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Summary
Background Lung function trajectories (LFTs) have been shown to be an important measure of long-term health in
asthma. While there is a growing body of metabolomic studies on asthma status and other phenotypes, there are
no prospective studies of the relationship between metabolomics and LFTs or their genomic determinants.

Methods We utilized ordinal logistic regression to identify plasma metabolite principal components associated with
four previously-published LFTs in children from the Childhood Asthma Management Program (CAMP) (n = 660).
The top significant metabolite principal component (PCLF) was evaluated in an independent cross-sectional child
cohort, the Genetic Epidemiology of Asthma in Costa Rica Study (GACRS) (n = 1151) and evaluated for
association with spirometric measures. Using meta-analysis of CAMP and GACRS, we identified associations
between PCLF and microRNA, and SNPs in their target genes. Statistical significance was determined using an
false discovery rate-adjusted Q-value.

Findings The top metabolite principal component, PCLF, was significantly associated with better LFTs after multiple-
testing correction (Q-value = 0.03). PCLF is composed of the urea cycle, caffeine, corticosteroid, carnitine, and
potential microbial (secondary bile acid, tryptophan, linoleate, histidine metabolism) metabolites. Higher levels of
PCLF were also associated with increases in lung function measures and decreased circulating neutrophil
percentage in both CAMP and GACRS. PCLF was also significantly associated with microRNA miR-143-3p, and
SNPs in three miR-143-3p target genes; CCZ1 (P-value = 2.6 × 10−5), SLC8A1 (P-value = 3.9 × 10−5); and TENM4
(P-value = 4.9 × 10−5).

Interpretation This study reveals associations between metabolites, miR-143-3p and LFTs in children with asthma,
offering insights into asthma physiology and possible interventions to enhance lung function and long-term health.

Funding Molecular data for CAMP and GACRS via the Trans-Omics in Precision Medicine (TOPMed) program was
supported by the National Heart, Lung, and Blood Institute (NHLBI).
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license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction
Asthma imparts a significant global public health
burden, affecting approximately 500 million people
worldwide, with the majority of cases originating in
early life and contributing to substantial healthcare
costs, morbidity, and reduced quality of life.1,2 Spiro-
metric lung function is a critical facet of asthma and
other chronic lung diseases and is an important indi-
cator of asthma severity, progression, and prognosis.3

While current clinical use of lung function has pri-
marily focused on spirometry at the time of visit, lung
function trajectory (LFT) is more important for long-
term health, as this measure identifies individuals at
the greatest risk of poor long-term respiratory health.
McGeachie et al.4 classified LFT growth patterns from
childhood to early adulthood into distinct groups based
on the severity of lung function decline and reduced
lung growth throughout development. These groups,
listed here in increasing order of severity, are normal
growth (NG), early decline (ED), reduced growth (RG),
and reduced growth with early decline (RG/ED).4 Criti-
cally, individuals in the RG and RG/ED groups were
associated with a heightened risk of chronic obstructive
pulmonary disease (COPD) compared to NG (P-value <
0.001) (determined via exact Mantel-Haenszel chi-
square test for trend), with 16% of RG and 21% of RG/
ED showed signs of COPD, in stark contrast to only 1%
in NG and 5% in the ED group.4 LFT is a product of
both genetic and environmental influences. Further
understanding of the major drivers of LFT may provide
insight into understanding and prevention of poor long-
term respiratory health among individuals with child-
hood asthma.

Metabolomics, described as the “chemical finger-
print” of cellular processes, investigates the metabolites
within an organism, offering insights into its current
health state.5 These metabolites, ranging from amino
acids to lipids, serve as indicators of biochemical

activities and the interplay between genetics and envi-
ronment. In asthma research, metabolomics has iden-
tified unique metabolic profiles associated with different
phenotypes, highlighting pathways not previously linked
to asthma pathogenesis.6,7 Discoveries in altered lipid
metabolism and oxidative stress, for example, have
enriched our understanding of asthma’s molecular
foundation and have hinted at new diagnostic and
treatment methods.8,9 With the progression in metab-
olomics, personalized medicine for asthma, customized
based on an individual’s metabolic makeup, is
becoming more feasible.8,9

There is a growing body of metabolomic studies on
asthma diagnosis and lung function.6 Yet, there remains
a gap in dedicated, prospective studies examining the
association between specific metabolites and LFTs, a
crucial aspect for understanding long-term lung health.
Lung function development hinges on the intricate
balance between genetic factors and environmental ex-
posures. Early life, a phase characterized by rapid lung
growth and augmented plasticity, is especially vulner-
able to environmental risk factors, which can culminate
in chronic respiratory morbidities persisting into
adulthood.10 Factors spanning from in utero environ-
ments, nutrition, and tobacco exposure to early life in-
fections, microbiome variations, and allergies can
significantly mold lung functional development.10 Some
determinants, like prematurity, exert a direct impact on
lung growth, while many, such as recurrent infections,
channel their influence via inflammatory or oxidative
stress pathways. Intricately, these environmental expo-
sures leave discernible metabolic traces, detectable
through metabolomics. Thus, delving into metabolomic
profiles can not only shed light on the genetic factors
influencing LFTs but also pinpoint crucial environ-
mental factors. Such insights could pave the way for
targeted interventions to enhance long-term respiratory
health. Augmenting this, integrating data from other

Research in context

Evidence before this study
Lung function trajectories (LFTs) in asthma critically influence
long-term outcomes, marking a continuum from stable
development to early decline, with direct implications for
chronic obstructive pulmonary disease (COPD) risk.
Deciphering these trajectories is key in addressing childhood
asthma’s long-term impact, with evidence indicating genetics
play a substantial role in LFT outcomes.

