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Abstract 37 

Context: Global climate change poses a significant threat to the habitat connectivity of cold-water-38 

adapted organisms, leading to species extinctions. If gene flow can be modeled by landscape variables, 39 

changes in connectivity among populations could be predicted. However, in dendritic and 40 

heterogeneous stream ecosystems, few studies have estimated the changes in gene flow from genetic 41 

data, in part due to the difficulty in applying landscape genetics methods and accessing water 42 

temperature information. 43 

Objectives: Inferring the determinants and future changes of the gene flow in the cold-water adapted 44 

fluvial sculpin Cottus nozawae using a recently developed model-based riverscape genetics technique 45 

and a hydrological model for estimating water temperature.  46 

Methods: The strength of gene flow on each stream section was modeled by watershed-wide 47 

riverscape variables and genome-wide SNP data for C. nozawae in the upper reaches of the Sorachi 48 

River, Hokkaido, Japan. Future changes in gene flow were inferred by this model and hydrologically 49 

estimated water temperatures under the high greenhouse gas concentration scenario (IPCC RCP8.5). 50 

Results: Stream order, water temperature, slope, and distance were selected as riverscape variables 51 

affecting the strength of gene flow in each stream section. In particular, the trend of greater gene flow 52 

in sections with higher stream order and lower temperature fluctuations or summer water temperatures 53 

was pronounced. The map from the model showed that gene flow is overall prevented in small 54 

tributaries in the southern area, where spring-fed environments are less prevalent. Estimating future 55 

changes, gene flow was predicted to decrease dramatically at the end of the 21st century. 56 

Conclusions: Our results demonstrated that the connectivity of cold-water sculpin populations is 57 

expected to decline dramatically in a changing climate. Riverscape genetic modeling is useful for 58 

gaining information on population connectivity that does not fully coincide with habitat suitability. 59 

 60 

Keywords 61 

model-based riverscape genetics; cold-water fish; Cottus; water temperature; global warming 62 
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Introduction 64 

Global climate change modifies water temperatures and flow regimes, the two key habitat factors 65 

affecting freshwater species, posing a critical threat to stream ecosystems (Barbarossa et al. 2021). The 66 

spatial distribution of species’ suitable habitats shifts with environmental changes, and population 67 

fragmentation due to impassable environments may eventually result in local and/or species 68 

extinctions (Woodward et al. 2010). Numerous studies have predicted changes in species distributions 69 

and suitable habitats of stream organisms (Elith and Leathwick 2009; Comte et al. 2012; Ishiyama et 70 

al. 2023; Rahel et al. 1996), but how will the actual population connectivity and migration potential 71 

change?  72 

Gene flow represents the functional connectivity among wild populations and is critical in 73 

species viability (Kottler et al. 2021; Manel and Holderegger 2013). The strength of gene flow is 74 

usually discussed individually from the observed genetic structure, but if gene flow could be modeled 75 

by landscape variables, the gained knowledge regarding gene flow could be generalized and used to 76 

predict its future changes (McRae and Beier 2007). The relationships between gene flow and 77 

landscape variables have been investigated in the field of landscape genetics (Balkenhol et al. 2015). 78 

However, most analytical techniques developed in landscape genetics exert only poor power in linear 79 

and dendritic stream ecosystems (Davis et al. 2018; Chafin et al. 2021), making it difficult to predict 80 

future changes in gene flow in riverscapes. Even in streams, regression models can be created by 81 

contrasting a genetic distance matrix against pairwise differences in local conditions (Grummer et al. 82 

2019), but this approach fails to account for the network architecture and for the attributes in all the 83 

spaces that individuals must pass through when traveling between sampling sites (Davis et al. 2018; 84 

White et al. 2020; Escalante et al. 2020). Another versatile approach to investigating the effects of 85 

landscape elements on gene flow is defining “landscape resistance” surfaces and assessing the 86 

relationship between genetic distance and cumulative resistance between populations (isolation by 87 

resistance; IBR (McRae 2006)). Although this idea has been applied to studies on stream ecosystems 88 

in several cases (e.g., Inoue and Berg 2017; Oliveira et al. 2019; Landguth et al. 2016; Escalante et al. 89 

