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Abstract

Although multilingual language models ex-
hibit impressive cross-lingual transfer capabil-
ities on unseen languages, the performance
on downstream tasks is impacted when there
is a script disparity with the languages used
in the multilingual model’s pre-training data.
Using transliteration offers a straightforward
yet effective means to align the script of a
resource-rich language with a target language,
thereby enhancing cross-lingual transfer capa-
bilities. However, for mixed languages, this
approach is suboptimal, since only a subset of
the language benefits from the cross-lingual
transfer while the remainder is impeded. In
this work, we focus on Maltese, a Semitic lan-
guage, with substantial influences from Ara-
bic, Italian, and English, and notably written
in Latin script. We present a novel dataset an-
notated with word-level etymology. We use
this dataset to train a classifier that enables
us to make informed decisions regarding the
appropriate processing of each token in the
Maltese language. We contrast indiscriminate
transliteration or translation to mixing process-
ing pipelines that only transliterate words of
Arabic origin, thereby resulting in text with a
mixture of scripts. We fine-tune the processed
data on four downstream tasks and show that
conditional transliteration based on word ety-
mology yields the best results, surpassing fine-
tuning with raw Maltese or Maltese processed
with non-selective pipelines.

1 Introduction

Due to their impressive cross-lingual transfer capa-
bilities, multilingual models have facilitated the de-
velopment of NLP tools for low-resource languages
(Kondratyuk and Straka, 2019; Wu and Dredze,
2019; Conneau et al., 2020). However, multilin-

gual models may fall short in addressing lower-
resourced languages (Wu and Dredze, 2020; Muller
et al., 2021). In particular, Muller et al. (2021)
show that the cross-lingual transfer capabilities of
a model are affected if the related language seen
during pre-training uses a different script. They
further show that transliterating to match the script
of the related language improves performance.

In this work, we focus on Maltese – a Semitic
language with an Arabic base and substantial Ro-
mance influences written in Latin script. Micallef
et al. (2023) transliterate Maltese into Arabic script
and demonstrate improved performances in certain
scenarios when fine-tuning with an Arabic large
language model as opposed to a multilingual one
in the original script. However, being influenced
by a mixture of languages – predominantly Arabic,
Italian, and English – we argue that transliterat-
ing Maltese entirely into the Arabic script ignores
the non-Arabic aspect of the language. Hence, the
advantages derived from transliteration are dimin-
ished by the losses incurred through moving farther
from Italian and English.

Therefore, we propose mixing scripts and ap-
plying transliteration selectively. Specifically, we
apply transliteration to Maltese words of Arabic
origin, keeping the others in their original Latin
script. We also experiment with mixing transliter-
ations with word-level translations, which yielded
the best results overall.

Our main contributions are as follows:

1. We annotate a new Maltese dataset with ety-
mological tags (Section 3).

2. We train several etymological classifiers using
the annotated data (Section 4.1).

3. Using automatic etymological classifications,



we define various processing pipelines to
conditionally transliterate or translate words
based on their etymology (Section 4.2).

4. We conduct a thorough evaluation, fine-tuning
a variety of language models with different
processing pipelines and shed new light on the
cross-lingual transfer capabilities exhibited by
these models (Section 5).

The code, the new etymological annotations, and
classifiers are released publicly.1

2 Background and Related Work

Due to the mixed nature of Maltese, the language
can be viewed as a highly code-switched language
among Arabic, Italian, and English. An analysis of
the dictionary from Aquilina (1987, 1990) reveals
that 32.4%, 52.5%, and 6.1% of Maltese words
are of Arabic, Italian/Sicilian, and English origin,
respectively (Brincat, 2017). The remaining cases
include mixed or unknown-origin words. We note
that Arabic-origin words tend to have higher token
frequencies and include function words, and the
dictionary entries do not include all inflected cases.

Our work is related to previous works dealing
with languages not written in their standard script
and/or mixed with other languages, predominantly
English. Pant and Dadu (2020) define a pipeline
for Hinglish written in Latin script, which only
transliterates Hindi-tagged tokens to Devanagari
script. Eskander et al. (2014) define a pipeline
for transliterating Arabizi (Darwish, 2014) text
into Arabic script, which includes separate sub-
processes for symbols, names, foreign words, and
Arabic words. Shazal et al. (2020) define a neural
model for transliteration of Arabizi text into Arabic
script, but they skip English words similar to Pant
and Dadu (2020).

While these approaches are similar to some of
the pipelines presented in Section 4.2, the majority
of their token distribution (80%+) is in Latinized
Hindi or Arabic, compared to around 60% Arabic-
origin tokens for Maltese (Table 1). This, in addi-
tion to the evolution of Maltese as a distinct lan-
guage, adds to the complexity of using off-the-shelf
models for language modeling (Chau et al., 2020;
Muller et al., 2021; Micallef et al., 2022).

