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ABSTRACT

JAT) cosmology has shown promise in explaining aspects of cosmic evolution. In this work, we analyse constraints on leading
models of f{T) gravity in the context of the recently released Pantheon+ data set, together with comparisons with previous
releases. We also consider other late time data sets including cosmic chronometers and baryonic acoustic oscillation data. Our
main result is that we find that the different f{7) models under investigation connect to a variety of Hubble constant, which may

help alleviate the cosmic tension on this parameter.
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1 INTRODUCTION

Cold dark matter (ACDM) model has been supported by unprece-
dented observational evidence at all cosmic scales for several decades
as the standard model of cosmology (Misner, Thorne & Wheeler
1973a; Clifton et al. 2012) with ACDM acting as a stabilizing
agent in galaxies (Bertone, Hooper & Silk 2005; Baudis 2016), and
dark energy realized through the cosmological constant (Peebles &
Ratra 2003; Copeland, Sami & Tsujikawa 2006). However, despite
great efforts, internal consistency issues persist in the cosmological
constant description of cosmology (Weinberg 1989), while direct
measurements of any dark matter particles remains elusive (Gaitskell
2004). More recently, the effectiveness of the ACDM model has
come into question with the appearance of statistical tensions
between some cosmic surveys which has taken the form of the
so-called Hy tension (Di Valentino et al. 2021b). One perspective
of the discrepancy is between model-independent measurements of
the Hubble parameter at late times (Riess et al. 2019; Wong et al.
2019) and the predictive power of the ACDM model using early
time measurements (Ade et al. 2016; Aghanim et al. 2018), or it
may be an artefact of some types of measurements (Riess 2019; de
Jaeger et al. 2020; Pesce et al. 2020). Ultimately, the issue may even
take new types of measurements to fully resolve the possible extent
of the tension such as through gravitational wave standard sirens
(Amaro-Seoane, Audley et al. 2017; Baker et al. 2019; Barack et al.
2019).

The growing pressure on the ACDM model (Bernal, Verde & Riess
2016; Di Valentino et al. 2021a,b) has prompted a re-exploration
of possible alternatives to its fundamental formulation (Sotiriou &
Faraoni 2010; Clifton et al. 2012; Dainotti et al. 2021; Krishnan et al.
2021; Saridakis et al. 2021; Colgdin et al. 2022; Ren et al. 2022;
Malekjani et al. 2023). These alternatives are largely built on cor-
rection terms to the Einstein—Hilbert action where the gravitational
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field continues to be communicated by the curvature associated with
the Levi—Civita connection (Misner, Thorne & Wheeler ; Nakahara
2003). On the other hand, there is a growing body of work that
considers torsion rather than curvature as the mode by which gravity
is exhibited on manifolds (Aldrovandi & Pereira 2013; Cai et al.
2016; Krssak et al. 2019; Bahamonde et al. 2021). Teleparallel
gravity (TG) embodies the breadth of theories in which gravity is
based on the torsion associated with the teleparallel connection. The
teleparallel connection is curvature-less and satisfies metricity, and
so all measures of curvature identically vanish irrespective of the
components of the metric. One consequence of this exchange of
connections is that the Ricci scalar, as calculated using the curvature-
less teleparallel connection, will vanish, i.e. R = 0, while its regular
formR (over-circles represent objects calculated with the Levi—Civita
connection) will naturally remain arbitrary in value. Analogous to
the Ricci scalar, TG produces a torsion scalar 7 which is equal to the
regular Ricci scalar up to a total divergence term B, making the action
based on the linear form of the torsion scalar dynamically equivalent
to general relativity (GR), also called the teleparallel equivalent of
general relativity (TEGR).

As in curvature-based gravity models, TEGR can be modified
to form different extensions to standard gravity. In fact, TEGR
can be directly generalized to form f(T) gravity (Ferraro & Fior-
ini 2007, 2008; Bengochea & Ferraro 2009; Linder 2010; Chen
et al. 2011; Paliathanasis, Levi Said & Barrow 2018; Bahamonde,
Flathmann & Pfeifer 2019; Bahamonde, Levi Said & Zubair 2020;
Farrugia, Levi Said & Finch 2020; Bahamonde et al. 2022), which
is a second order gravitational theory that has shown promise in
meeting some observational challenges in both the cosmological
and astrophysical sectors (Iorio & Saridakis 2012; Cai et al. 2016;
Farrugia & Levi Said 2016; Farrugia, Levi Said & Ruggiero 2016;
Deng 2018; Finch & Said 2018). For instance, in Nesseris et al.
(2013) and Anagnostopoulos, Basilakos & Saridakis (2019) both
expansion and growth data sets are used to constrain prominent
models within f{T) gravity. f(T) gravity has also been explored using
the cosmic microwave background (CMB) power spectrum in Nunes,
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Pan & Saridakis (2018) for a power-law model. While in Benetti,
Capozziello & Lambiase (2020), big bang nucleosynthesis data was
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orthogonality conditions, namely
e Egt =64, " E,N =4, )

used to constrain other models.

In addition to the public data sets, survey results can also be used
in conjunction as priors to further analyse their consistency with
said data sets. For instance, in Riess et al. (2019) the SHOES Team
estimates the Hubble constant to be 73.30 & 1.04kms™' Mpc™!
which was reported using Type Ia supernova events (SNIa), while
the HOLiCOW Collaboration’s (Wong et al. 2019) measurement of
73.3J_r}:; kms~'Mpc~! relies on strong lensing from quasars. One of
the lowest reported local values of the Hubble constant comes from
measurements based on using the tip of the red giant branch as a
standard candle with Hy = 69.8 + 1.9km s~ 'Mpc™! as reported in
Freedman et al. (2019). Together with cosmic chronometer (CC),
SNIa, and baryonic acoustic oscialltions, the impact of these priors
on the most studied f{T) gravity models was recently studied in
Briffa et al. (2022). The SNIa data set used in this study relied on
the Pantheon release (PN) which is a compilation of 1048 SNIa
relative luminosity distance measurements spanning the redshift
range of 0.01 < z < 2.3 (Scolnic et al. 2018a). More recently the
Pantheon+ data (PN & SHOES) set has been released which builds
on the Pantheon data set and features 1701 events with a much higher
concentration of data points at lower redshift bins (Riess et al. 2022;
Scolnic et al. 2022; Brout et al. 2022b). This drastic increase in data
points may yield much stronger constraints on cosmological models
beyond ACDM such as f(T) gravity models.