2018), the landscape resistance must be parametrized a priori through expert opinion or other 90 

empirical methods (e.g., using the inverse of species distribution model estimates) (Spear et al. 2015; 91 



5 

 

Zeller et al. 2012). To understand the gene flow itself, its determinants should be identified directly 92 

from genetic data (Sartor et al. 2022; Wasserman et al. 2010). Fortunately, alternative methods for 93 

modeling gene flow from genetic data within a spatially explicit graph-theoretic framework have been 94 

developed rapidly in recent years (White et al. 2020; Chafin et al. 2021). Although not yet practically 95 

applied to predictions under environmental changes, we thought that these “riverscape genetics”-96 

dedicated methods are the key to determining landscape resistance and modeling current and future 97 

gene flow. 98 

Another theme that makes riverscape genetics challenging is the data availability of key 99 

environmental elements such as water temperatures. For terrestrial organisms, globally available 100 

climate data such as WorldClim (Hijmans et al. 2005) are commonly used to estimate the effects of 101 

climate change. However, data on current and future water temperatures that are critical for stream 102 

organisms are difficult to obtain as are data on flow rate. Although some studies have used air 103 

temperature data as a surrogate of water temperatures (Almodóvar et al. 2012), water temperatures do 104 

not actually coincide with air temperatures. In particular, local spatial heterogeneity in water 105 

temperatures caused by groundwater discharge and other factors is truly a source of ecosystem 106 

diversity and resilience to climate change that cannot be ignored (Koizumi and Maekawa 2004; 107 

Nakajima et al. 2021; Ishiyama et al. 2023; Nakamura 2022). Therefore, it is critical in riverscapes to 108 

utilize water temperature information considering the spatial heterogeneity generated by 109 

hydrogeological factors. 110 

Cottus nozawae is a cold-water-adapted sculpin inhabiting northern Japan. Since the 111 

distribution and ecology of this species are highly influenced by summer water temperatures (Yagami 112 

and Goto 2000), available habitats are expected to decrease significantly under climate change (Suzuki 113 

et al. 2021). At a local scale, streams with low summer water temperatures characterized by spring-fed 114 

environments have been shown to display high population densities and to be the source of individuals 115 

in a watershed (Suzuki et al. 2021; Nakajima et al. 2021). Under ongoing climate change, the 116 

migration of this species is expected to be frequently blocked by unsuitable habitats, resulting in 117 

population fragmentation and shrinkage. To sustain the species into the future, it is critical to 118 

accurately predict the relationship between population connectivity and climate-related variables. Such 119 
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predictions will contribute to the advancement of climate change adaptation measures for this species, 120 

such as by identifying sections where stream continuity should be ensured. 121 

Considering the challenges of data availability and analysis in riverscape genetics, we thought 122 

that the recently developed model-based riverscape genetics approaches and physics-based 123 

hydrological model to estimate water temperatures would enable the modeling and future prediction of 124 

gene flow in cold-water fish. The aims of this study are (i) to identify the factors determining the gene 125 

flow of C. nozawae in the stream network, (ii) to model the strength of gene flow using riverscape 126 

variables and predict its future changes, and (iii) to discuss the applicability of riverscape genetic 127 

modeling in conservation ecology.  128 

 129 

Material and Methods 130 

Study sites and sampling 131 

In 2019, small pieces of fin tissue were sampled from 376 individuals of C. nozawae caught by 132 

electrofishing (model 12-B Backpack Electrofisher; Smith-Root Inc.) at 13 sites located in the 133 

upstream section of the Sorachi River, Hokkaido, Japan (Fig. 1; Table S1). Because no river-crossing 134 

structures that would obviously prevent fish migration are present between sampling sites, this area is 135 

considered suitable for evaluating the effects of riverscape variables. Regarding the environmental 136 

conditions, the tributaries in the northern volcanic watersheds have spring-fed environments with 137 

stable water temperatures and flow regimes (García Molinos et al. 2022; Ishiyama et al. 2023). For 138 

riverscape genetic modeling, the stream network among sampling sites was viewed as a graph 139 

consisting of 24 “nodes” and 23 “edges” (Fig. 2a). We defined “nodes” as the sampling sites and 140 

major tributary confluences between them, and analysis was conducted with “edges”, the stream 141 

segments between adjacent nodes, as units. 142 

 143 

Genetic data 144 

Genomic DNA was extracted using the QIAGEN DNeasy Blood and Tissue Kit (QIAGEN 145 

