 5 to
40, while usual SPL approaches can scale up to 10 floors. In particular,
the authors of ter Beek et al. (2020) consider the Elevator SPL with
all unconstrained features from Plath and Ryan (2001), with a fixed
maximum capacity of the elevator set to eight persons, and a maximum
allowed load of four persons.

5.2. Experiments

We follow an approach similar to the one in ter Beek et al. (2020).
We consider a MultiVeStA property that checks that when the load
variable (representing the number of people in the elevator) exceeds
the capacity variable (representing the maximum capacity of the ele-
vator), the elevator does not move (as indicated by variable direction
having value 0.0). To evaluate this property, MultiVeStA checks it for
all states encountered within the first maxStep steps. As soon as the
condition is not satisfied, the current simulation terminates, otherwise,
maxStep steps are performed. In ter Beek et al. (2020), the authors
11
considered varying numbers of maxStep, from 5000 to 40,000. Here we
consider only the latter largest case. This property is always satisfied,
i.e., we always get value 1. This was on purpose, to guarantee that
every simulation will always consist of 40,000 steps. As in ter Beek
et al. (2020), we consider a varying number of floors from 5 to 40.

5.3. Results

The results are shown in Fig. 15, providing in red the runtime of
the MultiVeStA analysis, and in blue that of our methodology. The
latter includes pre-processing of simulation logs, process mining, and
generation of diff models. We can see that our methodology succeeded
in all instances and that it can provide results in less than a minute even
for the largest instances. The methodology tends to have a runtime in
the same order of magnitude of the MultiVeStA analysis, and it never
exceeds more than 5 times its runtime.

Discussion. These experiments demonstrate the scalability of our
method. In fact, it could be successfully applied to SPL models consid-
ered particularly challenging by the PLE community, and that are reg-
ularly used as benchmarks. Therefore, we can positively answer RQ2:
our techniques can indeed be applied to large SPL models considered
challenging by the PLE community.

6. Experimental evaluation: RQ3 multi-domain

So far we have shown how our methodology can be applied to
well-known SPL models from the PLE community. The goal of this
section is to show that our approach can easily generalize to models
from other domains. In particular, we consider the cyber-security do-
main, using attack-defense tress (ADT, or just attack trees). Their use
is recommended by NATO (Research and Technology Organisation of
NATO, 2008), and are widely used, e.g., in aerospace (U.S. Department
of Defense, 2009), or safety-critical cyber–physical systems (Hu et al.,
2022). Creating and refining threat models is a particularly hot topics
(see, e.g., (Konsta et al., 2024))

6.1. Domain description - Cyber-security attacks and threat modeling

We consider the threat model presented in ter Beek et al. (2021),
describing the attack strategies that a thief can attempt when trying to
complete a robbery in a bank. Notably, the authors of ter Beek et al.
(2021) emphasized that this model has infinite state space, preventing
the use of exact analysis techniques based on an exhaustive exploration
of such state space. The authors of ter Beek et al. (2021) leveraged this
aspect to advocate the utilization of SMC for analyzing this model. In
the preliminary workshop version of this paper (Casaluce et al., 2023),
we have exemplified how an embryonic version of our methodology
could be applied to an extreme simplification of this model. The model
has been created in RisQFLan (ter Beek et al., 2021), a member of the
QFLan family recast to target the security domain. Similarly to QFLan,
RisQFLan models consist of a declarative part, the attack-defense tree
(ADT), and a procedural part, the probabilistic attacker. The intuition is
that while a feature diagram describes a family of products, an ADT
describes the family of possible attacks on a system. Similarly, while a
probabilistic process of QFLan enables for dynamic reconfigurable SPLs,
a probabilistic attacker in RisQFLan allows studying how vulnerable a
system is to specific attackers (e.g., bound to stringent or permissive
budget constraints). We refer to ter Beek et al. (2021) for a deep
presentation of RisQFLan, and of how the feature-oriented framework
QFLan has been recast to this new domain.

