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A B S T R A C T   

With dementia incidence projected to escalate significantly within the next 25 years, the United Nations declared 
2021–2030 the Decade of Healthy Ageing, emphasising cognition as a crucial element. As a leading discipline in 
cognition and ageing research, psychology is well-equipped to offer insights for translational research, clinical 
practice, and policy-making. In this comprehensive review, we discuss the current state of knowledge on age- 
related changes in cognition and psychological health. We discuss cognitive changes during ageing, including 
(a) heterogeneity in the rate, trajectory, and characteristics of decline experienced by older adults, (b) the role of 
cognitive reserve in age-related cognitive decline, and (c) the potential for cognitive training to slow this decline. 
We also examine ageing and cognition through multiple theoretical perspectives. We highlight critical unre
solved issues, such as the disparate implications of subjective versus objective measures of cognitive decline and 
the insufficient evaluation of cognitive training programs. We suggest future research directions, and emphasise 
interdisciplinary collaboration to create a more comprehensive understanding of the factors that modulate 
cognitive ageing.   

1. Introduction 

Human life expectancy has risen by over eight years since 1990 
(United Nations Department of Economic and Social Affairs Population 
Division, 2019). Psychology, as a discipline, has contributed to this 
increased longevity by highlighting the importance of mental health in 
ageing (e.g., psychological resilience, psychotherapeutic interventions, 
and suicide prevention; Diehl and Wahl, 2020). Another major contri
bution of psychology to healthy ageing is via the study of cognition. 
Albeit a crude measure, one objective indicator of the contribution of the 
field to improving our understanding of age-related cognitive changes 
and potential preventive/ameliorative interventions is the number of 
publications on various aspects of cognitive geropsychology. A search of 
PubMed, using a combination of keywords relevant to age-related 
cognitive impairments, cognitive function in the elderly and older 

adults, and cognition and ageing, yielded over 22,000 papers published 
in the last 60 years (see Fig. 1). 

Additionally, the United Nations General Assembly announced 
2021–2030 as the Decade of Healthy Ageing. This initiative is aimed at 
promoting the quality of life of older adults, their families and com
munities at large, with cognition as a major pillar (World Health Or
ganization, 2020). Such initiatives encourage further research within 
the field of psychology focused on maintaining mental, cognitive, and 
physical wellbeing later in life. 

Although lifespan has increased significantly, there has not been an 
accompanying increase in the health span (Garmany et al., 2021). Ageing 
can produce unwanted outcomes, such as age-related cognitive decline. 
Such conditions have significant and chronic impact on older adults, as 
well as their family members and caregivers. Until we can mitigate 
age-related pathology and associated functional decline through disease 
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modifying-treatments, older adults’ quality of life will be primarily 
preserved through management strategies, rather than cures. Indeed, 
promoting better quality of life is the primary aim of the Decade of 
Healthy Ageing (World Health Organization, 2020). As a behavioural 
health discipline, psychology is central to the biopsychosocial model of 
health and thus has the capacity to contribute to quality of life (health 
span) among older adults. Indeed, psychology researchers now have 
methods that can be readily employed to improve the quality of life and 
health span of older adults. Some of these approaches show considerable 
clinical utility when tailored to older adults, such as novel health 
assessment methodologies combined with modern cognitive and 
behavioural interventions such as acceptance and commitment therapy 
(Petkus and Wetherell, 2013) or mindfulness-based therapy 
(Hazlett-Stevens et al., 2019). 

Age-related cognitive impairment and dementia are major concerns 
for older adults, their family members and health providers (World 
Health Organization, 2022), and dementia incidence is projected to in
crease substantially over the next 25 years (Nichols et al., 2022). 
Cognition is integral to a range of essential daily functions and the 
maintenance of independent living capacity with age. Older people have 
other psychological health concerns as well; the risk of successful suicide 
attempts in older adults is far higher than in younger individuals 
(Conejero et al., 2018). The high risk of mental health conditions (Ausín 
et al., 2017) and limited support for older adults’ psychological well
being (Stargatt et al., 2017) could partially explain this pattern. 
Furthermore, physical, medical, social, environmental, and financial 
limitations provide additional roadblocks to maintaining a high quality 
of life during older adulthood. Accordingly, older adults and their 
caregivers can significantly benefit from psychological research on 
healthy ageing, including preventive approaches and interventions. 
Importantly, despite concerns about the universality of cognitive decline 
among this age group, cognitive decline with advancing age is not 
inevitable; there are individual differences in the trajectories of both 
developmental gain and decline, with some individuals maintaining 
relatively high levels of cognitive function into older age (Zhao et al., 
2020). 

The aim of this article is to review the current literature on age- 
related change from a cognitive and neuroscientific perspective. 
Through a critical analysis of current knowledge and theories about age- 
related cognitive decline, we synthesise the existing state of the litera
ture, identify knowledge gaps, and develop suggestions for ways that 

psychology can contribute to healthy ageing. Although systematic re
views provide a rigorous analysis of a narrow research question, this 
specificity inherently limits their capacity to capture the full spectrum of 
available information on a broad topic such as healthy ageing. Given the 
diverse nature of the approaches and findings in the field, we therefore 
opted to provide a holistic overview of cognitive healthy ageing, 
employing a narrative approach to offer a more interpretive and 
nuanced exploration of diverse perspectives, theories, and evidence. In 
the following sections, we focus on age-related cognitive changes, sub
jective versus objective changes in cognition, the role of cognitive 
reserve in cognitive decline, the interaction between lifestyle and 
cognitive reserve, interventions to slow cognitive decline, neuroscien
tific perspective on ageing and cognition, and unifying theoretical ap
proaches to cognitive ageing, before summarizing and identifying future 
research directions. 

1.1. Age-related cognitive changes 

Cognitive function is an important contributor to healthy ageing, 
predicting self-perceived health (McHugh and Lawlor, 2016) and as
pects of mental health, such as lower pessimism, in old age (Taylor et al., 
2017). Among older adults, there are robust associations between 
cognitive function and educational outcomes, socioeconomic attain
ments, health, longevity (Deary et al., 2010), and daily living tasks such 
as medication use, financial management, and food preparation (Allaire 
and Marsiske, 2002). 