Inc.). In this study, we used the multiplexed ISSR genotyping by sequencing (MIG-seq) method 146 

(Suyama and Matsuki 2015; Suyama et al. 2022), a technique in which loci between two microsatellite 147 
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regions are amplified and neutral genome-wide single nucleotide polymorphisms (SNPs) are detected. 148 

A MIG-seq library preparation and read quality filtering were performed according to the protocol 149 

described in Suyama et al. (2022), with the modification that two runs were conducted and the 150 

obtained data were combined after quality filtering. In addition, quality filtering was performed on 71 151 

bases with six 5’-end bases and three 3’-end bases removed. After quality filtering, SNP selection was 152 

performed using STACKS 2.41 (Catchen et al. 2013). First, the reads were grouped to each locus 153 

using the ustacks, cstacks, sstacks, tsv2bam, and gstacks commands with the following parameters 154 

recommended by Paris et al. (2017): minimum depth option creating a stack (m) = 3, maximum 155 

distance between stacks (M) = 2, maximum mismatches between loci when building the catalog 156 

(n) = 2, and number of mismatches allowed to align secondary reads (N) = 4. From the derived dataset 157 

of assembled loci, SNPs were detected using the populations commands under the following criteria: 158 

only loci present at a rate of more than 80% of individuals within all populations were extracted (-p 13 159 

-r 0.8); the minimum minor allele frequency was 5% (--min-maf 0.05); sites showing excess 160 

heterozygosity were removed (--max-obs-het 0.6); and the output was limited to one SNP per locus (--161 

write-single-snp). After filtering, 212 SNPs were obtained. 162 

For populations in each sampling site, the expected heterozygosity (HE) and fixation index 163 

(FIS) were calculated using the populations command in STACKS. Significant deviations from Hardy–164 

Weinberg equilibrium, as indicated by FIS deviating from zero, were tested by 1000 randomizations 165 

using FSTAT 2.9.4 (Goudet 1995). Genetic differentiation among populations was assessed by GST 166 

(Nei 1973) and DPS (Bowcock et al. 1994). DPS is the genetic distance based on the dissimilarities of 167 

population allele pools and reflects gene flow over a shorter timescale (approximately 10 generations; 168 

Landguth et al. 2010; Leroy et al. 2018), whereas GST is assumed to reflect long-term gene flow 169 

(Holsinger and Weir 2009). GST was calculated using GenAlEx 6.51 (Peakall and Smouse 2012), and 170 

DPS was calculated using the package graph4lg (Savary et al. 2021) in R 3.6.0 (R Core Team 2019). 171 

To understand the general patterns of population structure, STRUCTURE 2.3.4 (Pritchard et al. 2000) 172 

was performed in the setting of the admixture and allele frequency correlated model with previous 173 

sampling location information (LOCPRIOR; Hubisz et al. 2009). The algorithm was run 10 times for 174 

each K from 1 to 10 with a burn-in of 20,000 followed by 30,000 MCMC replicates. The program 175 



8 

 

CLUMPAK (Kopelman et al. 2015) was then used to summarize the results for each K. STRUCTURE 176 

HARVESTER (Earl and vonHoldt 2012) was employed to calculate the probability of the data for 177 

each K (LnP(D); Pritchard et al. 2000), the corresponding standard deviation, and the ΔK (Evanno et 178 

al. 2005). 179 

 180 

Riverscape data 181 

Riverscape variables were collected as a unit of edges. Edge length, slope, stream orders, and 182 

catchment area were calculated in ArcGIS 10.7.1 (ESRI Inc.) using National Land Numerical 183 

Information (nlftp.mlit.go.jp) from the Ministry of Land, Infrastructure, Transport and Tourism 184 

(MLIT) of Japan. Flow rate and water temperature were estimated by a hydrological model based on 185 

