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Abstract
Foodborne illnesses, particularly those caused by Salmonella enterica with its extensive 
array of over 2600 serovars, present a significant public health challenge. Therefore, 
prompt and precise identification of S. enterica serovars is essential for clinical rel-
evance, which facilitates the understanding of S. enterica transmission routes and the 
determination of outbreak sources. Classical serotyping methods via molecular sub-
typing and genomic markers currently suffer from various limitations, such as labour 
intensiveness, time consumption, etc. Therefore, there is a pressing need to develop 
new diagnostic techniques. Surface-enhanced Raman spectroscopy (SERS) is a non-
invasive diagnostic technique that can generate Raman spectra, based on which rapid 
and accurate discrimination of bacterial pathogens could be achieved. To generate 
SERS spectra, a Raman spectrometer is needed to detect and collect signals, which 
are divided into two types: the expensive benchtop spectrometer and the inexpensive 
handheld spectrometer. In this study, we compared the performance of two Raman 
spectrometers to discriminate four closely associated S. enterica serovars, that is, S. en-
terica subsp. enterica serovar dublin, enteritidis, typhi and typhimurium. Six machine 
learning algorithms were applied to analyse these SERS spectra. The support vector 
machine (SVM) model showed the highest accuracy for both handheld (99.97%) and 
benchtop (99.38%) Raman spectrometers. This study demonstrated that handheld 
Raman spectrometers achieved similar prediction accuracy as benchtop spectrom-
eters when combined with machine learning models, providing an effective solution 
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1  |  INTRODUC TION

Salmonella enterica is a Gram-negative pathogenetic bacterium 
of the Enterobacteriaceae family with more than 2600 sero-
types.1,2 Improper cooking, reheating and handling of food can 
lead to Salmonella outbreaks, and the presence of Salmonella in 
any ready-to-eat food should be inhibited. Statistically, food poi-
soning caused by Salmonella ranks first in the world among all 
types of food pathogens.3 However, due to the complex matrix, it 
is difficult to directly detect the presence of bacterial pathogens 
in food products. Thus, the continuous development of rapid and 
accurate methods for detecting Salmonella in food has become a 
key research priority.4 Traditional Salmonella detection methods 
consider bacterial culture the gold standard, a time-consuming 
and labor-intensive.5 Due to their high accuracy and efficiency, 
many culture-independent methods, such as PCR Field (6) and 
isothermal amplification Field (7), have been suggested recently. 
However, these methods involve sophisticated procedures of 
primer designs and experiment operations.6 Mass spectrometry 
shows great potential in rapidly identifying bacterial pathogens 
in clinical settings.7,8 However, it has limitations in discriminating 
highly similar bacterial species, e.g., Escherichia coli and Shigella 
spp., etc.9 Therefore, applying the technique in identifying the 
highly similar and closely associated S. enterica serovars is difficult. 
With the development of sequencing technology, whole-genome 
sequencing (WGS) is widely used as a convenient tool for species 
identification and genotyping.10,11 Several 1000s of Salmonella 
genomes have been sequenced and are freely available in pub-
lic databases, and highly related serovars could be discriminated 
via bioinformatic methods.12 However, the cost of WGS is high, 
which restricts its routine use in clinical laboratory.13 Therefore, 
developing novel and cheap methods for the rapid and accurate 
identification of S. enterica serovars is crucial.

Raman spectroscopy (RS) is an important all-biological finger-
printing technique. It has been intensively investigated for its appli-
cations in identifying pathogenic microorganisms in recent years due 
to its generation of information-rich molecular vibrational spectra.14 
However, the Raman effect is very weak in practical applications. 
Later, the development of surface-enhanced Raman spectroscopy 
(SERS) greatly improved the magnitude of normal Raman signals.15 
Therefore, the SERS technique has potential in biomolecular detec-
tion due to its high resolution, high sensitivity, low solution inter-
ference and strong robustness.16 Recent studies have increasingly 
employed SERS technology to detect microbial pathogens.17,18 Yan 

et al.19 applied single-cell Raman spectrometry for rapid discrimina-
tion of 23 bacterial species across 7 genera. The study first utilized 
decision tree machine learning algorithms to assess and differentiate 
single bacterial cells at the serotype level and then constructed a 
quaternary classification model to elevate the accuracy of various 
recognition models, thus enabling efficient prediction of bacterial 
strains at the serotype level.19 Sun et  al.20 integrated SERS with 
convolutional neural network (CNN) models to detect Salmonella. 
By comparing five spectral preprocessing methods, they ultimately 
identified three Salmonella serotypes at the single-cell level by com-
bining SG with SNV. Furthermore, Ding et  al.21 developed a mul-
tiscale CNN model with three parallel CNNs by integrating SERS 
with multiscale convolutional neural networks, achieving multidi-
mensional feature extraction of the SERS spectra, with the model 
reaching an identification accuracy exceeding 97%. These studies 
demonstrated that the SERS technique as an analytical tool holds 
significant potential for rapidly and accurately identifying microor-
ganisms, demonstrating remarkable promise in bacterial detection.

A Raman spectrometer is indispensable to obtain SERS spec-
tra, which are generally categorised into two groups, i.e., ex-
pensive benchtop spectrometers and inexpensive handheld 
spectrometers.22 The cost-effectiveness and user-friendly nature 
of portable instruments are attractive, yet their sensitivity and 
measurement range fall short compared to benchtop setups.23,24 
However, the ability of portable instruments to facilitate on-site 
analysis can overcome the limitations of benchtop instruments. 
Each type of instrument has its own set of advantages and dis-
advantages. Therefore, conducting a comparative performance 
analysis of handheld and benchtop spectrometers is essential to 
detect bacterial pathogens. Although many studies have applied 
the SERS technique to rapidly identify bacterial pathogens, fewer 
studies focus on the performance comparison of handheld and 
benchtop Raman spectrometers. In this study, we comprehen-
sively compared the performance of a handheld Raman spec-
trometer (Oceanhood RMS1000 Micro Raman) with a benchtop 
Raman spectrometer (Renishaw inVia™ Qontor Confocal Raman 
Microscope) in the detection and prediction of the SERS spectra 
of four closely-associated S. enterica serovars, namely S. enterica 
subsp. enterica serovar dublin, enteritidis, typhi and typhimurium. 
According to the results, for SERS spectra generated from both 
handheld and benchtop Raman spectrometers, different S. enterica 
serovars can be quickly distinguished by various machine learning 
models, in which the support vector machine (SVM) model con-
sistently achieved the highest accuracies for both spectrometers 

for rapid, accurate and cost-effective identification of closely associated S. enterica 
serovars.