Thus, in this work, we build a robust classifi-
cation model to predict word etymologies, using
newly annotated data, to provide more accurate
information to our processing pipelines.

1https://github.com/MLRS/malti/tree/2024.eacl

3 Etymology Annotations

To build our dataset, we extracted 439 sentences
(9,683 tokens) from the Maltese Universal Depen-
dencies Treebank (Čéplö, 2018) training set. We
were directly involved in the creation of the guide-
lines, the annotation of the tokens, including exten-
sive discussions and resolution of disagreements.
Among us, we have native language expertise in
Arabic and Maltese and second language expertise
in English and Italian. We relied extensively on
authoritative references (mentioned below). The
following are the labels we annotated with.

Arabic Maltese tokens of Arabic origin, follow-
ing the etymological classification by Aquilina
(1987, 1990). This includes words that are derived
from Arabic dialects, such as Tunisian Arabic, but
we retain the same classification for these.

Non-Arabic Maltese tokens whose origin is
some language other than Arabic. During our anno-
tation, we noticed that most of these are of Italian
origin. There were a few cases that were of English
origin, for example, ċekk ‘cheque’. An ambiguity
arises for certain Maltese words which correspond
to related words in both Italian and English, for
example, rapport is closely related to both English
‘report’ and Italian ‘rapporto’.2 Moreover, a few
words are also derived from other languages, such
as Sicilian and French. For these reasons, we opt
to group these words under this single category.

Mixed These are Maltese tokens containing a
mixture of Arabic and non-Arabic influences. The
mixed influences take various forms, of which we
identify the following sub-categories:

1. Verbs: Verbs of non-Arabic origin with Ara-
bic morphology to convey different conjuga-
tions. For example, nispjegaw ‘we explain’,
from Italian ‘spiegare’ with the Arabic prefix
ni- (1st Person Present) and suffix -w (Plu-
ral). Careful attention was given to Maltese
words that share a close surface form with Ital-
ian. For example, although the Maltese verb
spjega ‘he explained’ has a similar form to
Italian spiega ‘he explains’, the difference in
their tense inflection lead us to consider the
Maltese verb as Mixed and not Non-Arabic,
since it does not follow the Italian conjugation
rules.

2Aquilina (1990) lists both Italian and English words as
possible cognates for rapport.

https://github.com/MLRS/malti/tree/2024.eacl


2. Plurals: Non-Arabic-origin nouns that form
the plural with Arabic morphology using regu-
lar and broken plural formations. For example,
regular plural partijiet ‘parts’ composed of the
stem parti (Italian ‘parte’), and the Arabic suf-
fix -ijiet; broken plural ġranet ‘days’, singular
ġurnata (Italian ‘giornata’).

3. Univerbations: Single words composed of
several Arabic and non-Arabic words. For
example, minflok ‘instead of’, which is com-
posed of minn ‘from’ (Arabic 	áÓ mn),3 fi ‘in’

(Arabic ú



	
¯ fy), and lok ‘location’ (Sicilian

‘locu’, Italian ‘località’).

Code-switching Non-Maltese words borrowed
from another language, typically English. As such,
these words do not follow Maltese orthographic
rules as they are written verbatim from the bor-
rowed words.

Name Names of entities that are further cate-
gorized into Name (Arabic) and Name (Non-
Arabic) for names of Arabic and non-Arabic ori-
gin, respectively. Again, we rely on the etymologi-
cal classification given by Aquilina (1987, 1990),
but make use of additional sources to determine
the origin of certain names – for surnames, for in-
stance, we use Maltagenealogy.4 Note that this cat-
egory does not capture entities composed of words
that could be used for non-entities. For example,
Gvern ta’ Malta ‘Government of Malta’ would be
considered as a single entity in a Named-Entity
Recognition task, but we annotate the phrase as
Gvern/Non-Arabic ta’/Arabic Malta/Name (Ara-
bic). Non-Maltese words in named entities are
tagged as either Code-Switching if translatable, or
Name if not. For instance, while both words in
Planning Authority would be classified as Code-
Switching, both words in JF Motors are tagged as
Name (Non-Arabic).

Symbol Tokens that can be considered language
universal such as digits and punctuation symbols.

A summary of the annotation frequencies is
given in Table 1. In addition to the raw token
counts, we also provide the etymology distribution
for the set of unique tokens (types).

3HSB Arabic transliteration (Habash et al., 2007).
4https://maltagenealogy.com/

maltese-surname-origins/

Label Token Type
Arabic 5,848 60% 1,122 47%
Non-Arabic 1,559 16% 660 27%
Mixed 271 3% 186 8%
Code-Switching 398 4% 169 7%
Name (Arabic) 146 2% 36 1%
Name (Non-Arabic) 423 4% 171 7%
Symbol 1,038 11% 65 3%
Total 9,683 100% 2,409 100%

Table 1: Etymology annotation frequencies of tokens
and types.