In this work, we perform constraint analyses using PN & SHOES
for the most promising f{7T) gravity models which we then compare
with previous studies using other data sets. This lets us compare
the impact of PN & SHOES with the PN data set. We start by first
reviewing some technical details of TG in Section 2, which is then
followed by a description of the data sets being used in Section 3. Our
main results can be found in Section 4 where we constrain our f{(7T)
gravity models using these data sets. We also present a comparison
of our analyses with the standard model of cosmology in Section 5.
Finally, we summarize our main results and discuss possible future
work in Section 6.

2 TELEPARALLEL COSMOLOGY

TG is sourced by the exchange of the curvature-based Levi—Civita
connectionI"® v (Over-circles are used throughout to denote objects
determined using the Levi—Civita connection) with the teleparallel
connection I'? ,, (Hayashi & Shirafuji 1979; Aldrovandi & Pereira
2013; Bahamonde et al. 2021). The curvature-less nature of the
teleparallel connection means that all curvature-based geometric
bodies will vanish identically (the regular curvature-based objects
remain arbitrary when calculated using the Levi—Civita connection)
when calculated using this connection, and so new objects are needed
to build gravitational theories (Aldrovandi & Pereira 2013; Cai et al.
2016; Krssak et al. 2019).

Curvature-based gravitational models are largely built on the
metric tensor, while TG is most directly expressed through the tetrad
et u (and its inverses E /) and spin connection w* Bu- The tetrad e* u
builds up to the metric through

g =e"e" nap. nap =E\"Eg"gu . (1

where Latin indices represent coordinates on the tangent space while
Greek indices represent coordinates on the general manifold (Cai
et al. 2016). In GR, the appearance of tetrads is not as prominent
as in TG since the tetrad is not the only non-inertial variable in that
description of gravity in GR. As with the metric, the tetrad observes

for internal consistency. The spin connection w* . is a flat spin
connection and is responsible for incorporating the local Lorentz
transformation invariance into the equations of motion, which arises
due to the appearance of the tangent space indices.

The tetrad and spin connection define the teleparallel connection
through (Weitzenboock 1923; Krssak et al. 2019)

ro, =E," (0., + wABMeBU) . 3)

Together, the tetrad and spin connection represent the gravitational
and local degrees of freedom of the system, and retain the diffeo-
morphism and local Lorentz invariance of the equations of motion.
Analogous to the way in which the Levi-Civita connection builds up
to the Riemann tensor, the torsion tensor can be constructed from the
teleparallel connection as (Hayashi & Shirafuji 1979)

7%, =2, 4)

where square brackets denote an antisymmetric operator. Consider-
ing a particular contraction of the torsion tensor, a torsion scalar can
be put together (Aldrovandi & Pereira 2013; Cai et al. 2016; Krssak
et al. 2019; Bahamonde et al. 2021)
1 o 1 o

T := ZT M,Ta‘“’ + ET v
which is equal to the curvature-based Ricci scalar up to a total
divergence term. Thus, the TEGR action is represented by a linear
Lagrangian form of the torsion scalar since (Bahamonde, Bohmer &
Wright 2015; Farrugia & Levi Said 2016)

Tvp.a _ T Tﬁﬂ;s , (5)

e

R=R+T-B=0, ©)

where R = 0 since the teleparallel connection is curvature-less, while

R + Osince this is determined using the Levi-Civita connection, while
the boundary term B is a total divergence term. Thus, the Einstein—
Hilbert action is dynamically equivalent to the representation of a
linear torsion scalar which guarantees identical equations of motion
for the two actions.

As curvature-based gravity, modification of TEGR can be designed
and explored, with the most direct being the arbitrary generalization
of the TEGR Lagrangian to (T) gravity, which we parameterize as
f(T) = —T + F(T) gravity by raising the TEGR action (Ferraro &
Fiorini 2007, 2008; Bengochea & Ferraro 2009; Linder 2010; Chen
et al. 2011; Rezaei Akbarieh & Izadi 2019) through the action

S]:(T) = L /d4x e(—=T + F(T))+ /d4x eLn, @)

2k?

where k2 = 87 G, Ly, is the matter Lagrangian, and e = det (e“ /L) =
/—g is the tetrad determinant. A healthy TEGR exists for the
case when F(T) — 0 and the ACDM model is obtained when this
functional tends to a constant A value. The F(T') equations of motion
are particular in that they are generically second order in nature and so
do not exhibit any Gauss—Ostrogadsky ghosts (Aldrovandi & Pereira
2013). Indeed, the field equations can be written through

W, =e"0, (eE,S,") (=1 + Fr) — E/T", S, (=1 + Fr)

1
+7ES (=T +F(T)
+E,S,"0, (T) Frr
+E, 0,8, (=1 + Fr)=«’E, 0", ®)

where subscripts denote derivatives (Fr = 0F /0T and Frr =
92F/dT?), and ®," is the regular energy—momentum tensor, and
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the superpotential is defined as (Bahamonde et al. 2021)

S =K", =T, + 8, T, = —=S,"", )
where the contortion tensor represents the difference between the
Levi—Civi and teleparallel connections, given by

P TP
KP, =17,

0 1
T, = > (T v+ T/ =T ) . (10)

The individual tetrad and spin connection field equations are then
represented by

Wiy = €20, and Wy, =0. (11

For any metric, a unique tetrad—spin connection pairs exist that are
compatible with a vanishing spin connection, called the Weitzenbock
gauge (Krssak et al. 2019; Bahamonde et al. 2021). Here, Wy, van-
ishes identically while continuing to satisfy the metric equations in
equation (1).