Fig. 16 shows the ADT considered in this section. The root rep-
resents the root attack goal of robbing the bank. Nodes OpenVault
nd BlowUp are two sub-attacks, grouped by an OR-relation. Open-
Vault further refines in Learncombo and GetToVault, grouped by
an AND-relation: in order to open the vault, we need first to learn the
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Fig. 16. ADT RobBank model.

ombo and get to the vault. LearnCombo is further refined in three
odes, FindCodei, grouped by a 2-out-of-3-relation. An attack node
an succeed only if its refinements allow for it. E.g., LearnCombo can
ucceed only if at least two FindCodei attacks succeeded. An attack
ode in RisQFLan can be somehow mapped to a feature in QFLan, but
hese are different notions with different interpretations and therefore
re handled differently in the formal semantics of the two languages.
n ADT also has other types of nodes, defense nodes, like the defense
emo and the countermeasure LockDown. The former is a static defense
hat decreases the probability of success of the attacks to which it
s connected (FindCode2). Instead, a countermeasure is a dynamic
efense that must be activated by attack attempts that it can monitor
BlowUp), denoted by the blue arrow. Once activated, countermeasures
ehave like defenses.

Intuitively, the ADT can be read as follow: the thief can attempt
he robbery by two strategies: opening the vault or blowing it up. Both
trategies require that the thief gets to the vault. In addition, opening
he vault requires the thief to learn the combination of the vault, which
n turn requires discovering at least two codes.

A RisQFLan model is given in textual format, similar to QFLan. The
omplete model can be found in ter Beek et al. (2021). Here we provide
nly the parts relevant to the performed experiments.

A model in RisQFLan, similarly to QFLan, can be equipped with
everal (quantitative) predicates and constraints. For example, Fig. 16
hows that attack nodes have a Cost, paid by the attacker every time
he corresponding sub-attack is attempted. At the same time, The block
uantitative constraints in Fig. 17 depicts how we can constrain
he dynamics of an attacker to finite resources, e.g., by imposing
ttackers to not spend more than 100 (EUR). In other words, the sum
f the costs of attempted attacks cannot be higher than 100.

The considered probabilistic attacker is illustrated in Fig. 17, given
n a format similar to that of the probabilistic process of QFLan. Sim-
larly to QFLan, the RisQFLan simulator will select the next transition
o execute in a simulation depending on their weights and on several
ypes of constraints.
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In the model, we can also define the prior knowledge and availabil-
ty of the attacker. The block init in Fig. 17 imposes that the thief
lready knows the first combination, and owns a laser cutter to disable
he lockdown defense.

Similarly to Fig. 7, Fig. 18 provides a graphical representation of the
robabilistic attacker. This plays the role of the input model in Fig. 1.
rom Fig. 18 we can see that each attack begins in the Start node,
here the simulator can choose to blow up or open the vault. After an
ttack attempt, the simulator returns to the Start state, where it chooses
o try another attack or to complete the robbery if this is allowed.
f the root attack succeeds, the attacker will move, and terminate, in
tate Complete. Attack attempts might also fail. This is dictated by the
eights added in the probabilistic attacker and by the existing defenses.

.2. Experiments on the original model

To demonstrate that our method can automatically discover un-
anted behaviors also in this domain, we use MultiVeStA to analyze the
uery in Fig. 19. This instructs MultiVeStA to evaluate the probability
f success of eight attacks in each simulation step from 1 to 100. The
I specification is as in QFLan. As in ter Beek et al. (2021), we assume
hat the attacker owns a LaserCutter which disables the Lockdown
efense, and that s/he already succeeded in obtaining the first code of
he vault (Fig. 17). We will show that our methodology can pinpoint
ssues in the model, and how it can suggest fixes.

.3. Results on the original model

MultiVeStA instructed the probabilistic simulator to run 320 sim-
lations. Table 2 lists the analysis results obtained for step 100. We
an notice that the probability of a total lockdown is equal to zero, as
xpected by the presence of the LaserCutter.

Another critical element highlighted by the SMC analysis is that the
robability of succeeding in the root attack is 0.175 despite LockDown
s disabled. The reasons why only a few simulations (about 18%) ended
ith a complete robbery of the bank are not easy to spot just by a
lack-box inspection of the numerical results.

