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Abstract
For positive integers n and k, the generalized Petersen graph GP[n, k] is the graph on the 2n vertices {uo, u1,...,un—1,
X0, X1, ..., Tn—1} and the edges {{u;, x:}, {ui, uit1}, {zi,zi+x}}, where i = 0,1,...,n — 1, addition modulo n. The crossing

number of a graph G is defined as the least number of crossings of edges of G when G is drawn in a surface, which in our case
will be the Euclidean plane. We prove a conjecture presented by Zhou and Wang [Int. J. Math. Comb. 4 (2012) 116-123] on
the crossing number of GP[3k — 1, k] and derive a quick way to check if a result by Watkins can be used to establish whether
two generalized Petersen graphs on different parameters are isomorphic.
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1. Introduction

The study of crossing numbers originated in Turan’s Brick Factory Problem. In this problem, Turén [7] asked for a factory
plan that minimized the number of crossings between tracks connecting brick kilns to storage sites. Mathematically this
problem can be formalized as asking for the crossing number of a complete bipartite graph. Zarankiewicz [10] claimed
that he had solved this problem in 1953, but a flaw in his argument that unvalidated his result was later discovered
independently by Ringel and Kainen (see [5]).

A graph G = G(V, E) of order n is composed of a set V' of n vertices and a set F of m edges consisting of unordered pairs
of vertices. A drawing of a graph G is a function f that maps G into a surface, which in our case will be the Euclidean
plane, such that each vertex v € V(@) is mapped to a point f(v) in the plane, and each edge {u,v} € E(G) is mapped to a
polygonal path [f(u), f(v)] in the plane. For simplicity’s sake, we shall “abuse” terminology by referring to the points and
curves in a drawing of G as the vertices and the edges of the graph G. A good drawing is one in which no edge crosses
itself, an edge contains no vertex except its end points, no pair of edges touch each other without intersecting, any two
edges have at most one point in common (which could either be a vertex or a crossing) and no three edges have a common
point other than a vertex. A good drawing D of a graph G exhibiting the least possible number of crossings is said to be an
optimal drawing of G. The number of crossings in such a drawing D is defined as the crossing number of G and is denoted
by vp(G), or simply by v(G). A graph G is planar if G can be drawn in the plane without any crossings. Such a drawing of
G is called a plane drawing or a planar embedding of G.

2. Main results

Generalized Petersen graphs were first studied by Coxeter [2] and later named by Watkins [8]. The generalized Petersen
graph GP[n, k| consists of an n-circuit, n “spokes” incident to the vertices of the n-circuit, and another circuit or circuits
(according to the values of n and k) joining the vertices of every k*" spoke. More formally, we have the following.

Definition 2.1. The generalized Petersen graph G Pn, k| is the graph with vertices {ug,u1,...,un—1}and {zg,z1,...,Tp_1}
and edges {u;,u;11} (called outer edges), {u;,x;} (called spokes) and {x;,z;,1} (called inner edges), where i =0,1,...,n—1,
addition is taken modulo n.

A useful observation is that the crossing number of isomorphic graphs is identical, that is, if G; ~ G5, then v(G1) =
v(G3) This is very often used when dealing with generalized Petersen graphs, since two graphs on different parameters,
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which may at first seem to be totally different, may turn out to be exactly the same. In particular, Watkins [8] proved the
following results.

Lemma 2.1. (Watkins’ Isomorphism Results [8])
1. GPIn,k] and GP[n,n — k] are isomorphic.
2. GPIn, k1] and GP|n, ks| are isomorphic if kiks = 1 mod n.

A direct corollary of the above lemma is that if k1 k2 € {1, —1} (mod n) then GP|n, k] is isomorphic to GP[n, ks].
The crossing number of various families of generalized Petersen graphs has been determined by different authors (see
for example, [1,3,9]). Of importance to us are the following results by Fiorini, Richter and Salazar.

Theorem 2.1. [4,6] Consider GP[n,3] and set n = 3m+h where h € {0,1,2}. Then we have v(GP|[7,3]) = 3, v(GP[9,3]) = 2,

and
m ifh=0,m > 4.

v(GP[3m+h,3]) =<m+3 ifh=1,m > 3.
m+2 ifh=2,m>2.

Zhou and Wang in [11] used a detailed case-by-case argument to obtain an upper bound and a lower bound for the
crossing number of GP[3k — 1, k]. Their result, quoted also in the survey [1], is presented in Theorem 2.2 below.

