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Abstract
Foodborne	illnesses,	particularly	those	caused	by	Salmonella enterica	with	its	extensive	
array	of	over	2600	serovars,	present	a	significant	public	health	challenge.	Therefore,	
prompt and precise identification of S. enterica serovars is essential for clinical rel-
evance,	which	facilitates	the	understanding	of	S. enterica transmission routes and the 
determination	of	outbreak	sources.	Classical	serotyping	methods	via	molecular	sub-
typing	and	genomic	markers	currently	suffer	from	various	limitations,	such	as	labour	
intensiveness,	time	consumption,	etc.	Therefore,	there	is	a	pressing	need	to	develop	
new	diagnostic	techniques.	Surface-	enhanced	Raman	spectroscopy	(SERS)	is	a	non-	
invasive	diagnostic	technique	that	can	generate	Raman	spectra,	based	on	which	rapid	
and	accurate	discrimination	of	bacterial	 pathogens	 could	be	achieved.	To	generate	
SERS	spectra,	a	Raman	spectrometer	is	needed	to	detect	and	collect	signals,	which	
are	divided	into	two	types:	the	expensive	benchtop	spectrometer	and	the	inexpensive	
handheld	spectrometer.	In	this	study,	we	compared	the	performance	of	two	Raman	
spectrometers to discriminate four closely associated S. enterica	serovars,	that	is,	S. en-
terica subsp. enterica serovar dublin,	 enteritidis,	 typhi and typhimurium.	 Six	machine	
learning	algorithms	were	applied	to	analyse	these	SERS	spectra.	The	support	vector	
machine	(SVM)	model	showed	the	highest	accuracy	for	both	handheld	(99.97%)	and	
benchtop	 (99.38%)	 Raman	 spectrometers.	 This	 study	 demonstrated	 that	 handheld	
Raman spectrometers achieved similar prediction accuracy as benchtop spectrom-
eters	when	combined	with	machine	learning	models,	providing	an	effective	solution	
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1  |  INTRODUC TION

Salmonella enterica	 is	 a	 Gram-	negative	 pathogenetic	 bacterium	
of	 the	 Enterobacteriaceae	 family	 with	 more	 than	 2600	 sero-
types.1,2	 Improper	 cooking,	 reheating	 and	 handling	 of	 food	 can	
lead to Salmonella	 outbreaks,	 and	 the	 presence	 of	 Salmonella in 
any	ready-	to-	eat	food	should	be	inhibited.	Statistically,	food	poi-
soning caused by Salmonella ranks first in the world among all 
types of food pathogens.3	However,	due	to	the	complex	matrix,	it	
is difficult to directly detect the presence of bacterial pathogens 
in	food	products.	Thus,	the	continuous	development	of	rapid	and	
accurate methods for detecting Salmonella in food has become a 
key research priority.4	 Traditional	 Salmonella detection methods 
consider	 bacterial	 culture	 the	 gold	 standard,	 a	 time-	consuming	
and	 labor-	intensive.5	 Due	 to	 their	 high	 accuracy	 and	 efficiency,	
many	 culture-	independent	 methods,	 such	 as	 PCR	 Field	 (6)	 and	
isothermal	amplification	Field	 (7),	have	been	suggested	 recently.	
However,	 these	 methods	 involve	 sophisticated	 procedures	 of	
primer	 designs	 and	 experiment	 operations.6	Mass	 spectrometry	
shows great potential in rapidly identifying bacterial pathogens 
in clinical settings.7,8	However,	it	has	limitations	in	discriminating	
highly	 similar	 bacterial	 species,	 e.g.,	 Escherichia coli and Shigella 
spp.,	 etc.9	 Therefore,	 applying	 the	 technique	 in	 identifying	 the	
highly similar and closely associated S. enterica serovars is difficult. 
With	the	development	of	sequencing	technology,	whole-	genome	
sequencing	(WGS)	is	widely	used	as	a	convenient	tool	for	species	
identification and genotyping.10,11 Several 1000s of Salmonella 
genomes	 have	 been	 sequenced	 and	 are	 freely	 available	 in	 pub-
lic	databases,	and	highly	 related	serovars	could	be	discriminated	
via bioinformatic methods.12	However,	 the	 cost	 of	WGS	 is	 high,	
which restricts its routine use in clinical laboratory.13	Therefore,	
developing novel and cheap methods for the rapid and accurate 
identification of S. enterica serovars is crucial.

Raman	 spectroscopy	 (RS)	 is	 an	 important	 all-	biological	 finger-
printing	technique.	It	has	been	intensively	investigated	for	its	appli-
cations in identifying pathogenic microorganisms in recent years due 
to	its	generation	of	information-	rich	molecular	vibrational	spectra.14 
However,	 the	Raman	effect	 is	 very	weak	 in	practical	 applications.	
Later,	 the	 development	 of	 surface-	enhanced	Raman	 spectroscopy	
(SERS)	greatly	 improved	the	magnitude	of	normal	Raman	signals.15 
Therefore,	the	SERS	technique	has	potential	in	biomolecular	detec-
tion	due	 to	 its	 high	 resolution,	 high	 sensitivity,	 low	 solution	 inter-
ference and strong robustness.16 Recent studies have increasingly 
employed	SERS	technology	to	detect	microbial	pathogens.17,18	Yan	

et al.19	applied	single-	cell	Raman	spectrometry	for	rapid	discrimina-
tion	of	23	bacterial	species	across	7	genera.	The	study	first	utilized	
decision tree machine learning algorithms to assess and differentiate 
single bacterial cells at the serotype level and then constructed a 
quaternary	classification	model	 to	elevate	 the	accuracy	of	various	
recognition	models,	 thus	 enabling	 efficient	 prediction	 of	 bacterial	
strains at the serotype level.19 Sun et al.20	 integrated	 SERS	 with	
convolutional	 neural	 network	 (CNN)	models	 to	 detect	 Salmonella. 
By	comparing	five	spectral	preprocessing	methods,	they	ultimately	
identified	three	Salmonella	serotypes	at	the	single-	cell	level	by	com-
bining	 SG	with	 SNV.	 Furthermore,	Ding	 et	 al.21 developed a mul-
tiscale	 CNN	model	 with	 three	 parallel	 CNNs	 by	 integrating	 SERS	
with	 multiscale	 convolutional	 neural	 networks,	 achieving	 multidi-
mensional	 feature	extraction	of	 the	SERS	spectra,	with	 the	model	
reaching	 an	 identification	 accuracy	 exceeding	 97%.	 These	 studies	
demonstrated	 that	 the	SERS	 technique	as	 an	 analytical	 tool	holds	
significant potential for rapidly and accurately identifying microor-
ganisms,	demonstrating	remarkable	promise	in	bacterial	detection.

A	Raman	spectrometer	 is	 indispensable	to	obtain	SERS	spec-
tra,	 which	 are	 generally	 categorised	 into	 two	 groups,	 i.e.,	 ex-
pensive	 benchtop	 spectrometers	 and	 inexpensive	 handheld	
spectrometers.22	The	cost-	effectiveness	and	user-	friendly	nature	
of	 portable	 instruments	 are	 attractive,	 yet	 their	 sensitivity	 and	
measurement range fall short compared to benchtop setups.23,24 
However,	 the	ability	of	portable	 instruments	 to	 facilitate	on-	site	
analysis can overcome the limitations of benchtop instruments. 
Each	 type	 of	 instrument	 has	 its	 own	 set	 of	 advantages	 and	 dis-
advantages.	 Therefore,	 conducting	 a	 comparative	 performance	
analysis of handheld and benchtop spectrometers is essential to 
detect	bacterial	pathogens.	Although	many	 studies	have	applied	
the	SERS	technique	to	rapidly	identify	bacterial	pathogens,	fewer	
studies focus on the performance comparison of handheld and 
benchtop	 Raman	 spectrometers.	 In	 this	 study,	 we	 comprehen-
sively compared the performance of a handheld Raman spec-
trometer	 (Oceanhood	 RMS1000	Micro	 Raman)	with	 a	 benchtop	
Raman	 spectrometer	 (Renishaw	 inVia™	Qontor	 Confocal	 Raman	
Microscope)	 in	the	detection	and	prediction	of	the	SERS	spectra	
of	 four	closely-	associated	S. enterica	 serovars,	namely	S. enterica 
subsp. enterica serovar dublin,	 enteritidis,	 typhi and typhimurium. 
According	 to	 the	 results,	 for	 SERS	 spectra	 generated	 from	both	
handheld	and	benchtop	Raman	spectrometers,	different	S. enterica 
serovars	can	be	quickly	distinguished	by	various	machine	learning	
models,	 in	which	 the	 support	 vector	machine	 (SVM)	model	 con-
sistently achieved the highest accuracies for both spectrometers 

for	 rapid,	 accurate	 and	 cost-	effective	 identification	of	 closely	 associated	S. enterica 
serovars.