Although much current research uses screening tools to dichotomise 
the ageing population into pathological and non-pathological 
(“healthy”) individuals (in the tradition of medical diagnosis), this 
approach neglects the more subtle, gradual cognitive changes detected 
by more sensitive measures in healthy individuals over time (Rodrigues 
and Moreno, 2023). Generally, cognitive test performance declines 
during adulthood (Tucker-Drob, 2019). However, the age at which 
decline is detected depends on the balance of a test’s demands between 
“crystallised” accumulated knowledge, which increases through adult
hood, and “fluid” knowledge-free information processing, which de
clines through adulthood (Lindenberger, 2014). Thus, processing speed 
(fluid) peaks early in adulthood and steadily declines thereafter, 
whereas vocabulary (crystallised) peaks late in adulthood; tasks such as 
verbal fluency, reasoning, and long-term memory, which require both 
crystallised knowledge and fluid ability, peak at intermediate ages 

Fig. 1. Number of publications referring to cognition and ageing since 1964. The surge in publications on age-related cognitive decline began in the early 2000 s and 
peaked in 2019.1 Keywords were as follows: ((age-related cognitive impairments) OR (cognitive function in elderly) OR (cognitive function in older adults) OR 
(cognitive decline in older adults) OR (age-related cognitive problems) OR (cognition and aging)), with the following filters: Clinical Trial, Meta-Analysis, Obser
vational Study, Randomized Controlled Trial, English, Middle Aged: 45–64 years, Aged: 65+ years, 80 and over: 80+ years, Humans, from 1964/1/1. Search was 
conducted on 14 March 2024 on PubMed. 

1 The decline in publications since 2019 has several possible explanations. For instance, publication lag alone could account for the last 2–3 years, leaving 
2020–2021 to explain. This period overlaps with the worst of the COVID-19 pandemic, which interfered with the research productivity of many academics. The 
pandemic also hindered access to older participants through lockdowns and travel restrictions, as well as reduced their willingness to participate in research (due to 
exposure risk). Further, the increased focus on dementia (and prevention) research may have diverted research efforts on healthy ageing. 
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(Hartshorne and Germine, 2015; Hedden and Gabrieli, 2004; Salthouse, 
1996; Swagerman et al., 2016). Ageing trajectory estimates vary be
tween study designs, with cross-sectional studies showing downward 
linear trends with age, but longitudinal studies showing more optimistic 
patterns of initial increase or protracted stability before decline (Salt
house, 2019). The discrepancy is likely attributable to practice effects in 
longitudinal studies (Rabbitt et al., 2008b; Salthouse, 2019), which can 
be interpreted as showing the same test requiring less fluid and more 
crystallised ability with repeated exposures. Although practice effects 
represent an unwanted confound for researchers, from the perspective of 
healthy ageing, they demonstrate the capacity to benefit for years after 
even a small amount of test exposure, albeit a capacity that varies among 
individuals and diminishes with advancing age (Rabbitt et al., 2008b; 
Salthouse, 2019). 

A point of debate among researchers is whether the non-pathological 
ageing population should be regarded as homogeneous, with age 
groups’ average cognitive performance providing a meaningful norma
tive trajectory against which to compare individuals and assess in
terventions (Salthouse, 2019), or as heterogeneous, with constituent 
individuals’ abilities following idiosyncratic trajectories before a rapid 
terminal decline (Lindenberger, 2014; Rabbitt et al., 2008a), poorly 
represented by the group mean. Central to this debate is the question of 
whether performance variability remains constant with age (Salthouse, 
2011) or whether variability increases but is systematically under
estimated, due to selection bias and selective attrition (i.e., only un
usually healthy and capable older people participate in demanding 
cognitive studies; Rabbitt, 2011). Inter-individual variability is partly a 
function of intra-individual variability, representing increasingly erratic 
cognitive processes (Rabbitt, 2011) but may also reflect the myriad 
hazards and protective factors affecting different individuals in different 
ways (Lindenberger, 2014). Rodrigues and Moreno propose two inter
twining approaches for the conceptualisation and investigation of 
healthy cognitive ageing: population subtyping and trajectory analysis 
(Moreno et al., 2023; Rodrigues et al., 2022; Rodrigues and Moreno, 
2023). 

Subtyping involves categorising groups of individuals according to 
genotype and/or phenotype features, with the aim of better under
standing the inter-individual heterogeneity of age-related changes 
(Rodrigues and Moreno, 2023). An example is the examination of sex 
effects on cognitive ageing: older females show lower rates of decline 
compared to males in several cognitive abilities including memory, ex
ecutive function, and global cognition (Zaninotto et al., 2018). Potential 
causes for this difference include various lifestyle risk factors that are 
more prevalent in older males (e.g., higher rate of smoking, alcohol 
consumption, lower likelihood of seeking medical care as preventive or 
treatment measures). Other examples of subtyping include structural 
brain atrophy, where individuals with higher atrophy rates in the cortex 
and hippocampus have lower episodic memory (Nyberg et al., 2023). 
The “Orchid and Dandelion theory” has also been proposed as a sub
typing framework for understanding the nuances of ageing through 
stratification analysis (Moreno et al., 2023). According to the theory, 
older adults with average cognitive scores exhibit notable resistance to 
the effects of negative environment lifestyle factors such as smoking or 
drinking, however the impact of these factors is significantly more 
pronounced among older adults with more extreme scores (both high 
and low; Rodrigues et al., 2022). This theory underscores the diverse 
responses within the ageing population, where some individuals prove 
more resilient (akin to a dandelion) whereas others (orchids) are more 
susceptible to external influences. 

Subtyping is also relevant to cognitive trajectories (Rodrigues and 
Moreno, 2023). Using longitudinally collected cognitive assessments, 
the patterns (trajectories) of cognitive function provide indicators of 
both the natural process of cognitive ageing and intra-individual het
erogeneity (Wu et al., 2020). To account for both inter- and 
intra-individual heterogeneity, some studies have performed subtyping 
analysis to identify latent classes of trajectories through the 

classification and clustering of individuals with similar cognitive tra
jectories, typically identifying three to four classes (Wu et al., 2020). An 
analysis of subtypes showed that the association between cognitive 
performance and modifiable factors varied across class; for example, 
higher education was the strongest predictor of membership in the 
highest performing group, whereas frailty was the strongest predictor of 
membership in the lowest-performing group (Wu et al., 2022). 

Age-related cognitive changes should also be viewed with a multi
disciplinary lens: the trajectory of developmental growth and subse
quent age-related deterioration differs among people, potentially due to 
variations in premorbid IQ, life experiences, lifestyle factors, neurode
generative changes, and cognitive reserve or resilience. For example, 
those living in regions characterised by a high frequency of centenar
ians, known as Blue Zones (Fastame et al., 2021; Poulain et al., 2004), 
demonstrate more favourable outcomes on a variety of health in
dicators, such as life expectancy and cognitive decline, compared to 
other geographical locations. These benefits are attributed to a healthy 
and active lifestyle and better mental health indices including social 
connections and having a purposeful life (Buettner and Skemp, 2016; 
Fastame et al., 2021; Hitchcott et al., 2018). Another example: although 
females have lower rates of cognitive decline than males (Zaninotto 
et al., 2018), over 66% of dementia cases are females (Beam et al., 2018) 
– suggesting the involvement of contributing factors other than cogni
tive decline to dementia. A developmental approach is well-suited to 
understanding such differences, by first scrutinising various lifestyle 
factors and early life experiences/opportunities for their impact on the 
development of various cognitive abilities that, in turn, may partially 
account for higher risk of dementia in females (Tucker-Drob, 2019). For 
example, a recent large population-based cohort study reported 
differing risk profiles for dementia amongst men and women, where 
physical inactivity and lower education was a stronger predictor of de
mentia development in women (Sindi et al., 2021). These lifestyle-based 
factors also intersect with biological underpinnings (e.g., hormonal 
differences) to modify the risk of other chronic health conditions such as 
cardiovascular disease, which in turn, can contribute to accelerated 
cognitive decline (Volgman et al., 2019). From a psychosocial perspec
tive, women are also more likely to assume the role of primary caregiver 
for a spouse or family member with a chronic condition (Swinkels et al., 
2019), which can have downstream effects on their own sleep quality, 
and mental and cognitive health (Dassel et al., 2017). These studies echo 
the large body of literature highlighting the complex nature of healthy 
ageing, along with the role that factors such as sex can play in deter
mining an individual’s ageing trajectory (Rovio et al., 2005; Virta et al., 
2013). 