4 Methodology

Our objective is to process Maltese tokens in such a
way as to improve cross-lingual transfer. We design
pipelines that use transliteration and translation
as our main tools to process Maltese (Section 4.2).

For transliteration, we use the implementation
from Micallef et al. (2023). Specifically, we ex-
tend the non-deterministic character mappings with
Tunisian word model ranking and full closed-class
token mappings, by making some modifications to
the character maps. Primarily, we add mappings for
digits and other common symbols to Arabic script
instead of passing them as is. We also include addi-
tional mappings for some letters that were missing
in Micallef et al. (2023), such as from t to �

H θ.
For translation, word-level translations are ex-

tracted from Google Translate. Admittedly, this
may give sub-optimal translations due to the lack of
sentence context. However, we do not translate at
the sentence level because we make token-level de-
cisions and sometimes require partial translations
of a subset of words in a sentence. In addition,
most of the tasks used in the evaluation (Section 5)
are token-level classification tasks. Hence, we de-
cided against using word aligners with a sentence
translation since this would amplify the noise in
the processing pipeline. At the same time, word-
level translations allow us to reduce the processing
power needed, as they are extracted once on the
unique set of tokens in the datasets used in Sec-
tion 5, and saved as static token mappings.

The processing pipelines make use of an etymol-
ogy classifier (Section 4.1), which also uses the
transliterations and the translations as features.

4.1 Etymology Classifiers
Using the data from Section 3, we build a classifier.
We experiment with the following models.

https://maltagenealogy.com/maltese-surname-origins/
https://maltagenealogy.com/maltese-surname-origins/


Translation A set of heuristics based on word-
level translations and the edit distances between
them and the original token. When the distance
with both the Italian and English translations is 0,
it is considered to be a Symbol if it contains dig-
its or punctuation symbols and a Name otherwise.
When the distance with either of the Italian or En-
glish translations is 0, it is considered to be Code-
Switching. Otherwise, the token is considered to
be Arabic or Non-Arabic, based on the minimum
distance between the Arabic, Italian, and English
translations. We calculate the Arabic distance us-
ing the transliteration instead of the original token.
As such this is not trained on the data as it uses the
features statically.

MLE A Maximum Likelihood Estimator that pre-
dicts the tag observed for the token in the training
data. When multiple tags are observed for a given
word, the most frequently seen tag is predicted. If a
token has never been encountered before, the most
commonly observed tag is predicted, which, in this
context, is Arabic.

CRF A Conditional Random Field (Lafferty
et al., 2001) model which makes predictions us-
ing the sentence context. In addition to the original
and lower-cased token and positional markers, for
each token, the following features are included:

• Orthography: low-level boolean features in-
dicating the presence of uppercase characters,
digits, punctuation symbols, and Maltese spe-
cial characters (ċ, ġ, h̄, and ż).

• N-Grams: Boolean features indicating the
presence of a frequent n-gram in the token
and the presence of each n-gram in the token.
A set of 197 frequent n-grams is extracted by
taking the unique uncased words from Korpus
Malti v4.0 (Micallef et al., 2022) and comput-
ing the most common trigrams and bigrams.

• Closed-Class: a boolean feature indicating
whether the token is one of the full closed-
class tokens from Micallef et al. (2023).

• Trans2: the translations of a token into Ara-
bic, Italian, and English, taken from the pre-
computed token-level translations. We also
include the transliteration of the token into
Arabic.

• Distances: the Levenshtein distance (Leven-
shtein, 1966) between the token and each of
the translations. The Arabic translation dis-
tance is computed using the transliteration.

Model All Seen Unseen
Translation 69.72 70.27 66.39
MLE 92.11 99.76 43.64
CRF 91.97 99.20 45.93
+ orthography 92.90 99.22 52.64

+ n-grams 96.51 99.43 78.19
+ closed-class 92.98 99.17 53.41
+ trans2 93.77 99.36 58.49
+ distances 95.75 99.29 73.35
+ all features 97.55 99.64 84.35

Ensemble 97.69 99.80 84.35
(a) All Categories (n = 7)

Model All Seen Unseen
Translation 73.89 73.68 75.15
MLE 92.13 99.78 43.64
CRF 98.26 99.61 89.80
Ensemble 98.43 99.81 89.80

(b) Merged Categories (n = 5)

Table 2: Etymology classification accuracy across 10-
fold cross-validation.

All features except for the trans2 features, are
based on the implementation from Osmelak and
Wintner (2023).

Ensemble We combine MLE and CRF into one
model. This favors the predictions from the MLE
model whenever the token is seen exclusively with
a single tag. Otherwise, the predictions from the
CRF model are used.

