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Abstract  

 

To clarify the cellular mechanism of cortical porosity induced by intermittent PTH 

administration, we examined the femoral cortical bone of mice that received 40g/kg/day (four 

times a day) hPTH [1-34]. The PTH-driven cortical porosity initiated from the metaphyseal 

region and chronologically expanded toward the diaphysis. ALP-positive osteoblasts in the 

control mice covered the cortical surface, and endomucin-positive blood vessels were distant 

from these osteoblasts. In PTH-administered mice, endomucin-reactive blood vessels with 

TRAP-positive penetrated the ALP-positive osteoblast layer, invading the cortical bone. 

Statistically, the distance between endomucin-positive blood vessels and the cortical bone 

surface abated after PTH administration. TEM observation demonstrated that vascular 

endothelial cells often pass through the flattened osteoblast layer and accompanied osteoclasts 

in the deep region of the cortical bone. The cell layers covering mature osteoblasts thickened 

with PTH administration and exhibited ALP, SMA, VCAM1, and RANKL. Within these cell 

layers, osteoclasts were found near endomucin-reactive blood vessels. In PTH-administered 

femora, osteocytes secreted Dkk1, a Wnt inhibitor that affects angiogenesis, and blood vessels 

exhibited PLVAP, an angiogenic molecule. In summary, endomucin-positive blood vessels, 

when accompanied by osteoclasts in the ALP/SMA/VCAM1/RANKL-reactive osteoblastic 
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cell layers, invade the cortical bone, potentially due to the action of osteocyte-derived molecules 

such as DKK1. 

 

 

Keywords: cortical porosity, blood vessels, osteocyte, osteoclasts, endomucin 
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Introduction  

Contemporary comprehension of the mechanisms underlying bone formation stimulated by 

drug treatments for osteoporosis can be divided into two principal histological processes: 

remodeling-based and modeling-based bone formation 1. Remodeling-based bone formation 

follows osteoclast bone resorption, whereas modeling-based bone formation involves 

independent occurrence of bone formation and resorption. Among these, teriparatide, a 

synthetic human parathyroid hormone (PTH) analog, is a commonly used agent for 

investigating remodeling-based bone formation. PTH-driven bone anabolism is predicated by 

cell coupling between osteoclasts and osteoblasts. This finding is evidenced by animal models 

featuring PTH stimulating preosteoblasts and osteoblastic bone formation in normal mice, 

without facilitating osteoblasts in forming new bone in the absence of bone-resorbing 

osteoclasts in c-fos-/- mice 2.  

 We previously reported that frequent PTH administration results in remodeling-based 

bone formation characterized by numerous thin metaphyseal trabeculae surrounded by thick 

preosteoblastic cell layers with several osteoclasts 3. Conversely, low frequent PTH 

administration induced remodeling-based and modeling-based bone formation with relatively 

thick trabeculae. Therefore, high PTH administration frequency may stimulate cell coupling of 

osteoclasts and osteoblasts, accelerating the remodeling-based bone formation of metaphyseal 

trabeculae. 
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 Contrasting metaphyseal trabeculae, Burr's team discovered that daily hPTH [1-34] 

administration triggered intracortical remodeling in the midshaft of the rabbit tibia, increasing 

cortical porosity 4. Subsequently, these results raise concerns that intermittent PTH treatment 

for osteoporosis in adult female cynomolgus monkeys may compromise cortical bone strength 

due to porosity induction 5. Clinical studies have reported cortical porosity following daily 

teriparatide administration, corroborating these findings 6,7. 

 The specific site of cortical bone susceptibility to teriparatide-induced porosity has been 

identified in the region close to the endocortical surface 5, 8. Furthermore, PTH administration 

frequency and dosage regimens have been implicated in cortical porosity. Several investigators 

explored the effects of intermittent teriparatide administration, discovering that higher daily 

doses increased cortical porosity in rabbits, as opposed to weekly dosing 9, 10. Utilizing HR-

pQCT, Hansen et al. reported that a regimen of PTH administration had deleterious effects on 

cortical bone microarchitecture and strength in postmenopausal women with osteoporosis 6. 

 Many researchers have used mouse models to inhibit or overexpress osteocyte-derived 

sclerostin, a Wnt inhibitor, postulating that cell coupling between osteoclasts, osteoblasts, and 

osteocytes mediates PTH-driven anabolic effects in spongy bone and porosity in cortical bone 

11-16. Subsequent studies have revealed the expression of the PTH receptor in osteocytes 12-16. 

Notably, blocking sclerostin in the bone anabolism with sclerostin antibodies has resulted in the 

development of romosozumab, a drug that can induce modeling-based bone formation in 
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osteoporotic patients 17, 18. Therefore, sclerostin secreted by osteocytes may be involved in 

modeling-based bone formation rather than remodeling-based bone formation. Nonetheless, 

osteocytes may influence PTH-driven cortical porosity through mechanisms beyond sclerostin.  

 Meanwhile, we have previously highlighted an increase in endomucinhigh-positive bone-

specific blood vessels, surrounded by  smooth muscle actin (SMA)-positive cells after PTH 

administration. SMA is recognized for its expressed perivascular and undifferentiated 

mesenchymal cells, suggesting interactions with vascular endothelial cells 19. These SMA-

positive cells extend out from blood vessels and express alkaline phosphatase and c-kit, 

establishing their potential to differentiate into osteogenic and vascular endothelial/perivascular 

cells 20, 21. Thus, PTH affects osteoclasts, osteoblasts, and other cell types, including osteocytes 

and blood vessels. This characteristic may be pivotal in not only bone anabolism of spongy 

bone but also cortical porosity. 