K E Y W O R D S
characteristic	peaks,	label-	free	SERS,	machine	learning	algorithm,	Raman	spectrometer,	Raman	
spectrum,	Salmonella serovar

 15824934, 2024, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jcm

m
.18292 by E

dith C
ow

an U
niversity, W

iley O
nline L

ibrary on [09/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  3 of 15YUAN et al.

(99.38%	for	benchtop	Raman	spectrometers	and	99.97%	for	hand-
held	 Raman	 spectrometer).	 In	 summary,	 Raman	 spectroscopy	
combined with machine learning algorithms can identify closely 
related S. enterica	serotypes	with	high	accuracy,	which	is	of	great	
significance	for	preventing,	monitoring	and	controlling	foodborne	
diseases	and	protecting	food	safety.	Meanwhile,	the	results	from	
the comparison of handheld and benchtop Raman spectrometers 
suggest that the handheld Raman spectrometer can achieve sim-
ilar prediction accuracy to the benchtop Raman spectrometer in 
identifying different serotypes of S. enterica when combining the 
technique	 with	 machine	 learning	 analysis.	 Therefore,	 handheld	
Raman	spectrometers	could	be	expected	to	be	more	widely	used	
in	real-	world	scenarios,	saving	instrument	costs	for	testing	labora-
tories	and	also	helping	promote	the	practical	application	of	in-	field	
testing via Raman spectroscopy.

2  |  METHODS AND MATERIAL S

2.1  |  Bacterial cultivation and sample preparation

Four	S. enterica serovars were obtained from the Laboratory of the 
Guangdong	 Provincial	 People's	 Hospital	 (Guangdong	 Academy	
of	Medical	Sciences),	Southern	Medical	University,	China,	which	
includes S. enterica subsp. enterica serovar dublin,	enteritidis,	typhi 
and typhimurium.	 These	 serovars	 were	 preserved	 in	 bacterial	
strain	 preservation	 tubes	 containing	 a	 solution	 of	 30%	 glycerol	
and	 70%	 TSB	 broth.	 All	 strains	 were	 identified	 and	 confirmed	
through	biochemical	methods	 plus	Matrix-	assisted	 laser	 desorp-
tion/ionization-	time	 of	 flight	 (MALDI-	TOF)	 mass	 spectrometry	
(MS)	 and	 stored	 at	 −80°C	 freezer	 for	 long-	term	use.	During	 the	
study,	 all	 the	 strains	were	 recovered	 from	 the	−80°C	 freezer	by	
streaking	 on	 Columbia	 blood	 agar	 plates	 (Guangzhou	 Detgerm	
Microbiological	Science,	China)	and	 incubated	at	37°C	overnight	
before	experimental	analysis.

2.2  |  Silver nanoparticle preparation

Preparing	 silver	 nanoparticles	 (AgNPs)	 has	been	well-	documented	
in previous studies.17,25,26	 In	 particular,	 33.72 mg	 of	 silver	 nitrate	
(AgNO3)	was	added	to	a	triangular	flask	containing	200 mL	of	deion-
ized	distilled	water	(ddH2O).	The	mixture	was	stirred	and	heated	until	
it	 reached	 the	 boiling	 point.	 Subsequently,	 8 mL	 of	 sodium	 citrate	
(Na3C6H5O7)	was	 added	while	 stirring,	 and	 the	heating	was	main-
tained	at	650 r/min	for	40 min.	Afterward,	the	heating	was	ceased,	
and stirring was continued until the solution cooled to room tem-
perature.	The	solution	was	then	adjusted	to	a	final	volume	of	200 mL	
with	ddH2O.	Subsequently,	1 mL	of	the	prepared	solution	was	trans-
ferred	into	a	clean	Eppendorf	(EP)	tube	and	subjected	to	centrifuga-
tion	at	7000 r/min	for	7 min.	Discard	the	supernatant	and	resuspend	
the	pellet	with	100 μL	of	ddH2O,	the	AgNP	substrate	stored	without	
light	at	room	temperature	for	long-	term	use.

2.3  |  SERS spectral collection via benchtop and 
handheld Raman spectrometers

The	 benchtop	 Raman	 spectrometer	 used	 in	 the	 experiment	 is	 an	
inVia™	 Qontor	 Confocal	 Raman	 Microscope	 (Renishaw	 Plc.,	 New	
Mills,	Wotton-	under-	Edge,	UK).	The	microscope	had	a	785 nm	laser,	a	
1200/mm	(514/780)	grating,	and	a	charge-	coupled	device	(Renishaw	
Centrus	 2R4F).	 The	 Raman	 shifts	 ranged	 from	 500	 to	 1800 cm−1,	
with	an	exposure	time	of	10 s	and	a	laser	power	of	0.1%.	The	Raman	
system	was	integrated	with	a	microscope	(Leica,	Germany),	and	the	
Raman	excitation	light	was	focused	onto	the	sample	using	a	50× ob-
jective	lens.	The	instrument	was	calibrated	using	a	standard	built-	in	
silicon	signal	at	520 cm−1.	In	contrast,	the	handheld	Raman	spectrom-
eter	Oceanhood	RMS1000	(Shanghai	Oceanhood	Opto-	Electronics	
Tech	Co.,	 Ltd.,	 Shanghai,	China)	was	used	 for	 sample	 analysis	 and	
Raman	spectral	detection	by	using	the	settings	of	parameters	as	ex-
citation	wavelength	at	785 nm	and	excitation	power	at	350 mW.	The	
spectrometer,	 integrating	 core	 components	 such	 as	 lasers,	 Raman	
probes,	fibre	optic	spectrometers	and	photodetectors,	forms	a	com-
pact,	high-	performance,	research-	grade	portable	Raman	spectrom-
eter. Its highly integrated optical path and structural design afford 
it	a	small	size	and	lightweight	profile,	with	a	resolution	of	12 cm−1 at 
50 μm.	All	the	SERS	spectra	were	calibrated	using	the	Raman	peak	at	
520 cm−1	as	the	reference	peak,	and	the	dark	current	was	deducted	
during	the	integration	time.	For	each	strain	of	Salmonella used in this 
study,	after	recovering	via	cultivating	on	a	Columbia	blood	agar	plate	
overnight,	 a	 single	 colony	was	 selected	 and	 inoculated	 into	 15 μL 
phosphate	buffer	saline	 (PBS)	and	well	mixed	via	vortexing,	which	
was	then	mixed	with	15 μL	negatively	charged	AgNPs	substrate	so-
lution.	The	well-	mixed	suspension	was	dropped	onto	the	silicon	wa-
fer's	surface	to	form	a	suitable-	sized	circular	spot,	which	was	dried	
naturally	 before	 SERS	 spectroscopy.	 The	 handheld	 Raman	 spec-
trometer	collected	a	total	of	920	spectra,	including	4	strains	for	each	
serovar of S. dublin,	S. enteritidis,	S. typhi and S. typhimurium,	with	230	
spectra collected for each Salmonella	serovar.	The	benchtop	Raman	
spectrometer	collected	spectra	from	5	strains	of	S. dublin,	9	strains	
of S. enteritidis,	4	strains	of	S. typhi and 10 strains of S. typhimurium. 
Considering	the	differences	in	the	number	of	strains	of	different	se-
rovars,	200	spectral	data	were	randomly	selected	for	each	serovar	
for	analysis,	and	a	total	of	800	spectra	were	collected	for	handheld	
and	benchtop	Raman	spectrometers,	respectively.