All models are trained using 10-fold cross-
validation, using the same splits. The results are
shown in Table 2a, reporting the accuracy from all
folds. For the CRF model, we contrast the perfor-
mance of using no features, adding the orthography
features only, adding every other group of features
on top of this, and adding all of the features to-
gether. For the Ensemble, we show the results with
all features. In addition to the scores for the entire
data, we also show individual results for tokens that
are seen in the corresponding training split versus
tokens that are not seen.

With the exception of the Translation model, all
models achieve over 91% accuracy, with Ensem-
ble achieving the best results overall. While the
Translation model performs relatively worse, it per-
forms evenly across seen and unseen tokens. In
contrast, the MLE model is heavily biased towards
seen words. With no additional features, the CRF
model performs worse overall than the MLE model,
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Figure 1: Confusion matrices for the Ensemble classifier. Values are percentages and are obtained by adding
predictions across folds and normalizing them by dividing by the total for a given class.

albeit obtaining a higher accuracy on unseen words.
This highlights that many tokens in the data are
unambiguous as a simple MLE baseline achieves
close to perfect performance on seen tokens.

Adding low-level orthographic features is suffi-
cient for the CRF model to perform better than the
MLE baseline. The other features all contribute to
some degree of further improvement, particularly
on unseen words which boosts the overall accuracy.
The n-gram and distance features give the most
noticeable improvements overall with a 20-25%
improvement on unseen tokens.

All features together yield the best performance
for the CRF model. Despite this, accuracy scores
on seen words are worse than those of the MLE
model. This is mitigated by the Ensemble model,
which gets an even better score on seen words than
MLE, since it gets better predictions on tokens that
are seen but with different labels.

Analyzing the predictions reveals that the model
makes systematic errors, as shown in Figure 1a.
In particular, the Mixed class is considerably mis-
predicted as non-Arabic or Arabic. To a lesser de-
gree, Names are conflated with each other, with
some confusion with non-name labels, namely,
Non-Arabic and Code-Switching for Name (Non-
Arabic), and Arabic for Name (Arabic).

Merged Categories To mitigate the possible neg-
ative effect of such mispredictions on our down-
stream task, we merge the Mixed tag with the Non-
Arabic tag, and the Name tags together under a

single Name tag. The total number of categories
is thus reduced from 7 (All) to 5 (Merged). The
decision to merge is motivated by system design
and does not invalidate the importance of the var-
ious annotated categories, which were driven by
linguistic insights. Furthermore, we note that to-
kens from the merged categories share a common
set of properties and merging does not impact the
decisions made in Section 4.2.

We report the results of the models using all
features in Table 2b, showing similar trends to Ta-
ble 2a. All models attain higher accuracy scores
on these merged categories, with the CRF and En-
semble models getting close to 90% accuracy on
unseen words. As shown in Figure 1b, the confu-
sion is drastically reduced overall as well.

Going forward, we use the Ensemble model
trained on all the data with merged categories.

4.2 Text Processing Pipelines

We now make use of the classifier outlined in Sec-
tion 4.1 to make decisions on how to process Mal-
tese text. We define processing pipelines that, given
a sequence of Maltese tokens, output another se-
quence of the same length. A given token is pro-
cessed in one of the following ways:

• Pass (P): The original token is returned with-
out any modification, so using Maltese as is.

• Transliteration (Xara): Transliteration into
Arabic script.

• Translation (Tsrctgt): Translation from a source



language src to a target language tgt. We
consider Arabic (ara), Italian (ita), and En-
glish (eng) as different target languages.

We design several processing pipelines in which
we apply one of these actions for a given token,
depending on the token’s etymology label. The
different pipelines and corresponding actions are
summarized in Table 4 and we also show their out-
puts after processing a sample sentence in Table 3.

The P, Xara, and T* pipelines perform a pass,
transliterate, and translate action indiscriminately,
and hence, do not use etymology classifications.

The Xara/T* pipelines mix transliteration and
translation. Xara/Tara transfers every token to Ara-
bic script by transliterating tokens of Arabic ori-
gin and Symbols, translating everything else. As
highlighted in the human evaluation by Micallef
et al. (2023), transliterations of Maltese words of
Arabic origin are generally mapped to the Arabic
cognate, whereas the transliteration system does
not produce a coherent output for Maltese words of
non-Arabic origin. Thus, we map tokens we expect
to be distant from Arabic using translation instead
of transliteration. Differently from the T* pipelines,
Code-Switching tokens are translated from English
instead of Maltese.5

The Xara/Tita and Xara/Teng pipelines similarly
mix transliteration with Italian and English trans-
lations, respectively. This produces text that com-
bines a mixture of scripts seamlessly. Differently
from Xara/Tara, we do not translate Code-Switching
tokens, since these can already be considered as
non-Maltese tokens and the output produced by the
Xara/Tita and Xara/Teng pipelines already contains
a mixture of scripts. Similarly, the Xara/P pipeline
produces mixed script text by combining translit-
eration with pass. The rationale for this pipeline
is similar to the Xara/Tita and Xara/Teng pipelines.
However, with this pipeline, the aim is to mea-
sure the impact of minimizing script differences
between related words without using translation.