1.2. Subjective versus objective changes in cognition 

People are often cognisant of subtle changes to their memory and 
thinking skills before clinically identifiable cognitive decline becomes 
apparent. Between 50% and 80% of older individuals (aged 70 years and 
older) who perform within normal ranges on cognitive tests nevertheless 
report some form of perceived decline in cognitive functioning (Jessen 
et al., 2020). This is known as Subjective Cognitive Decline (SCD) – a 
decline in cognitive performance, subtle memory loss or increased 
confusion, reported by the individual themselves or an informant (e.g., 
spouse, child, or medical practitioner). Personal insight into memory 
failings may be more sensitive than informant reports and cognitive 
assessments alone (van Harten et al., 2018). Even at the earliest stages of 
SCD, a person may have already begun accumulating underlying 
neuropathology (Hanseeuw et al., 2019). Indeed, SCD may be one of the 
earliest and most subtle symptoms of dementia (Sohrabi and Weinborn, 
2019) because it corresponds to the advanced preclinical phase of the 
Alzheimer’s disease (AD) and non-AD dementia spectrum, representing 
the period between the cognitively unimpaired stage and the phase of 
cognitive impairment (Jansen et al., 2014; Jessen et al., 2020; Sohrabi 
and Weinborn, 2019). Longitudinal studies (e.g., van Harten et al., 2013; 
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Wolfsgruber et al., 2017) have shown that individuals without a clinical 
diagnosis of cognitive impairment who self-report cognitive decline and 
test positive for neuropathological markers of AD (as measured by the 
levels of misfolded amyloid beta and total/phosphorylated tau in cere
brospinal fluid, plasma, or brain imaging) have a 40–62% risk of pro
gressing either to mild cognitive impairment (MCI) or dementia within 
three years. Individuals with more severe SCD show a faster decline in 
objectively assessed cognition than those with less severe subjective 
concerns (Amariglio et al., 2018; Vogel et al., 2017). 

SCD also has inherent links with social factors such as isolation, a fact 
which has become more apparent in recent years during the COVID-19 
pandemic. Santangelo et al. (2021) reported increased self-reported SCD 
(particularly reduced cognitive efficiency) during periods of isolation 
associated with COVID-19 lockdowns. An increase in self-reported 
cognitive failures was associated with lower educational levels and 
fewer people in the house (i.e., greater isolation – see Santangelo et al., 
2021). This aligns closely with other studies on changes to objective 
cognitive performance in response to social isolation or, conversely, 
engagement (Ertel et al., 2008). Although further work is needed to 
quantify how the COVID-19 pandemic and social isolation impacted the 
cognitive health of ageing populations, it is plausible that it (and social 
isolation in general) can accelerate cognitive decline and memory 
impairment for many people, especially those at higher risk of dementia. 

1.3. The role of cognitive reserve in cognitive decline 

People at higher risk of dementia have varying trajectories of 
cognitive and functional decline. That is, the severity, rate, and speed of 
the decline differs substantially across individuals despite sharing sig
nificant AD-related neuropathological changes in the brain. Boyle et al. 
(2019) examined brain pathologies in people from the Religious Orders 
Study and the Rush Memory Aging Project; although neurodegenerative 
processes accounted for 43% of the variability in neuropathologies, 50% 
of the variance could not be explained. One potential explanation for 
this variance may lie in cognitive reserve, which originally referred to 
individual differences in the degree of cognitive and neural dysfunction 
experienced following brain damage (Stern, 2009). More recent defini
tions specify cognitive reserve as a property of the brain that allows 
performance to be better than the expected norms in the presence of 
brain changes and brain injury or disease throughout life (Stern et al., 
2023). 

Cognitive reserve might explain the substantial variability in the 
onset and trajectory of cognitive dysfunction seen in older adult pop
ulations, via resilience (Stern et al., 2023, 2020). This perspective con
tends that the ability to cope with neuropathological disease or insult 
will vary based on individual differences in cognitive processes which 
are, in turn, a function of lifetime experiences, intellectual activities, and 
other environmental factors – years of education, occupational attain
ment, and physical leisure activities (Bordignon et al., 2021; Stern et al., 
2020). For instance, the dentate gyrus, a subregion of the hippocampal 
formation that is critical for memory formation, is a neurogenic network 
that can be modulated by behaviour and experience (Piatti et al., 2013). 
Cognitive experiential factors also promote neuroplasticity and resis
tance to cellular apoptosis (Whalley et al., 2004). By contrast, the phrase 
‘use it or lose it’ summarises the result of a cognitively sedentary life
style, where acceleration of atrophy in various brain structures is asso
ciated with early clinical manifestations of cognitive decline (Bordignon 
et al., 2021). Isolation and reduced social interaction often increase with 
age, which can impact problem solving abilities and other higher order 
cognitive skills (Cacioppo and Cacioppo, 2014). In fact, the stress of 
social isolation may invoke stress-induced inflammation, resulting in 
brain injury and dysfunction (Friedler et al., 2015). Regardless, 
underutilised cognitive processes may progressively deteriorate due to 
neurodegeneration and the gradual loss of synapses. 

In accordance with the cognitive reserve perspective, social inter
action provides mental stimulation (Bennett et al., 2006) and promotes 

neuroplasticity (Perry et al., 2022), potentially through the use of 
complex communication. However, there is no clear consensus on the 
definition of complex social connection, and there are many varying 
approaches to the assessment and definition of cognitive outcomes 
(Holwerda et al., 2012; Simning et al., 2014). It is important to 
emphasise that there are often disparities (potentially owing to differing 
cognitive reserve profiles) between an individual’s trajectory of ageing 
and what is ‘typically’ seen in larger cohort studies. Moreover, it is still 
unclear from current research how we might forestall (or even reverse) 
cognitive decline in a prescriptive manner tailored to individual patterns 
of cognitive performance. As such, continued research aimed at clari
fying the roles of internal (e.g., biological) and external (e.g., social 
connectedness) processes and factors that contribute to healthy ageing 
at an individual level is essential (Livingston et al., 2020). 