Suzuki et al. (2022), which considers differences in groundwater discharge depending on catchment 186 

geology (see Appendix 1 for details). Briefly, the daily flow rate on the stream in each 1 km mesh was 187 

reproduced by four-layered tank models (Sugawara 1979), and the flow and heat flux were tracked 188 

along the streamflow. Importantly, different tank parameters were given for the volcanic areas and 189 

other areas, based on validation using measured water temperature data from field surveys at multiple 190 

sites in the study area. Flow rate and water temperature from September 2018 to August 2019 were 191 

reproduced and used to calculate the riverscape variables. In future predictions, 1 km-downscaled data 192 

on meteorological elements (Ueda et al. 2020), calculated under the climate data projected in the 193 

representative concentration pathway scenario 8.5 (RCP8.5) in the IPCC 5th Assessment (IPCC 2014), 194 

was used to derive the input water amount to the tank model. We used the mean of the predicted 195 

variables for the years 2081 to 2100 (all from September to next August) as future riverscape 196 

variables.  197 

 198 

Gene flow analysis 199 

We probabilistically modeled the relative migration rate (edge passability) of each edge as a function 200 

of riverscape variables using the “BGR model” (White et al. 2020). This is a novel method that can 201 

model bidirectional gene flow in stream networks using genetic distance matrices as input data and 202 

riverscape variables as explanatory variables, rigorously accounting for the spatial autocorrelation 203 
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structure of stream networks using a graph-theoretical framework and a spatial autoregressive model. 204 

Specifically, the nearly homogeneous stream segments (delimited by nodes that are sampling sites or 205 

major tributary confluences) were defined as edges, and the relative migration rate (edge passability; 206 

wij) of each edge linking nodes i and j was estimated as a function of k riverscape variables (xij1, xij2, 207 

…, xijk) and the corresponding parameters (β1, β2, …, βk) as:  208 

𝑤𝑖𝑗 =  exp (𝛽0 + ∑ 𝛽𝑘𝑥𝑖𝑗𝑘)

𝑘

 209 

where β0 is the intercept term. Here, all riverscape variables were normalized from 0 to 1. The 210 

posterior distribution of parameters β0, β1, …, βk was estimated by a Markov Chain Monte Carlo 211 

(MCMC) sampler, to fit the input genetic data. The mathematics linking wij to genetic distance are 212 

described in Peterson et al. (2019). 213 

The BGR model was run in R. We used GST and DPS as genetic distances and 10 possible 214 

riverscape variables (Table 1; Fig. S1) as covariates xijk. All variables except direction are symmetric. 215 

For each summary statistic, forward selections were conducted based on the deviance information 216 

criterion (DIC). Variables were added until the DIC no longer decreased by 7 or more (Cain and 217 

Zhang 2019). At each step of the forward selection, the variables that were highly correlated 218 

(Pearson’s r > 0.7) with other variables already included in the model were not added to the model. 219 

Models with fewer than four variables were run for 50,000 MCMC iterations and parameters were 220 

estimated after 25,000 burn-in. Models with four or more variables were run for 100,000 iterations 221 

including 50,000 burn-in. After the final model was identified, we conducted a long run with 500,000 222 

iterations including 200,000 burn-in, to accurately estimate the β values and 95% credible intervals. 223 

Landscape resistance, calculated as the inverse of wij of each edge, was estimated and mapped from 224 

the selected models. To evaluate the estimates, the correlations between genetic distances and 225 

estimated landscape resistance (sum of edges between populations) were calculated by Mantel tests 226 

with 9999 permutations, and compared to the correlations between genetic distances and waterway 227 

geographical distance. The Mantel tests were conducted using the package VEGAN 2.5.6 (Oksanen et 228 

al. 2019) in R. Future landscape resistance was inferred by substituting the future water temperature 229 

variable into the final BGR model. At this stage, we used the model derived from DPS because GST 230 
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displays long-term patterns and DPS is more likely to reflect current changes in gene flow. 231 

 232 

Results 233 

The level of HE was similar across the watershed (ranged from 0.241–0.272), and FIS ranged from -234 

0.012–0.023 with no populations deviating significantly from zero (Table S1). The average GST was 235 

0.029 (ranged from 0.000–0.047; Table S2) and DPS was 0.087 (ranged from 0.050–0.135). In the 236 