2.4  |  Average SERS spectra and 
deconvolution analysis

To	compare	the	performance	between	the	benchtop	and	handheld	
Raman spectrometers for S. enterica	 serovars,	 we	 computed	 the	
average signal intensities of all Raman signals at each Raman shift 
for	a	specific	sample,	generating	the	average	SERS	spectra	for	four	
closely associated S. enterica	serovars.	This	analysis	focused	on	the	
relative intensity and prevalence of specific peaks in the spectra. 
Spectral abundance is crucial as it reflects the concentration and 
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presence	of	various	molecular	components	 in	the	sample.	By	as-
sessing	 the	 abundance	 of	 spectral	 features,	 we	 gained	 insights	
into	 each	 spectrometer's	 sensitivity	 and	 detection	 capabilities.	
Additionally,	 a	 shaded	 region	 representing	 20%	 of	 the	 standard	
deviation	 (SD)	 was	 visualised	 around	 the	 average	 SERS	 spectra	
using	Origin	Software	(OriginLab,	United	States).17	The	software's	
fit peaks	(pro)	function	was	employed	to	automatically	fit	the	spec-
tral	 characteristic	 peaks,	 thereby	 identifying	 the	 corresponding	
molecular	components.	We	performed	spectral	deconvolution	on	
the	average	Raman	spectra	 to	 further	explore	 the	differences	 in	
spectral data between the two instruments. In the Voigt	function,	
convolution using Lorentzian and Gaussian widths	was	used	to	ex-
tract detailed information from each spectral characteristic peak. 
This	 approach	 allowed	 for	 a	 more	 nuanced	 analysis	 of	 spectral	
abundance by separating overlapping peaks and elucidating their 
contributions.	The	Gaussian width and Lorentzian width for all char-
acteristic	peaks	were	shared	values	set	to	1,	and	then	convergence	
was	achieved	 in	 the	 fitting	process.	The	comparative	analysis	of	
spectral abundance provided additional insights into the perfor-
mance and detection efficiency of the benchtop and handheld 
spectrometers for analysing the S. enterica serovars.

2.5  |  Clustering analysis of SERS spectra

To	investigate	the	inherent	differences	of	SERS	spectra	from	differ-
ent	instruments	and	the	SERS	spectra	between	S. enterica	serovars,	
we	 employed	 the	 Orthogonal	 Partial	 Least	 Squares-	Discriminant	
Analysis	(OPLS-	DA)	clustering	algorithm.27 Since S. enterica serovars 
could	be	 influenced	by	 external	 factors	during	 the	 collection	pro-
cess,	data	normalization	was	applied	as	a	pre-	processing	step	in	con-
junction	with	cluster	analysis	to	assess	data	quality.	The	raw	spectral	
data	were	 normalized	 using	 the	maximum-	minimum	normalization	
method	 within	 the	 commercial	 analysis	 software	 Unscrambler	 X	
(Version	10.4	64bit,	CAMO,	Norway)	to	scale	all	spectral	intensities	
to	 the	 range	 [0,	1].	Cluster	analysis	was	performed	using	SIMCA's	
multivariate	 statistical	 analysis	 software	 (version	 13.0,	 32-	bit).	
Select	OPLS-	DA	 as	 the	model	 type,	 then	 click	 the	Autofit button 
to	 fit	 the	model.	 The	 software	 automatically	 calculated	R2X,	R2Y	
and	Q2	to	evaluate	model	performance.	SERS	spectra	from	the	two	
Raman spectrometers were first comparatively analysed via cluster-
ing	 analysis.	 SERS	 spectral	 data	 from	different	S. enterica serovars 
were	then	analysed	using	the	same	method.	SERS	spectra	from	dif-
ferent Raman spectrometers and serovars were represented in dis-
tinct	colours,	and	the	corresponding	data	categories	were	indicated	
with dashed circles and labels.

2.6  |  Machine learning analysis of SERS spectra

Due	 to	 the	 complexity	 of	 SERS	 spectral	 data,	 classical	 statisti-
cal methods are insufficient to analyse the Raman spectral data.26 
Therefore,	 machine	 learning	 algorithms	 have	 been	 recruited	 to	

analyse	 and	 predict	 the	 identification	 of	 the	 SERS	 spectrum.	 To	
obtain an effective identification model for different S. enterica se-
rovars,	we	compared	the	performance	of	six	ensemble	learning	algo-
rithms:	Adaptive	Boosting	(AdaBoost),	Decision	Tree	(DT),	Quadratic	
Discriminant	Analysis	 (QDA),	Random	Forest	 (RF),	 Support	Vector	
Machine	(SVM)	and	eXtreme	Gradient	Boosting	(XGB).	Before	con-
ducting	machine	learning	(ML)	analysis,	we	employed	the	train_test_
split	function	to	split	all	SERS	spectral	data	into	training,	validation	
and	 test	 sets	 in	 a	 6:2:2	 ratio.	We	 used	 the	 LabelEncoder function 
and the to_categorical	 method	 in	 the	 Scikit-	Learn	 package	 (ver-
sion	0.21.3)	 to	convert	the	sample	 labels	 in	the	dataset	 into	 label-	
encoded	form.	The	test	dataset	was	exclusively	used	to	assess	the	
predictive	performance	of	the	models	and	was	not	utilized	for	train-
ing	and	validation.	During	 the	 training	of	 the	six	machine	 learning	
models,	we	employed	grid	 search	 functions	 to	 train	 and	 fine-	tune	
model	parameters.	Specifically,	the	GridSearchCV function was used 
to	optimize	the	hyperparameter	combination,	and	the	cv	parameter	
was	set	to	5,	which	means	that	five	times	of	cross-	validation	would	
be	 performed.	 The	 hyperparameter	 combination	with	 the	 highest	
average	score	was	the	best	for	the	final	model	training.	We	recorded	
each	model's	parameter	combinations	(Table S1)	and	visualised	the	
gradient	model	scores	(Figure S1).

2.7  |  Evaluation of machine learning models

To	validate	the	ability	of	machine	learning	models	to	distinguish	S. en-
terica	 serovars,	 quantitative	metrics	were	 employed	 to	 assess	 the	
performance	of	these	algorithms.	Common	evaluation	metrics	such	
as	accuracy_score	(ACC),	precision_score	(Pre),	recall_score	(Recall)	
and	f1_score	(F1)	have	been	utilised	to	gauge	the	generalisation	abil-
ity of these models.28	The	most	frequently	used	evaluation	metric	is	
accuracy	(ACC),	which	represents	the	proportion	of	correctly	classi-
fied samples to the total number of samples.29	ACC	was	calculated	
using the accuracy_score function. In order to address potential data 
imbalances	resulting	from	random	data	splitting,	Precision	and	Recall	
were used to provide an objective model evaluation.30	The	Precision	
value represents the probability of being correctly predicted as a 
positive sample among the samples predicted as positive samples in 
the	prediction	results.	The	Recall	value	represents	the	probability	of	
being correctly predicted as a positive sample in the positive samples 
of	 the	original	data.	During	 the	data	analysis	process,	 the	average	
parameters	 for	Precision	and	Recall	were	set	 to	Micro	and	Macro,	
respectively.	As	Precision	and	Recall	 are	mutually	 influenced	 indi-
cators,	the	F1-	Score,	as	the	harmonic	average	of	these	two	indica-
tors,	was	calculated	for	a	comprehensive	evaluation.31	The	average	
parameter	 for	 F1-	Score	 is	weighted.	 To	 prevent	model	 overfitting	
during	training,	we	used	the	5-	fold	cross-	validation	(CV)	method.32 
This	 involved	 setting	 cv = 5	 in	 the	 cross_val_score function to split 
the	training	dataset	into	five	equal-	sized	sub-	datasets.	Furthermore,	
we	used	the	area	under	the	curve	(AUC)	value,	calculated	using	the	
roc_auc_score	 function,	as	a	metric	 to	account	 for	class	 imbalance.	
To	provide	a	more	intuitive	visualisation	of	the	model's	performance	
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    |  5 of 15YUAN et al.

on	the	test	dataset,	we	employed	the	confusion_matrix function to 
present the prediction results of the best model in the form of a 4*4 
matrix.