Another potentially promising research area concerns “super-agers” 
– adults over 80 years of age who perform similarly to adults 20–30 
years younger on episodic memory tests (Harrison et al., 2012). 
Although research from the same lab suggests that such individuals exist 
and are seemingly less prone to AD neuropathological changes (Dang 
et al., 2018), others have not been able to replicate these results 
(Gardener et al., 2021). Variations in the definitions of super-ageing and 
inclusion/exclusion criteria could partially explain these differences, but 
more research with larger groups is essential to provide insight into the 
differences between normal age-related decline (as per age, education 
and sex-stratified norms) and preserved (non-decremented) perfor
mance (Rogalski et al., 2013). 

1.3.1. Lifestyle contributions to cognitive reserve and healthy ageing 
A wide range of variables could feasibly contribute to an individual’s 

cognitive reserve profile and thus influence their subsequent disease 
risk, particularly those relating to lifestyle. There is compelling evidence 
that physical activity can provide a degree of protection against cogni
tive decline. For instance, Erickson et al. (2011) found that a 12-month 
walking-based exercise intervention led to significant increases in hip
pocampal size in previously sedentary older adults; high-intensity in
terval training has been associated with improved memory performance 
over a 12-week period (Kovacevic et al., 2020). 

Northey et al., (2018) conducted a comprehensive meta-analysis of 
the exercise and cognition literature, finding that exercise improved 
cognitive function in adults aged 50 and above, regardless of the mode 
used (e.g., aerobic or resistance), cognitive domain assessed or cognitive 
status of participants. Nevertheless, other equally robust studies have 
failed to find a clear link between exercise or physical activity engage
ment and cognitive function (Brown et al., 2021; Ciria et al., 2023). In 
fact, people may experience vast differences in their neurological 
‘response’ to exercise (e.g., based on genotype or baseline cardiorespi
ratory fitness), which speaks to the need for a broad, multi-domain 
approach to healthy ageing and quantifying cognitive reserve. 

The potential benefits of multi-domain approaches underscore the 
complex array of factors contributing to an individual’s broader lifestyle 
patterns. For example, diets such as the Mediterranean diet and the 
hybrid Mediterranean-DASH (MIND) diets have received substantial 
attention as modifiable methods of reducing dementia risk (Abbatecola 
et al., 2018). Broadly, dietary patterns emphasising the consumption of 
legumes, olive oil, fish, whole grains and fresh fruits and vegetables, in 
combination with reduced fat, sugar and red meat, together promote 
antioxidant mechanisms, neuronal plasticity, inflammation regulation, 
and cardiovascular health (Koloverou et al., 2016). Morris et al., (2015) 
demonstrated that even moderate adherence to the MIND diet was 
sufficient to reduce AD risk, and a recent study combining three major 
longitudinal cohort projects reported that incremental increases in 
MIND diet scores (i.e., higher adherence) resulted in a 17% decrease in 
the risk of dementia (Chen et al., 2023). Another example of lifestyle 
factors is sleep, which is a widely recognised modifiable therapeutic 
target to improve cognition and quality of life (Sadler et al., 2018). 
Chronic sleep deficiencies have emerged as a key driver of 
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dementia-related neuropathological processes (mediated by mecha
nisms such as the glymphatic clearance and hormonal regulation; 
Nedergaard and Goldman, 2020). Despite the promising steps taken in 
lifestyle-based research for cognitive ageing, the degree to which each 
aspect of lifestyle influences an individual’s ageing trajectory is highly 
variable and multi-faceted. Cultural, social, familial, experiential, and 
innate biological intra-individual differences can often lead to heterog
enous samples which reduce generalisability and impact the strengths of 
the lifestyle-based recommendations made at a population level. 
Although an experiential variable like education is widely seen as pro
tective, there is still longitudinal evidence to the contrary (Sala et al., 
2023). Moreover, well-designed systematic reviews and meta-analyses 
have reported null findings and small effect sizes when examining the 
link between dietary pattern adherence, cognition, and dementia inci
dence (Fu et al., 2022). Similar criticisms have been levelled at recom
mending physical exercise to improve cognitive abilities (e.g., see Ciria 
et al., 2023), which are reflective of the important questions remaining 
on optimal protocol length, exercise type, and intensity to best activate 
neuroprotective pathways (Stillman et al., 2020). 

Accordingly, the increasing use of large, longitudinal datasets pro
vides an opportunity to better understand healthy ageing across a 
broader spectrum of the population. Studies utilising data from initia
tives such as the UK Biobank have recently demonstrated robust asso
ciations between physical activity, grey matter volume (Hamer et al., 
2018), and specific dietary elements such as meat consumption and 
incident dementia risk (Zhang et al., 2021). From a psychological ageing 
perspective, the advent of big data may provide the statistical power to 
identify subgroups of ‘responders’ and individuals who benefit the most 
from varied, multi-domain lifestyle-based interventions designed to 
promote healthy ageing. 

1.4. The interaction between lifestyle and cognitive reserve 

The benefits associated with lifestyle-related protective behaviours 
(e.g., physical activity, sleep) extend well beyond cognition, given the 
interconnection between lifestyle, psychological, and experiential fac
tors in contributing to a person’s cognitive reserve profile (Song et al., 
2022). A review by Bauman et al. (2016) suggested that physical activity 
assists in improving cognitive functioning, preventing physical disease, 
reducing falls, and reducing depression. Almeida et al. (2006) demon
strated positive relationships between physical activity and mental 
health (cognitive functions and preserved mood) in a longitudinal study 
of 601 males in their 80 s. Similar benefits for depression were found in a 
scoping review of the effects of walking, although the authors noted 
issues with the quality of trials available for metrics such as subjective 
well-being (Kelly et al., 2018). 

In the context of cognitive reserve, it is also important to consider the 
intersection between more traditional lifestyle-based variables of in
terest (e.g., exercise) and psychological perspectives. Personality traits 
such as extraversion and openness to experience influence the rela
tionship between physical activity and subjective wellbeing (Long Chan 
et al., 2018). Similarly, there are also well-established bi-directional 
relationships between sleep deficits, mood disturbance (e.g., major 
depressive disorder) and physical activity engagement (Firth et al., 
2020; O’Leary et al., 2017; Sewell et al., 2021). As such, cognitive health 
trajectories are modified by the interconnection between 
lifestyle-related behaviours, personality, psychological health and a 
multitude of other experiential factors which can contribute to cognitive 
reserve (Song et al., 2022). Although it is not possible to characterise all 
of the possible modulatory factors that impact the level of cognitive 
reserve for any given person, there is clear value in integrating multiple 
perspectives and ideas related to optimising physical, cognitive and 
mental health to build intrinsic capacity and resilience to disease (World 
Health Organization, 2015). 