 Taken together, it is imperative to consider osteoclasts, osteoblasts, and the involvement 

of osteocytic network and bone-specific blood vessels to elucidate the cellular mechanism 

behind cortical porosity. In addition, the histological degree of the cortical porosity must be 

different from the metaphyses to the diaphysis of long bones. This study identified three distinct 

regions for cortical porosity observation:  zonation of regions close to the growth plate, 

intermediate regions between metaphyses and diaphysis, and regions towards diaphysis. 

Therefore, we aimed to histologically investigate the spatiotemporal distribution of osteoblasts, 
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osteoclasts, and bone-specific blood vessels in these three regions throughout PTH treatment. 

Additionally, we sought to elucidate the cellular interactions and inducing factors that 

contribute to cortical bone porosity through histological analysis. 

 

 

 

Materials and Methods  

Animals 

Six-week-old male C57BL/6J mice (n = 60, Japan CLEA, Tokyo, Japan) were handled per 

Japanese Act on the Welfare and Management of Animals and Hokkaido University's guidelines 

for animal care and research use (approved study protocol #20-0019). The mice were divided 

into two groups: a control group receiving vehicle only (Control group, 0.9% saline, n = 6) and 

a PTH group receiving hPTH [1-34] (Sigma-Aldrich Co., LLC., St. Louis, MO) at a dose of 

40g/kg/day, administered four times per day (PTH group, n = 6 for 1, 3, 7, 14, 21 days).  The 

dosage and frequency of PTH administration were decided based on the results of a previous 

study.3 

 

Specimen Preparation 

The left hind legs of mice were ligated at the femoral region under anesthesia using an 
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intraperitoneal injection of an anesthetic agent combination (0.3 mg/kg of medetomidine, 4.0 

mg/kg of midazolam, and 5.0 mg/kg of butorphanol). Left tibiae were extracted for subsequent 

RNA sequencing and real-time PCR analyses. Femora were fixed with 4% paraformaldehyde 

in a 0.1 M phosphate buffer (pH 7.4) via the left ventricle. The right femora were removed and 

immersed in the same fixative for 24 hr. After obtaining micro-CT images, the femora 

underwent decalcification with 10% ethylenediaminetetraacetic disodium salt (EDTA-2Na) for 

two months at 4C before paraffin embedding. Sagittal sections, 5 m thick, were cut parallel to 

the longitudinal axis of the bone. Left femora were longitudinally divided. One piece was 

decalcified with a 4.13% EDTA-2NA solution before epoxy resin embedding. The other was 

post-fixed with 1% osmium tetraoxide in a 0.1 M cacodylate buffer for 4 hr at 4C, dehydrated 

in ascending acetone solutions, and embedded in epoxy resin (Epon 812, Taab, Berkshire, UK). 

Histochemical staining sections were photographed using a Nikon Eclipse E800 microscope 

(Nikon Instruments Inc., Tokyo, Japan), and light microscopic images were captured with a 

digital camera (Nikon DXM1200C, Nikon Instruments Inc., Tokyo, Japan). 

 

Micro-CT Analysis 

Micro-CT images of the right femora’s sagittal section, spanning from the distal epiphysis to 

1.6 cm distally, were obtained using a micro-CT (CosmoScan Fx, Rigaku Corporation, Tokyo, 

Japan) with a 90 kV tube voltage and 88 A tube current (FOV 10 mm) following our recent 
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report 22. 

 

Selection of Different Regions of Interest (ROI) in the Cortical Bone 

Posterior femoral cortical bones were categorized into three regions of interest (ROIs): the 

metaphyseal region extending from 0.95 mm proximal to the growth plate to 0.7 mm towards 

the distal region (Zone 1), the region from 1.4 to 2.1 mm (Zone 2), and the diaphyseal region 

from 2.1 to 2.8 mm (Zone 3) (Fig. 1A).   

 

Immunohistochemistry for -Smooth Muscle Actin (SMA), Vascular Cell Adhesion 

Molecule-1 (VCAM1), Sclerostin, Dickkopf1 (Dkk1), and PLVAP 

Dewaxed paraffin sections were processed for SMA, VCAM1, sclerostin, Dkk1, and PLVAP, 

as previously described 23. In brief, the sections were immersed in 0.3% H2O2 in phosphate-

buffered saline (PBS) for 30 min to block endogenous peroxidase. Next, 1% bovine serum 

albumin (Serologicals Proteins Inc., Kankakee, IL) in PBS (1% BSA-PBS) was applied to the 

sections for 20 min to minimize nonspecific binding. The sections were incubated with mouse 

monoclonal antiserum to SMA (MAB1420, R&G systems Inc., Minneapolis, MN) at a 1:600 

dilution, goat polyclonal antiserum against VCAM1 (AF643, R&G systems Inc., Minneapolis, 

MN) at a 1:100 dilution, goat polyclonal antiserum against sclerostin (AF1589, R&G systems 

Inc., Minneapolis, MN ) at a 1:50 dilution, goat polyclonal antiserum against Dkk1 (AF1765, 



 

Cortical porosity in PTH administered mice 

11 

 

R&G systems Inc., Minneapolis, MN) at a 1:100 dilution, or rat polyclonal antiserum against 