A flat homogeneous and isotropic cosmology is explored in this
work through the tetrad (Tamanini & Boehmer 2012; Kr$sak &
Saridakis 2016)

eA# =diag (1, a(t), a(t), a(t)) , (12)

where a(t) is the scale factor in cosmic time ¢, which was shown to
universally satisfy the Weitzenbock gauge conditions in Hohmann
et al. (2019). The regular flat Friedmann-Lemaitre—Robertson—
Walker metric is reproduced using equation (1) so that the line
element takes the regular form (Misner et al. )

ds? = dr? — a?(t) (dx* + dy* +dz?) . (13)

from which we can define the regular Hubble parameter as H = a/a,
where over-dots refer to derivatives with respect to cosmic time.
Using equations (4) and (6), it turns out that T = —6H? and B =
—6 (3H? + H). Thus, the f(T) gravity Friedmann equations can be
written as (Bahamonde et al. 2021)

T F o«
H*+ —Fr—==—p, 14
+3fr c =3P (14)
. IC2
H(1 = Fr =2TFrr)==—(p+p), (15)

where we denote the energy density and pressure of the total matter
sector by p and p, respectively.

3 OBSERVATIONAL DATA

In this study, we consider the most favourable f{(T) models and test
them against different combinations of observational data sets. For
each f(T) model and data set combination, we perform an Monte
Carlo Markov Chain (MCMC) analysis using the publicly available
EMCEE package available at Foreman-Mackey et al. (2013). The
MCMC sampler constrains the model and cosmological parameters
by varying them in a range of conservative priors and exploring the
posteriors of the parameter space. Therefore, for each parameter,
we obtain its one- and two-dimensional distributions, where the
one-dimensional distribution represents the parameters’ posterior
distribution whilst the two-dimensional one illustrates the covariance
between two different parameters. These are complemented with
their respective 1o and 20 confidence levels as shown in Section 4.
In turn, this allows us to compare the different data sets and analyse
the effects of PN & SHOES with the PN data set.

We devote this section to present and describe the observational
data which will be considered in the analyses below based on the

MNRAS 522, 6024-6034 (2023)

MCMC analysis. Our baseline data set consists of Hubble expansion
data along with a SNIa.

Cosmic chronometers (CCs) — With regards to Hubble parameter
data, we adopt thirty-one CC data points (Jimenez et al. 2003; Simon,
Verde & Jimenez 2005; Stern et al. 2010; Moresco et al. 2012,2016;
Zhang et al. 2014; Moresco 2015). This CC method involves spec-
troscopic dating techniques of passively evolving galaxies, which
enables us to directly obtain observational values of the Hubble
functions at various redshifts up to, z < 2. These measurements are
independent of any cosmological model and the Cepheid distance
scale, however, they are still associated with the modelling of the
stellar ages, which is based on robust stellar population synthesis
techniques. It involves the measurements of age difference between
two passively evolving galaxies at two redshifts. Therefore, Az/At
can be inferred from observations which in turn, makes it possible
to compute H(z) = —(1 + z)~' Az/At. Thus, CCs were found to be
more reliable than any other method that is based on the absolute age
determination of galaxies (Jimenez & Loeb 2002).

The corresponding x 7 estimator is given by

i (H(i, ©) = Honzp)

16
U]-zl(zi) ’ (16)

X =

i=1
where H(z;, ®) are the theoretical Hubble parameter values at redshift
z; with model parameters ® whilst Hg,s(z;) are the corresponding
Hubble data values at z; with observational error of o y(z;).

Type Ia supernovae compilation—The other baseline data set
used for our MCMC analyses includes information obtained from
Type la supernovae. These supernovae occur in binary star systems
and are valuable for cosmological analyses because of their uniform
intrinsic brightness, which allows us to use them as standard candles
to measure distances to distant galaxies. To be more specific, the
difference between the observed apparent magnitude of an object,
m, and its absolute magnitude, M (which is a measure of its intrinsic
brightness) is defined as the distance modulus. At redshift z;, the
distance modulus is given as

w(zi, ®) =m— M = 5log,o[Dr(z;, ©)] + 25, 17)

where Dy (z;, ®) is the luminosity distance defined as

Dua @ =cll+z) [ (s)
o H(,0)

In addition, the apparent magnitude of each SNIla needs to be
calibrated via an arbitrary fiducial absolute magnitude M and thus,
in the MCMC analyses, we can treat M as a nuisance parameter
by marginalizing over it. This is done by using theoretical models
to predict the distance modulus for a given set of cosmological
parameters and comparing these predictions to the observed values
for the SNIa in the Pantheon catalogue. The cosmological parameters
are then constrained by minimizing a x? likelihood specified by
(Conley et al. 2011)

xon = (Au(zi), O C(Auz:), ©)), (19)

where (Au(z;), ©)) = (u(z;), ®) — u(zi)obs and C is the corre-
sponding covariance matrix which accounts for the statistical and
systematic uncertainties.

In this work, we use two SNIa data sets: the Pantheon (PN; Scolnic
et al. 2018b) and Pantheon+ (PN' & SHOES; Scolnic et al. 2022)
compilations, which is a successor to the original Pantheon analysis.
The main difference between the original Pantheon analysis and
the Pantheon+ analysis in cosmology lies in the addition of new
data sets to the latter. While the original Pantheon analysis used a
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compilation of 1048 SNIa samples to study the expansion history of
the Universe, the Pantheon+ analysis includes an even larger number
of 1701 SNIa samples. The term ‘PN* & SHOES’ as referred to in
the Pantheon+ analysis in Brout et al. (2022a), incorporates the
SHOES Cepheid host distance anchors (R22; Riess et al. 2022) in
the likelihood which helps to break the degeneracy between the
parameters M and Hy when analysing SNIa alone. Additionally, the
Pantheon+- analysis covers a wider redshift range of 0.01 < z < 2.5,
compared to the original Pantheon, which does not extend redshifts
lower than z < 0.01. This expanded redshift range allows for an
improved treatment of systematic uncertainties, resulting in better
constrained parameters as will be illustrated in Section 4.