Fig. 20 depicts the diff model produced by our methodology. It
isplays two red edges and a red node; all the remaining edges and
odes are colored in black. In particular, the red node is a special node
dded by our methodology: a deadlock node. It denotes simulations
hat ended unexpectedly because no transitions were enabled. Thanks
he two red edges, we can see that some of the simulations ended
nexpectedly in the states TryFindCode and TryBlowUp, lowering the
verall success probability.

ssue in the model, and fix. Fig. 20 highlights issues in states TryFind-
ode and TryBlowUp. By looking at the original model specification,
e can see that these states can only perform transitions to attempt
ttacks (transitions fail and add in Fig. 18). The execution of these
ransitions increases a cost given by the cost of the attempted attacks
5 for Findcode, 90 for BlowUp). This makes us suspect that the
eadlocks are due to the constraint on the maximum cost being set
o only 100 (Fig. 17). Therefore, if the attacker gets into these states
ithout enough money to attempt the corresponding attack, s/he will
et stuck there because no transition is enabled. To fix this unwanted
ehavior and to have a more reliable evaluation of the properties, the
odeler needs to refine it by adding an extra escape transition in each of

hese two nodes to go back to their direct parent nodes. This transition
hall have no cost, which is obtained by executing a custom action (see

ig. 17).
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Fig. 17. Probabilistic attacker in RisQFLan.

Fig. 18. RisQFLan model: Attacker behavior.

Fig. 19. Query to invoke MultiVeStA RobBank model.
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Table 2
Numerical results experiments on the original RobBank model.

Property RobBank OpenVault BlowUp LearnCombo GetToVault FindCode2 FindCode3 LockDown

Probability 0.175 0.204 0.062 0.515 0.525 0.221 0.363 0.0
Fig. 20. Diff model obtained experiments on the original RobBank model. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Fig. 21. RisQFLan model: probabilistic attacker - Refined model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
6.4. Refined model

We refine our model by adding a new action goBack in Fig. 17, and
two transitions with this action from TryBlowUp to Start, and from
TryFindCode to TryLearnCombo. Fig. 21 depicts the refined attacker
behavior with the new transitions highlighted in blue. We assign a low
weight to these transitions, i.e., 0.1, to ensure that the simulator tends
to choose them only when other options are not permitted.2

Experiments and results on the refined model. Thanks to these new tran-
sitions, the observed dynamics shall not exhibit anymore the discussed
deadlocks. To ensure this, we use the same query from Fig. 19. Also,
in this case, MultiVeStA required to run 320 simulations. The results
are given in Table 3. Besides LockDown, which is again equal to zero,
ll the other properties increased. The obtained diff model is given in
ig. 22. No red edges or nodes are present, meaning that we fixed the
ssues.

2 The use of a low probability is a workaround. We could have used so-
alled action constraints (ter Beek et al., 2021), but this would have required
n in depth description of RisQFLan.
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Discussion. These experiments demonstrate that our methodology can
be applied to domains beyond SPL, including cyber-security ones.
Therefore, we can answer positively to RQ3, since we have automat-
ically discovered unwanted and unexpected behaviors. In addition, we
also got hints on how to fix such issues by obtaining a refined model
that does not show the issues.

7. Related work

Since our approach is centered around the utilization of automated
verification techniques, specifically probabilistic model checking com-
bined with PM techniques, within the specific context of behavioral
models of dynamic SPLs, we will give an overview of the related
works that used models for specifying SPLs, providing the behavior
of those along with the related verification techniques and tools. The
well-known behavioral modeling languages for SPLs rely on overlaying
multiple labeled transition systems (LTSs) that represent different vari-
ants of products onto a single, augmented LTS family model. However,
only a few (Chrszon et al., 2018; Dubslaff et al., 2015) of these
languages enable the specification of probabilistic SPL models, and
even less support model-checking approaches. Featured Transition Sys-
tems (FTSs) were first introduced in Classen et al. (2010) and later
expanded upon in Classen et al. (2011b) and Cordy et al. (2013a).
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Table 3
Numerical results experiments on the refined RobBank model.