K E Y W O R D S
characteristic peaks, label-free SERS, machine learning algorithm, Raman spectrometer, Raman 
spectrum, Salmonella serovar
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(99.38% for benchtop Raman spectrometers and 99.97% for hand-
held Raman spectrometer). In summary, Raman spectroscopy 
combined with machine learning algorithms can identify closely 
related S. enterica serotypes with high accuracy, which is of great 
significance for preventing, monitoring and controlling foodborne 
diseases and protecting food safety. Meanwhile, the results from 
the comparison of handheld and benchtop Raman spectrometers 
suggest that the handheld Raman spectrometer can achieve sim-
ilar prediction accuracy to the benchtop Raman spectrometer in 
identifying different serotypes of S. enterica when combining the 
technique with machine learning analysis. Therefore, handheld 
Raman spectrometers could be expected to be more widely used 
in real-world scenarios, saving instrument costs for testing labora-
tories and also helping promote the practical application of in-field 
testing via Raman spectroscopy.

2  |  METHODS AND MATERIAL S

2.1  |  Bacterial cultivation and sample preparation

Four S. enterica serovars were obtained from the Laboratory of the 
Guangdong Provincial People's Hospital (Guangdong Academy 
of Medical Sciences), Southern Medical University, China, which 
includes S. enterica subsp. enterica serovar dublin, enteritidis, typhi 
and typhimurium. These serovars were preserved in bacterial 
strain preservation tubes containing a solution of 30% glycerol 
and 70% TSB broth. All strains were identified and confirmed 
through biochemical methods plus Matrix-assisted laser desorp-
tion/ionization-time of flight (MALDI-TOF) mass spectrometry 
(MS) and stored at −80°C freezer for long-term use. During the 
study, all the strains were recovered from the −80°C freezer by 
streaking on Columbia blood agar plates (Guangzhou Detgerm 
Microbiological Science, China) and incubated at 37°C overnight 
before experimental analysis.

2.2  |  Silver nanoparticle preparation

Preparing silver nanoparticles (AgNPs) has been well-documented 
in previous studies.17,25,26 In particular, 33.72 mg of silver nitrate 
(AgNO3) was added to a triangular flask containing 200 mL of deion-
ized distilled water (ddH2O). The mixture was stirred and heated until 
it reached the boiling point. Subsequently, 8 mL of sodium citrate 
(Na3C6H5O7) was added while stirring, and the heating was main-
tained at 650 r/min for 40 min. Afterward, the heating was ceased, 
and stirring was continued until the solution cooled to room tem-
perature. The solution was then adjusted to a final volume of 200 mL 
with ddH2O. Subsequently, 1 mL of the prepared solution was trans-
ferred into a clean Eppendorf (EP) tube and subjected to centrifuga-
tion at 7000 r/min for 7 min. Discard the supernatant and resuspend 
the pellet with 100 μL of ddH2O, the AgNP substrate stored without 
light at room temperature for long-term use.

2.3  |  SERS spectral collection via benchtop and 
handheld Raman spectrometers

The benchtop Raman spectrometer used in the experiment is an 
inVia™ Qontor Confocal Raman Microscope (Renishaw Plc., New 
Mills, Wotton-under-Edge, UK). The microscope had a 785 nm laser, a 
1200/mm (514/780) grating, and a charge-coupled device (Renishaw 
Centrus 2R4F). The Raman shifts ranged from 500 to 1800 cm−1, 
with an exposure time of 10 s and a laser power of 0.1%. The Raman 
system was integrated with a microscope (Leica, Germany), and the 
Raman excitation light was focused onto the sample using a 50× ob-
jective lens. The instrument was calibrated using a standard built-in 
silicon signal at 520 cm−1. In contrast, the handheld Raman spectrom-
eter Oceanhood RMS1000 (Shanghai Oceanhood Opto-Electronics 
Tech Co., Ltd., Shanghai, China) was used for sample analysis and 
Raman spectral detection by using the settings of parameters as ex-
citation wavelength at 785 nm and excitation power at 350 mW. The 
spectrometer, integrating core components such as lasers, Raman 
probes, fibre optic spectrometers and photodetectors, forms a com-
pact, high-performance, research-grade portable Raman spectrom-
eter. Its highly integrated optical path and structural design afford 
it a small size and lightweight profile, with a resolution of 12 cm−1 at 
50 μm. All the SERS spectra were calibrated using the Raman peak at 
520 cm−1 as the reference peak, and the dark current was deducted 
during the integration time. For each strain of Salmonella used in this 
study, after recovering via cultivating on a Columbia blood agar plate 
overnight, a single colony was selected and inoculated into 15 μL 
phosphate buffer saline (PBS) and well mixed via vortexing, which 
was then mixed with 15 μL negatively charged AgNPs substrate so-
lution. The well-mixed suspension was dropped onto the silicon wa-
fer's surface to form a suitable-sized circular spot, which was dried 
naturally before SERS spectroscopy. The handheld Raman spec-
trometer collected a total of 920 spectra, including 4 strains for each 
serovar of S. dublin, S. enteritidis, S. typhi and S. typhimurium, with 230 
spectra collected for each Salmonella serovar. The benchtop Raman 
spectrometer collected spectra from 5 strains of S. dublin, 9 strains 
of S. enteritidis, 4 strains of S. typhi and 10 strains of S. typhimurium. 
Considering the differences in the number of strains of different se-
rovars, 200 spectral data were randomly selected for each serovar 
for analysis, and a total of 800 spectra were collected for handheld 
and benchtop Raman spectrometers, respectively.