Baryon acoustic oscillations (BAO) — We also consider a joint
BAO data set consisting of independent data points. This BAO
data set includes measurements from the Sloan Digital Sky Survey
(SDSS) main galaxy sample at z.; = 0.15 (Ross et al. 2015), the
six-degree Field Galaxy Survey at ze = 0.106 (Beutler et al. 2011),
and the BOSS DRI11 quasar Lyman-alpha measurement at zegr =
2.4 (du Mas des Bourboux et al. 2017). We also incorporate the
angular diameter distances and H(z) measurements of the SDSS-
IV eBOSS DR14 quasar survey at ze = {0.98, 1.23, 1.52, 1.94}
(Zhao et al. 2019), along with the SDSS-IIT BOSS DR12 consensus
BAO measurements of the Hubble parameter and the corresponding
comoving angular diameter distances at z.; = {0.38, 0.51, 0.61}
(Alam et al. 2017). For these two BAO data sets, we consider the full
covariance matrix in our MCMC analyses.

For the BAO data sets under consideration, we compute the Hubble
distance Dy(z), comoving angular diameter distance Dy(z), and
volume-average distance Dy (z) using

Du(z) = ﬁ (20)

Dw(z) = (1 4+ 2)Da(2), 2n
cz 1/3

Dy(2) = |(1+2° Dax*——| (22)

H(z)

respectively, where Da(z) = (1 + 2)72Dy(z) is the angular diam-
eter distance. Using the reported BAO results, we calculate the
corresponding combination of parameters G(z;) = Dv(z;)/rs(za),
r5(za)/Dv(z2:),Du(z2:),Dm(z:)(rs, fia(za)/1s(2a)), H(zi)(rs(za)/ s, fia (2a))s

Da(2:)(rs,64(z4)/75(zq)) for which the comoving sound horizon at
the end of the baryon drag epoch at redshift z4 ~ 1059.94 (Aghanim
et al. 2020) is computed by

*© ¢(2)
H(Z)

ry(z) = dz

Z

1 /1/(1+z) da
3 a2H(a)\/1 + [392%.0/(42,.0)] a

where we have adopted Q2,0 = 0.02242, Q, o = 2.4697 x 1073
(Aghanim et al. 2020), Ty = 2.7255 K (Fixsen 2009), and a fiducial
value of r; f4(z4) = 147.78 Mpc.

The corresponding x? for the BAO data is calculated using

(23)

XBa0(©) = AG(z;, ©) CroAG(zi, ©) (24)

where AG(z;, ®) = G(z;, ®) — Gops(z;) and Cgpp is the covariance
matrix of all the considered BAO observations.

4 RESULTS

In this section, we present and analyse the results following the
methodology outlined in Section 3 and using the observational

6027

data previously discussed. Each subsection focuses on the most
promising models of f{T), presenting contour plots of the constrained
parameters with 1o and 20 uncertainties, along with corresponding
tables with final results. These models have gained prominence in
literature and are frequently studied due to their ability to mirror
very well our cosmological history. In all tables and posterior plots,
we include results of the Hubble constant H, the current matter
density parameter €2, together with the model parameters. This
will allow us to analyse how the different independent data sets and
cosmological models impact the Hubble tension. We also provide
a brief discussion of the most noteworthy findings, highlighting the
differences between the PN and PNt & SHOES.

4.1 Power Law Model

The power-law model, henceforth referred to as f CDM, which was
introduced by Bengochea & Ferraro (2009), proposes an alternative
explanation for the observed acceleration of the late-time Universe
that does not involve dark energy. The model introduces a modifica-
tion function F,(T'), which has a power-law form with two constant
parameters «; and p; specified by

Fi(T) = o (=T, (25)

The constant «; can be calculated using the Friedman equation equa-
tion (14) at current times
o = (617)! " L Smo — o (26)
1—2p,

where 2,, 9 and €2, are the density parameter for matter and radiation
at current times, respectively. Thus, instead of introducing two new
parameters as in the original equation, only one new model parameter,
p1, is required for the fyCDM model, making it a simpler and more
elegant model. The value of p; can be obtained by applying the
MCMC analyses to observational data.

The Friedmann equation for the fyCDM model can, therefore, be
obtained by substituting the above equation in equation (14) such
that

E*2) = Quo(l +2° + Q01 + 2" + (1 — Qo — L.0)E*'(2),
@27

which is not solvable analytically in terms of the normalized Hubble
parameter E(z) := % For this reason, we must utilize numerical
methods to determine the value of E(z) at each redshift point. Thus,
for each iteration of the MCMC analysis, we solve for each redshift
point at which observations exist. It is worth noting that for p; =
0, equation (27) reduces to ACDM, whereas for p; = 1, the GR
limit is recovered as the additional component in the Friedmann
equation produces a rescaled gravitational constant term in the
density parameters. The objective is to obtain values of Hy, 2,0,
and p, that provide the best fit to the observational data using the
MCMC analyses.

The constraints on the specified parameters for f; CDM model are
shown in Fig. 1. The figure shows both the confidence regions and
the posteriors for different combinations of observational data sets.
Specifically, the figure shows the results for data sets that include ei-
ther the PN catalogue or the PN & SHOES. Upon closer examination
of the posteriors, it is evident that the parameters from the data set
combinations that include PN & SHOES exhibit tighter constraints,
with the H, parameter showing notably improved precision. On the
other hand, the contour plots for the CC+PN and CC+PN* & SHOES
data set combinations display a degeneracy between the H, parameter
and the p; parameter. However, once the BAO data set is included
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Figure 1. Confidence contours and posteriors for ff CDM for the parameters
Hy, 20, and p;. The blue and green contours represent data set combinations
that include PN data set, while the red and purple contours show combinations
that also include the PN* & SHOES data sets.

this degeneracy breaks and reveals an anti-correlation between the
two parameters. It is noteworthy that the CC+PN* & SHOES data
set combination shows a degeneracy between the €2, parameter
and H,, while for all data set combinations an anti-correlation is
observed between the p; parameter and the €2,, o parameter. However,
the strength of this anti-correlation is less pronounced for the data
sets that include the BAO.