Although cognitive reserve is an area of research that incorporates 
several promising pathways to prevent or mitigate the impact of age and 

disease-related neurodegenerative processes on cognition, the fact re
mains that during the last two years, the number of deaths due to de
mentia has passed ischemic heart disease as the primary cause of death 
at least in one country (Australian Bureau of Statistics, 2022) and we 
expect similar trends to occur elsewhere (Doblhammer et al., 2022), 
potentially due to multiple pathways including the effects of social 
isolation (resulting in decreased physical activity, social interaction, and 
access to medical care) and the physiological and neurological effects of 
COVID-19 infection. This statistic highlights the importance of investi
gating longitudinal reserve and resilience mechanisms, as well as the 
need to examine methods of limiting cognitive decline for those who are 
already experiencing significant decline. 

1.5. Interventions to slow cognitive decline 

Similar to exercise programs designed to maintain physical health 
across age, there are other interventions that may improve cognitive 
abilities through prescribed activities. Although there are many such 
approaches, here we focus on three: cognitive training (Jaeggi et al., 
2011; Katz et al., 2018), music training (Román-Caballero et al., 2018), 
and also mindfulness interventions (Mirabito and Verhaeghen, 2023). 
The most prevalent approach is that of cognitive training, which in
cludes multiple object tracking and memory exercises, paper and pencil 
methods (e.g., Sudoku or word puzzles), single-person or group-based 
training and consultative methods, computerised, online, and 
gadget-based methods (Harvey et al., 2018). Cognitive training is 
non-invasive, non-pharmacological, and relatively easy to access 
(particularly computerised programs), making it an attractive tool for 
people seeking low-cost ways of preserving their neurocognitive health. 
Encouragingly, several studies have demonstrated that both compu
terised and conventional pencil and paper cognitive training programs 
can elicit clinically meaningful changes in various cognitive domains for 
older populations (Bahar-Fuchs et al., 2019; Harvey et al., 2018; Kueider 
et al., 2012). 

However, other studies have found no benefits associated with 
cognitive training for older adults (Sala and Gobet, 2020; Sala et al., 
2018), and a common critique centres on the lack of transferability from 
domain-specific training programs to general cognitive functioning 
(Owen et al., 2010; Sala and Gobet, 2019; Simons et al., 2016). Kane 
et al. (2017) reviewed 263 studies of interventions aimed at preventing 
or delaying age-related cognitive decline, MCI, and Alzheimer’s-type 
dementia. Of these, 38 were studies of cognitive training. After 
addressing the risk of bias and assessing evidence strength, the authors 
concluded that cognitive training with tasks focused on memory and 
reasoning improved domain-specific performance for cognitively 
normal older adults. However, this improvement in performance did not 
transfer across cognitive domains, and overall, cognitive training did not 
prevent or delay age-related cognitive decline, MCI, or AD. 

In their systematic review on how cognitive training might affect 
cognitive performance and incident dementia outcomes, Butler et al. 
(2018) specifically targeted studies of cognitive training and cognitive 
decline. After study selection and data extraction, they reviewed 11 
studies of cognitive training interventions on cognitive performance and 
incident dementia outcomes for adults with normal cognition or MCI. 
Healthy older adults improved their performance in trained cognitive 
domains, but this did not translate to global cognition. Further, partic
ipants with MCI experienced no benefits at all, highlighting the lack of 
applicability for older adults with current prodromal AD and a limited 
scope for dementia prevention. A more recent review (von Bastian et al., 
2022) reached similar conclusions, whereby training did not transfer, 
although there was evidence for gains in cognitive efficiency (the ability 
to use existing cognitive capacity via strategies, routines, and/or auto
maticity). One possibility is that cognitive training might be useful not 
by enhancing cognition per se, but rather through facilitating an active 
lifestyle that preserves cognitive capacity and/or efficiency. 

Gates et al. (2019) initially cast a wide net in their Cochrane 

J.B. Prince et al.                                                                                                                                                                                                                                



Neuroscience and Biobehavioral Reviews 161 (2024) 105649

6

systematic review by considering 317 studies of cognitive training and 
cognitive decline. However, only one study (Corbett et al., 2015) met 
their inclusion criteria. Gates and colleagues noted the magnitude of 
low-quality evidence in the field, meaning it was impossible to deter
mine whether computerised cognitive training is effective in maintain
ing global cognitive function among healthy adults in midlife through to 
older age. This could be partly due to the lack of rigorous scientific 
scrutiny in the development and validation of commercially available 
computerised cognitive training platforms (cf. Shah et al., 2017). 

Musical training represents another possible approach to addressing 
age-related cognitive decline, in part because it is a cognitively 
demanding (yet enjoyable) activity that involves multisensory integra
tion, reward, and emotion (Sutcliffe et al., 2020). However, these au
thors also note the lack of control conditions and random assignment in 
intervention studies. Román-Caballero et al. (2018) reviewed 13 studies 
on this topic, and concluded that both cognitive and neural processes 
likely benefit from musical training in the context of ageing. However, 
most of these studies were correlational, which limits the inferential 
utility of the research. Part of the issue stems from the fact that musical 
training earlier in life may moderate the effects of training in later life. 
Okely et al. (2023) conducted a longitudinal study of 420 participants 
from the Lothian Birth Cohort (1936) and found that although musical 
training was associated with overall levels of verbal ability, verbal 
memory, visuospatial processing, and processing speed in older age, 
there were no associations with changes in cognitive function, likely 
suggesting a differentiation carrying over from the early stages of life. 
Reviews of longitudinal studies tend to show small benefits of musical 
training on cognitive skills (Román-Caballero et al., 2022) or auditory 
processing (Neves et al., 2022), but caution about the need for 
well-conducted studies and the dangers of publication bias. A broader 
review on the effects of music training on general cognitive function 
(Schellenberg and Lima, 2024) concludes that the cognitive benefits of 
musical training are weak, benefits rarely transfer across domains, apply 
mostly to clinical populations (as opposed to healthy ageing), and likely 
are a function of the many social and emotional benefits of engaging in 
musical activity rather than any cognitive or neural benefits (see also 
Schellenberg, 2020). 

Mindfulness interventions in healthy older adults also show small but 
significant benefits in some aspects of cognition, specifically in atten
tion, long-term memory, and visuospatial processing, but not processing 
speed, language, working memory, verbal fluency, or global cognition 
(Mirabito and Verhaeghen, 2023). These authors compared the benefits 
to those of other interventions and found that mindfulness gave smaller 
benefits than programs focusing on exercise, cognitive training, or 
qigong (a traditional Chinese exercise program combining movement, 
meditation, and breath control) interventions. A longitudinal analysis 
from a study of health in retirement found meditation at least twice per 
week conferred some protection for cognition, but only for older adults 
without depressive symptoms prior to the intervention (Lopes et al., 
2023). Importantly, there are suggestions for mechanisms by which 
meditation may benefit neural function, including benefits to the default 
mode network and neurovascular system (Pommy et al., 2023; Sevinc 
et al., 2021), although much research remains to be done to establish a 
stronger basis for mindfulness interventions. 