PLVAP (ab27853, Abcam PLC, Cambridge, UK) at a 1:100 dilution at room temperature (RT) 

for 2 hr. The sections reacted with the primary antiserum against SMA were incubated with 

horseradish peroxidase (HRP)-conjugated rabbit anti-mouse IgG (40267F, Thermo Fisher 

Scientific Inc., Waltham, MA) at a dilution of 1:100 for 1 hr at RT. The sections reacted with 

antisera to VCAM1, sclerostin, Dkk1, or PLVAP were incubated with HRP-conjugated rabbit 

anti-goat IgG (40267F, American Qualex International, Inc., Clemente, CA) or HRP-conjugated 

rabbit anti-rat IgG (A18921, Thermo Fisher Scientific Inc. Waltham, MA). We have optimized 

all antibody dilutions specifically for use in this study. Diaminobenzidine tetrahydrochloride 

(DAB) was used as a substrate to visualize all HRP-conjugated immunoreactions. All sections 

were counterstained with methyl green and examined under a light microscope. Negative 

control experiments utilized normal mouse, goat, and rat sera as primary antibodies instead of 

antisera against the specific antigens (data not shown). 

 

Double Detection of Endomucin/TRAP, Endomucin/ALP, PDGFbb/Endomucin, and 

SMA/Endomucin 

For endomucin/TRAP and endomucin/ALP double detection, the sections were treated with 

polyclonal rat IgG against mouse endomucin (sc-65495, Santa Cruz Biotechnology, Inc., Dallas, 

TX) and subsequent HRP-conjugated rabbit anti-rat IgG for DAB visualization, as previously 
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described. For TRAP detection, immunostained sections were incubated in a mixture of 2.5 mg 

of naphthol AS-BI phosphate (Sigma-Aldrich Co., LLC., St. Louis, MO), 18 mg of red violet 

LB salt (Sigma-Aldrich Co., LLC., St. Louis, MO), and 100 mM L (+) tartaric acid (0.76 g, 

Nacalai Tesque, Inc., Kyoto, Japan) diluted in 30 mL of a 0.1 M sodium acetate buffer (pH 5.0) 

for 15 min at 37C, as reported previously 24. Similar to ALP immunoreactivity detection, 

sections reacted with the endomucin antibody were incubated with rabbit sera and tissue 

nonspecific alkaline phosphatase (ALP) 25, 26 at RT for 2 hr, then reacted with ALP-conjugated 

goat anti-rabbit IgG (111-055-003, Jackson Immune Research Laboratories Inc., West Grove, 

PA). ALP histochemistry was performed as described by Zhao et al. 20. In short, sections were 

incubated in a mixture of 2.5 mg of naphthol AS-BI phosphate (Sigma-Aldrich Co., LLC., St. 

Louis, MO) and 18 mg of fast blue BB salt (Sigma-Aldrich Co., LLC., St. Louis, MO) diluted 

in 30 mL of a 0.1 M Tris-HCl buffer (pH 8.5) for 15 min at 37C. Regarding PDGFbb/endomucin 

and SMA/endomucin double staining, the sections were incubated with polyclonal rabbit IgG 

against mouse PDGFbb (ab23914, Abcam PLC., Cambridge, UK) at a 1:300 dilution or mouse 

monoclonal antiserum to SMA (MAB1420, R&G systems Inc., Minneapolis, MN) at a 1:600 

dilution at RT for 2 hrs. Next, sections were reacted with HRP-conjugated swine anti-rabbit IgG 

(P0399, Agilent Technologies Inc., Santa Clara, CA) or HRP-conjugated rabbit anti-mouse IgG 

(61-6520, Thermo Fisher Scientific Inc., Waltham, MA) before DAB visualization. Treated 

sections were incubated with polyclonal rat antibody to endomucin (Santa Cruz Biotechnology, 
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Inc., Dallas TX) and then with ALP-conjugated goat anti-rat IgG (112-055-003, Jackson 

Immune Research Laboratories Inc., West Grove, PA). ALP enzyme reaction for visualizing 

endomucin immunoreactivity was performed, as previously mentioned. We have optimized all 

antibody dilutions specifically for use in this study. In addition to those already presented, 

negative control experiments involved the use of normal rabbit and rat sera as primary 

antibodies instead of antisera against the specific antigens (data not shown). 

 

Von Kossa Staining 

Epoxy resin sections from undecalcified specimens were incubated with an aqueous solution of 

silver nitrate until the dark brown/black staining of bone tissue was visible under a light 

microscope 27. 

 

Transmission Electron Microscopy Studies 

Semi-thin sections of epoxy resin-embedded specimens were cut with an ultramicrotome 

(Sorvall MT-5000; Ivan Sorvall, Inc., Norwalk, CT), stained with toluidine blue, and observed 

with a Nikon Eclipse E800 microscope (Nikon Instruments Inc., Tokyo, Japan). Ultra-thin 

sections obtained with an ultramicrotome were stained with uranyl acetate and lead citrate. 

These specimens were subjected to transmission electron microscopic (TEM) observation 

(Hitachi H-7800, Hitachi Co., Tokyo, Japan) at 80 kV. 
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Quantification of the Distance Between Blood Vessels and Endosteal Bone Surface and 

osteoclast numbers in Assumed Bone Areas Posterior 

Osteoclast numbers were counted in assumed boxed areas 700 m in length and 100 m in 

width (Fig 1B). We regarded TRAP-positive cells with more than two nuclei as osteoclasts. As 

depicted in Fig. 1C, the distance between the cortical bone surface and endomucin-positive 

blood vessels in each zone was calculated as the index obtained by dividing the area 

encompassing endomucin-positive blood vessels and the cortical bone surface by the cortical 

bone surface length.  