The precise values for the cosmological and model parameters,
including the nuisance parameter M, for f{CDM are shown in
Table 1. It becomes clear that the values of H, for the data set
combinations that include PN* & SHOES are relatively higher than
their corresponding Hy values. This finding is consistent with the
high value of H, obtained by the SHOES team (R22), which
reports Hy = 73.30 £ 1.04kms~! Mpc~! (Riess et al. 2022). The
results show that the highest values of H, are obtained for the
CC+PN* & SHOES with a value of Hy = 71.88%05 kms™'Mpc ™.
Interestingly, in this scenario the €2, parameter reaches a minimum
value, implying that most of the energy in the Universe appears as
an effective dark energy, in line with the high value of H.

The inclusion of PN appears to better constrain the values of py,
and this effect is even more pronounced with the addition of the BAO
data. However, for the PN & SHOES data set, the p; parameter is
found to be within 1o of the corresponding ACDM value, whereas
it moves to 20 for the PNt & SHOES combination.

The next section will provide a more detailed statistical analysis
of these findings, including a comparison with the ACDM model.

4.2 Linder Model

The Linder model, henceforth referred to as f,CDM, was specifically
designed to account for the late-time acceleration of the Universe
without the need for dark energy. This model incorporates a torsion
scalar, 7, and is described by the equation

Fo=aTy (1—exp [-p2v/T/Th] ) . (28)

where o, and p, are constants and 7| represents the current value

of the torsion scalar, that is T'|,—,, = —6H02. The constant o, can be

determined by evaluating the Friedmann equation at current times,

which gives

_ 11— S2m,0 - Qr.O
(14 pper—1°

Therefore, the only new model parameter in the ,CDM model is p;.

Using the above equations, the Friedmann equation for this model
can be defined as

o (29)

- Qm.[) - Qrg
(p2+ De~r> — 1
(1 + p2E@)exp[-p2E@)] = 1] . (30)

This model can be reduced to ACDM when p, — oo. However, to
ensure numerical stability, the analysis is performed for 1/p,, so that
this limit becomes 1/p, — 0F.

In Fig. 2, the posterior and confidence levels of the constrained
parameters for f,CDM are displayed. The blue and green contours
correspond to the combination of data sets that includes the PN
sample, whereas the red and purple contours represent the combina-
tions that consist of the PNt & SHOES samples. The /,CDM model
shows similar trends to the fy CDM model, with tighter constraints for
PN & SHOES, particularly for the Hubble constant Hy, especially
when the BAO data set is included. The CC+PN* & SHOES+BAO
data set is the most constrained, indicating the highest precision. The
anti-correlation between €2, and é parameters remains evident in

this model, particularly for data sets including the PN* & SHOES
catalogue.

Table 2 presents the exact numerical values of the parameters
shown in Fig. 2, including the nuisance parameter M. The results
show that the estimated values of H, are comparable to those obtained
in the fjCDM model. However, as the /,CDM model is specifically
designed to predict an accelerating Universe in the late-time regime,
the inferred values of the matter density parameter €2, are slightly
lower compared to the previous model. Therefore, in this case, the
P2 parameter in the exponential term is allowing for a more flexible
description of the Universe, and the data constraints favour a lower
matter density to be consistent with the observed acceleration. The

E*(2) = Qu, (1 + 27+ @, (1 +2)* +

Table 1. Results for the fj CDM (power law) model, where the first column lists the data sets used to constrain
the parameters. The second to fourth columns display the constrained parameters, namely Hy, $2,,0, and py,

while the last column shows the nuisance parameter M.

Data sets Ho [km s~! Mpc™!] Qo 4 M
CC+PN 68.6711 03521006  —0.22704%  —19.39070032
CC+PN+BAO 67.1+1.5 0.29470012  0.067012  —19.435 + 0.044
CC+PN* & SHOES 71.8810% 0.266700%  0.40703%  —19.295 £0.025
CC+PN* & SHOES+BAO 71.55108 0.3347001% —0.113709%8  —19.3097002¢
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Figure 2. Confidence contours and posteriors for f,CDM for the parameters
Ho, Q20,and L The blue and green contours represent data set combinations
that include PN data set, while the red and purple contours show combinations
that also include the PN & SHOES data sets.

CC+PNT & SHOES data set combination yields the lowest value of
Qmo, which is @, 0 = 0.269t8;8g§. In tandem, the highest value for
the Hubble constant is obtained for the same data set combination
giving a value of Hy = 71.86750¢ kms™'Mpc~!

By design of the model itself, the parameter iz is positive
throughout. In comparison to the f; CDM model, the parameter values
of f,CDM tend to fall within 20 of the ACDM limit instead of 1o.
Therefore, the f,CDM model is slightly further away from strongly
supporting the ACDM model.

The inclusion of the PN' & SHOES data set has a noticeable impact
on the MCMC runs and the resulting model parameters. While the
results are still in agreement with those obtained from the PN data set
alone, the uncertainties in the parameters, especially the Hubble con-
stant, are significantly reduced. This makes the PN* & SHOES data
set useful for comparative purposes with ACDM. Further compar-
isons and statistical analyses with ACDM are discussed in Section 5.