Even though the current literature is mixed, neuroplasticity research 
shows that the ageing brain can repair itself to some degree by devel
oping new synaptic nodes and promoting neuronal connectivity 
(Stampanoni Bassi et al., 2019). There is evidence that neurogenesis 
occurs in the hippocampal area (Tobin et al., 2019), which is integral to 
episodic memory and susceptible to neuronal loss in both normal ageing, 
across the spectrum of AD and other neurodegenerative disorders. In 
other clinical disorders, strategy-based cognitive training has been 
shown to improve frontoparietal functional connectivity in people with 
chronic severe traumatic brain injury or TBI (Han et al., 2018). As such, 
although current evidence for cognitive training as a method of pre
venting cognitive decline is lacking, there are several strong 

neurobiological and mechanistic bases for the continued examination of 
preventive and ameliorative interventions, including cognitive training. 
Given the lack of high-quality studies examining the efficacy of cognitive 
training and its clinical viability, there is an urgent need for more robust 
research on increasing the transferral of domain-specific improvements 
from cognitive training for persistent cognitive change. 

There is also cause for further investigation into the combination of 
cognitive training with other modalities (e.g., lifestyle-based in
terventions). For example, a combination of physical exercise and 
computerised cognitive training has shown promise in improving verbal 
episodic memory and increasing cerebral glucose metabolism in the 
older adults (Shah et al., 2014). 

The issue of heterogeneity also applies to this domain, as the effects 
of training vary across individuals (Roheger et al., 2021; van Balkom 
et al., 2020). Efforts to determine the variable effectiveness of cognitive 
training on older adults are exploring biomarkers, neuroimaging, and 
new technology (Gallen et al., 2016; Ziegler et al., 2022), which show 
promise to eventually develop individually-customised cognitive 
training strategies (Shatenstein et al., 2015). 

1.6. Neuroscientific perspective on ageing and cognition 

With advancing age, the brain undergoes significant structural and 
functional changes (Cabeza et al., 2018). After age 40, brain volume 
decreases approximately 5% with each passing decade (Svennerholm 
et al., 1997), with an accelerated rate of volume reduction after the age 
of 70 (Scahill et al., 2003). The volume reduction of the ageing brain 
comprises declines in grey matter volume (Nyberg et al., 2010; Walhovd 
et al., 2011), reduced coherence in white matter microstructure (Giorgio 
et al., 2010; Madden et al., 2010; Ouyang et al., 2021; Salat et al., 2005), 
cell shrinkage, dendritic regression, and reduced synaptic density 
(Uylings et al., 2000). In addition to changes in brain architecture, the 
neural activation patterns of older adults are distinct from those of their 
younger counterparts (Reuter-Lorenz and Cappell, 2008), which can be 
indicative of age-dependent changes in functional connectivity (e.g., 
Stumme et al., 2020; Zonneveld et al., 2019). The age-related changes in 
brain function and structure underlie declines in perceptual, cognitive, 
and motor performance (e.g., Calautti et al., 2001; Esposito et al., 1999; 
Fujiyama et al., 2012; Fujiyama et al., 2016; Hinault et al., 2020; Yang 
et al., 2016). Because these abilities are instrumental for processing 
important environmental information and executing accurate and co
ordinated actions, the age-related declines of these functions compro
mise the quality of life and physical independence of older adults 
(Swinnen et al., 2011). To address and mitigate such changes, it is 
imperative to advance our understanding of the neurophysiological 
mechanisms that mediate changes in perceptual, cognitive, and motor 
function in the ageing brain. We underscore here the role of age-related 
neurodegenerative processes in various conditions, including AD, as the 
most common cause of cognitive impairment and dementia, in addition 
to other dementia-causing conditions (Sohrabi and Weinborn, 2019). 

Early neuroimaging studies investigating age-related differences in 
brain activation patterns during cognitive tasks (e.g., Esposito et al., 
1999; Townsend et al., 2006) and motor tasks (e.g., Calautti et al., 2001; 
Heuninckx et al., 2010) found that older adults showed greater brain 
activation (and often the recruitment of additional brain areas) when 
performing the same task as younger adults. To account for these distinct 
neural activation patterns in the ageing brain, two major hypotheses 
were initially put forward: the compensation and dedifferentiation 
hypotheses. 

The compensation hypothesis suggests that the additional recruitment 
of brain areas or greater activation will occur to counteract age-related 
decline in brain function (Cabeza et al., 2002; Reuter-Lorenz and Cap
pell, 2008). Using positron emission tomography (PET) during a mem
ory task, Cabeza and colleagues (2002) found that high-performing 
older adults recruited the bilateral prefrontal cortex (PFC), whereas 
low-performing older adults showed lateralised PFC activity. Based on 
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this finding, the authors proposed the hemispheric asymmetry reduction 
in older adults (HAROLD) model, which posits that additional recruit
ment of bilateral regions assists in the task performance of older adults. 
Extending from the HAROLD model, the compensation-related uti
lisation of neural circuits hypothesis (CRUNCH) postulates that more 
challenging tasks prompt compensation through recruiting additional 
brain regions and cortical networks, particularly those in the PFC 
(Reuter-Lorenz and Cappell, 2008). 

In contrast, the neural dedifferentiation hypothesis argues that the 
additional activations observed in older adults are due to deficits in the 
selective recruitment of task-specific neural mechanisms (Grady, 2002; 
Koen and Rugg, 2019). Several studies suggest that the additional 
recruitment of brain regions reflects inefficiencies in utilising neural 
resources in the ageing brain instead of compensatory mechanisms, 
because task performance was comparable between younger and older 
adults (for a review, see Zarahn et al., 2007). Indeed, greater cortical 
activations have been linked to poorer performance in older adults 
(Stevens et al., 2008). Similar results occur in studies of older adults’ 
increased brain activity in the PFC during memory encoding (de Chas
telaine et al., 2011) and retrieval (Persson et al., 2011), both of which 
were correlated with poorer memory performance. Similarly, older 
adults with slower and more variable reaction times in a set of visual 
tasks also show higher activity than younger adults in a distributed set of 
regions, including the PFC and parietal cortex (Scarmeas and Stern, 
2003). 