STRUCTURE, while LnP(D) for each K increased progressively, ΔK was highest at K = 2, and locally 237 

maximum at K = 6 (Fig. S2). Populations in the southern area were grouped into distinct clusters from 238 

low K, and as K increased, populations in other tributaries were also mixed with geographically 239 

uneven clusters. The strength of population structure differed geographically (Fig. 2a), but the factors 240 

determining this difference are not known by the STRUCTURE. From the forward selection of the 241 

model explaining the strength of gene flow, Shreve’s stream order, water temperature fluctuation, 242 

slope, and edge length were selected for GST, and Strahler’s stream order and summer water 243 

temperature were selected for DPS, in this order (Tables 2 and S3). In both cases, the first and second 244 

variables added to the model were the stream order and water temperature, respectively. While 245 

different types of variables were selected for GST and DPS (Shreve’s or Strahler’s; summer water 246 

temperature or water temperature fluctuation), these results show the importance of the stream order 247 

and water temperature on the strength of gene flow. The stream orders had a positive effect on gene 248 

flow, while the water temperature fluctuation or summer water temperature had a negative effect. The 249 

effect (β) of the water temperature on gene flow was higher in DPS than in GST. In GST, the slope and 250 

edge length were also selected and had negative effects, indicating their relevance to long-term gene 251 

flow. Geographically, the southern upstream area had generally higher landscape resistance (lower 252 

gene flow) than the main stream, while in the northern volcanic area, landscape resistance was not so 253 

high even upstream (Fig. 2). The Mantel tests between the genetic distances and estimated landscape 254 

resistance suggested significant relationships (r = 0.46, p < 0.05 for GST; r = 0.60, p < 0.01 for DPS), 255 

and the correlations were much higher than those between the genetic and geographic distances (Fig. 256 

3). The future prediction indicated that the landscape resistance would increase overall from the 257 

current levels. Some sections in the main stream and in the upper reaches in the volcanic area were 258 
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estimated to exhibit as high landscape resistance levels as the present southern upstream area. The 259 

southern upstream area was projected to display very high resistance.  260 

 261 

Discussion 262 

In this study, we succeeded in modeling and future predicting of gene flow of C. nozawae in the 263 

stream network. Although there are still challenges in the modeling technique (e.g., simplicity of 264 

model assumptions, difficulty of model evaluation, etc.), the modeled landscape resistance explained 265 

the genetic distances well (Fig. 3); the strength of gene flow could be largely explained by riverscape 266 

variables.  267 

It was a somewhat unexpected result that the stream order was identified as the variable with 268 

the strongest effect on gene flow. Previous studies of cold-water fish have reported both higher and 269 

lower gene flow in streams with higher stream orders (Aunins et al. 2015; Escalante et al. 2018; White 270 

et al. 2020). Within the arbitrary study areas, main streams tend to have higher water temperatures and 271 

are often unsuitable environments for cold-water fish. On the other hand, in dendritic stream 272 

structures, confluences are often known to be stable gene accumulation and source points for stream 273 

organisms (Grant et al. 2007; Paz-Vinas and Blanchet 2015), and the downstream passage of those 274 

organisms may result in higher gene flow in higher-order streams. In addition, as the main stream 275 

tends to be more severely affected by flooding (Han et al. 2007; Koizumi et al. 2013), individuals, 276 

especially those of low-mobility species, may have a greater chance of being flushed. There may be 277 

differences regarding which processes are predominant depending on the studied species or areas. 278 

Summer water temperature (or water temperature fluctuation in GST) negatively affected gene flow. 279 

This is probably because streams with high summer water temperatures and large fluctuations are not 280 

suitable environments for C. nozawae (Suzuki et al. 2021), making successful dispersal difficult. 281 

While it is not uncommon for studies of cold-water fishes to implicate an association between gene 282 

flow and water temperature-related variables (Kanno et al. 2011; Escalante et al. 2018; Hand et al. 283 

2016), the present study was able to represent this pattern using more realistic water temperature 284 

information. The model from GST also included the slope and edge length, but the model from DPS did 285 

not. We found that topography and distance affected the formation of the long-term population 286 
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structure as in many other systems (Kanno et al. 2011; Caldera and Bolnick 2008), but that most of the 287 

current gene flow can be explained by the stream order and water temperature. The upstream-288 

downstream direction did not affect gene flow, probably because environmental conditions influence 289 

the direction of gene flow (Nakajima et al. 2021).  290 

Maps displaying modeled landscape resistance from GST and DPS were visually similar (Fig. 291 