2.4  |  Average SERS spectra and 
deconvolution analysis

To compare the performance between the benchtop and handheld 
Raman spectrometers for S. enterica serovars, we computed the 
average signal intensities of all Raman signals at each Raman shift 
for a specific sample, generating the average SERS spectra for four 
closely associated S. enterica serovars. This analysis focused on the 
relative intensity and prevalence of specific peaks in the spectra. 
Spectral abundance is crucial as it reflects the concentration and 
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presence of various molecular components in the sample. By as-
sessing the abundance of spectral features, we gained insights 
into each spectrometer's sensitivity and detection capabilities. 
Additionally, a shaded region representing 20% of the standard 
deviation (SD) was visualised around the average SERS spectra 
using Origin Software (OriginLab, United States).17 The software's 
fit peaks (pro) function was employed to automatically fit the spec-
tral characteristic peaks, thereby identifying the corresponding 
molecular components. We performed spectral deconvolution on 
the average Raman spectra to further explore the differences in 
spectral data between the two instruments. In the Voigt function, 
convolution using Lorentzian and Gaussian widths was used to ex-
tract detailed information from each spectral characteristic peak. 
This approach allowed for a more nuanced analysis of spectral 
abundance by separating overlapping peaks and elucidating their 
contributions. The Gaussian width and Lorentzian width for all char-
acteristic peaks were shared values set to 1, and then convergence 
was achieved in the fitting process. The comparative analysis of 
spectral abundance provided additional insights into the perfor-
mance and detection efficiency of the benchtop and handheld 
spectrometers for analysing the S. enterica serovars.

2.5  |  Clustering analysis of SERS spectra

To investigate the inherent differences of SERS spectra from differ-
ent instruments and the SERS spectra between S. enterica serovars, 
we employed the Orthogonal Partial Least Squares-Discriminant 
Analysis (OPLS-DA) clustering algorithm.27 Since S. enterica serovars 
could be influenced by external factors during the collection pro-
cess, data normalization was applied as a pre-processing step in con-
junction with cluster analysis to assess data quality. The raw spectral 
data were normalized using the maximum-minimum normalization 
method within the commercial analysis software Unscrambler X 
(Version 10.4 64bit, CAMO, Norway) to scale all spectral intensities 
to the range [0, 1]. Cluster analysis was performed using SIMCA's 
multivariate statistical analysis software (version 13.0, 32-bit). 
Select OPLS-DA as the model type, then click the Autofit button 
to fit the model. The software automatically calculated R2X, R2Y 
and Q2 to evaluate model performance. SERS spectra from the two 
Raman spectrometers were first comparatively analysed via cluster-
ing analysis. SERS spectral data from different S. enterica serovars 
were then analysed using the same method. SERS spectra from dif-
ferent Raman spectrometers and serovars were represented in dis-
tinct colours, and the corresponding data categories were indicated 
with dashed circles and labels.

2.6  |  Machine learning analysis of SERS spectra

Due to the complexity of SERS spectral data, classical statisti-
cal methods are insufficient to analyse the Raman spectral data.26 
Therefore, machine learning algorithms have been recruited to 

analyse and predict the identification of the SERS spectrum. To 
obtain an effective identification model for different S. enterica se-
rovars, we compared the performance of six ensemble learning algo-
rithms: Adaptive Boosting (AdaBoost), Decision Tree (DT), Quadratic 
Discriminant Analysis (QDA), Random Forest (RF), Support Vector 
Machine (SVM) and eXtreme Gradient Boosting (XGB). Before con-
ducting machine learning (ML) analysis, we employed the train_test_
split function to split all SERS spectral data into training, validation 
and test sets in a 6:2:2 ratio. We used the LabelEncoder function 
and the to_categorical method in the Scikit-Learn package (ver-
sion 0.21.3) to convert the sample labels in the dataset into label-
encoded form. The test dataset was exclusively used to assess the 
predictive performance of the models and was not utilized for train-
ing and validation. During the training of the six machine learning 
models, we employed grid search functions to train and fine-tune 
model parameters. Specifically, the GridSearchCV function was used 
to optimize the hyperparameter combination, and the cv parameter 
was set to 5, which means that five times of cross-validation would 
be performed. The hyperparameter combination with the highest 
average score was the best for the final model training. We recorded 
each model's parameter combinations (Table S1) and visualised the 
gradient model scores (Figure S1).

2.7  |  Evaluation of machine learning models

To validate the ability of machine learning models to distinguish S. en-
terica serovars, quantitative metrics were employed to assess the 
performance of these algorithms. Common evaluation metrics such 
as accuracy_score (ACC), precision_score (Pre), recall_score (Recall) 
and f1_score (F1) have been utilised to gauge the generalisation abil-
ity of these models.28 The most frequently used evaluation metric is 
accuracy (ACC), which represents the proportion of correctly classi-
fied samples to the total number of samples.29 ACC was calculated 
using the accuracy_score function. In order to address potential data 
imbalances resulting from random data splitting, Precision and Recall 
were used to provide an objective model evaluation.30 The Precision 
value represents the probability of being correctly predicted as a 
positive sample among the samples predicted as positive samples in 
the prediction results. The Recall value represents the probability of 
being correctly predicted as a positive sample in the positive samples 
of the original data. During the data analysis process, the average 
parameters for Precision and Recall were set to Micro and Macro, 
respectively. As Precision and Recall are mutually influenced indi-
cators, the F1-Score, as the harmonic average of these two indica-
tors, was calculated for a comprehensive evaluation.31 The average 
parameter for F1-Score is weighted. To prevent model overfitting 
during training, we used the 5-fold cross-validation (CV) method.32 
This involved setting cv = 5 in the cross_val_score function to split 
the training dataset into five equal-sized sub-datasets. Furthermore, 
we used the area under the curve (AUC) value, calculated using the 
roc_auc_score function, as a metric to account for class imbalance. 
To provide a more intuitive visualisation of the model's performance 
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on the test dataset, we employed the confusion_matrix function to 
present the prediction results of the best model in the form of a 4*4 
matrix.