4.3 Exponential Model

The third model is motivated by works in f R) gravity (Linder 2009),
in which an exponential model is again taken into consideration.
Indeed, Nesseris et al. (2013), propose a variant of the Linder model
where the function F3 is given by an exponential function with two

6029

--CC + PN
—CC + PN 4+ BAO
CC + PNT & SHOES
-=CC + PN & SHOES + BAO

9., 0 O
% e %

Qo

g
%2, %,

a9

9
%o

g

77
%2, %

9,0
e

1757

|

P @R DD O DD RS 5 > o
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Figure 3. Confidence contours and posteriors for f3CDM for the parameters
Ho, Q20,and % . The blue and green contours represent data set combinations
that include PN data set, while the red and purple contours show combinations
that also include the PN & SHOES data sets.

constants o3 and p3 as parameters
F3 =a3Ty(1 —exp[—psT/To)) . (1)
The constant o3 can be determined by evaluating the Friedmann
equation at current times and is given by
1 — Qo — 2
0= 00 (32)
(1 +2ppe? — 1

The Friedmann equation for this model is therefore obtained using
equation (14) and substituting the above equations such that

2 _ 3 4 B Qm,o B Qro
B @)= Qo (142 + @y 142" + g By
[(142p3E*(2)) exp [-p3E*(2)] — 1] . (33)

The behaviour of this model is similar to /,CDM in the sense that
as p3 — 00, it tends towards ACDM. For numerical stability, the
analysis is performed in terms of 1/p3 instead, such that the limit of
ACDM corresponds to 1/p3; — 0%,

The posterior and confidence levels for the f;CDM model are
presented in Fig. 3. Even though this model is a variant of the Linder
model, the removal of the square root has had a significant impact
on the constraints, in particular on the €2,,o parameter. Unlike the
previous models, the degeneracy between Hj and €2,,o parameters

Table 2. Results for the /,CDM (Linder) model, where the first column lists the data sets used to
constrain the parameters. The second to fourth columns display the constrained parameters, namely H,

Q1,05 and , while the last column shows the nuisance parameter M.
Data sets Hy [km g1 Mpc"] Qo i M
+1.8 +0.031 +0.22 +0.117
CC+PN 68.7+18 0.29810931 0111022 —19.433+0:117
CC+PN+BAO 66.9% 12 0.294+0016 0227012 —19.387922
+0.97 +0.046 +0.29 +0.048
CC+PN™ & SHOES 71.867097 0.2697094¢ 0397022 —19.28770038
CC+PN* & SHOES+BAO 70.79 + 0.71 0.32870013  0.05275 0% —19.32270:02¢
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Table 3. Results for the 3CDM model, where the first column lists the data sets used to constrain the
parameters. The second to fourth columns display the constrained parameters, namely Hy, 2,0, and #,

while the last column shows the nuisance parameter M.

Data sets Hy [km s~! Mpcfl] Qo i M
1.9 +0.082 +0.054
CC+PN 69.6737 0.286+0.022 0.0650:082  —19.36770032
0.94 0.101 0.032
CC+PN+BAO 67.3570:97 0.2894+0.013 0.043%000¢  —19.4417003
CC+PN* & SHOES 71.80 £+ 0.89 0.307F0920 0201759 —19.302+0:033
CC+PN* & SHOES+BAO 70.807070 0.329+£0.012 0.0867093°  —19.259 +0.077

is no longer significant, but the correlation between £2,,0 and - is
emphasized (for clarity we have added the prior ranges for all models
in Appendix C).

The constrained values for the parameters of the f;CDM model are
presented in Table 3 which exhibit stricter and tighter confidence lev-
els in the density parameter. Notably, the highest value of Hj is once
again obtained for the CC+PN" & SHOES data set combination,
with Hy = 71.80 4 0.89, kms~'Mpc~!. The value of H, obtained
for CC4+PN™ & SHOES in the f;CDM model is consistent with the
previous corresponding values. However, the difference between the
H, values for CC+PN* & SHOES and CC+PN* & SHOES+BAO is
slightly larger than that obtained for fiCDM. This implies that the
value of Hy for CC+PN*' & SHOES+BAO is slightly lower in the
3CDM model.

With regards to the p; parameter, the resulting values are closer to
the ACDM limit when compared to the previous model. However,
the uncertainties still suggest a deviation at the 2o level from ACDM.
These results obtained will be further analysed and statistically
compared with ACDM in the next section.

5 MODEL COMPARISON

We evaluate the performance of each f;CDM model and data set by
computing their respective minimum x 2, values, obtained from the
maximum likelihood L, since Xr%lin = —21n L. Additionally, we
compare the models against the standard ACDM by using the Akaike
Information Criteria (AIC), which accounts for both the goodness of
fit (measured by x2.,) and the complexity of the model (determined

by the number of parameters n). The AIC is defined as
AIC = y2, +2n. (34)

In practice, a lower value of the AIC indicates that a model fits
the data better, while also taking into account the complexity of the
model. The AIC penalizes models that have more parameters, even
if they provide a better fit to the data. This means that a model with
a lower AIC is preferred over a model with a higher AIC, as long as
the difference in AIC is significant enough.

In addition, we also examine the Bayesian Information Criterion
(BIC), which is similar to AIC but it puts more weight on the
complexity of the model than AIC does and is defined as

BIC = g, +nlnm, (35

where m is the sample size of the observational data combination.
The BIC has the same goal as the AIC, that is, to balance the fit of
the model to the data against the complexity of the model. However,
the BIC tends to penalize models with more parameters more heavily
than AIC does as it takes the logarithm of the sample size, so the
penalty for more parameters becomes more severe as the sample
size increases. In practical terms, comparing the BIC values of two
models can help determine which one is more supported by the data,
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Table 4. Results for each model that include X,fﬁn, AIC, BIC, and their
differences relative to the ACDM model (i.e. AAIC and ABIC). The left-hand
side of the table presents the results obtained from the CC+PN data sets, while
the right-hand side shows the results obtained from the CC+PN* & SHOES
data sets.