2.8  |  Human and animal rights

Not	applicable.

3  |  RESULTS

3.1  |  Averaged and deconvoluted SERS spectra

SERS	spectra	of	the	same	sample	collected	from	different	Raman	
spectrometers	 vary,	which	 reflects	 the	 performance	 capacity	 of	
different spectrometers.33	 In	 addition,	 SERS	 spectra	 can	 reveal	
variations among different bacterial samples and can transform 
this	 chemical	 and	 structural	 information	 into	 SERS	 signal	 inten-
sities at different Raman shifts.34	 Therefore,	 by	 analysing	 SERS	
spectra,	 the	 performance	 of	 Raman	 spectrometers	 can	 be	 as-
sessed,	and	distinct	bacterial	species	can	be	discriminated.	In	this	
study,	we	collected	SERS	spectra	of	four	closely	related	S. enterica 
serovars to compare the differences between benchtop and hand-
held	Raman	spectrometers.	First,	we	compared	the	average	SERS	
spectra of S. enterica serovars between the two Raman spectrom-
eters.	By	comparing	the	standard	errors	(SEs)	of	the	average	SERS	
spectra	 for	 the	 four	 serovars,	 the	overall	 trend	of	SERS	spectral	
replicability	 could	 be	 quantified	 for	 different	 SERS	 spectra.35,36 
The	results	indicated	that	the	benchtop	Raman	spectrometer	pro-
duced	more	reproducible	SERS	spectra	than	the	handheld	Raman	
spectrometer	(Figure 1A,B).	In	general,	the	reproducibility	of	SERS	
spectra generated by both spectrometers varies within an accept-
able	range.	Moreover,	comparing	the	average	SERS	spectra	from	
the	two	spectrometers	reveals	that	the	benchtop	spectrometer's	
average	SERS	spectra	display	more	characteristic	peaks,	likely	due	
to	 its	higher	 resolution	and	more	sensitive	detectors.	These	fac-
tors	contribute	 to	 the	benchtop	spectrometer's	enhanced	ability	
to	detect	 a	wider	 range	of	molecular	 components,	 resulting	 in	 a	
more	 abundant	 spectral	 representation.	 However,	 within	 each	
spectrometer,	 no	 significant	 differences	 were	 observed	 in	 the	
peak spectra across the four S. enterica	serovars.	Therefore,	analy-
sis	of	the	average	SERS	spectra	from	variations	of	standard	errors	
and the number of characteristic peaks could show the perfor-
mance of different Raman spectrometers but cannot discriminate 
the	four	serovars,	necessitating	more	advanced	analyses.

To	improve	the	resolution	of	SERS	spectra	via	enhancement	of	
signal-	to-	noise	ratio,	spectral	deconvolution	was	conducted.	The	
deconvoluted spectra comprise a series of Voigt	sub-	bands,	each	
representing a set of characteristic peaks. It could be seen that 
the method fits the important characteristic peaks of Raman spec-
tra well and could eliminate the interference of other artifactual 
peaks.	 The	 deconvoluted	 SERS	 spectra	 amplify	 the	 differences	

between the four bacterial genera and magnify variations between 
the	two	types	of	spectrometers.	Significant	disparities	exist	in	the	
deconvoluted	 SERS	 spectra	 obtained	 from	 the	 two	 instruments	
(Figure 1C,D).	Specifically,	when	analysing	the	deconvoluted	SERS	
spectra for each Salmonella	 strain,	 the	 handheld	 Raman	 spec-
trometer displayed fewer characteristic peaks than the bench-
top	 spectrometer.	 This	 significant	 difference	 can	 be	 attributed	
to	the	handheld	spectrometer's	power,	sensitivity	and	resolution	
limitations.	Even	with	spectral	deconvolution	analysis,	 the	hand-
held	 device	 cannot	 discern	 and	 display	 the	 characteristic	 peaks,	
resulting in a substantial disparity with the benchtop spectrome-
ter.	Nevertheless,	upon	closer	examination,	 it	becomes	apparent	
that	within	each	spectrometer,	there	are	distinct	variations	in	the	
deconvoluted	SERS	spectra	for	the	four	S. enterica	serovars.	These	
differences	 can	be	 attributed	 to	 unique	 characteristic	 peaks,	 al-
lowing	for	the	differentiation	and	interpretation	of	the	SERS	spec-
tra of S. enterica serovars.

In	specificity,	the	distinctive	SERS	spectral	characteristic	peaks	
of the four S. enterica serovars from different Raman spectrome-
ters and their corresponding chemical structures are presented 
in Table 1.	Characteristic	peaks	corresponding	 to	 the	vibrational	
modes of internal chemical bonds reveal bacterial compositional 
variations.	Due	 to	 the	 complexity	 of	 these	 characteristic	 peaks,	
our	comparison	solely	focused	on	the	unique	features	found	be-
tween different Raman spectrometers and among the four S. enter-
ica serovars. Different S. enterica	serovars	exhibited	characteristic	
peaks at different wavelengths when the same spectrometer was 
used.	 Within	 the	 same	 S. enterica	 serovar,	 the	 use	 of	 different	
spectrometers also results in the generation of distinct charac-
teristic	 peaks.	 In	 particular,	 compared	 to	 the	 handheld	 one,	 the	
benchtop spectrometer identifies more molecular bond vibrations 
for the four S. enterica	serovars.	As	indicated	in	Table 1,	measure-
ments obtained with the benchtop spectrometer show that the 
four S. enterica serovars have 20 distinctive characteristic peaks. 
At	the	same	time,	only	six	were	observed	when	using	the	handheld	
spectrometer.	Furthermore,	only	at	1384 cm−1,	which	corresponds	
to	 the	CN	stretching	mode	and	 the	symmetric	CH3	deformation	
mode,37 both dublin and typhi serovars in the S. enterica measured 
with	both	 the	benchtop	and	handheld	Raman	spectrometers	ex-
hibited	identical	characteristic	peaks.	At	1409/1410 cm−1,	distinc-
tive peaks for enteritidis and typhimurium can be observed in the 
handheld	 spectrometer	 results,	while	only	 the	enteritidis charac-
teristic	 peak,	 corresponding	 to	 COO-		 stretching,38 is present in 
the benchtop spectrometer measurements. In addition to these 
two	shared	characteristic	peaks,	 for	 the	handheld	 spectrometer,	
the four Salmonella	strains	exhibit	unique	characteristic	peaks,	in-
cluding	the	COO-		wagging	vibrational	mode39	at	616 cm−1,	COO-		
and	C-	C	skeletal	stretching40	at	925 cm−1,	Guanine	ring	mode41 at 
1486 cm−1	and	C=C	stretching42	at	1542 cm−1.	These	characteristic	
peaks	were	exclusively	present	in	the	measurements	obtained	with	
the	handheld	spectrometer.	Conversely,	the	remaining	18	charac-
teristic peaks from the benchtop spectrometer do not appear in 
handheld	measurements.	This	suggests	significant	differences	 in	
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6 of 15  |     YUAN et al.

identifying	characteristic	peaks	between	the	two	spectrometers,	
with	the	handheld	spectrometer	exhibiting	noticeably	lower	sen-
sitivity	 than	 the	benchtop	spectrometer.	Additionally,	we	 identi-
fied characteristic peaks shared among the S. enterica serotypes 
for	 the	 two	Raman	spectrometers,	 respectively,	which	are	 listed	
in Table S2.	 To	 better	 understand	 the	 differences	 of	 the	 shared	
characteristic peaks within the four S. enterica serovars for hand-
held	 and	benchtop	Raman	 spectrometers,	 a	 set	 of	 boxplots	was	
visualised to compare the Raman intensities of these shared char-
acteristic	peaks,	which	are	shown	in	Figure S2.