2.8  |  Human and animal rights

Not applicable.

3  |  RESULTS

3.1  |  Averaged and deconvoluted SERS spectra

SERS spectra of the same sample collected from different Raman 
spectrometers vary, which reflects the performance capacity of 
different spectrometers.33 In addition, SERS spectra can reveal 
variations among different bacterial samples and can transform 
this chemical and structural information into SERS signal inten-
sities at different Raman shifts.34 Therefore, by analysing SERS 
spectra, the performance of Raman spectrometers can be as-
sessed, and distinct bacterial species can be discriminated. In this 
study, we collected SERS spectra of four closely related S. enterica 
serovars to compare the differences between benchtop and hand-
held Raman spectrometers. First, we compared the average SERS 
spectra of S. enterica serovars between the two Raman spectrom-
eters. By comparing the standard errors (SEs) of the average SERS 
spectra for the four serovars, the overall trend of SERS spectral 
replicability could be quantified for different SERS spectra.35,36 
The results indicated that the benchtop Raman spectrometer pro-
duced more reproducible SERS spectra than the handheld Raman 
spectrometer (Figure 1A,B). In general, the reproducibility of SERS 
spectra generated by both spectrometers varies within an accept-
able range. Moreover, comparing the average SERS spectra from 
the two spectrometers reveals that the benchtop spectrometer's 
average SERS spectra display more characteristic peaks, likely due 
to its higher resolution and more sensitive detectors. These fac-
tors contribute to the benchtop spectrometer's enhanced ability 
to detect a wider range of molecular components, resulting in a 
more abundant spectral representation. However, within each 
spectrometer, no significant differences were observed in the 
peak spectra across the four S. enterica serovars. Therefore, analy-
sis of the average SERS spectra from variations of standard errors 
and the number of characteristic peaks could show the perfor-
mance of different Raman spectrometers but cannot discriminate 
the four serovars, necessitating more advanced analyses.

To improve the resolution of SERS spectra via enhancement of 
signal-to-noise ratio, spectral deconvolution was conducted. The 
deconvoluted spectra comprise a series of Voigt sub-bands, each 
representing a set of characteristic peaks. It could be seen that 
the method fits the important characteristic peaks of Raman spec-
tra well and could eliminate the interference of other artifactual 
peaks. The deconvoluted SERS spectra amplify the differences 

between the four bacterial genera and magnify variations between 
the two types of spectrometers. Significant disparities exist in the 
deconvoluted SERS spectra obtained from the two instruments 
(Figure 1C,D). Specifically, when analysing the deconvoluted SERS 
spectra for each Salmonella strain, the handheld Raman spec-
trometer displayed fewer characteristic peaks than the bench-
top spectrometer. This significant difference can be attributed 
to the handheld spectrometer's power, sensitivity and resolution 
limitations. Even with spectral deconvolution analysis, the hand-
held device cannot discern and display the characteristic peaks, 
resulting in a substantial disparity with the benchtop spectrome-
ter. Nevertheless, upon closer examination, it becomes apparent 
that within each spectrometer, there are distinct variations in the 
deconvoluted SERS spectra for the four S. enterica serovars. These 
differences can be attributed to unique characteristic peaks, al-
lowing for the differentiation and interpretation of the SERS spec-
tra of S. enterica serovars.

In specificity, the distinctive SERS spectral characteristic peaks 
of the four S. enterica serovars from different Raman spectrome-
ters and their corresponding chemical structures are presented 
in Table 1. Characteristic peaks corresponding to the vibrational 
modes of internal chemical bonds reveal bacterial compositional 
variations. Due to the complexity of these characteristic peaks, 
our comparison solely focused on the unique features found be-
tween different Raman spectrometers and among the four S. enter-
ica serovars. Different S. enterica serovars exhibited characteristic 
peaks at different wavelengths when the same spectrometer was 
used. Within the same S. enterica serovar, the use of different 
spectrometers also results in the generation of distinct charac-
teristic peaks. In particular, compared to the handheld one, the 
benchtop spectrometer identifies more molecular bond vibrations 
for the four S. enterica serovars. As indicated in Table 1, measure-
ments obtained with the benchtop spectrometer show that the 
four S. enterica serovars have 20 distinctive characteristic peaks. 
At the same time, only six were observed when using the handheld 
spectrometer. Furthermore, only at 1384 cm−1, which corresponds 
to the CN stretching mode and the symmetric CH3 deformation 
mode,37 both dublin and typhi serovars in the S. enterica measured 
with both the benchtop and handheld Raman spectrometers ex-
hibited identical characteristic peaks. At 1409/1410 cm−1, distinc-
tive peaks for enteritidis and typhimurium can be observed in the 
handheld spectrometer results, while only the enteritidis charac-
teristic peak, corresponding to COO-  stretching,38 is present in 
the benchtop spectrometer measurements. In addition to these 
two shared characteristic peaks, for the handheld spectrometer, 
the four Salmonella strains exhibit unique characteristic peaks, in-
cluding the COO- wagging vibrational mode39 at 616 cm−1, COO- 
and C-C skeletal stretching40 at 925 cm−1, Guanine ring mode41 at 
1486 cm−1 and C=C stretching42 at 1542 cm−1. These characteristic 
peaks were exclusively present in the measurements obtained with 
the handheld spectrometer. Conversely, the remaining 18 charac-
teristic peaks from the benchtop spectrometer do not appear in 
handheld measurements. This suggests significant differences in 
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6 of 15  |     YUAN et al.

identifying characteristic peaks between the two spectrometers, 
with the handheld spectrometer exhibiting noticeably lower sen-
sitivity than the benchtop spectrometer. Additionally, we identi-
fied characteristic peaks shared among the S. enterica serotypes 
for the two Raman spectrometers, respectively, which are listed 
in Table  S2. To better understand the differences of the shared 
characteristic peaks within the four S. enterica serovars for hand-
held and benchtop Raman spectrometers, a set of boxplots was 
visualised to compare the Raman intensities of these shared char-
acteristic peaks, which are shown in Figure S2.