 

RNA Sequencing Analysis 

The total RNA obtained from the left tibiae of the control and PTH groups at 7 days (1 week) 

was employed for RNA sequencing analysis (n = 3 per group). The base sequences of the 

library-adjusted sample were collected (acquired read length: 150 bp × 2 paired ends) using the 

next-generation sequencer NovaSeq 6000 (Illumina, Inc., San Diego, CA), the library 

adjustment reagents NEBNext Poly(A) mRNA Magnetic Isolation Module (E7490; New 

England Biolabs Japan Inc., Tokyo, Japan), and NEBNext Ultra TMII Directional RNA Library 

Prep Kit (E7760; New England Biolabs Japan Inc., Tokyo, Japan). The sequence reads were 

trimmed using Trimmomatic ver. 0.38 and mapped to the mouse reference genome (mm10) 
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using HISAT2 ver. 2.1.0. The raw reads mapped to known exon regions, FRKM, and TPM were 

calculated using featureCounts ver. 1.6.3 to quantify gene expression. Differentially expressed 

genes in the control and PTH-administered groups were extracted using DeSeq2 (ver. 1.24.0) 

to create a heatmap. 

 

The Quantitative Analysis of Gene Expression Through RT-qPCR 

The cortical bones of the control and PTH groups were used for real-time PCR on 7 days (1 

week) and frozen in liquid nitrogen. The samples were homogenized by adding 10 mL/g of 

TRIzol reagent (Life Technologies Co., Carlsbad, CA). Then, 2 mL of chloroform was added 

to 10 mL of TRIzol solution, and the mixture was centrifuged at 15,000 rpm for 5 min at 4C to 

remove small debris. The supernatant was then transferred to a new tube, which was vortexed 

for 15 s after adding 2 mL of chloroform. The lysate was then transferred to a new tube and 

incubated for 5 min at RT. After phase separation, the aqueous phase containing the RNA was 

transferred to a new tube. Then, RNA was precipitated by adding 5 mL of isopropyl alcohol per 

10 mL of TRIzol reagent. After 10 min of incubation at RT, the mixture was centrifuged for 60 

min at 15,000 rpm at 4C. The resulting RNA pellet was washed with 1 mL of 75% ethanol and 

briefly air-dried. The RNA was then dissolved in 30 μL DEPC-treated water. First-stranded 

cDNA was synthesized from the obtained total RNA with the SuperScript VlLO cDNA 

Synthesis Kit (Life Technologies Co., Carlsbad, CA). The expression levels of various genes 
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relative to those of Gapdh were comparatively quantified via the ΔΔCt method in a quantitative 

PCR System (StepOne; Thermo Fisher Scientific Inc., Waltham, MA) to determine Acta2 

(Sma), Emcn, Tnfsf11 (Rankl), Pdgfb, Sost, Dkk1, Ckap4, and Plvap expression. The TaqMan 

probes (Applied Biosystems, Waltham, MA) used for the analysis are shown in Table 1. 

 

Statistical analysis 

All statistical analyses were assessed through One-way ANOVA followed by Student’s t-test 

with Bellcurve for Excel ver. 4.04 (Social Survey Research Information Co., Ltd. Tokyo, Japan). 

All values are presented as the mean ± SD. Values of P < 0.05 were considered significant. 

 

 

Results 

Micro-CT and histological images of PTH-induced cortical porosity  

 Under 40 g/kg/day of hPTH [1-34] four times a day, micro-CT images of mouse femora 

chronologically demonstrated a marked increase in the trabecular bone beneath the growth plate 

and the cortical bone transformation into a porous, trabecular bone-like structure (Fig. 2A) 

From 1 week after PTH administration, initial cortical bone porosity became visible (Fig. 2A 

Ⅳ-Ⅵ). The sagittal view of the cortical bone on the femoral posterior side revealed the porous 

structure from the distal (metaphyseal) to the proximal (diaphyseal) regions as the experimental 
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period progressed (Fig. 2A Ⅰ-Ⅻ). When observed horizontally, these pores formed the endosteal 

side towards the mid-region of the cortical bone (Fig. 2A ⅰ-ⅵ). Consistent with the micro-CT 

images, histological sections indicated a chronological increase in trabecular bone volume and 

porous structure in PTH-administered femora (Fig. 2B). Thus, PTH-induced cortical porosity 

appeared chronologically from metaphyseal to diaphyseal regions in sagittal sections and from 

the endosteal to mid-region in horizontal sections. 

 

Double detection of endomucin/TRAP and endomucin/ALP in the cortical bone 

Next, we examined the dual staining for the endothelial cell marker endomucin and the 

osteoclast marker TRAP in three distinct zones (1-3) after 1 week: the region close to the growth 

plate (Zone 1), the intermediate regions between metaphyses and diaphysis (Zone 2), and the 

region towards diaphysis (Zone 3) (Fig. 3). In Zone 1, the cortical bone in control mice 

predominantly possessed several endomucin-positive blood vessels between the cortical bone 

and trabeculae, covered by ALP-reactive osteoblasts (Fig. 3D). When observing towards the 

diaphysis (Zones 2 and 3), ALP-reactive osteoblasts were located on the smooth endosteal bone 

surface (Fig. 3E, F).  