5 Downstream Task Evaluation

In this section, we conduct an extrinsic evaluation
on four downstream tasks: Part-of-Speech tagging
(POS), Dependency Parsing (DP), Named-Entity
Recognition (NER), and Sentiment Analysis (SA).
Refer to Section 5.1 for further details on the tasks.

5We do not consider translating from Italian since almost
all cases of code-switching observed during our annotation in
Section 3 are in English.

Each dataset is processed using all of the
pipelines presented in Section 4.2, keeping the cor-
responding labels/tags the same. The processed
datasets are then used to fine-tune pre-trained lan-
guage models. We run fine-tuning 5 times with
different random seeds and report the mean perfor-
mance. The language models used are the multilin-
gual model mBERT (Devlin et al., 2019), the Ara-
bic model CAMeLBERT-Mix (Inoue et al., 2021),
the Italian model ItalianBERT (Schweter, 2020),
the English model BERT (Devlin et al., 2019), and
the Maltese model BERTu (Micallef et al., 2022).

Due to the large number of combinations, we
do not fine-tune every model on all the pipelines.
Instead, we only fine-tune models on the pipelines
which produce data in a language that it has been
intentionally pre-trained on. So we fine-tune
CAMeLBERT on all pipelines which do a Tara
and/or Xara action, ItalianBERT on all pipelines
which do a Tita action, and BERT on all pipelines
which do a Teng action. mBERT is fine-tuned on all
pipelines since it is multilingual. Additionally all
models are fine-tuned on the P and Xara/P pipelines
to test their capabilities on Maltese using only fine-
tuning data. The results are presented in Section 5.2

5.1 Tasks

We follow all fine-tuning architectures and hyper-
parameters suggested by Micallef et al. (2022). See
Appendix B for further details.

We use the MUDT (Čéplö, 2018) dataset for
the DP task. For the POS task, we use the MLRS
POS dataset (Gatt and Čéplö, 2013) with the same
splits from Micallef et al. (2023). The dataset from
Martínez-García et al. (2021) is used for SA, tok-
enized as in Micallef et al. (2023) to allow for the
token-level actions used to process the data.

We use the MAPA NER data (Gianola et al.,
2020) for the NER task using only the level 1 tags.
However, we normalize this data to be in line with
the tokenization scheme used in the MUDT and
MLRS POS datasets (see Appendix A for further
details). This step is crucial since the original
dataset splits off the - and ’ characters as separate
tokens. These characters carry important linguistic
features in Maltese which are used by the translit-
eration system (Micallef et al., 2023) and can at
times change the meaning of the token.6

6For example, fil- ‘in the’ and fil ‘mortar joint’ or ta’ ‘of’
and ta ‘he gave’.



etymology
label Arabic Non-

Arabic Name Arabic Symbol Arabic Code-
Switching

Non-
Arabic Symbol

token Il- karozza Porsche tal- 2022 gh̄andha speed fenomenali !
P Il- karozza Porsche tal- 2022 gh̄andha speed fenomenali !

Xara È@
�
è 	PXQ» ú



æêº�QK. È@ ¨A

�
K 2022 AëY

	
J« XAJ.� ú



Î
	
JÒ
	
J
	
¯ !

Tara È@ Ð@Q
�
K é

�
�PñK. È 2022 ñë

�
é«Qå� É


KAë !

Tita IL tram Porsche Di 2022 Esso velocità fenomenale !
Teng The streetcar Porsche of 2022 it speed phenomenal !
Xara/P È@ karozza Porsche È@ ¨A

�
K 2022 AëY

	
J« speed fenomenali !

Xara/Tara È@ Ð@Q
�
K é

�
�PñK. È@ ¨A

�
K 2022 AëY

	
J«

�
é«Qå� É


KAë !

Xara/Tita È@ tram Porsche È@ ¨A
�
K 2022 AëY

	
J« speed fenomenale !

Xara/Teng È@ streetcar Porsche È@ ¨A
�
K 2022 AëY

	
J« speed phenomenal !