Property RobBank OpenVault BlowUp LearnCombo GetToVault FindCode2 FindCode3 LockDown

Probability 0.393 0.572 0.12 0.59 0.825 0.21 0.453 0.0
Fig. 22. Diff model for the refined RobBank model.
An FTS represents a family of LTSs, with each LTS corresponding to
a specific product. The LTSs are derived by projecting feature ex-
pressions (Boolean formulas defined over the feature set) assigned to
the transitions. Transitions whose feature expressions are not satisfied
by a particular product’s feature set are eliminated, along with any
unreachable states and transitions. In QFLan (ter Beek et al., 2020),
the action constraints are similar to feature expressions in FTSs but
they are applied to actions rather than transitions. While feature ex-
pressions offer more fine-grained specifications, action constraints in
QFLan provide a more concise and declarative approach and support
more general constraints and accommodate the modeling of adap-
tive or dynamic SPLs compared to FTS feature expressions. Modal
Transition Systems (MTSs) (Fischbein et al., 2006; ter Beek et al.,
2016) represent a family of LTSs that, similar to FTSs, distinguishes
between admissible transitions and necessary transitions. Nevertheless,
in comparison with this family of LTSs, QFLan provides support for
feature attributes and richer quantitative constraints and allows for the
modeling of dynamic SPLs since the feature set is statically determined
upfront. In ter Beek et al. (2022), unreachable states and transitions,
so-called hidden deadlocks, are made explicit through an algorithm
that effectively transforms ambiguous FTSs into unambiguous ones and
transforms them into a Modular Transition System that the modeler can
more efficiently check. With QFLan, we are not interested in the static
analysis of the formal model as in ter Beek et al. (2022), but, instead,
we run the model and conduct a sufficient number of simulations to
attain statistically significant outcomes regarding the particular query
under investigation.

A sequence of works, summarized in Leucker and Thoma (2012),
introduced the notion of Product Line CCS (PL-CCS). PL-CCS expands
upon the CCS framework by incorporating a variant operator, which
enables the representation of alternative behaviors as alternative pro-
cesses. The objective is to ensure the existence of only one of these pro-
cesses during runtime. Another notable approach, described in Erwig
and Walkingshaw (2011), is the choice calculus, which creates a com-
mon language for software variation management and aims to establish
a foundational model for software variation, similar to the lambda cal-
culus in programming languages. Additionally, DeltaCCS (Lochau et al.,
2016), an extension of CCS, draws inspiration from the widely used
15

delta-modeling approach employed in automated product derivation
for SPLs. The approach discussed in Clarke et al. (2010) utilizes deltas
to specify incremental changes to a core product. In contrast to PL-CCS
and the choice calculus, DeltaCCS follows a modular approach in which
choices are applied at well-defined variation points. Model-checking al-
gorithms have been implemented in MAUDE to verify SPLs specified in
DeltaCCS against modal m-calculus formulas. Despite both PL-CCS and
DeltaCCS offering fundamental mechanisms for restructuring or mod-
ifying SPLs, they are not able to effectively model dynamic SPLs. An
alternative technique, known as Variant Process Algebra (VPA), is pro-
posed in Tribastone (2014) for formal reasoning about SPLs but places
emphasis on behavioral (bi)simulation relations rather than verification
through model checking. For our work, we use FLan, a feature-oriented
language designed to demonstrate how to specify both declarative and
procedural aspects of product families. FLan draws inspiration from
concurrent constraint programming, combining a store of constraints
for declaratively expressing common constraints on features, including
cross-tree constraints found in feature models. Additionally, FLan offers
a comprehensive set of process-algebraic operators to procedurally
specify product configurations and behaviors by supporting a wide
range of constraints that can encompass quantitative aspects of feature
attributes. Family-based model checking of behavioral SPL models
offers a powerful approach to simultaneously verify multiple behavioral
product models within a single run. This technique enables the verifi-
cation of properties using specialized SPL model-checking tools such as
SNIP (Classen et al., 2012), ProVeLines (Cordy et al., 2013b), VMC (ter
Beek et al., 2012, 2016; ter Beek and Mazzanti, 2014), fNuSMV (Classen
et al., 2014; Dimovski et al., 2019), and ProFeat Chrszon et al. (2018)
for probabilistic model checking. ProFeat is an example of technique
that utilizes numerical computations to achieve precise outcomes when
evaluating the properties of a model. Alternatively, traditional model
checkers such as SPIN (Anon, 2015; Dimovski et al., 2017b; Dimovski
and Wasowski, 2017), PRISM (Dubslaff et al., 2015) for probabilistic
model checking, Maude (Lochau et al., 2016), mCRL2 (ter Beek et al.,
2017, 2020), or NuSMV (Dimovski, 2020) can be employed through
appropriate abstractions or encodings. These classical model checkers
can effectively verify properties of SPL models by leveraging suitable
transformations or encodings to adapt them for SPL-specific analyses. In
comparison to conventional product-based model checking approaches,