Model CC+PN CC+PN* & SHOES
Xam  AAIC ABIC  x2,  AAIC ABIC
ACDM 104149 0 0 154830 0 0
fiCDM 104094 144 643 154664 034 5380
£,CDM 104149 200 698 154667 037 582
£;:CDM 104504 554 1053 154677 047 593

Table 5. Results for each model that include X,%ﬁn, AIC, BIC, and their
differences relative to the ACDM model (i.e. AAIC and ABIC). The left-
hand side of the table presents the results obtained from the CC+PN+BAO
data sets, while the right-hand side shows the results obtained from the
CC+PN* & SHOES+BAO data sets.

Model CC+PN+BAO CC+PN* & SHOES+BAO
Xam  AAIC ABIC  x2,  AAIC ABIC
ACDM 105746 0 0 156068 0 0
£iCDM 105713 168 668 155924 055  6.02
£,CDM 105652 1.06 606  1560.68 199 746
/:CDM 106055 509 1009 1560.68 199  7.47

in which models with lower BIC values are favoured as long as the
difference is sufficiently large.

To compare the performance of various models using different
combinations of data sets, we calculate the differences in AIC and
BIC between each model and the ACDM model as a reference model
with which to compare. The constrained parameters for ACDM
model for each data set combination can be found in Table A1 in the
Appendix A. We compare with the ACDM model as a comparison
between each model and the standard model of cosmology. Smaller
values of AAIC and ABIC suggest that the model with the chosen
data set is more similar to the ACDM model, indicating better
performance. In all cases, the differences are shown with respect to
the ACDM reference model so that AAIC = AICj,cpm — AICAcpwM,
and similarly for ABIC. Indeed, Tables 4 and 5 provide the values for
various statistical measures, such as x2.,, AAIC = Ax2. + 2An,
and ABIC = Ax2,, + AnInm, for each model. Specifically, Table 4
compares the models that use CC+PN with the ones that use
CC+PN™ & SHOES, whereas Table 5 compares the models that use
CC+PN+BAO with the ones that use CC+PN™ & SHOES+BAO.

Upon initial examination, it appears that the PN & SHOES results
in significantly lower values of AAIC and ABIC, despite the
higher x2,, value due to the increased number of data points. It
is worth noting that the x2,, values for the f{T) models consid-
ered are slightly lower than that of the ACDM model for the
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Figure 4. Distances, in units of standard deviations (o), between the
constrained values of Hy and the ACDM value for different combinations
of data sets, represented by different colours.
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Figure 5. Distances, in units of standard deviations (o), between the
constrained values of Hy for different combinations of data sets, represented
by different colours and the P18 value.

CC+PN' & SHOES data set. Moreover, the values of AAIC and
ABIC for the CC+PN" & SHOES are very close, indicating a
stronger data set in which the constrained parameters are similar
to those produced by the ACDM model. It seems that while CC+PN
observations support the ACDM model, the inclusion of PNT &
SHOES data does not provide strong evidence in favour of the ACDM
model over the considered f(T) cosmological models given that both
AAIC and ABIC are statistically comparable. Incorporating the BAO
data set with the data sets reveals a similar trend, but to a lesser extent.
However, for the f, CDM model, the values for both AAIC and ABIC
are higher for CC+PN™" & SHOES+BAO, indicating that this model
is not strongly supported by the observational data in comparison to
the ACDM model.

The previous analysis is further supported by Fig. 4, which
compares the constrained Hy values obtained from the f{7) models
to those obtained from the corresponding ACDM model. The
figure shows that, for each data set combination represented by
different colours, the Hy values obtained from the f{T) models are
within 1o of the corresponding ACDM values. The plot provides a
visualization of the variations in H, estimates across different data
sets, with greater distances indicating larger discrepancies between
the constrained and ACDM values of Hy. Therefore, the plot suggests
that the Hy values obtained using the f{T) models are comparable to
those obtained using the ACDM model.

In contrast, Fig. 5 shows the difference in o units between the
constrained Hy values obtained from the MCMC analysis and the
Planck 18 (P18) value of Hy = 67.4 £ 0.5kms ~'Mpc~! (Aghanim
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Figure 6. Values of the constrained model parameter p; which corresponds
to p; for fiCDM, i for /,CDM and % for f;CDM. Each colour represents
a different data set combination while the orange line represents the ACDM
value, i.e. p; = 0.

et al. 2020). In this case, we also consider the PNT & SHOES data
set on its own, for which the constrained H values for each model
are shown in Table B1 in the Appendix B. The plot clearly shows the
50 tension between the PN™ & SHOES data set and the P18 value
under the ACDM model. However, the inclusion of the CC data
set at late-times appears to reduce the tension to around 3c—4o for
all models. Furthermore, inclusion of the BAO data set significantly
reduces this tension, as expected, since the BAO data set captures
the effects of the early Universe in agreement with the Planck CMB
data set.

Finally, we observe the effects that the PN* & SHOES has on
the model parameter p;, in the whisker plot Fig. 6. The results
indicate that the use of PNT & SHOES leads to a more tightly
constrained estimate of p; compared to other methods, as previously
observed. Notably, the CC4+PN and CC4+PN+BAO methods pro-
duce p; values that fall within 1o of the ACDM value. However,
for CC+PN' & SHOES, this is not necessarily the case as the
estimated p; values do not consistently fall within 1o of the ACDM
value.

6 CONCLUSION

In this work, we have presented a constraints analysis that examines
the behaviour on the parameters of the PN' & SHOES over the PN
data set. We evaluate three prominent models in f(7T) gravity and
probe their performance against the two observational data sets by
considering different data set combinations. Our primary objective
was to compare the results obtained from the PNt & SHOES data sets
to those of the PN catalogue. We aimed to evaluate the differences
in the outcomes of these data sets and assess their impact on
the performance of the f{T) gravity models under consideration.
Indeed, for each model, we performed a full MCMC analysis
obtaining observational constraints on the cosmological parameters
for all different combinations of data. Additionally, we compared
the performance of each model and data set to the standard model
of cosmology using statistical indicators such as AIC and BIC.
Finally, in light of the increasing tensions between cosmological
observations, we have presented how the H, value compares the
corresponding ACDM value and also with the P18 value.