3.2  |  Cluster classification of SERS spectra of four 
S. enterica serovars from handheld and benchtop 
Raman spectrometers

To	identify	differences	in	the	generated	SERS	spectra	between	dif-
ferent	Raman	spectrometers	and	variations	in	SERS	spectra	among	
different S. enterica	serovars,	we	utilized	the	OPLS-	DA	clustering	al-
gorithm	for	cluster	analysis.	We	assessed	the	model's	performance	
using	two	parameters,	R2	and	Q2,	where	R2	reflects	the	goodness	
of	fit	and	Q2	reflects	the	model's	predictive	capability.	A	higher	Q2	

F I G U R E  1 The	average	and	deconvoluted	SERS	spectra	of	four	S. enterica	serovars	collected	from	two	Raman	spectrometers.	(A)	Average	
SERS	spectra	of	the	four	Salmonella	strains	under	the	benchtop	Raman	spectrometer.	(B)	Average	SERS	spectra	of	the	four	Salmonella 
strains	under	the	handheld	Raman	spectrometer.	(C)	Deconvoluted	SERS	spectra	of	the	four	Salmonella strains under the benchtop Raman 
spectrometer.	(D)	Deconvoluted	SERS	spectra	of	the	four	Salmonella	strains	under	the	handheld	Raman	spectrometer.	The	X-	axis	represents	
Raman	shifts	in	the	530–1800 cm−1	range,	while	the	Y-	axis	represents	the	relative	Raman	intensity.	a.u.	means	artificial	unit	and	has	no	real	
meaning.
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    |  7 of 15YUAN et al.

and R2 indicate better clustering effects.61	 Initially,	 we	 imported	
the	 raw	SERS	 spectral	 data	measured	by	 the	benchtop	 spectrom-
eter	 into	 the	OPLS-	DA	 algorithm	 (Figure 2A).	 It	 can	 be	 observed	
that	 SERS	 spectra	 of	 S. enteritidis,	 S. typhimurium and S. dublin ob-
tained	 with	 the	 benchtop	 spectrometer	 exhibited	 a	 considerable	
amount	 of	 overlap	 within	 the	 same	 group,	 with	 evaluation	 index	
scores	 of	 R2X = 0.998,	 R2Y = 0.774	 and	Q2 = 0.702.	 After	 normal-
ising	 the	 spectral	 data,	 inter-	group	differences	 became	more	 pro-
nounced,	 leading	 to	 improved	 OPLS-	DA	 evaluation	 index	 scores	
of	R2X = 0.942,	R2Y = 0.953	and	Q2 = 0.951	 (Figure 2B).	Figure 2C 
shows	that	the	raw	SERS	spectra	measured	with	the	handheld	spec-
trometer can effectively differentiate the four Salmonella	 strains,	
achieving	evaluation	 index	scores	of	R2X = 1.000,	R2Y = 0.715	and	
Q2 = 0.707.	Similarly,	normalising	the	spectral	data	 from	the	hand-
held	 spectrometer	 improves	OPLS-	DA	 evaluation	 index	 scores	 of	
R2X = 0.983,	 R2Y = 0.843	 and	 Q2 = 0.834	 (Figure 2D).	 Before	 the	
data	normalisation,	both	types	of	spectrometers	exhibited	good	re-
sults	in	the	OPLS-	DA	clustering	analysis.	The	benchtop	spectrometer	

showed relatively small differences within the same group compared 
to	 the	handheld	 spectrometer's	 SERS	 spectra,	 but	 inter-	group	dif-
ferences	were	also	limited.	After	normalizing	the	spectral	data,	both	
spectrometers	 showed	 enhanced	 inter-	group	differences,	 creating	
clearer	group	boundaries.	 In	 summary,	 after	normalising	 the	 spec-
tral	 data,	 the	 benchtop	 and	 handheld	 spectrometers	 achieved	 ef-
fective clustering analysis for the four Salmonella	strains.	They	can	
differentiate	the	four	strains,	but	the	benchtop	spectrometer's	SERS	
spectra	exhibit	smaller	within-	group	differences	than	the	handheld	
spectrometer.

3.3  |  Supervised machine learning analysis of SERS 
spectra of four S. enterica serovars from handheld and 
benchtop Raman spectrometers

In	this	study,	we	constructed	and	compared	six	supervised	machine	
learning methods for their ability to differentiate the four S. enterica 

TA B L E  1 Four	SERS	spectral	characteristic	peaks	unique	to	Salmonella measured by benchtop and handheld spectrometers.

No. Wavenumber (cm−1) Band assignment

Benchtop spectrometer Handheld spectrometer

Ref.S. D S. E S. T . Ty S. D S. E S. T S. Ty

1 568 Deformation mode of the 
adenosyl ribose ring

43

2 616 COO-		wagging	vibrational	mode 39

3 852 C-	O-	C	str	or	ring	breathing 44

4 925 COO-		and	C-	C	skeletal	str 40

5 1004 Phenylalanine 45

6 1049 PO2-		stretching 46

7 1099 CC	skeletal	and	COC	stretching 47

8 1128 C-	C	str,	C-	O-	C 48

9 1134 =C-	C = of unsaturated fatty 
acids

49

10 1188 Phenyl	ring	CH,	COH	bend 50

11 1264 Amide	III 51

12 1331 DNA	vibration 52

13 1377 Symmetric stretching of the 
carboxylate

53

14 1384 CN	stretching	mode	and	the	
symmetric	CH3 deformation 
mode

37

15 1409/1410 COO-		stretching 38

16 1486 Guanine	ring	mode 41

17 1542 C=C	stretch 42

18 1557 Amino	group	in	pure	chitosan 54

19 1620 Tyrosine 55

20 1651 Amide	I 56

21 1664 Amide	I 57

22 1683 Amide	I 58

23 1690 Amide	I 59

24 1696 Amide	I 60
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8 of 15  |     YUAN et al.

serovars	 through	 SERS	 spectral	 analysis.	 In	 particular,	 we	 initially	
analysed the spectral data based on the benchtop Raman spectrom-
eter.	According	to	the	data	analysis	results	in	Table 2,	the	SVM	model	
exhibited	the	highest	predictive	accuracy	at	99.38%.	The	Precision,	
Recall	 and	 F1-	Score	 values	 for	 the	 other	 three	 evaluation	metrics	
were	99.38%,	99.44%	and	99.38%,	 respectively.	 The	5-	fold	 cross-	
validation	score	was	99.98%,	and	the	AUC	value	was	99.98%.	This	
suggests	that	the	SVM	model	outperforms	other	machine	learning	

algorithms	regarding	stability	and	robustness.	Apart	from	the	SVM	
model,	the	RF,	XGBoost,	AdaBoost	and	DT	models	achieved	accu-
racy	 rates	exceeding	95%,	 signifying	 that	 these	models	 can	effec-
tively predict Salmonella	 SERS	 spectra	measured	by	 the	benchtop	
spectrometer with good results.