3.2  |  Cluster classification of SERS spectra of four 
S. enterica serovars from handheld and benchtop 
Raman spectrometers

To identify differences in the generated SERS spectra between dif-
ferent Raman spectrometers and variations in SERS spectra among 
different S. enterica serovars, we utilized the OPLS-DA clustering al-
gorithm for cluster analysis. We assessed the model's performance 
using two parameters, R2 and Q2, where R2 reflects the goodness 
of fit and Q2 reflects the model's predictive capability. A higher Q2 

F I G U R E  1 The average and deconvoluted SERS spectra of four S. enterica serovars collected from two Raman spectrometers. (A) Average 
SERS spectra of the four Salmonella strains under the benchtop Raman spectrometer. (B) Average SERS spectra of the four Salmonella 
strains under the handheld Raman spectrometer. (C) Deconvoluted SERS spectra of the four Salmonella strains under the benchtop Raman 
spectrometer. (D) Deconvoluted SERS spectra of the four Salmonella strains under the handheld Raman spectrometer. The X-axis represents 
Raman shifts in the 530–1800 cm−1 range, while the Y-axis represents the relative Raman intensity. a.u. means artificial unit and has no real 
meaning.
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    |  7 of 15YUAN et al.

and R2 indicate better clustering effects.61 Initially, we imported 
the raw SERS spectral data measured by the benchtop spectrom-
eter into the OPLS-DA algorithm (Figure 2A). It can be observed 
that SERS spectra of S. enteritidis, S. typhimurium and S. dublin ob-
tained with the benchtop spectrometer exhibited a considerable 
amount of overlap within the same group, with evaluation index 
scores of R2X = 0.998, R2Y = 0.774 and Q2 = 0.702. After normal-
ising the spectral data, inter-group differences became more pro-
nounced, leading to improved OPLS-DA evaluation index scores 
of R2X = 0.942, R2Y = 0.953 and Q2 = 0.951 (Figure 2B). Figure 2C 
shows that the raw SERS spectra measured with the handheld spec-
trometer can effectively differentiate the four Salmonella strains, 
achieving evaluation index scores of R2X = 1.000, R2Y = 0.715 and 
Q2 = 0.707. Similarly, normalising the spectral data from the hand-
held spectrometer improves OPLS-DA evaluation index scores of 
R2X = 0.983, R2Y = 0.843 and Q2 = 0.834 (Figure  2D). Before the 
data normalisation, both types of spectrometers exhibited good re-
sults in the OPLS-DA clustering analysis. The benchtop spectrometer 

showed relatively small differences within the same group compared 
to the handheld spectrometer's SERS spectra, but inter-group dif-
ferences were also limited. After normalizing the spectral data, both 
spectrometers showed enhanced inter-group differences, creating 
clearer group boundaries. In summary, after normalising the spec-
tral data, the benchtop and handheld spectrometers achieved ef-
fective clustering analysis for the four Salmonella strains. They can 
differentiate the four strains, but the benchtop spectrometer's SERS 
spectra exhibit smaller within-group differences than the handheld 
spectrometer.

3.3  |  Supervised machine learning analysis of SERS 
spectra of four S. enterica serovars from handheld and 
benchtop Raman spectrometers

In this study, we constructed and compared six supervised machine 
learning methods for their ability to differentiate the four S. enterica 

TA B L E  1 Four SERS spectral characteristic peaks unique to Salmonella measured by benchtop and handheld spectrometers.

No. Wavenumber (cm−1) Band assignment

Benchtop spectrometer Handheld spectrometer

Ref.S. D S. E S. T . Ty S. D S. E S. T S. Ty

1 568 Deformation mode of the 
adenosyl ribose ring

43

2 616 COO- wagging vibrational mode 39

3 852 C-O-C str or ring breathing 44

4 925 COO- and C-C skeletal str 40

5 1004 Phenylalanine 45

6 1049 PO2- stretching 46

7 1099 CC skeletal and COC stretching 47

8 1128 C-C str, C-O-C 48

9 1134 =C-C = of unsaturated fatty 
acids

49

10 1188 Phenyl ring CH, COH bend 50

11 1264 Amide III 51

12 1331 DNA vibration 52

13 1377 Symmetric stretching of the 
carboxylate

53

14 1384 CN stretching mode and the 
symmetric CH3 deformation 
mode

37

15 1409/1410 COO- stretching 38

16 1486 Guanine ring mode 41

17 1542 C=C stretch 42

18 1557 Amino group in pure chitosan 54

19 1620 Tyrosine 55

20 1651 Amide I 56

21 1664 Amide I 57

22 1683 Amide I 58

23 1690 Amide I 59

24 1696 Amide I 60
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8 of 15  |     YUAN et al.

serovars through SERS spectral analysis. In particular, we initially 
analysed the spectral data based on the benchtop Raman spectrom-
eter. According to the data analysis results in Table 2, the SVM model 
exhibited the highest predictive accuracy at 99.38%. The Precision, 
Recall and F1-Score values for the other three evaluation metrics 
were 99.38%, 99.44% and 99.38%, respectively. The 5-fold cross-
validation score was 99.98%, and the AUC value was 99.98%. This 
suggests that the SVM model outperforms other machine learning 

algorithms regarding stability and robustness. Apart from the SVM 
model, the RF, XGBoost, AdaBoost and DT models achieved accu-
racy rates exceeding 95%, signifying that these models can effec-
tively predict Salmonella SERS spectra measured by the benchtop 
spectrometer with good results.