Theorem 2.2. [11] Consider GP[3k — 1,k] for k > 3. Then,
k<v(GP[3k —1,k]) <k+1.

In [11], the authors also conjectured that v(GP[3k — 1,k]) = k + 1, for £ > 3. In the next theorem, we prove their
conjecture and a further result by using Lemma 2.1.

Theorem 2.3. v(GP[3k — 1,k]) =k + 1 and v(GP[3k + 1,k]) = k + 3, where k > 3.

Proof. Consider

v(GP[3k —1,3]) = v(GP[3m +2,3]) (fork=m+1)
=m+2 (by Theorem 2.1)
=k+1.

However GP[3k — 1, k] ~ GP[3k — 1, 3] since 3k = 1 mod (3k — 1), and thus v(GP[3k — 1,k]) = k + 1.
Similarly, GP[3k + 1, k] ~ GP[3k + 1, 3] since 3k = (—1) mod (3k + 1) and thus v(GP[3k + 1,k]) = k + 3.
O

In the rest of this work, we derive a quick way how to check if two generalized Petersen graphs on different parameters
are isomorphic by applying Lemma 2.1. More precisely, given two integers k and ¢, we determine which values of n satisfy
Watkins’ conditions so as to establish if GP[n, k] and GP[n, {] are isomorphic.

Theorem 2.4. Given k and ¢, let « = ged(k —1,¢— 1) such that k = ap+ 1 and ¢ = at + 1, for positive integers p and t. Then
GPIn, k] is isomorphic to GP[n, ] if n = %(apt +p+t)and n > 2max{k, (}, for any positive integer ~.

Proof. We remark that since Kk — 1 = ap and ¢ — 1 = «t, where o« = ged(k — 1, — 1), then p and ¢ are relatively prime
positive integers. As GP[n,k] ~ GP[n,n — k], then we can assume that n > 2k and similarly n > 2¢, implying that
n > 2max{k,¢}. By Lemma 2.1, if &/ = 1 mod n then GP[n, k] ~ GP[n,¢]. Thus, for some positive integer v, we have
yn+1 =kl = a’pt + ap + at + 1. Hence yn = o®pt + ap + ot, implying that n = S(apt +p+1). O

A congruent argument is used to prove Theorem 2.5 when k¢ = —1 mod n. The proof is omitted here as it follows the
same lines as that of Theorem 2.4.

Theorem 2.5. Given k and ¢, let o = ged(k — 1,£ — 1) such that k = ap+ 1 and ¢ = at + 1 for positive integers p and t. Then
GPIn, k| is isomorphic to GP[n,{] if n = w and n > 2max{k, (}, for any positive integer ~.
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3. Applications

We remark that applying Theorem 2.4 for the case when ¢ = 3 and any k, we get that

6, ifk<?2
n > 2max{k,3} =

2k, ifk > 3.

which implies that
3, ifk=1
3k—1
y= <q2 ifk =2
n

3L ifk > 3.

Thus, the cases when k < 2 do not arise since + is a positive integer. In all other cases v = 1. Also,

1, ifkis even.
a=ged(k—1,2) =
2, if kis odd.

Thus, when kisevenand k > 4,p=k —1,¢t =2 and v = 1, implying that n = 3k — 1. On the other hand, when £ is odd and
k>3,p= %, t =1 and v = 1, implying that n = 3k — 1 as well. Hence the first result of Theorem 2.3 follows immediately.
Similarly, it can be shown that the second result of Theorem 2.3 follows by Theorem 2.5.

Given particular values of & and /¢, an easy way how to find all n such that k¢ = +1 mod n is illustrated in the following
example. For instance, if £ = 31 and ¢ = 21, we can determine all the values of n such that GP[n,31] ~ GP|n,21]. We note
that « is ged(20,30) = 10. Thus p = 3, ¢ = 2 and n > 2 max{k, ¢/}, which implies that n > 62. By first applying Theorem 2.4,
n = Gi—o and thus the possible values of v are 1, 2, 5 and 10 implying that n is 650, 325, 130 and 65, respectively. Then,
applying Theorem 2.5, n = 6%2 resulting in the possible values of « being 1, 2 and 4 implying that n is 652, 326 and 163,
respectively. Therefore GP|[n,31] ~ GP[n, 21| provided that n € {65,130, 163, 325, 326, 650, 652}.
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