Although the evidence for the compensation and dedifferentiation 
hypotheses seems contradictory, there is a potential reconciliation in the 
scaffolding theory of ageing and cognition (STAC, see Park and 
Reuter-Lorenz, 2009), subsequently revised to STAC-r (Reuter-Lorenz 
and Park, 2014). The STAC hypothesis extends the compensation hy
pothesis by suggesting that increased frontal activation with age is a 
marker of an adaptive brain that engages in compensatory scaffolding in 
response to the challenges posed by declining neural structures and 
functions. This view does not necessarily contradict the dedifferentia
tion hypothesis since it assumes that compensatory mechanisms are 
utilised to a capacity limit, while also accounting for performance 
decline beyond the limit (Zanto and Gazzaley, 2017). Therefore, the 
STAC proposes that the recruitment of additional brain regions is 
beneficial for tasks with relatively low demands, whereas further acti
vation would not elicit performance benefits under high task demands 
that surpass the limit of compensatory mechanisms. 

Even though these hypotheses have advanced our understanding of 
age-related changes in brain activation, they are primarily limited to 
explaining regional activations specific to older adults. More recent evi
dence from neuroimaging studies suggests that there are changes to 
large-scale brain networks with advancing age (Li et al., 2015), high
lighting the importance of a network perspective for understanding the 
ageing brain. This perspective argues that the decline in cognitive 
function in older adults corresponds with lower global efficiency and 
higher local clustering in cortical networks (e.g., Cao et al., 2014; Schlee 
et al., 2012; Song et al., 2014; Zhu et al., 2012). Hinault et al. (2020) 
found that the coherence of white matter microstructural connectivity 
within the inferior fronto-occipital network subserves functional con
nectivity within the network, which promotes arithmetic performance 
in older adults. This finding indicates that the interplay between struc
tural and functional networks drives the cognitive functioning of older 
adults. Research using non-invasive brain stimulation (NiBS) has also 
provided empirical support for the network perspective of healthy 
ageing. For instance, the direct manipulation of network connectivity 
via NiBS resulted in improvements in working memory performance 
(Reinhart and Nguyen, 2019). Their findings also underscore the ca
pacity for neuroplastic changes in the healthy ageing process. Indeed, 
neuroplastic changes via cognitive training and/or NiBS can partially 
remediate age-related alterations in brain structure and function (e.g., 
Fujiyama et al., 2017; Park and Bischof, 2013; Reinhart and Nguyen, 
2019). As noted earlier, the finding that hippocampal neurogenesis 

occurs in older adults (and even AD patients) provides a significant 
opportunity to study the formation of new memories in newly developed 
neurons, which may potentially lead to novel treatments for neurode
generative diseases (Tobin et al., 2019). 

Defining cognitive decline and identifying interventions that may 
prevent or ameliorate such decline have benefited from the approaches 
reviewed above. However, it is now time to work towards a more global, 
systemic approach that identifies stepwise and personalised neuropsy
chological interventions to minimise the risk of decline progressing into 
impairment and clinical manifestations, such as MCI and dementia. An 
emerging trend in ageing research is the shift from relying solely on 
chronological age to evaluating an individual’s "biological age", 
considering factors such as genetics, environment, lifestyle, overall 
health, and various lifetime influences (Franke and Gaser, 2019). The 
approach is invaluable in identifying individualised health characteris
tics and risk patterns associated with age-related diseases. This shift 
toward assessing "biological age" allows for personalised interventions 
based on an individual’s specific health profile. Our ability to predict 
individual risks for age-related diseases has significantly improved 
thanks to novel biomarkers such as DNA methylation, genetic damage 
accumulation, telomere length, physical fitness, and allostatic load 
(Franke et al., 2020). These biomarkers offer valuable insights into 
designing more effective treatment strategies. In light of this trend, there 
is a growing body of literature dedicated to assessing "brain age” in 
cognitive neuroscience. Neuroimaging and neurophysiological tech
niques have been used to develop biomarkers that accurately reflect an 
individual’s ageing process and assess the risk of cognitive dysfunction. 
For instance, using a measure termed multiscale entropy (MSE) that 
reflects the functional role of complexity in physiological signals, 
McIntosh et al., (2014) highlighted how variability in brain network 
dynamics changes with advancing age and MSE has been proposed as a 
biomarker for evaluating an individual’s brain health status (Shen et al., 
2021). Reports of the loss of complexity in the pathological ageing brain, 
observed in both animal (Araya-Arriagada et al., 2022) and human (Hsu 
et al., 2020) studies, further underscore the utility of MSE. Other 
neurophysiological assessments provide additional layers of insight, 
such as the evaluation of coordinated synchronised neural activity 
(neural avalanches; Varley et al., 2020), analysis of asynchronous 
EEG/MEG activity (aperiodic or ’scale-free’ broadband activity 
adhering to 1/f power distribution; Voytek et al., 2015), the examina
tion of long-range temporal correlations to distinguish pathological 
brain activities (Montez et al., 2009), and short-lasting periods of 
synchronised activity in large-scale brain networks termed microstates 
(Michel and Koenig, 2018). Although each marker corresponds to 
different levels of neural inference, they are likely interconnected and 
may estimate overlapping aspects of the underlying signal at various 
scales (Martínez-Cañada et al., 2023). This holistic approach not only 
enhances our understanding of the ageing process but also holds the 
promise of identifying robust biomarkers for healthy ageing, ultimately 
contributing to the development of personalised strategies for managing 
age-related conditions. 

1.7. Unifying theoretical approaches to cognitive ageing 

There are various theoretical accounts of age-related cognitive 
decline that we briefly noted including cognitive reserve, dedifferenti
ation, and scaffolding. The recently introduced Systems Biological 
Approach on cognitive ageing (Ebaid and Crewther, 2020) is promising 
in its inclusion of such factors as age-related sensory decline, cardio
vascular problems, immune system response to stress, as well as hor
monal and cellular changes (mitochondria). However, it fails to include 
other biological contributions (e.g., genetics, gut microbiome), and 
environmental factors and their neuropsychological outcomes (e.g., 
agricultural pesticides, war, or COVID-19 pandemic impact on older 
adults’ cognitive functions). 

The Tripartite Contextual Approach (Diehl and Wahl, 2020) provides 
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a more comprehensive approach to cognitive ageing. This theoretical 
model includes the lifespan/developmental context (e.g., experiences 
and biography, genetics), the social/physical/technological context, and 
the historical/cultural context (e.g., pandemics, wars, medical advances, 
cultural movements). Accordingly, the aforementioned factors define 
the context of the developmental and biopsychosocial process of 
cognitive ageing (Diehl and Wahl, 2020). 