Table 3: An example sentence and the corresponding etymology labels passed through the pipelines outlined in
Table 4. The raw sentence is: Il-karozza Porsche tal-2022 gh̄andha speed fenomenali! ‘The 2022 Porsche car has
phenomenal speed!’.
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Xara Xara Xara Xara Xara Xara
Tara Tmltara Tmltara Tmltara Tmltara Tmltara

Tita Tmltita Tmltita Tmltita Tmltita Tmltita

Teng Tmlteng Tmlteng Tmlteng Tmlteng Tmlteng

Xara/P Xara P P P P

Xara/Tara Xara Tmltara Tengara Tmltara Xara
Xara/Tita Xara Tmltita P Tmltita P
Xara/Teng Xara Tmlteng P Tmlteng P

Table 4: Data processing pipelines and the action per-
formed for each corresponding etymology class: translit-
eration (Xara), translation (Tsrctgt), and pass/nothing (P).

5.2 Results

The results are summarized in Table 5. As expected,
BERTu remains the best-performing model across
all tasks due to its pre-training on Maltese. With
P, mBERT performs worse than BERTu. How-
ever, it does better than the other monolingual mod-
els. This is largely due to its multilinguality, as
it was exposed to several different languages, in-
cluding those related to Maltese. In contrast, the
other monolingual models only include some of
the languages with relevance to Maltese. Moreover,
CAMeLBERT performs the worst on the P pipeline
due to the script difference. Hence, we designate
P BERTu as the topline setup to close the gap with,
and P mBERT as the baseline setup to beat. Similar

to the findings from Micallef et al. (2023), Xara
CAMeLBERT performs better than Xara mBERT
on POS and SA and P mBERT on DP and SA.

A discussion of the other pipelines and their re-
sults follows. Unless explicitly mentioned, we do
not include BERTu in the rest of this discussion.

5.2.1 Translations over Transliterations
Using mBERT, the T* pipelines give worse perfor-
mance on POS and DP compared to P and Xara.
Conversely, the monolingual models generally give
better performance on these tasks, with the excep-
tion of CAMeLBERT which gives worse perfor-
mance than Xara. However, mBERT performs bet-
ter overall than the monolingual models with the
T* pipelines. A jump in performance is observed
on the NER task, using T* compared to the Xara
pipeline, but only mBERT Teng gives better perfor-
mance than mBERT P.

On the other hand, on the SA task T* give better
results than P and Xara, regardless of the model
used. In fact, the best scores overall are attained
with the T* pipelines for the SA task, with BERT
Teng performing the best across all pipelines. Teng
is, in general, the best-performing pipeline across
all T* pipelines, likely due to the prevalence of
Maltese-English parallel data compared to other
language pairs,7 which, in turn, results in better
translation performance between this language pair
compared to other pairs.

These findings highlight that while training with
translated data can be an effective solution for low-
resource languages, it is largely dependent on the

7For Maltese, OPUS (Tiedemann and Nygaard, 2004) re-
ports 27.9K, 6.0M, and 34.1M parallel sentences with Arabic,
Italian, and English, respectively, at the time of writing.



Pipeline POS DP NER SA
Acc. LAS F1 F1

P (Topline) 98.3 88.1 84.0 83.1
(a) BERTu (Micallef et al., 2022)

Pipeline POS DP NER SA
Acc. LAS F1 F1

P 88.9 61.8 75.5 61.9
Xara 96.0 77.3 74.1 67.5
Tara 91.2 69.6 77.2 73.8
Xara/P 95.6 76.6 76.9 65.0
Xara/Tara 95.7 77.3 76.2 70.2
Xara/Tita 95.5 76.5 76.2 66.2
Xara/Teng 96.0 77.4 78.2 64.1

(b) CAMeLBERT-Mix (Inoue et al., 2021)

Pipeline POS DP NER SA
Acc. LAS F1 F1

P 89.7 64.3 80.1 62.3
Tita 92.7 71.9 79.6 70.9
Xara/P 44.9 14.6 76.1 58.2
Xara/Tita 47.9 17.9 76.2 64.1

(c) ItalianBERT (Schweter, 2020)

Pipeline POS DP NER SA
Acc. LAS F1 F1

P 96.1 73.0 79.7 64.2
Teng 93.6 74.7 79.9 75.2
Xara/P 96.0 72.5 77.9 63.7
Xara/Teng 96.4 73.9 79.1 69.4

(d) BERT (Devlin et al., 2019)

Pipeline POS DP NER SA
Acc. LAS F1 F1

P (Baseline) 96.7 77.3 81.0 67.3
Xara 95.8 77.4 75.7 62.5
Tara 91.4 71.3 77.5 74.3
Tita 92.6 72.9 79.6 71.3
Teng 94.2 75.8 81.5 73.1
Xara/P 96.6 78.8 80.3 66.2
Xara/Tara 95.4 77.4 76.5 66.2
Xara/Tita 96.5 79.2 79.7 67.3
Xara/Teng 96.8 79.2 82.2 67.7

(e) mBERT (Devlin et al., 2019)

Table 5: Results using the data processing setups de-
fined in Table 4, grouped by language model. Accuracy,
Labelled Attachment Score (LAS), span-based F1, and
macro-averaged F1 are reported for the POS, DP, NER,
and SA tasks, respectively. Each value is an average
of 5 runs with different random seeds. For each task,
the best scores (excluding the Topline) are bolded, and
all scores better than the Baseline are shaded .

type of task and the performance of the translation
model.