For	 predicting	 the	 four	 types	 of	 S. enterica serovars based on 
SERS	 spectra	 acquired	 with	 the	 handheld	 Raman	 spectrometer,	
we	also	compared	six	machine	learning	algorithms,	and	the	results	

F I G U R E  2 OPLS-	DA	analysis	of	S. enterica	SERS	spectra	between	the	two	spectrometers.	(A)	OPLS-	DA	clustering	analysis	of	raw	data	
measured	by	the	benchtop	spectrometer.	(B)	OPLS-	DA	clustering	analysis	of	standardized	data	measured	by	the	benchtop	spectrometer.	
(C)	OPLS-	DA	clustering	analysis	of	raw	data	measured	by	the	handheld	spectrometer.	(D)	OPLS-	DA	clustering	analysis	of	standardized	data	
measured by the handheld spectrometer.
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    |  9 of 15YUAN et al.

are presented in Table 3.	According	to	the	results,	the	SVM	model	
achieved	the	highest	accuracy,	reaching	99.97%.	The	Precision	score	
was	99.97%,	Recall	was	99.98%,	F1-	Score	was	99.97%	and	AUC	was	
100%,	 surpassing	 the	 other	 models.	 Regarding	 the	 5-	fold	 cross-	
validation	score,	the	SVM	model	achieved	a	perfect	score	of	100%,	
making it the most robust model among all other machine learning 
models	used	in	this	study.	On	the	other	hand,	the	QDA	and	AdaBoost	
algorithms	had	accuracy	rates	below	70%,	indicating	that	these	two	
algorithms had relatively poor predictive performance for S. enterica 
serovars	based	on	the	analysis	of	SERS	spectra	that	were	acquired	
with	the	handheld	Raman	spectrometer.	The	observed	differences	
in performance between the models can potentially be attributed to 
the	 inherent	characteristics	of	 the	QDA	and	AdaBoost	algorithms.	
Specifically,	QDA	 is	based	on	 the	assumption	 that	 the	data	within	
each	 category	 follows	 a	 multivariate	 normal	 distribution,	 and	 it	
models	 the	data	 separately	 for	each	class.	However,	 the	presence	
of high noise in Raman spectra can significantly reduce the accuracy 
of	these	models.	This	is	because	noise	can	obscure	the	true	spectral	
features that these algorithms rely on for accurate classification and 
analysis.62	In	addition,	AdaBoost	constructs	a	strong	classifier	by	se-
quentially	combining	multiple	weak	classifiers.	If	these	weak	learn-
ers	overfit	the	noise	in	handheld	data,	it	can	lead	to	lower	predictive	
accuracy.63,64	 Consequently,	 handheld	 spectrometers	 may	 gener-
ate	data	with	higher	variability	and	noise,	causing	a	decrease	in	the	
generalization	performance	and	robustness	of	QDA	and	AdaBoost	
models.	In	contrast,	the	SVM,	RF	and	XGB	models	are	more	sophis-
ticated,	 with	 relatively	 higher	 flexibility,	 stronger	 adaptability	 and	
better tolerance for noise.65	Therefore,	they	maintain	a	higher	level	
of	predictive	accuracy	when	applied	to	SERS	spectral	data	from	the	
handheld spectrometer.

When	 comparing	 the	 performance	 of	 machine	 learning	 algo-
rithms in predicting different S. enterica	serovars	via	SERS	spectral	
analysis	 from	 different	 Raman	 spectrometers,	 our	 research	 found	
that	the	SVM	model	consistently	provided	the	best	predictive	results	

in	 both	 instruments,	 with	 the	 handheld	 spectrometer's	 predictive	
results even outperforming those of the benchtop spectrometer. 
This	 advantage	could	be	attributed	 to	 the	 robustness	of	 the	SVM	
algorithm to noises and outliers and its effectiveness in handling 
nonlinear	and	complex	boundaries	between	categories.66,67 Due to 
the	algorithm's	enhanced	ability	 to	capture	nonlinear	 relationships	
and	 latent	 structures,	 it	 can	more	 accurately	 distinguish	 between	
genuine	signals	and	noise.	This	capability	significantly	elevates	the	
model's	predictive	accuracy	for	handheld	Raman	spectrometer	data,	
effectively	 addressing	 the	 problem	 of	 low	 data	 quality	 associated	
with	 handheld	 Raman	 spectrometers.	 However,	 compared	 to	 the	
other	five	models,	 the	predictive	results	of	SERS	spectra	from	the	
handheld spectrometer were noticeably lower than those from the 
benchtop	 spectrometer.	 This	 suggests	 that	 benchtop	 spectrome-
ters	generally	offer	high-	quality	and	consistent	SERS	spectral	data	
compared	to	handheld	spectrometers.	The	features	extracted	from	
benchtop	spectrometer	data	are	clearer	and	more	stable,	providing	
an advantage for all algorithms and ensuring that various models 
consistently maintain high prediction accuracy.

3.4  |  Evaluation of the SVM model

Confusion	matrix	 is	 typically	 used	 to	 display	 the	 classification	 re-
sults	of	 a	model,	 allowing	 for	an	 intuitive	understanding	of	where	
the	model	performs	well	or	poorly	on	specific	samples.	In	this	study,	
as	 the	SVM	model	demonstrated	 the	best	performance	 in	 analys-
ing	both	 the	benchtop	and	handheld	 spectrometer	SERS	data,	we	
constructed	a	confusion	matrix	for	the	SVM	model.	In	the	confusion	
matrix,	each	row	represents	the	model's	prediction	probabilities	for	
the	true	samples,	and	each	column	represents	the	model's	predic-
tion	probabilities	for	the	incorrect	samples.	Based	on	the	matrix	re-
sults in Figure 3A,	for	the	benchtop	Raman	spectrometer's	spectral	
data,	the	SVM	model	only	incorrectly	predicted	2%	of	S. typhimurium 

Algorithm Accuracy Precision Recall F1- score 5- fold CV AUC

SVM 99.38% 99.38% 99.44% 99.38% 99.98% 99.98%

RF 98.13% 98.13% 98.33% 98.12% 97.97% 98.97%

XGBoost 97.50% 97.50% 97.55% 97.50% 98.28% 98.17%

AdaBoost 97.50% 97.50% 97.55% 97.50% 97.03% 98.00%

DT 96.25% 96.25% 96.44% 96.23% 97.19% 97.12%

QDA 88.75% 88.75% 88.99% 88.97% 86.40% 90.43%

TA B L E  2 Comparative	analysis	of	the	
prediction	ability	of	six	machine	learning	
algorithms on Salmonella	SERS	spectral	
data of benchtop spectrometer.

Algorithm Accuracy Precision Recall F1- score 5- fold CV AUC

SVM 99.97% 99.97% 99.98% 99.97% 99.05% 100%

RF 95.11% 95.11% 95.21% 95.15% 90.90% 95.67%

XGBoost 94.02% 94.02% 94.23% 94.01% 90.22% 95.50%

DT 84.24% 84.24% 84.71% 84.24% 86.97% 85.64%

QDA 64.67% 64.67% 60.21% 63.05% 60.74% 68.62%

AdaBoost 51.63% 51.63% 57.93% 57.05% 61.56% 57.94%

TA B L E  3 Comparative	analysis	of	the	
prediction	ability	of	six	machine	learning	
algorithms	on	the	SERS	spectral	data	
of S. enterica serovars from a handheld 
spectrometer.
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samples as S. typhi.	Moreover,	the	model	achieved	100%	prediction	
accuracy for S. dublin,	S. enteritidis and S. typhi. In Figure 3B,	the	SVM	
model	 achieved	 100%	 prediction	 accuracy	 for	 all	 four	 Salmonella	
strains	for	the	handheld	Raman	spectrometer's	spectral	data.