The Tripartite Contextual Approach provides a comprehensive and 
well-defined explanation of the effects of person, society at large, and 
historical/cultural context of ageing including cognitive function 
(Neupert and Bellingtier, 2022; Neupert and Zhu, 2020). However, the 
relative contribution of each of these “Tripartite Contexts” and their 
interaction requires further explanation. In this regard, biological age 
seems to be more relevant than chronological age, especially as medical, 
psychological, societal, industrial, and financial advances have signifi
cantly increased the average human lifespan. For example, the designers 
of an algorithm for the calculation of Bio-Age (biological age) argue that 
using inflammation, oxidative stress, and vascular health markers to 
predict cognitive decline could be more accurate than other methods 
(DeCarlo et al., 2014). However, future research is necessary to deter
mine the accuracy and validity of Bio-Age methods, as not all cognitive 
functions are similarly assessed (nor do they decline at a similar rate), 
and not all dementias present with similar cognitive deficits. Further, 
treating cognitive decline as a linear process is a major shortcoming of 
most hypothetical approaches. 

The non-linearity and variability of cognitive decline might be better 
addressed through brain age prediction, which is estimated using ma
chine learning models applied to neuroimaging data (Niu et al., 2020). 
By identifying clusters of imaging features with distinct developmental 
trajectories, multidimensional brain age prediction can potentially ac
count for inter- and intra-variability in brain development trajectories 
(Niu et al., 2022). However, research has also found that health-related 
factors other than brain age influence cognitive trajectories (Wriggles
worth et al., 2022). As highlighted by the Tripartite Contextual 
Approach and the concept of cognitive reserve, cognitive decline ex
tends beyond biological markers. The integration of “psychosocial 
markers” such as social connectedness (Roth, 2022) can potentially 
contribute to a more comprehensive assessment of cognitive decline. 
Here again, we emphasise the need to apply a broad, multi-disciplinary 
lens to aid understanding healthy ageing. 

2. Summary and future directions 

Cognitive decline is a heterogeneous, non-linear experience, partic
ularly in terms of the rate, trajectory, and characteristics of decline 
experienced by older adults (Hedden and Gabrieli, 2004). 
Intra-individual variables which influence an individual’s cognitive 
reserve profile, such as educational, experiential, social and lifestyle 
factors can all seemingly alter neurocognitive health with increasing 
age. Recognition of the growing and projected healthcare burden asso
ciated with an increasing incidence in dementias such as AD in many 
populations around the world has also spurred research into in
terventions designed to directly modulate cognition in later life, such as 
cognitive training. Nevertheless, although we have begun to character
ise risk and resilience factors specific to cognitive decline, viable pre
ventive mechanisms remain elusive. Psychology as a discipline is at the 
forefront of cognition and ageing research. Recently, technological ad
vances including the use of machine learning for the analyses of large 
datasets, have equipped modern scientists with better understanding of 
cognitive impairment (McKenzie et al., 2022; Wang et al., 2022), as well 
as the role of modifiable risk factors. As such, psychology is well-placed 
to provide guidelines for clinical practice, train the next generation of 
scientists/clinicians, and contribute to policy making and real-world 
translational research through a more comprehensive and multifacto
rial approach. 

We have identified two broad challenges for the field. First, it is 

necessary to improve the reliability and replicability of findings. As we 
outlined, particularly in research on cognitive training, there are several 
notable gaps in the available evidence for neuropsychological rehabili
tation strategies focused on slowing cognitive decline. Also, individual 
differences represent a challenge to reliability and replicability – 
although there are advances in tailoring psychological interventions (e. 
g., acceptance and commitment therapy) to ageing populations, it is 
important to continue to recognise that older adults are a unique and 
growing population, particularly in regard to cognitive functioning. 

Second, more interdisciplinary collaboration is necessary, including 
neuroscientists, bio-physiologists, geneticists, epidemiologists, social 
scientists, and machine learning analysts. Each discipline brings a 
unique and valuable perspective to studying and promoting healthy 
cognitive ageing. Such collaborations provide an ideal opportunity to 
improve our understanding of the moderating and modulating factors 
that can change ageing trajectories, as well as more comprehensively 
evaluating the efficacy of intervention strategies (Diehl and Wahl, 
2020). Further, encouraging a multi-disciplinary approach also in
corporates important information on the downstream, ‘bigger picture’ 
elements of cognitive ageing, such as health economics and the pro
motion of age-friendly communities. Embracing these challenges will 
ensure that researchers and policy makers are well-equipped to optimise 
and improve the quality of life and overall health span of older adults 
around the world. 

We close by identifying some limitations and future directions that 
we should consider as a field. First, it is important to promote a 
comprehensive lifespan approach to the study of normative (cognitive 
decline due to normal ageing) and non-normative cognitive function (e. 
g., dementia and neurodevelopmental conditions at higher risk of de
mentia). Furthermore, other less-examined demographic variables 
should be considered including cultural, geographical, and ethnicity 
factors (Babulal et al., 2019; Sachdev et al., 2015) in both research and 
clinical settings for assessment, intervention, and data interpretation. 

Second, mega-analysis (utilising large scale multiple databases) can 
provide critical information that the field is currently lacking due to 
small or biased sample sizes. Although such studies are currently limited 
in their capacities, they come with some pathways to minimise the 
impact of different study methods used in designing the study, data 
collection, and data analysis methods. One such method is data har
monisation (Shishegar et al., 2021). 

Third, issues of heterogeneity underscore the relevance of precision 
(personalised) medicine approaches, which incorporate genetic, envi
ronmental, and lifestyle factors in accounting for individual differences 
(Ashley, 2016). Having biological, lifestyle, and family history to the 
study of cognitive decline and dementia over time will provide details 
that can be used to tailor the type, duration, and intensity of the inter
vention to minimise the risk or delay the progression of dementia. 
Additional background could include details collected by social media 
tools, apps, and technological devices, although this must be balanced 
with privacy concerns. 

Fifth, we reiterate that better quality of life and ability to function 
through maintaining cognitive abilities is one of the major pillars of the 
Decade of Healthy Ageing. Some psychological interventions such as 
mindfulness (for individuals with minimal cognitive impairment) may 
increase the ability to function, possibly through improved executive 
function, while therapeutic music interventions (for individuals with 
greater cognitive impairment) improve the quality of life and the tra
jectory of dementia-related decline. Therefore, interventions that are 
not directly aimed at cognitive ageing per se (e.g., diet and lifestyle 
interventions) may have beneficial side effects that represent possible 
future applications. 

Finally, consistent with the available literature discussed here, it is 
likely that ageing and dementia will remain major issues for several 
decades. As such, interest in healthy cognitive ageing for older adults 
will only increase, although here we also note the numerical publication 
peak in 2019 (Fig. 1; see also Footnote 1). In fact, this figure only 
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underscores the need to advocate for the advancement of research and 
the training of upcoming generations of researchers and clinicians, 
equipping them with the skills to proficiently conduct assessments and 
interventions in the field of cognitive ageing, employing a comprehen
sive array of available tools and methods. 
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2013. Midlife sleep characteristics associated with late life cognitive function, 1541a 
Sleep 36 (10), 1533–1541. https://doi.org/10.5665/sleep.3052. 
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