2), indicating that the pattern has probably been maintained for a long time. Overall, gene flow is 292 

prevented in small tributaries in the southern area. This area displays higher water temperature 293 

fluctuations than the northern volcanic area where spring-fed environments are more prevalent 294 

(Ishiyama et al. 2023); gene flow in the southern area is probably suppressed by the effects of water 295 

temperature. When comparing this geographical pattern with the STRUCTURE barplots, the upper 296 

reaches in the non-volcanic area where gene flow is prevented roughly corresponded to the areas 297 

where a strong population structure was observed. While the reason for the heterogeneity in the 298 

strength of population structure could not be known by the STRUCTURE, a possible explanation was 299 

explicitly presented in the gene flow analysis. 300 

Under the RCP8.5 scenario, reduced gene flow and increased landscape resistance across the 301 

watershed were predicted (Fig. 2d). Since the studied species exhibited a clear genetic structure only 302 

in the southern area, the prediction that the northern area will have the same level of gene flow as the 303 

present southern area indicates that each tributary within the watershed may experience genetic 304 

fragmentation in the future. Nevertheless, gene flow in the northern area was expected to be 305 

maintained spatially continuously to some extent, indicating that streams with volcanic watersheds are 306 

important for ensuring population connectivity under climate change. A previous study suggested that 307 

streams with low summer temperatures behave as source habitats in the watershed (Nakajima et al. 308 

2021). Our study showed that these streams may serve not only as source habitats but also as 309 

migration pathways in the watershed. As a scenario analysis, Inoue and Berg (2017) considered 310 

landscape resistance to be the inverse of the species distribution model (SDM) estimates and predicted 311 

that an increased landscape resistance would reduce the gene flow of freshwater bivalves in the future. 312 

This is a valuable study that attempts to predict future changes in gene flow; however, it is known that 313 

the habitat suitability maps created by SDMs provide poor estimates of genetic resistance, because of 314 
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the conceptual differences between habitat selection and entire gene flow (Wasserman et al. 2010, 315 

2012; Sator et al. 2022; Mateo-Sánchez 2015). Actually, in C. nozawae, the SDM created in Suzuki et 316 

al. (2021) indicated that the catchment area, analogous to the stream order, had a negative effect on the 317 

occurrence of this species, in contrast to the gene flow characteristics estimated in our study. 318 

Therefore, genetic population connectivity should be considered separately from habitat suitability. 319 

The present study is novel in that gene flow was modeled using riverscape variables identified 320 

from genetic data and including water temperature. Our results showed that gene flow in the cold-321 

water sculpin is expected to decrease dramatically in response to a changing climate. Therefore, under 322 

ongoing climate change, it is important to maintain habitat continuity within the distribution ranges. In 323 

particular, it is necessary to consider that the risk is high in sections where water temperature 324 

fluctuations are large (such as non-volcanic watersheds). Additionally, while main streams may be less 325 

suitable as habitats, they are important as migration corridors. No structures such as weirs should be 326 

installed so that drifted individuals can quickly enter suitable habitats. 327 

To obtain more robust results, it would be desirable to increase the number of sampling 328 

populations. This study has the potential for further development. For example, demography 329 

simulations using inferred landscape resistance (Landguth et al. 2010, 2016) could reveal population 330 

viability. Also, combined with habitat quality analyses such as SDMs, population connectivity could 331 

be quantified for more detailed predictions from the viewpoint of habitat availability (Saura and 332 

Pascual-Hortal 2007). We hope that riverscape genetic modeling will be applied to predict the 333 

consequences of environmental changes on a variety of freshwater organisms. 334 

 335 
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Table 1 Riverscape variables considered in the present study. 541 

Variable Description Hypothesis / Ecological importance Ranges 

Summer water 

temperature A 

Mean water temperature from July to 

August (July 2019 to August 2019) [°C] 

Streams with low summer water temperatures are suitable for C. 

nozawae occupancy/survival (Yagami and Goto 2000; Suzuki et al. 

2021) and therefore migration may also occur frequently in these 

streams. 