 Endomucin-positive blood vessels were close but never penetrated the ALP-reactive 

osteoblastic layers to reach the bone surfaces (Fig. 3E, F). There were few TRAP-positive 

osteoclasts on the endosteal bone surface in Zones 1-3 (Fig. 3A-C). In contrast, in the PTH-
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administered group, Zone 1 exhibited many osteoclasts and thick ALP-reactive osteoblastic 

layers covering the bone surface (Fig. 4A, D). In Zones 2 and 3, many blood vessels with small 

diameters and TRAP-positive osteoclasts tended to accumulate on the rough endosteal bone 

surface (Fig. 4B, C). ALP-positive osteoblastic layers developed, though they were not as thick 

as those in Zone 1 (Fig. 4E, F). Some TRAP-positive osteoclasts and endomucin-positive blood 

vessels invaded the cortical bone’s superficial layer (Fig. 4B, C). 

 

Distance of blood vessels from the endosteal bone surface and osteoclast numbers in the 

assumed boxed areas 

We measured the distance between blood vessels and the endosteal bone surface and quantified 

TRAP-positive osteoclast numbers in the assumed boxed areas with a 700 m length and 100 

m width (See Fig. 1B, C, and Materials and Methods). The distance between blood vessels 

and the bone surfaces significantly decreased in the PTH groups compared with the control 

groups from 1 day to 1 week in Zones 1-3 (Fig. 5A-C). In contrast, statistical analyses revealed 

increased osteoclast numbers in the PTH-administered groups from 1 day to 1 week relative to 

the control groups (Fig. 5D-F). Therefore, it seems likely that endomucin-positive blood vessels 

and TRAP-positive osteoclasts gradually approached the endosteal bone surfaces. 

 

Fine structure of blood vessels invading the cortical bone 
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High-resolution semi-thin sections and TEM observations revealed flattened osteoblasts and 

osteoclasts on bone surfaces and blood vessels near bone surfaces after 1 week in the PTH 

group (Fig. 6A-D). When observing blood vessels invading the cortical bone’s superficial layer, 

the bone matrix close to the tips of invading blood vessels was well-calcified (Fig. 6E, F). 

However, TEM observations demonstrated that vascular endothelial cells and osteoclasts 

accompanied one another on the tip of invading blood vessels (Fig. 6G). 

 

Histological characterization of osteoblastic layers over mature osteoblasts in the PTH-

administered groups 

As previously reported 20, we have examined whether the osteoblastic cell layer would exhibit 

SMA-reactivity in specimens 1 week after PTH administration (Fig. 7). The control specimens 

showed only SMA-positive cells (identical to arterioles and venules) in the periosteum but 

hardly any on endosteal bone surfaces (Fig. 7A-C). Conversely, in the PTH groups, Zone 1 

displayed SMA-positive thick cell layers identical to ALP-reactive osteoblastic layers 

surrounding bone surfaces; Zone 2 exhibited thin SMA-positive cell layers (Fig. 7E-G). Next, 

we double-stained SMA and endomucin localized blood vessels invading the cortical bone 

underneath the SMA-positive cell layer in the PTH group (Fig. 7H). However, no SMA-

positive cell layer was seen in the control group (Fig. 7D). Consistently, real-time PCR verified 

the increased expression of Acta2 (Sma) and Emcn (Endomucin) in PTH groups (Fig. 7I, J).  
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 Furthermore, in the PTH group, VCAM1 immunoreactivity was observed in the 

corresponding osteoblastic cell layer, which could be seen as a thick cell layer in Zone 1 and a 

thin layer in Zone 2 (Fig. 8A-D). In addition, the double detection of RANKL/TRAP identified 

many osteoclasts in the osteoblastic layers with RANKL reactivity in Zones 1 and 2 of the PTH 

group (Fig. 8E-H). We examined the double detection of PDGFbb that reportedly modulated 

angiogenesis and endomucin in osteoclastic cells 28. PDGFbb-reactive osteoclastic cells were 

near endomucin-positive blood vessels, as observed in Zones 1 and 2 of the PTH groups, but 

not in the control group (Fig. 8I-L). Consistent with RANKL and PDGFbb histochemistry, real-

time PCR indicated elevated Tnfsf11 (Rankl) and Pdgfb expression (Fig. 8M, N). PTH-

administered femora displayed ALP-reactive osteoblastic cell layers also possessing SMA, 

VCAM1, and RANKL. The close localization of PDGFbb-positive osteoclasts and endomucin-

reactive blood vessels was observed among these cell layers. This finding implicates the 

possibility that endomucin-reactive blood vessels and osteoclasts could migrate through 

VCAM1-positive/RANKL-reactive osteoblastic cell layers to reach the endosteal bone surface. 

 

DKK1, Ckap4, and Plvap immunolocalization and expression in PTH-administered 

femora 

We turned our attention to genes expressed by osteocytes, as we considered them potential 

candidates for vascular invasion into cortical bone, given their predominant presence inside 
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cortical bone. Our investigation involved the examination of molecules secreted by 

angiogenetic factors and osteocyte-derive molecules through RNA sequencing (Fig. 9). Heat 

map analysis revealed the elevated expression of many angiogenic factors, including Hif1, 

Pdgfb, Vash2, Ephb4, Efnb2, Ramp3, Ephb2, Pik3r3, Srpx2, Aplnr, Gas1, Cd276, Dkk1 (a Wnt 

inhibitor and angiogenic activator), Ckap4 (a Dkk1 receptor), and Plvap (plasmalemma vesicle-

associated protein, an angiogenetic factor) and osteocyte-derived molecules, such as Dmp1, 