QFLan’s statistical model-checking features provide several noteworthy
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Fig. A.23. Probabilistic processes of the Elavator model in QFLan.
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enefits. Firstly, the process of performing simulations can be effort-
essly parallelized and distributed across multiple cores, clusters, or
istributed computing systems, resulting in nearly linear improvements
n processing speed. This parallelization capability enables significant
cceleration of the overall verification process. Secondly, the same set
f simulations can be utilized to evaluate multiple properties simul-
aneously, leading to a reduction in the computational time required
or verifying each property individually. This simultaneous checking of
ultiple properties further enhances the efficiency of the verification
rocess. About enhancing SMC techniques with PM techniques, besides
ur preliminary work (Casaluce et al., 2023), directed to demonstrate
he potentiality of these techniques applied on a threat model, to best
f our knowledge there are no other previous works that apply PM
echniques to probabilistic model checking on SPLs models.

. Conclusion

We presented a novel approach for the validation of simulation
odels, and in particular software product lines from product lines

ngineering. The methodology consists of a combination of simulation-
ased analysis techniques from statistical model checking (SMC) (Agha
nd Palmskog, 2018), and process-oriented data-driven techniques
rom process mining (PM) (van der Aalst, 2016). In particular, we
se PM to explain SMC analyses, obtaining a graphical representation
f the system behavior as observed in the SMC simulations. In our
xperimental evaluation, we demonstrate that: (1) our methodology
elps in identifying issues in the model, and in getting hints on how to
ix them (2) it scales to complex models, and (3) it is general because
t can be applied to domains beyond product line engineering.

In future investigations, we will investigate if PM can further help
n the product line engineering. For example, it might be useful to
ompare different products from the same family. Furthermore, we
ill also study whether PM can further help in solving issues of SMC,
.g., how to handle rare events (Legay et al., 2016). We already con-
16

idered two different domains, namely product lines engineering, and h
risk modeling and analysis, analyzed for SMC. In the future, it might
be interesting to consider further types of probabilistic models and
of analysis techniques like, e.g., pGCL programs studied with used in
probabilistic model checkers like STORM.3 Finally, we plan to investi-
ate the application of our methodology to further frameworks for dy-
amic PL models. A notable example is ProFeat (Chrszon et al., 2018).
t is built on top of the probabilistic model checker PRISM (Kwiatkowska
t al., 2011), and allows as well for SMC-based analyses.
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Fig. A.24. Excerpt of the diff model for the elevator model with 5 floors with the typo.
Data availability

No data was used for the research described in the article.

Appendix. Addressing typos in models

Fig. A.23 lists a partial probabilistic process of the elevator model
with 5 floors and involving four concurrent processes. This example
highlights how a minor typo that could easily be overlooked when
specifying the model, especially in complex models like the elevator,
might be spotted by our methdology. The typo is in line 8, where,
instead of adding a weight greater than zero, it is erroneously set
to zero. As expected, the natural consequence of this typo is that
the simulator will not traverse that transition, resulting in unexpected
behavior and therefore biased SMC analysis. Fig. A.24 illustrates the
diff model, displaying only the relevant sections of the four concurrent
processes. Among these sections, there exists at least one transition that
the simulator did not traverse due to the typo in line 8, identifiable
by the dashed red edge. The original model and the full diff model
generated by our methodology can be accessed in https://doi.org/10.
5281/zenodo.8362717.
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