8.32–14.2 

Water temperature 

fluctuation A 

Standard deviation of the water 

temperature in one year (September 

2018 to August 2019) 

Thermally stable streams can be suitable for migration. 1.97–5.09 

Drought water 

discharge BC 

Flow rate on the day when the flow is 

355th highest in one year [m3/s] 

(September 2018 to August 2019) 

Drought water discharges, which particularly reflect the environmental 

heterogeneity created by groundwater (Nagasaka and Sugiyama 2010), 

ensure opportunities to colonize throughout the year. 

0.07–6.24 

Flow fluctuation AB Coefficient of variation in the daily flow 

rate in one year (September 2018 to 

August 2019) 

Hydrologically stable streams can be suitable for migration. 0.31–0.65 

Edge length Length of edges [km] Isolation by distance (Wright 1943)  0.05–7.19 

Slope Mean gradient of the edge, i.e., the 

elevation range divided by edge length 

Fish movement and migration are often impeded on steep slopes 

(Kanno et al. 2011). 

4.15–56.5 

Strahler’s stream order 
C 

Strahler’s stream order of the edge Even in cold-water fish, the mainstem may function as a corridor that 

facilitates connectivity among populations (White et al. 2020). 

1–4 

Shreve’s stream order 
BC 

Shreve’s stream order (link magnitude), 

i.e., the numbers of confluence points 

upstream, at the midpoint of the edge 

Given the dendritic arrangement and asymmetry of stream networks, 

sections with more confluence points upstream may increase the 

number of migrants passing through (Paz-Vinas and Blanchet 2015). 

1–62 

Catchment area BC Cumulative area of the catchment 

calculated at the midpoint of the edge 

[km2] 

Sections with larger catchment areas may have more migrants passing 

through, based on the same principle as that of the stream order. Or, 

conversely, streams with larger catchment areas have been identified to 

have lower C. nozawae occupancies (Suzuki et al. 2021) and therefore 

it is also possible that less migration occurs in sections with larger 

catchment areas. 

6.4–296.3 

Direction Whether the gene flow is toward the 

upstream (0) or downstream (1) 

direction 

Most stream organisms have higher migration rates in the downstream 

direction than in the upstream direction (Lamphere and Blum 2012). 

0 or 1 

Variables with the same letters (A, B, C) have high correlations (|r| > 0.7); these variables were not included in the same model. 542 
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Table 2 Selected models explaining the strength of gene flow on the edges. Estimated β values 543 

(median) and their 95% credible intervals (95% CI) are displayed. 544 

 Variables β 95% CI 

(A) GST   

 (Intercept) 5.84 5.65, 5.98 

 Shreve’s stream order 4.51 3.96, 5.19 

 Water temperature fluctuation -0.48 -0.61, -0.35 

 Slope -0.94 -1.15, -0.67 

 Edge length -0.42 -0.54, -0.32 

(B) DPS   

 (Intercept) 6.06 4.94, 6.85 

 Strahler’s stream order 2.50 1.72, 3.15 

 Summer water temperature -1.42 -2.49, -0.38 

 545 

Figure Legends 546 

Fig. 1 Location of the study area. The blue network indicates the rivers belonging to the Ishikari River 547 

system, which has the second largest watershed in Japan and includes the Sorachi River. 548 

 549 

Fig. 2 Maps of the Sorachi River watershed showing the study area (a) and landscape resistance 550 

estimated by BGR models (b–d). In panel (a), sampling nodes (sampling sites) and unsampled nodes 551 

(major confluences between them), which are delimitations of edges (stream sections), are denoted. 552 

Barplots with each sampling node indicate the population structure inferred by STRUCTURE (K = 6). 553 

Landscape resistance is shown in three patterns: long-term gene flow modeled by GST (b), recent gene 554 

flow modeled by DPS (c), predicted gene flow at the end of the 21st century derived by substituting 555 

future water temperatures into the model derived by DPS (d).  556 

 557 

Fig. 3 Isolation by distance and isolation by resistance. The relationship between pairwise genetic 558 

distance and cumulative landscape resistance between populations (b, d) is compared to the 559 

relationship with simple waterway geographic distance (a, c). The cases of GST (a, b) and DPS (c, d) are 560 

shown. 561 
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