Phex, Tnfsf11, and Dkk1, in the PTH group (Fig. 9A, B). Among them, we focused on Dkk1, 

Ckap4, and Plvap. Sclerostin was observed in osteocytes and their canaliculi in the control and 

PTH groups, with no significant difference in the Sost expression (Fig. 9C, D, I). However, 

Dkk1 gene expression was significantly elevated after PTH administration, and intense 

immunoreactivity was observed in osteocytes in the PTH group (Fig. 9E, F, J). Real-time PCR 

verified the elevated Ckap4 expression (Fig. 9K), and blood vessels close to and invading the 

cortical bone definitively showed Plvap immunoreactivity in the PTH group but not in the 

control group (Fig. 9G, H). Consistently, Plvap expression was significantly elevated (Fig. 9L). 
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Discussion 

In our current study using a mouse model, we observed that cortical porosity progresses from 

the metaphyseal region to the diaphyseal region in sagittal sections and the endosteal bone 

surface into the mid-region of the cortical bone in transverse sections. PTH administration 

caused blood vessels to migrate towards the endosteal bone surface, passing through the ALP-

positive osteoblastic layer. These osteoblastic layers were thick in the metaphyseal region but 

thin in the diaphyseal region. Furthermore, PTH administration resulted in not only blood 

vessels’ migration on the endosteal bone surface but also the appearance of osteoclasts in the 

close vicinity of the invading blood vessels. We postulate that the closely coordinated migration 

of blood vessels and osteoclasts toward the cortical bone surface is essential during the early 

stages of cortical porosity in our mouse models. 

 We hypothesized that while blood vessels approached the osteoblastic layer covering 

mature osteoblasts and penetrated the cortical bone, the ALP-positive osteoblastic layer is 

pivotal in endomucin-positive blood vessels migration. Blood vessels in the control group 

maintained a certain distance from the bone surface, and there were no signs of blood vessels 

penetrating the cortical bone. The endosteal surface of the mouse femur observed in this study 

gradually underwent bone formation through modeling 29. Therefore, osteoclasts are nearly 

absent under normal conditions.  

 In contrast, the ALP-positive thick osteoblastic layer in PTH-administered mice exhibited 
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characteristics such as SMA and VCAM1 positivity. SMA is a marker for perivascular and 

undifferentiated mesenchymal cells 19, while VCAM1 is an adhesion molecule expressed in 

endothelial, undifferentiated mesenchymal, and bone marrow stromal cells 30. Therefore, 

vascular endothelial cells could migrate toward endosteal bone surfaces using VCAM1-positive 

osteoblastic cell layers as a scaffold. On the other hand, the SMA-positive osteoblastic cell 

layer implies that these cells may still possess perivascular cell characteristics, suggesting a 

potential interaction with vascular endothelial cells.  

 Our previous reports indicated that PTH-treated mice exhibited increased osteoblastic 

progenitor proliferation in the metaphyses of long bones, vascular lumen diameter, and vessel 

numbers. In addition, many SMA-positive cells extended into the endomucin-positive blood 

vessels and the surrounding tissue 20, 21. These SMA-positive cells, which also exhibit ALP 

and VCAM1 positivity, are postulated to be undifferentiated mesenchymal cells capable of 

differentiating into perivascular cells and osteoblast progenitors. Therefore, the 

ALP/SMA/VCAM1-positive cells in this study, spreading gradually from the metaphyseal to 

diaphyseal regions, are likely to induce cortical porosity. 

 Many TRAP-positive osteoclasts in PTH-treated mice were included in the thick 

osteoblastic layer covering the endosteal bone surface. Statistical analysis of the distance 

between blood vessels and bone surfaces strongly indicates that endomucin-positive blood 

vessels gradually approached the endosteal bone surface after PTH administration. Additionally, 
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these endomucin-positive blood vessels were near osteoclasts producing PDGF-bb, as shown 

in Figure 8. On the other hand, the femora’s endosteal bone surface of growing mice is a bone 

modeling region where continuous calcein labeling has been observed 29.  

 The many osteoclasts induced by PTH administration are likely due to the 

osteoclastogenesis potential of the osteoblastic cell layer that is positive not only for 

ALP/SMA/VCAM1 but also for RANKL. Although these RANKL-positive osteoblastic cells 

thin out when approaching the diaphyseal region, a niche for osteoclast induction in situ is 

needed. Thus, RANKL-positive osteoblastic layers covering the endosteal bone surface may 

induce osteoclasts, keeping the close proximity to blood vessels by mediating PDGFbb 

synthesis. Notably, the osteoclasts accompanied by blood vessels would be crucial for 

penetrating the cortical bone interior.  

 In this study, von Kossa staining revealed that the tips of blood vessels invading the deep 

cortical bone are calcified. It is challenging for the endothelial cells in the blood vessels to 

dissolve the calcified matrix. However, TEM observations revealed osteoclasts lined up 

alongside invading endothelial cells, suggesting that osteoclasts dissolved the calcified bone 

matrix. As such, osteoclasts participating in migration and penetration in the cortical bone 

interior seem intrinsic to the initial cortical porosity process. 

 One may wonder what prompts blood vessels and osteoclasts to invade the cortical bone 

interior. The osteocyte network is a potential candidate since osteocytes are predominately 
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embedded in bone. RNA sequencing revealed that PTH administration up-regulated Hif1, 

Pdgfb, Vash2, Ephb4, Efnb2, Ramp3, Ephb2, Pik3r3, Srpx2, Aplnr, Gas1, Cd276, and Dkk1. 