4  |  DISCUSSION

Due	to	the	presence	of	biomacromolecules	such	as	nucleic	acids,	
proteins,	 lipids	 and	 carbohydrates,	 the	 SERS	 spectral	 differences	
between	 bacterial	 species	 are	 subtle,	 making	 the	 distinction	 of	
the closely associated serovars within the bacterial species S. en-
terica	 extremely	 challenging.68	 We	 employed	 a	 label-	free	 SERS	
technique	coupled	with	machine	 learning	algorithms	for	differen-
tiation	 to	 rapidly	 and	 accurately	 discriminate	 S. enterica	 serovars	
from	highly	similar	SERS	spectra.	Raman	spectroscopy,	especially	
surface-	enhanced	 Raman	 spectroscopy,	 is	 a	 promising	 technique	
due	 to	 its	 ease	 of	 use,	 cost-	effectiveness,	 non-	invasiveness	 and	
improved	signal	intensity	and	quality,	holding	significant	potential	
for the rapid and precise identification of bacterial pathogens in 
clinical settings.69–71	 So	 far,	 the	SERS	 technique	has	been	exten-
sively	 explored	 for	 its	 applications	 in	 identifying	 clinically	 impor-
tant bacterial pathogens at the genus and species level and in the 
analysis of bacterial antibiotic resistance.18,25,72	There	are	different	
types of Raman spectrometers produced by various manufactur-
ers.	Generally,	the	Raman	spectrometer	is	divided	into	two	types:	
the	cheap	handheld	(portable)	version	and	the	expensive	benchtop	
version.23	However,	few	studies	currently	focus	on	comparing	the	
performance of benchtop and handheld Raman spectrometers.22 

Handheld	 Raman	 spectrometers	 have	 shown	 promise	 for	 on-	site	
rapid	screening	due	to	their	portability	and	ease	of	use.	However,	
their	sensitivity,	especially	at	 low	pathogen	concentrations,	tends	
to be lower compared to benchtop systems.73	The	detection	 lim-
its of handheld devices can be affected by multiple factors such 
as	the	quality	of	the	SERS	substrate,	the	integration	time	and	the	
overall design of the spectrometer.74	In	contrast,	benchtop	Raman	
spectrometers,	with	their	more	powerful	laser	sources	and	sophis-
ticated	optical	components,	generally	offer	lower	detection	limits	
and	 higher	 sensitivity,	 making	 them	 more	 suitable	 for	 detecting	
pathogens at early stages of contamination when the concentra-
tion is low.75	 The	 application	 of	machine	 learning	 algorithms	 has	
shown significant potential and advantages in the research field 
of	 bacterial	 species	 detection	 and	 classification.	 Chen	 et	 al.	 uti-
lised a handheld Raman spectrometer to collect spectral data of 
four Salmonella	 serovars	 (S. enteritidis,	 S. heidelberg,	 S. infantis and 
S. typhimurium)	 associated	 with	 foodborne	 outbreaks	 and	 used	
an	SVM	algorithm	to	efficiently	classify	and	identify	the	serovars,	
with	an	overall	prediction	accuracy	of	over	94%.76	Additionally,	an-
other study used a benchtop Raman spectrometer to obtain spec-
tral data of three common S. serovars,	S. enteritidis,	S. typhimurium 
and S. paratyphi.	 By	 combining	 SERS	 technology	with	multi-	scale	
CNN	 to	 achieve	multi-	dimensional	 feature	 extraction	 from	 SERS	
spectral	data,	 the	model's	 recognition	accuracy	 is	as	high	as	over	
97%.21 It is evident that both handheld and benchtop Raman spec-
trometers are increasingly being integrated with machine learning 
algorithms,	 aiming	 to	enhance	 the	precision	 in	 the	detection	and	
classification	of	serotype	pathogens.	In	our	study,	to	assess	the	dif-
ferences in pathogen detection between the two types of Raman 

F I G U R E  3 Confusion	matrices	for	the	SVM	models	in	the	analysis	of	S. enterica	SERS	spectra	generated	from	benchtop	and	handheld	
Raman	spectrometers,	respectively.	(A)	Confusion	matrix	for	the	SVM	model	analysis	of	S. enterica	SERS	spectra	from	the	benchtop	Raman	
spectrometer.	An	average	prediction	accuracy	of	99.5%	was	achieved.	(B)	Confusion	matrix	for	the	SVM	model	analysis	of	S. enterica	SERS	
spectra	from	the	handheld	Raman	spectrometer.	An	average	prediction	accuracy	of	100%	was	achieved.	Numbers	in	the	confusion	matrix	
represent	the	percentage	of	correctly	classified	(on	the	diagonal)	or	misclassified	(off	the	diagonal)	spectra,	respectively.
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spectrometers,	we	conducted	a	comparative	analysis	of	SERS	spec-
tra generated from both instruments using the same set of four 
S. enterica serovars.

Because	of	the	inherent	variability	in	Raman	spectroscopy,	it	is	
necessary	to	validate	the	repeatability	and	uniformity	of	the	SERS	
spectra.	In	this	study,	to	verify	the	reproducibility	of	SERS	spectra,	
we calculated the average signal intensities and standard errors 
along	with	their	corresponding	Raman	shifts.	The	comparison	of	av-
erage	SERS	spectra	revealed	notable	differences	between	the	two	
Raman spectrometers for the same set of the four S. enterica sero-
vars.	 In	 particular,	 the	 benchtop	 Raman	 spectrometer,	 benefiting	
from	 their	 higher	 resolution	 and	 sensitivity,	 produced	 SERS	 spec-
tra	 with	 flatter	 baselines	 and	more	 characteristic	 peaks.	 This	 can	
be	attributed	 to	 their	 superior	optical	and	electronic	components,	
which enhance measurement precision and reduce signal noise and 
distortion.	Additionally,	the	greater	stability	and	consistency	in	mea-
surements	afforded	by	the	benchtop	spectrometer's	robust	design	
and controlled operating environment contributed to reduced vari-
ability	in	the	spectra,	as	evidenced	by	smaller	standard	error	bands.	
Conversely,	the	handheld	Raman	spectrometer,	designed	specifically	
for	portability,	displayed	SERS	spectra	with	greater	variability.	These	
instruments'	compact	size	and	lightweight	nature	may	increase	sen-
sitivity	to	environmental	factors,	leading	to	fluctuations	in	baselines	
and	standard	error	bands.	Additionally,	the	handheld	spectrometer	
has	 sensitivity	 and	 calibration	 accuracy	 limitations,	 affecting	 the	
overall	quality	and	uniformity	of	the	collected	SERS	spectra.

Regarding	 the	 SERS	 spectral	 clustering	 analysis,	 the	 OPLS-	DA	
algorithm,	 a	 supervised	 discriminant	 analysis	 technique,	 effectively	
mitigates	the	impact	of	inter-	group	differences	on	classification	out-
comes.70,77 It achieves the effects by reducing model overfitting and 
the probability of false positives through an orthogonal signal pro-
cessing.78	In	this	study,	we	applied	the	OPLS-	DA	method	to	classify	
the	 SERS	 spectra	 of	 four	 S. enterica	 serovars.	 The	 results	 indicated	
that,	 before	 data	 normalisation,	 the	OPLS-	DA	 clustering	 outcomes	
from both spectrometers could distinguish among different S. en-
terica	 serovars.	 Following	 SERS	 data	 normalization,	 the	 inter-	group	
differences	 increased	while	 intra-	group	differences	decreased.	This	
normalisation	led	to	improved	R2X,	R2Y	and	Q2	scores	for	the	SERS	
spectra	 from	 both	 Raman	 spectrometers.	 However,	we	 found	 that	
the scores obtained from the benchtop spectrometer data improved 
more	significantly	than	those	from	the	handheld	spectrometer.	This	
enhancement can be attributed to the inherently higher resolution 
and	sensitivity	of	benchtop	spectrometers,	which	enable	more	subtle	
spectral	features	to	be	detected.	Consequently,	during	the	normali-
sation	process,	these	minute	features	are	better	preserved	and	em-
phasised,	enhancing	the	model's	variance	explanation	capability	and	
predictive performance.79,80	 Furthermore,	 handheld	 spectrometers	
may be more susceptible to higher levels of noise interference. In con-
trast,	benchtop	spectrometers	produce	less	noise	with	their	precise	
optical	components	and	stable	operating	environments.	This	results	
in the normalisation of data that more accurately reflects true spectral 
characteristics,	leading	to	a	greater	improvement	in	the	scores	of	the	
benchtop	spectrometer	data	by	the	OPLS-	DA	algorithm.81