This trend is also observed for Xara/Tara. For
the POS and DP tasks, the added translations give
worse performance than Xara but better perfor-
mance than Tara due to the decreased translations.
Conversely, the opposite is true for the NER and
SA tasks where Xara/Tara performs better than Xara
but worse than Tara.

5.2.2 Multilingual Models, Multilingual Text
With mBERT, all Xara/T* pipelines give better per-
formances than the corresponding T* pipelines and
Xara on POS, DP, and NER with the exception of
Tara which performs better than Xara/Tara on NER.
Xara/Tara yields the worst results of all Xara/T*
pipelines, since, similar to Tara, this is not fully
exploiting the multilinguality aspect of the model.
mBERT Xara/Tita achieves the best overall perfor-
mance on the DP task.
Xara/Teng mBERT achieves better results than P

mBERT on all tasks and achieves the best scores
across all pipelines in the POS, DP, and NER tasks.
Besides English being the dominant language in
mBERT’s pre-training data, we hypothesise that the
performance of Maltese-English translation models
(as highlighted in Section 5.2.1) also plays a role
in this result. Furthermore, as the gap in perfor-
mance with BERTu is further reduced, this offers a
viable option to further give performance improve-
ments over standard fine-tuning for low-resource
languages with similar mixing to Maltese.

Although its pre-training data does not include
Maltese, mBERT obtains better results on POS,
DP, and NER when trained with Xara/P instead of
Xara and T* (except for Teng on NER). mBERT
Xara/P also achieves a better score than mBERT
P on DP. This finding supports the evidence from
Muller et al. (2021) who show that transliteration
to the same script as the related language in the pre-
training data improves cross-lingual transfer. Ad-
ditionally, mBERT Xara/P performs competitively
with mBERT Xara/T*, performing slightly better
than Xara/Tara and Xara/Tita on the POS and NER
tasks.

5.2.3 Monolingual Models, Multilingual Text
The trends from Section 5.2.1 do not hold en-
tirely for Xara/Tita and Xara/Teng. ItalianBERT with
Xara/Tita performs worse, sometimes significantly,
compared to P and Tita. Xara/Teng BERT performs
worse than Teng on all tasks except POS.



CAMeLBERT generally performs worse with
Xara/Tita than Xara/Tara, Tara, and Xara. The ex-
ceptions are Xara on NER due to the reduction in
performance that we observe when transliterating
names into Arabic script (Section 5.2.4), and Tara
on POS and DP since increasing transliterations
and decreasing translations show improved perfor-
mance for these tasks (Section 5.2.1).

Overall these results make sense since we are
giving the respective models less of the type of
language they were pre-trained on: transliterations
in the case of ItalianBERT and BERT and Ital-
ian translations in the case of CAMeLBERT. Simi-
larly, Xara/P gives worse performance for the non-
Arabic monolingual models, since they were not
pre-trained on Maltese, although the discrepancy
with Xara/Tara is negligible.

5.2.4 Arabic Script on Names
Overall we observe that changing Name tokens
to Arabic script (Xara, Tara, and Xara/Tara) gives
among the worst results in the NER tasks. A big
factor for this is the lack of casing information
not present in the Arabic script, supported by the
findings from Mayhew et al. (2019).

5.2.5 Multilingual Presence in Monolingual
Models

Despite having less Arabic text overall, Xara/Teng
yields the best performance for CAMeLBERT on
the POS, DP, and NER tasks. This could be
explained by the presence of the Latin script in
CAMeLBERT’s pre-training data, which is being
exploited by the modeling.

Similarly, BERT has likely seen some Arabic
text in its pre-training, since with Xara/Teng it
achieves better performance compared to Teng on
POS. It is also not significantly worse on the other
tasks, particularly when compared to the results of
Xara/Tita ItalianBERT.

These results support the findings by Blevins and
Zettlemoyer (2022) and Muennighoff et al. (2023)
who identify that large-scale pre-training corpora
contain language contamination, resulting in lan-
guages that are unintentionally seen at pre-training.

6 Conclusion

In this work, we analyze how partially transliter-
ating Maltese has an impact on downstream task
performance. We present a newly annotated dataset
with word etymology labels and build classifiers to

predict these labels. Using these classifiers, we de-
sign various pipelines to make decisions on which
tokens to transliterate or otherwise.