Among these genes, we noted that Dkk1 is an osteocyte-derived molecule, which was reportedly 

as an inhibitor of Wnt signaling and an angiogenesis activator 31-33. Since Ckap4 (a Dkk1 

receptor) 34, 35 and Plvap (plasmalemma vesicle-associated protein, an angiogenetic factor) 36 

expressions were also elevated, we postulated that osteocyte-derived molecules, such as Dkk1, 

affected vascular endothelial cells to induce angiogenesis. This reaction potentially enables 

invasion into the cortical bone with osteoclasts in the PTH group.  

 The human cortical bone comprises many osteons, a concentric circle with central blood 

vessels, and inner and outer circumferential lamellae. Therefore, the anatomical structure of the 

human cortical bone is not the same as that of rodents. However, the inner circumferential 

lamellae’s endosteal bone surface in humans must histologically correspond to the endosteal 

cortical bone surface in mice and the bone surface of the Haversian canal of osteons. 

Nevertheless, animal studies still have limitations in reproducing the cortical porosity in 

humans; thus, further experiments are necessary. 

 Intermittent PTH administration induced femoral cortical porosity that progressed from 

the metaphysis to the diaphysis in mice. After PTH administration, endomucin-positive blood 

vessels and PDGFbb-reactive osteoclasts in ALP/SMA/VCAM1-reactive osteoblastic cell 

layers invade the cortical bone through osteocyte-derived molecules, such as DKK1. 
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Figure Legends  

Figure 1  

ROI in cortical bone and quantification 

ROI images named Zone 1, Zone 2, and Zone 3 on the posterior femoral cortical bones are 

denoted in blue boxes (A). Panel B displays the assumed boxed areas for measuring the distance 

between blood vessels and endosteal bone surfaces and osteoclast numbers. Panel C illustrates 

the quantification method for the distance between blood vessels and the endosteal bone surface. 

The distance between blood vessels and the endosteal bone surface is calculated by dividing 

the surrounding area between endomucin-positive blood vessels and the cortical bone surface 

(diagonal blue-lined area) by the cortical bone surface length (red line). 

 

Figure 2  

Micro CT and histological images obtained from the femoral cortical bone in control and 

hPTH [1-34]-administered mice 

(A) Micro-CT images of the femora in control and PTH-administered mice. (B) H-E staining 

of the femora in control and PTH-administered mice. Figs. Ⅶ-Ⅻ and ⅰ-ⅵ reveal highly 

magnified cortical bone in the sagittal and horizontal sections. PTH-administered femora 

chronologically show abundant metaphyseal trabeculae (AⅡ-Ⅵ, B Ⅱ-Ⅵ) compared to control 

mice (AⅠ, BⅠ). High-magnification images of the posterior cortical bone exhibit porous or 
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trabecular bone-like structures 1 week post-PTH administration. This porosity appears 

chronologically from the metaphyseal to the diaphyseal regions (A Ⅶ-Ⅻ, B Ⅶ-Ⅻ). 

Horizontal micro-CT images show that this porosity originated from the endosteal side and 

spread towards the mid-region of the cortical bone (A ⅰ-ⅵ). 

Bars, A-R: 1 mm, a-f: 500 m, g-l: 100 m 

 

Figure 3  

Immunolocalization of endomucin-positive blood vessels, TRAP-positive osteoclasts, and 

ALP-positive osteoblasts in control mice 

(A-C) The double detection of endomucin-positive blood vessels (brown) and TRAP-positive 

osteoclasts (red) in control mice. (D-F) The double detection of endomucin (brown) and ALP-

reactive osteoblasts (blue). Endomucin-positive blood vessels (brown, white arrows) far from 

the cortical surface and TRAP-positive osteoclasts on the cortical bone surface in all zones. In 

contrast, ALP-positive mature osteoblasts (blue, black arrowheads) are located on the cortical 

bone surface (D-F). Endomucin-positive blood vessels never penetrated the ALP-reactive 

osteoblastic layers. 

Bars, A-F: 50 m 

 

Figure 4  
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Immunolocalization of endomucin-positive blood vessels, TRAP-positive osteoclasts, and 

ALP-positive osteoblasts in mice 1 week after PTH administration  

(A-C) The double detection of endomucin-positive blood vessels (brown) and TRAP-positive 

osteoclasts (red) in PTH-administered mice after 1 week. (D-F) The double detection of 

endomucin (brown) and ALP-reactive osteoblasts (blue). In Zone 1, there were many TRAP-

positive osteoclasts (red, black arrows, A), endomucin-reactive blood vessels (brown, white 

arrows, A and D), and a thick ALP-positive osteoblastic layer covering the cortical bone surface 

(D). In Zones 2 and 3, numerous blood vessels with small diameters were apparent on the 

cortical surface, partially penetrated in the cortical bone with TRAP-positive osteoclasts (B, C). 

Unlike Zone 1, ALP-positive osteoblasts in Zones 2 and 3 do not form as thick cell layers (E, 

F). 

Bars, A-F: 50 m 

 

Figure 5  

Distance index between blood vessels and the endosteal bone surface and osteoclast 

numbers in control and PTH-administered mice 

(A-C) The distance between blood vessels and the endosteal cortical bone surface. (D-F) 

Osteoclast numbers in Zones 1-3. The distance between the blood vessels and the endosteal 

cortical bone surface significantly decreased in PTH groups compared with the control groups 
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across all periods and zones (A-C). The number of osteoclasts in PTH groups is higher than that 

of the control group across all periods and zones (D-F). 