For predicting the four types of S. enterica serovars based on 
SERS spectra acquired with the handheld Raman spectrometer, 
we also compared six machine learning algorithms, and the results 

F I G U R E  2 OPLS-DA analysis of S. enterica SERS spectra between the two spectrometers. (A) OPLS-DA clustering analysis of raw data 
measured by the benchtop spectrometer. (B) OPLS-DA clustering analysis of standardized data measured by the benchtop spectrometer. 
(C) OPLS-DA clustering analysis of raw data measured by the handheld spectrometer. (D) OPLS-DA clustering analysis of standardized data 
measured by the handheld spectrometer.
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    |  9 of 15YUAN et al.

are presented in Table 3. According to the results, the SVM model 
achieved the highest accuracy, reaching 99.97%. The Precision score 
was 99.97%, Recall was 99.98%, F1-Score was 99.97% and AUC was 
100%, surpassing the other models. Regarding the 5-fold cross-
validation score, the SVM model achieved a perfect score of 100%, 
making it the most robust model among all other machine learning 
models used in this study. On the other hand, the QDA and AdaBoost 
algorithms had accuracy rates below 70%, indicating that these two 
algorithms had relatively poor predictive performance for S. enterica 
serovars based on the analysis of SERS spectra that were acquired 
with the handheld Raman spectrometer. The observed differences 
in performance between the models can potentially be attributed to 
the inherent characteristics of the QDA and AdaBoost algorithms. 
Specifically, QDA is based on the assumption that the data within 
each category follows a multivariate normal distribution, and it 
models the data separately for each class. However, the presence 
of high noise in Raman spectra can significantly reduce the accuracy 
of these models. This is because noise can obscure the true spectral 
features that these algorithms rely on for accurate classification and 
analysis.62 In addition, AdaBoost constructs a strong classifier by se-
quentially combining multiple weak classifiers. If these weak learn-
ers overfit the noise in handheld data, it can lead to lower predictive 
accuracy.63,64 Consequently, handheld spectrometers may gener-
ate data with higher variability and noise, causing a decrease in the 
generalization performance and robustness of QDA and AdaBoost 
models. In contrast, the SVM, RF and XGB models are more sophis-
ticated, with relatively higher flexibility, stronger adaptability and 
better tolerance for noise.65 Therefore, they maintain a higher level 
of predictive accuracy when applied to SERS spectral data from the 
handheld spectrometer.

When comparing the performance of machine learning algo-
rithms in predicting different S. enterica serovars via SERS spectral 
analysis from different Raman spectrometers, our research found 
that the SVM model consistently provided the best predictive results 

in both instruments, with the handheld spectrometer's predictive 
results even outperforming those of the benchtop spectrometer. 
This advantage could be attributed to the robustness of the SVM 
algorithm to noises and outliers and its effectiveness in handling 
nonlinear and complex boundaries between categories.66,67 Due to 
the algorithm's enhanced ability to capture nonlinear relationships 
and latent structures, it can more accurately distinguish between 
genuine signals and noise. This capability significantly elevates the 
model's predictive accuracy for handheld Raman spectrometer data, 
effectively addressing the problem of low data quality associated 
with handheld Raman spectrometers. However, compared to the 
other five models, the predictive results of SERS spectra from the 
handheld spectrometer were noticeably lower than those from the 
benchtop spectrometer. This suggests that benchtop spectrome-
ters generally offer high-quality and consistent SERS spectral data 
compared to handheld spectrometers. The features extracted from 
benchtop spectrometer data are clearer and more stable, providing 
an advantage for all algorithms and ensuring that various models 
consistently maintain high prediction accuracy.

3.4  |  Evaluation of the SVM model

Confusion matrix is typically used to display the classification re-
sults of a model, allowing for an intuitive understanding of where 
the model performs well or poorly on specific samples. In this study, 
as the SVM model demonstrated the best performance in analys-
ing both the benchtop and handheld spectrometer SERS data, we 
constructed a confusion matrix for the SVM model. In the confusion 
matrix, each row represents the model's prediction probabilities for 
the true samples, and each column represents the model's predic-
tion probabilities for the incorrect samples. Based on the matrix re-
sults in Figure 3A, for the benchtop Raman spectrometer's spectral 
data, the SVM model only incorrectly predicted 2% of S. typhimurium 

Algorithm Accuracy Precision Recall F1-score 5-fold CV AUC

SVM 99.38% 99.38% 99.44% 99.38% 99.98% 99.98%

RF 98.13% 98.13% 98.33% 98.12% 97.97% 98.97%

XGBoost 97.50% 97.50% 97.55% 97.50% 98.28% 98.17%

AdaBoost 97.50% 97.50% 97.55% 97.50% 97.03% 98.00%

DT 96.25% 96.25% 96.44% 96.23% 97.19% 97.12%

QDA 88.75% 88.75% 88.99% 88.97% 86.40% 90.43%

TA B L E  2 Comparative analysis of the 
prediction ability of six machine learning 
algorithms on Salmonella SERS spectral 
data of benchtop spectrometer.

Algorithm Accuracy Precision Recall F1-score 5-fold CV AUC

SVM 99.97% 99.97% 99.98% 99.97% 99.05% 100%

RF 95.11% 95.11% 95.21% 95.15% 90.90% 95.67%

XGBoost 94.02% 94.02% 94.23% 94.01% 90.22% 95.50%

DT 84.24% 84.24% 84.71% 84.24% 86.97% 85.64%

QDA 64.67% 64.67% 60.21% 63.05% 60.74% 68.62%

AdaBoost 51.63% 51.63% 57.93% 57.05% 61.56% 57.94%

TA B L E  3 Comparative analysis of the 
prediction ability of six machine learning 
algorithms on the SERS spectral data 
of S. enterica serovars from a handheld 
spectrometer.
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10 of 15  |     YUAN et al.

samples as S. typhi. Moreover, the model achieved 100% prediction 
accuracy for S. dublin, S. enteritidis and S. typhi. In Figure 3B, the SVM 
model achieved 100% prediction accuracy for all four Salmonella 
strains for the handheld Raman spectrometer's spectral data.