Our evaluation using mBERT shows that by ex-
clusively transliterating words of Arabic origin,
downstream task performance improves. The best
results are achieved by mixing transliterations with
translations, where including English translations
yields better results than fine-tuning on the original
data on all tasks. These findings corroborate with
those from Muller et al. (2021), but we show this
further by only transliterating words that would aid
cross-lingual transfer.

Future work should explore language adapta-
tion techniques (Chau et al., 2020; Pfeiffer et al.,
2020) using the pipelines presented here, to further
improve the cross-lingual transfer capabilities of
multilingual models. It is also interesting to ap-
ply this method during inference of few-shot and
zero-shot settings. We also hope that our newly an-
notated dataset can be used as a resource to further
support the understanding of Maltese. While we
have reduced the script difference between Maltese
and its related languages, other linguistic proper-
ties can also impact the cross-lingual performance
(Philippy et al., 2023) and future work should in-
vestigate these facets.

7 Limitations

The pipelines using translation are limited by the
performance of the models used. We did not sys-
tematically evaluate different translation systems
to find out the best-performing system.

Although word-level translations allow us to re-
duce computing requirements, sentence-level trans-
lations are bound to produce more accurate transla-
tions. Aligning translations to get the correspond-
ing translation for a word is particularly challeng-
ing, especially with varying levels of morpholog-
ical richness and limited tools for low-resource
languages. Even if these pipelines are combined as
a single model that produces the output sentence,
this still needs to be aligned to the original token
in the data for token classification tasks such as
Part-of-Speech tagging, Dependency Parsing, and
Named-Entity Recognition.

In our pipelines, we have not treated Names
much differently from other tokens. While some
names can be handled by transliteration, especially
those of Arabic origin, it is more challenging for
others, particularly since many names we annotated



use English orthographic rules.
Our findings are also limited to the task results

presented here. As such, a wider variety of tasks, in-
cluding higher-level semantic tasks, is desirable to
verify the generalizability of such a method. More-
over, having this evaluation on a wider variety of
language models would be ideal to assess how fac-
tors such as pre-training data and model architec-
ture influence the results.

8 Ethics Statement

The biases present in the data and language models
we used are inherited. We acknowledge that some
performance errors may be due to introduced ambi-
guities or errors in the techniques we studied. That
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A MAPA Data Fixes

The Maltese data from Gianola et al. (2020) is fixed
to have consistent tokenization with the other token
classification datasets used in Section 5. We do
this by re-tokenizing the raw text using the MLRS
Tokenizer.8 Further to this, we also manually split
off trailing - and ’ for tokens that do not carry the
linguistic meaning for Maltese. For instance, mark-
ing number ranges with - or using ’ for quotation
marks.

Since some of the tokens from the original data
are merged into a single token, the corresponding
labels are also merged. Whenever the merged to-
kens contain different target labels, we keep them
separate.

While doing this process, we went through the
inconsistencies between the tokens in the data and
the new tokens. While there were legitimate cases
where the source tokenization made sense, we iden-
tified certain entity spans that were incorrectly
marked, typically a missing character in the whole
word. In these cases, we fix the annotation so that
the span is consistent with the tokenization.

Lastly, we also fixed some of the labels which
contained errors during our conversion. For cases
where the entity span was marked but no label was
present, we added the labels. When there were
inconsistencies between the level 1 and level 2 tags,
we fixed the incorrect tag appropriately.

We make this dataset publicly available.9

B Experimental Setup

The number of parameters for language models
used in Section 5 is summarized in Table 6.

Model Parameters
BERTu 126M
mBERT 179M
CAMeLBERT 109M
ItalianBERT 111M
BERT 109M

Table 6: Number of parameters for the language models
used in Section 5

We use NVIDIA A100 GPUs (40GB and 80GB,
depending on memory requirements) on a compute
cluster. Fine-tuning time depends on the model
used and the pipeline from Section 4.2 with which

8https://mlrs.research.um.edu.mt/
9https://huggingface.co/datasets/MLRS/mapa_

maltese

the data was processed with, but a single GPU was
always used. Giving a rough estimate for each
task: Part-of-Speech tagging takes around an hour
and a half, Dependency Parsing takes around 1
hour, Named-Entity Recognition takes around 6
hours, and Sentiment Analysis takes around 30
minutes. Named-Entity Recognition takes signif-
icantly longer since the dataset used is larger and
we use gradient accumulation to ease memory re-
quirements while keeping the same effective batch
size from Micallef et al. (2022). The figures re-
ported here include all of the runs with different
random seeds, the test evaluation for each run, and
any initial setup necessary for startup.

https://mlrs.research.um.edu.mt/
https://huggingface.co/datasets/MLRS/mapa_maltese
https://huggingface.co/datasets/MLRS/mapa_maltese
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