We evaluated the performance of three models, namely f; 3CDM,
in which a continuous ACDM is present, and a specific setting
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of an additional model parameter recovers a constant cosmological
constant contribution. For all models, the posterior and confidence
contours immediately reveal the PN* & SHOES data set produced
tighter constraints for the model parameters compared to the PN
data set. Additionally, for all models considered, the PN™ & SHOES
data set produced higher values of Hy due to its composition of
the PN & SHOES catalogue and the SHOES Cepheid host distance
anchors, which were consistent with previous SHOES team results
(R22). Notably, we obtained a consistent value of Hy across all
models for all different data set combinations. However, concerning
the €2,, o parameter, f,CDM and f;CDM models produce lower values
than the f;CDM model. The additional model parameter p;, for the
PN data set mostly fall within 1o of the ACDM model. However,
with regards to PN* & SHOES they are mostly out of the 1o but
within the 20 range.

In Appendix A, we present the results obtained from the ACDM
model, which we use for statistical comparisons. Our analysis
revealed that the models under consideration are generally consistent
with the ACDM model. Indeed, the statistical indicators, clearly in-
dicate that the PN' & SHOES is a stronger data set as the constrained
parameters are close to those produced by the ACDM model. In
addition, the information criteria AAIC and ABIC suggest that the
CC+PN data support the ACDM model, whereas the PNt & SHOES
data set does not provide strong evidence that supports the ACDM
model over the (T) cosmological models, as indicated by their
relatively small values.

Finally, incorporating the CC data with the PNt & SHOES data
set reduces the Hj tension to around 3o (as illustrated in Fig. 5).
Additionally, including the BAO data set also has an impact on the
H, values, which are slightly reduced due to the effects from the early
Universe. However, the contour plots in the triangular plots reveal an
interesting point. When the BAO data set is included, the degeneracy
between the parameters Hy and €2, is broken, as demonstrated by
the green and purple contours. Instead, a correlation between these
parameters is revealed. This is an important degeneracy, and indeed
it appears in other areas of cosmology such as in CMB measurements
Kable, Addison & Bennett (2019). The core source of the correlation
between these parameters comes from how the matter density of the
Universe correlates with the expansion velocity. Similarly, an anti-
correlation between the Hj and p; parameters is revealed when the
BAO data set is included.

Therefore, our analysis provided insights into the behaviour of the
PN and the PN & SHOES data sets and the performance of different
models in f(T) gravity. Our results suggest that the PN & SHOES
data set produces tighter constraints for model parameters and higher
values of Hy compared to the PN data set, and the inclusion of the
CC and BAO data sets have a significant impact on the parameter
degeneracies and tension in Hy. Overall, our analysis suggests that
the f{T) gravity models considered in this study provide a valuable
framework for future investigations of modified gravity theories. We
also intend to extend this work by considering CMB data frame from
surveys such as the Planck Mission in order to be able to study the
early phases of the Universe including analysis of the effects that
such models would have on inflationary scenarios, for example.
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APPENDIX A: ACDM MODEL

In Section 5, we provide comparisons between all f; models and
the respective ACDM MCMC runs. To this end, we provide here
the results for ACDM. The plot in Fig. Al display the posterior
distributions ad confidence regions for the different combinations of
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data sets. The precise values of such runs are shown in Table A1, in
which as expected convergence for each data set combination occurs
very fast giving nearly Gaussian uncertainties in each case.

CC + PN---

® CC + PN + BAO—
CC + PN™ & SHOES

_ CC + PN" & SHOES + BAO -~

Qo

> & & Q v >
Hy [kms™! Mpc™}]

Figure A1l. Confidence contours and posteriors for ACDM for the parame-
ters Ho and €2, 0. The blue and green contours represent data set combinations
that include PN data set, while the red and purple contours show combinations
that also include the PN & SHOES data sets.

Table A1. Results for the ACDM model, where the first column lists the data
sets used to constrain the parameters. The second to fourth columns display
the constrained parameters, namely Hy, €2, 0, and the nuisance parameter M.

Data sets Hy [km s~! Mpc™'] Qo M
CC+PN 68.611% 0.306 +0.021  —19.383*00%
CC+PN+BAO 67.59105% 0.297 £0.013  —19.4197003%
CC+PN* & SHOES 71887058 0.315+0.016 —19.298 +0.025
CC +PN* & SHOES+BAO 70.7610.5 032940013 —19.326*9%4

APPENDIX B: PNt & SHOES PARAMETER
CONSTRAINTS

To investigate the impact of the different data set combinations on
the Hy tension, we performed an MCMC analysis using only the
PN & SHOES data set as well. We then compared the deviation
in units of o between the resulting H, values for each model and
each data set combination with that of P18, as shown in Fig. 5.
The constrained parameter values for each model obtained from this
MCMC analysis are presented in Table B1.

Table B1. Results for the constrained parameters using the PN* & SHOES
data set for each model considered in the analysis section.

Model  Hy [km s~! Mpc~'] Qo Di M
ACDM 734+ 1.1 03347008 - —19.247 £0.033
fiCDM 733+ 1.0 0.331+0:0% 0.28%022  —19.248+0:030
£>CDM 73250 0.318709%3 0.33%032 _19.259+0-044
/;CDM 732+ 1.1 0.30810:932 0.337033  —19.22510:040
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APPENDIX C: MCMC ANALYSIS PRIORS

The MCMC analyses were conducted with Gaussian distributions
over the priors. The common parameters assume common prior
ranges with the Hubble constant given by 50 < Hy < 100, while
the matter density parameter takes on the range 0.1 < €2,,0 < 0.9. On
the other hand, the model specific parameters take on the following
ranges:

—l<p <1, (C1)
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O<pr<l1, (C2)

O0<ps<l1. (C3)
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