4  |  DISCUSSION

Due to the presence of biomacromolecules such as nucleic acids, 
proteins, lipids and carbohydrates, the SERS spectral differences 
between bacterial species are subtle, making the distinction of 
the closely associated serovars within the bacterial species S. en-
terica extremely challenging.68 We employed a label-free SERS 
technique coupled with machine learning algorithms for differen-
tiation to rapidly and accurately discriminate S. enterica serovars 
from highly similar SERS spectra. Raman spectroscopy, especially 
surface-enhanced Raman spectroscopy, is a promising technique 
due to its ease of use, cost-effectiveness, non-invasiveness and 
improved signal intensity and quality, holding significant potential 
for the rapid and precise identification of bacterial pathogens in 
clinical settings.69–71 So far, the SERS technique has been exten-
sively explored for its applications in identifying clinically impor-
tant bacterial pathogens at the genus and species level and in the 
analysis of bacterial antibiotic resistance.18,25,72 There are different 
types of Raman spectrometers produced by various manufactur-
ers. Generally, the Raman spectrometer is divided into two types: 
the cheap handheld (portable) version and the expensive benchtop 
version.23 However, few studies currently focus on comparing the 
performance of benchtop and handheld Raman spectrometers.22 

Handheld Raman spectrometers have shown promise for on-site 
rapid screening due to their portability and ease of use. However, 
their sensitivity, especially at low pathogen concentrations, tends 
to be lower compared to benchtop systems.73 The detection lim-
its of handheld devices can be affected by multiple factors such 
as the quality of the SERS substrate, the integration time and the 
overall design of the spectrometer.74 In contrast, benchtop Raman 
spectrometers, with their more powerful laser sources and sophis-
ticated optical components, generally offer lower detection limits 
and higher sensitivity, making them more suitable for detecting 
pathogens at early stages of contamination when the concentra-
tion is low.75 The application of machine learning algorithms has 
shown significant potential and advantages in the research field 
of bacterial species detection and classification. Chen et  al. uti-
lised a handheld Raman spectrometer to collect spectral data of 
four Salmonella serovars (S. enteritidis, S. heidelberg, S. infantis and 
S. typhimurium) associated with foodborne outbreaks and used 
an SVM algorithm to efficiently classify and identify the serovars, 
with an overall prediction accuracy of over 94%.76 Additionally, an-
other study used a benchtop Raman spectrometer to obtain spec-
tral data of three common S. serovars, S. enteritidis, S. typhimurium 
and S. paratyphi. By combining SERS technology with multi-scale 
CNN to achieve multi-dimensional feature extraction from SERS 
spectral data, the model's recognition accuracy is as high as over 
97%.21 It is evident that both handheld and benchtop Raman spec-
trometers are increasingly being integrated with machine learning 
algorithms, aiming to enhance the precision in the detection and 
classification of serotype pathogens. In our study, to assess the dif-
ferences in pathogen detection between the two types of Raman 

F I G U R E  3 Confusion matrices for the SVM models in the analysis of S. enterica SERS spectra generated from benchtop and handheld 
Raman spectrometers, respectively. (A) Confusion matrix for the SVM model analysis of S. enterica SERS spectra from the benchtop Raman 
spectrometer. An average prediction accuracy of 99.5% was achieved. (B) Confusion matrix for the SVM model analysis of S. enterica SERS 
spectra from the handheld Raman spectrometer. An average prediction accuracy of 100% was achieved. Numbers in the confusion matrix 
represent the percentage of correctly classified (on the diagonal) or misclassified (off the diagonal) spectra, respectively.

 15824934, 2024, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jcm

m
.18292 by E

dith C
ow

an U
niversity, W

iley O
nline L

ibrary on [09/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  11 of 15YUAN et al.

spectrometers, we conducted a comparative analysis of SERS spec-
tra generated from both instruments using the same set of four 
S. enterica serovars.

Because of the inherent variability in Raman spectroscopy, it is 
necessary to validate the repeatability and uniformity of the SERS 
spectra. In this study, to verify the reproducibility of SERS spectra, 
we calculated the average signal intensities and standard errors 
along with their corresponding Raman shifts. The comparison of av-
erage SERS spectra revealed notable differences between the two 
Raman spectrometers for the same set of the four S. enterica sero-
vars. In particular, the benchtop Raman spectrometer, benefiting 
from their higher resolution and sensitivity, produced SERS spec-
tra with flatter baselines and more characteristic peaks. This can 
be attributed to their superior optical and electronic components, 
which enhance measurement precision and reduce signal noise and 
distortion. Additionally, the greater stability and consistency in mea-
surements afforded by the benchtop spectrometer's robust design 
and controlled operating environment contributed to reduced vari-
ability in the spectra, as evidenced by smaller standard error bands. 
Conversely, the handheld Raman spectrometer, designed specifically 
for portability, displayed SERS spectra with greater variability. These 
instruments' compact size and lightweight nature may increase sen-
sitivity to environmental factors, leading to fluctuations in baselines 
and standard error bands. Additionally, the handheld spectrometer 
has sensitivity and calibration accuracy limitations, affecting the 
overall quality and uniformity of the collected SERS spectra.

Regarding the SERS spectral clustering analysis, the OPLS-DA 
algorithm, a supervised discriminant analysis technique, effectively 
mitigates the impact of inter-group differences on classification out-
comes.70,77 It achieves the effects by reducing model overfitting and 
the probability of false positives through an orthogonal signal pro-
cessing.78 In this study, we applied the OPLS-DA method to classify 
the SERS spectra of four S. enterica serovars. The results indicated 
that, before data normalisation, the OPLS-DA clustering outcomes 
from both spectrometers could distinguish among different S. en-
terica serovars. Following SERS data normalization, the inter-group 
differences increased while intra-group differences decreased. This 
normalisation led to improved R2X, R2Y and Q2 scores for the SERS 
spectra from both Raman spectrometers. However, we found that 
the scores obtained from the benchtop spectrometer data improved 
more significantly than those from the handheld spectrometer. This 
enhancement can be attributed to the inherently higher resolution 
and sensitivity of benchtop spectrometers, which enable more subtle 
spectral features to be detected. Consequently, during the normali-
sation process, these minute features are better preserved and em-
phasised, enhancing the model's variance explanation capability and 
predictive performance.79,80 Furthermore, handheld spectrometers 
may be more susceptible to higher levels of noise interference. In con-
trast, benchtop spectrometers produce less noise with their precise 
optical components and stable operating environments. This results 
in the normalisation of data that more accurately reflects true spectral 
characteristics, leading to a greater improvement in the scores of the 
benchtop spectrometer data by the OPLS-DA algorithm.81