 

Figure 6  

Ultrastructural images of cells around the cortical bone surface in control and PTH-

administered mice 

Light microscopic images of the cortical surface in Zones 2 and 3 in control (A) and PTH mice 

1 week after administration (B, E, F). Panels C, D, and G present the TEM images at the 

corresponding areas of panels A, B, and E. 1 week after PTH administration, flattened 

osteoblasts and osteoclasts with blood vessels are located on the cortical bone surface in Zone 

3 (B, D). In Zone 2 with PTH-administered mice, the invading vascular endothelial cells with 

osteoclasts at the tip of blood vessels (G). The bone matrix near the tips of invading blood 

vessels was mineralized (F). 

BV, blood vessel; ob, osteoblast; oc, osteoclast  

Bars, A, B, E, F: 20 m, C, D, G: 10 m 

 

Figure 7  

Histological comparison of the SMA-positive osteoblastic cell layer and Acta2 (Sma) 

and Emcn gene expression in the control and PTH-administered mice 
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At a lower magnification of SMA immunohistochemistry, SMA-positive cells (brown) 

covered the bone surface in PTH-administered mice after 1 week (Panel E). Only a few SMA-

positive cells were apparent in the periosteum of control mice (Panel A), but there were no 

SMA-positive cells on the surface of the endosteal side (Panels B and C). In the PTH group, 

SMA-positive thick cell layers were observed in Zone 1 (F). Thin SMA-positive cell layers 

were observed in Zone 2 (G). Double SMA (brown) and endomucin (blue) staining revealed 

that endomucin-positive blood vessels invading the cortical bone were covered by the SMA-

positive cell layer in PTH-administered mice (H). The control group had no SMA-positive 

cell layer around endomucin-positive blood vessels (D). Real-time PCR analysis consistently 

demonstrated a significant increase in Sma (Acta2) and Endomucin (Emcn) expression in 

PTH-administered mice (I, J). 

Bars, A-C, E-G: 100m, D, H: 50m 

 

Figure 8  

VCAM1, RANKL, PDGFbb distribution and gene expression in control and PTH-

administered mice 

(A-D) VCAM1 immunodetection (brown) in control (A, C) and PTH-administered mice (B, D). 

A VCAM1-positive thick osteoblastic layer exists on the cortical bone surface in Zone 1 (B), 

whereas a thin layer was in Zone 2 (D). (E-H) The double detection of RANKL (brown) and 
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TRAP (red) in control (E, G) and PTH-administered mice (F, H). Numerous TRAP-positive 

osteoclasts were located in the RANKL-positive osteoblastic layers in Zones 1 and 2 (F, H). (I-

L) The double detection of PDGFbb (brown) and endomucin (blue) in control (I, K) and PTH-

administered mice (J, L). There were no PDGFbb-positive osteoclasts in control mice (I, K). 

PDGFbb-positive osteoclasts were apparent in the cortical porous with endomucin-positive 

blood vessels in Zone 1 (J) and endomucin-positive blood vessels on the cortical bone surface 

in Zone 2 (L) of PTH-administered mice. Real-time PCR consistently demonstrated a 

significant increase in Rankl (Tnfsf11) and Pdgfb expression (M, N).  

Bars, A-L: 50 m 

 

Figure 9  

Osteocyte-derived angiogenic factor, Dkk1, Ckap4, and Plvap immunolocalization and 

gene expression in PTH-administered mice 

Heatmap analysis by RNA sequencing revealed an elevated expression of numerous angiogenic 

factors, Hif1a, Pdgfb, Vash2, Ephb4, Efnb2, Ramp3, Ephb2, Pik3r3, Srpx2, Aplnr, Gas1, Cd276, 

Dkk1, Ckap4, Plvap (A), and osteocyte-derived molecules, such as Dmp1, Phex, Tnfsf11, and 

Dkk1 (B) in PTH-administered mice. Sclerostin-positive osteocytes and their canaliculi were 

apparent in control and PTH-administered mice (C, D). There was no significant difference in 

the Sost expression in both mice groups (I). Dkk1 immunohistochemistry demonstrated the 
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intense immunoreactivity in PTH-administered mice (F) compared with control mice (E). Dkk1 

expression was significantly elevated after PTH administration (J). Plvap-positive blood vessels 

were located close to the cortical bone surface and invaded the cortical bone in PTH-

administered mice (H) but not in control mice (G). Ckap4 and Plvap gene expression were 

significantly elevated (K, L). 

Bars, C-H: 50 m 

 

Table Legends 

Table 1 

Taqman gene expression assays used in the study. 

 

Table 1 

 

Gene name Symbol 
Identification number of 

applied biosystem 

Glyceraldehyde-3-phosphate dehydrogenase Gapdh Mm99999915_g1 

-smooth muscle actin (SMA) Acta2 Mm00725412_s1 

Endomucin Emcn Mm00497495_m1 

Receptor activator of NF-κB ligand (RANKL) Tnfsf11 Mm00441906_m1 

Platelet-Derived Growth Factor-BB (PDGF-BB) Pdgfb Mm00440677_m1 

 Sclerostin Sost Mm00470479_m1 

Dickkopf-1 (DKK1) Dkk1 Mm00438422_m1 

Cytoskeleton-associated protein 4 (CKAP4) Ckap4 Mm01236268_m1 

Plasmalemma vesicle-associated protein (PLVAP, PV-1) Plvap Mm00453379_m1 
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