In	this	study,	we	also	compared	the	prediction	capacity	of	ma-
chine	 learning	modes	 on	 the	 SERS	 spectra	 from	 different	 Raman	
spectrometers.	 Machine	 learning,	 recognised	 as	 a	 powerful	 data	
analysis	method,	 excels	 in	 exploring	 local	 features	 and	 extracting	
global characteristics from signal data.30,82 Leveraging its immense 
potential	in	SERS	spectral	data	processing	and	analysis,	it	has	found	
its applications in rapidly identifying and predicting bacterial genera 
and species.19,83	We	 constructed	 six	 supervised	machine	 learning	
models to identify the algorithm with optimal predictive perfor-
mance	(AdaBoost,	DT,	QDA,	RF,	SVM	and	XGB).	We	applied	them	to	
SERS	spectral	data	from	benchtops	and	handheld	Raman	spectrom-
eters.	 The	 evaluation	 was	 performed	 through	 various	 predictive	
parameters	and	confusion	matrices.	The	results	demonstrated	that	
SVM	exhibited	the	best	computational	accuracy	and	robust	perfor-
mance	in	handling	complex	classification	problems.	It	achieved	the	
highest	accuracy	in	handheld	and	benchtop	Raman	spectrometers,	
indicating	 that	 integrating	SERS	technology	with	machine	 learning	
algorithms facilitates the rapid and accurate identification of S. en-
terica	serovars,	independent	of	the	Raman	spectrometer	types.	This	
underscores its immense potential in bacterial pathogen detection 
and	 food	 safety	 monitoring.	 Furthermore,	 the	 handheld	 Raman	
spectrometer has demonstrated sufficient accuracy and robustness 
in identifying S. enterica	 serovars	 that	 is	comparable	 to	 the	expen-
sive	 benchtop	 Raman	 spectrometer,	 suggesting	 their	 potential	 as	
an	effective	alternative	 in	scenarios	 requiring	 instrument	portabil-
ity,	mobility	and	cost-	efficiency,	thereby	presenting	possibilities	for	
widespread application in the field of public health safety.

In	addition,	 in	 real-	world	settings,	 it	 is	often	necessary	 to	pro-
cess	mixed	samples	containing	multiple	bacterial	 serotypes,	which	
will	face	challenges	such	as	spectral	overlap,	background	signal	in-
terference	and	low	signal	intensity	differences.	Especially	when	try-
ing to differentiate between pathogens with very similar cell wall 
composition	 and	 metabolic	 characteristics,	 SERS	 substrate-	based	
detection and identification methods are more challenging.4,84	Chen	
et al.76	used	a	portable	Raman	spectrometer	to	detect	six	bacterial	
mixed	samples	containing	four	Salmonella	 serovars,	Staphylococcus 
aureus and Escherichia coli and found that the overall accuracies pre-
dicted	by	both	 linear	discriminant	analysis	 (LDA)	and	SVM	models	
were	 lower	 than	 those	assessed	by	 the	stand-	alone	pure	cultures,	
with	the	lowest	accuracy	being	only	65%.	One	of	the	reasons	for	this	
decrease in accuracy is due to the highly homogeneous structure of 
the	cell	surface,	which	limits	the	classification	ability	of	serotyping.	
However,	the	differences	found	between	pure	cultures	and	bacte-
rial	mixtures	suggest	that	alterations	in	bacterial	metabolism	during	
mixed	cultures	may	be	a	more	important	reason.85	Martinez	et	al.84 
utilised	a	benchtop	Raman	pectrometer	 in	combination	with	SERS	
spectroscopy	 and	multivariate	 analysis	methods	 for	 label-	free	 de-
tection	and	identification	of	single	bacteria	in	a	mixture	of	bacteria.	
The	SERS	platform	demonstrated	its	ability	to	differentiate	between	
Gram-	positive	and	Gram-	negative	bacteria	and	to	identify	samples	
containing different concentrations of these two groups of bacte-
ria.	 By	 applying	 multivariate	 spectral	 analysis	 techniques	 such	 as	
PCA	and	PLS-	DA,	 the	spectra	of	pure	samples	 showed	significant	
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clustering	 properties.	 As	 the	 concentration	 of	 one	 bacterium	 in	
the	mixed	sample	increased	and	the	concentration	of	the	other	de-
creased,	the	mixed	population	shifted	towards	the	pure	sample	with	
the	dominant	bacterium,	resulting	in	a	decrease	in	the	model's	clas-
sification ability.84	 In	summary,	both	handheld	and	benchtop	spec-
trometers	face	substantial	challenges	in	identifying	mixed	bacterial	
samples.	 The	 primary	 reason	 lies	 in	 the	 highly	 homologous	 struc-
tures on the surfaces of pathogens with similar cell wall composi-
tions and metabolic profiles.86,87 In practical applications such as 
food	safety	monitoring,	disease	diagnosis	and	environmental	assess-
ment,	the	detection	of	mixed	bacterial	samples	presents	a	common	
and	complex	challenge.87	Therefore,	it	is	necessary	to	develop	inte-
grated methods with advanced computational models and optimise 
standard	operating	procedures	to	enhance	the	sensitivity,	accuracy	
and	reproducibility	of	SERS	technique	in	detecting	mixed	bacteria.

5  |  CONCLUSION

In	this	study,	we	conducted	a	performance	comparison	of	handheld	
and benchtop Raman spectrometers in detecting S. enterica serovars 
via	machine	learning	analysis	of	SERS	spectra.	The	benchtop	Raman	
spectrometer,	leveraging	its	high	sensitivity	and	resolution,	provided	
more comprehensive Raman spectral information in laboratory 
analysis.	 Conversely,	 while	 lacking	 capacity	 in	 characteristic	 peak	
detection,	 the	 handheld	 Raman	 spectrometer	 demonstrated	 sig-
nificant	 advantages	 in	 portability,	mobility	 and	 cost-	effectiveness,	
making	 it	 invaluable	 for	 rapid	 on-	site	 screening.	 Regardless	 of	
whether	a	benchtop	or	handheld	device	was	used,	both	instruments	
achieved high accuracy in differentiating four S. enterica serovars 
through	supervised	clustering	analysis.	By	optimizing	data	process-
ing	parameters	of	 a	 set	 of	machine	 learning	 algorithms,	 especially	
in	conjunction	with	SVM	models,	we	confirmed	that	 the	handheld	
Raman spectrometer could achieve sufficient accuracy in S. enterica 
serovar	 detection	 even	 in	 resource-	limited	 environments,	with	 its	
predictive accuracy slightly surpassing that of the benchtop Raman 
spectrometer.	 This	 outcome	 further	 underscores	 the	 potential	 of	
Raman	 spectroscopy	 technology,	 coupled	 with	 machine	 learning	
algorithms,	 for	 rapidly	 and	 accurately	 identifying	 closely	 related	
bacterial	pathogens.	Future	research	directions	should	include	fur-
ther	optimising	the	performance	of	handheld	Raman	spectrometers,	
enhancing	 the	 quality	 of	 spectral	 signal	 acquisition,	 refining	 data	
processing	algorithms	and	exploring	SERS	substrates	more	suitable	
for	on-	site	detection.	These	efforts	aim	to	ensure	handheld	Raman	
spectrometers'	practicality,	reliability	and	applicability	in	food	safety	
control	and	monitoring.	In	conclusion,	this	study	demonstrates	that	
the	 combination	 of	 SERS	 spectroscopy	 and	 machine	 learning	 al-
gorithms enables the rapid identification of very similar S. enterica 
serovars,	 offering	 a	 new	 technological	 approach	 for	 the	 swift	 de-
tection of Salmonella.	 In	 addition,	 the	 handheld	 Raman	 spectrom-
eter	exhibits	similar	accuracy	to	a	benchtop	Raman	spectrometer	in	
identifying S. enterica	serovars.	This	finding	significantly	enhances	its	
practical	 value	 in	on-	site	 rapid	detection.	As	 the	handheld	Raman	

spectroscopy	 technology	progresses	and	optimises,	 it	promises	 to	
achieve economically efficient applications across diverse fields.
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