In this study, we also compared the prediction capacity of ma-
chine learning modes on the SERS spectra from different Raman 
spectrometers. Machine learning, recognised as a powerful data 
analysis method, excels in exploring local features and extracting 
global characteristics from signal data.30,82 Leveraging its immense 
potential in SERS spectral data processing and analysis, it has found 
its applications in rapidly identifying and predicting bacterial genera 
and species.19,83 We constructed six supervised machine learning 
models to identify the algorithm with optimal predictive perfor-
mance (AdaBoost, DT, QDA, RF, SVM and XGB). We applied them to 
SERS spectral data from benchtops and handheld Raman spectrom-
eters. The evaluation was performed through various predictive 
parameters and confusion matrices. The results demonstrated that 
SVM exhibited the best computational accuracy and robust perfor-
mance in handling complex classification problems. It achieved the 
highest accuracy in handheld and benchtop Raman spectrometers, 
indicating that integrating SERS technology with machine learning 
algorithms facilitates the rapid and accurate identification of S. en-
terica serovars, independent of the Raman spectrometer types. This 
underscores its immense potential in bacterial pathogen detection 
and food safety monitoring. Furthermore, the handheld Raman 
spectrometer has demonstrated sufficient accuracy and robustness 
in identifying S. enterica serovars that is comparable to the expen-
sive benchtop Raman spectrometer, suggesting their potential as 
an effective alternative in scenarios requiring instrument portabil-
ity, mobility and cost-efficiency, thereby presenting possibilities for 
widespread application in the field of public health safety.

In addition, in real-world settings, it is often necessary to pro-
cess mixed samples containing multiple bacterial serotypes, which 
will face challenges such as spectral overlap, background signal in-
terference and low signal intensity differences. Especially when try-
ing to differentiate between pathogens with very similar cell wall 
composition and metabolic characteristics, SERS substrate-based 
detection and identification methods are more challenging.4,84 Chen 
et al.76 used a portable Raman spectrometer to detect six bacterial 
mixed samples containing four Salmonella serovars, Staphylococcus 
aureus and Escherichia coli and found that the overall accuracies pre-
dicted by both linear discriminant analysis (LDA) and SVM models 
were lower than those assessed by the stand-alone pure cultures, 
with the lowest accuracy being only 65%. One of the reasons for this 
decrease in accuracy is due to the highly homogeneous structure of 
the cell surface, which limits the classification ability of serotyping. 
However, the differences found between pure cultures and bacte-
rial mixtures suggest that alterations in bacterial metabolism during 
mixed cultures may be a more important reason.85 Martinez et al.84 
utilised a benchtop Raman pectrometer in combination with SERS 
spectroscopy and multivariate analysis methods for label-free de-
tection and identification of single bacteria in a mixture of bacteria. 
The SERS platform demonstrated its ability to differentiate between 
Gram-positive and Gram-negative bacteria and to identify samples 
containing different concentrations of these two groups of bacte-
ria. By applying multivariate spectral analysis techniques such as 
PCA and PLS-DA, the spectra of pure samples showed significant 
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clustering properties. As the concentration of one bacterium in 
the mixed sample increased and the concentration of the other de-
creased, the mixed population shifted towards the pure sample with 
the dominant bacterium, resulting in a decrease in the model's clas-
sification ability.84 In summary, both handheld and benchtop spec-
trometers face substantial challenges in identifying mixed bacterial 
samples. The primary reason lies in the highly homologous struc-
tures on the surfaces of pathogens with similar cell wall composi-
tions and metabolic profiles.86,87 In practical applications such as 
food safety monitoring, disease diagnosis and environmental assess-
ment, the detection of mixed bacterial samples presents a common 
and complex challenge.87 Therefore, it is necessary to develop inte-
grated methods with advanced computational models and optimise 
standard operating procedures to enhance the sensitivity, accuracy 
and reproducibility of SERS technique in detecting mixed bacteria.

5  |  CONCLUSION

In this study, we conducted a performance comparison of handheld 
and benchtop Raman spectrometers in detecting S. enterica serovars 
via machine learning analysis of SERS spectra. The benchtop Raman 
spectrometer, leveraging its high sensitivity and resolution, provided 
more comprehensive Raman spectral information in laboratory 
analysis. Conversely, while lacking capacity in characteristic peak 
detection, the handheld Raman spectrometer demonstrated sig-
nificant advantages in portability, mobility and cost-effectiveness, 
making it invaluable for rapid on-site screening. Regardless of 
whether a benchtop or handheld device was used, both instruments 
achieved high accuracy in differentiating four S. enterica serovars 
through supervised clustering analysis. By optimizing data process-
ing parameters of a set of machine learning algorithms, especially 
in conjunction with SVM models, we confirmed that the handheld 
Raman spectrometer could achieve sufficient accuracy in S. enterica 
serovar detection even in resource-limited environments, with its 
predictive accuracy slightly surpassing that of the benchtop Raman 
spectrometer. This outcome further underscores the potential of 
Raman spectroscopy technology, coupled with machine learning 
algorithms, for rapidly and accurately identifying closely related 
bacterial pathogens. Future research directions should include fur-
ther optimising the performance of handheld Raman spectrometers, 
enhancing the quality of spectral signal acquisition, refining data 
processing algorithms and exploring SERS substrates more suitable 
for on-site detection. These efforts aim to ensure handheld Raman 
spectrometers' practicality, reliability and applicability in food safety 
control and monitoring. In conclusion, this study demonstrates that 
the combination of SERS spectroscopy and machine learning al-
gorithms enables the rapid identification of very similar S. enterica 
serovars, offering a new technological approach for the swift de-
tection of Salmonella. In addition, the handheld Raman spectrom-
eter exhibits similar accuracy to a benchtop Raman spectrometer in 
identifying S. enterica serovars. This finding significantly enhances its 
practical value in on-site rapid detection. As the handheld Raman 

spectroscopy technology progresses and optimises, it promises to 
achieve economically efficient applications across diverse fields.
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