Added value of this study
Here we identified a metabolomic signature linked with LFTs
in children with asthma, a previously unexplored area. By
uncovering the association between specific plasma

metabolites and LFTs, as well as their genomic determinants,
the research provides an insight into the pathophysiology of
asthma. These associations in a pediatric cohort offers a
valuable perspective for early intervention strategies aimed at
improving long-term respiratory health outcomes in
individuals with asthma.

Implications of all the available evidence
Our study revealed that a range of metabolites, including
exogenous and microbial-derived compounds, together with
miR-143-3p, are associated with LFTs in children with asthma,
suggesting dietary interventions may influence these diverse
metabolic pathways for therapeutic gains.
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‘omics spheres, especially genetics and microRNA
(miR), can refine our understanding of the intricate
interplay between genetics and environmental factors in
dictating lung health.

MicroRNAs (miRs), as gene expression regulators,
play significant roles in the genome transcription pro-
cess and influence critical asthma-related pathways,
such as inflammatory cascades and chronic airway
obstruction.11–13 Complementing this, genetic studies
have identified numerous disease-linked variations,
underscoring the complex etiology of asthma.14–16 Given
that the metabolome provides a real-time snapshot of
the interplay between genome and environment, the
integration of miRs and genetics with metabolomics
offers a comprehensive, holistic approach. This strategy
can help to unravel the drivers of different LFTs and
may open new avenues for therapeutic strategies to
mitigate the extensive health implications of asthma.

The primary objective of this study was to identify
metabolites associated with LFTs using a well-
characterized childhood asthma cohort with over 15
years of long-term follow-up. We identified a distinct
metabolomic signature associated with LFTs and iden-
tified associated miRs and their gene targets to further
understand the potential etiology of these LFT-driven
metabolites.

Methods
Study populations
The Childhood Asthma Management Program (CAMP)
(Clinicaltrials.gov; register: NCT00000575) was designed
as a multi-center, randomized, double-masked, clinical
trial.17 CAMP operated as a randomized, placebo-
controlled trial, focusing on the administration of
budesonide, nedocromil, or placebo for children with
mild-to-moderate asthma. It subsequently transitioned
into three phases of observational follow-up. For inclu-
sion, asthma was defined by the presence of 2 or more
symptoms per week, utilizing an inhaled bronchodilator
at least twice weekly or daily asthma medication, and
showcasing airway responsiveness to methacholine
<12.5 mg/ml. This trial recruited 1041 children aged
5–12 years with mild-to-moderate asthma. Standard
protocols were used for spirometry, white blood cell
profiling, and plasma collection. Long-term spirometric
follow-up over ∼17 years from the ages of 5–12 to 23–30
were previously used to develop the LFT profiles in
CAMP,4 the primary outcome of interest in this study.
Smoothed longitudinal Forced Expiratory Volume in 1 s
(FEV1) trajectories were previously compared to normal
charts for a person of the same age, height, sex, and race
and then classified into the four ordinal categories of
LFT: 1) normal lung function (NG); 2) early decline (ED);
defined as having decline of FEV1 from peak plateau
before age 23; 3) reduced growth (RG); defined as being
below the 25th percentile of FEV1; and 4) both ED and

RG (RG/ED). FEV1 measurements were systematically
collected across multiple stages, including the screening
& baseline phase, treatment phase, transition phase, and
the follow-up phase (Supplementary Fig. S1). On average,
there were 21.1 (with a standard deviation of 2.8) lung
function measures per patient.

Additional clinical variables were collected
throughout the CAMP study, including lung function
measures: Forced Vital Capacity (FVC); FEV1;FEV1/
FVC, Forced Expiratory Flow 25–75 (FEF25-75); and
FEF25-75/FVC); as well as airway hyperresponsiveness
(AHR), measured by percent concentration of meth-
acholine required to effect a 20% reduction in FEV1

(PC20), white blood cell counts, and Imunoglobulin E
(IgE).

The Genetic Epidemiology of Asthma in Costa Rica
Study (GACRS) was designed as a cross-sectional
cohort.18 It was initiated as a family-based genetics
study focusing on childhood asthma, comprising Costa
Rican schoolchildren aged 6–14 years and their parents.
The defining criteria for asthma in these children was a
prior doctor’s diagnosis of asthma coupled with the
occurrence of at least two respiratory symptoms or
asthma attacks in the year preceding their enrollment in
the study. This study recruited 1151 children aged 6–14
years with mild-to-moderate asthma between February
2001 and August 2008. Standard protocols were used for
spirometry and plasma collection that was completed at
enrollment. Standard clinical variables collected include
lung function (FEV1, FVC, FEV1/FVC, FEF25-75, FEF25-
75/FVC), ICS usage, provocative dose of methacholine
causing a 20% fall in FEV1 (PD20), white blood cell
counts, and IgE. Longitudinal spirometry, and thus LFT,
was not available in GACRS.

Metabolomic profiling
Plasma metabolomic profiling of the CAMP samples,
collected four years after baseline, and the GACRS co-
horts, collected during study enrollment, was conducted
using four complementary liquid chromatography-mass
spectrometry (LC-MS) methods in a single metab-
olomics run. This analysis including peak identification
and annotation was performed as part of the Trans
Omic Precision Medicine (TOPMed) initiative,
following the procedures previously described.19 Three
nontargeted LC-MS methods were conducted at the
Broad Institute including: i) reversed-phase C8 chro-
matography/positive ion mode MS detection; ii)
reversed-phase C18 chromatography/negative ion mode
MS detection; and iii) hydrophilic interaction liquid
chromatography/positive ion mode MS detection. A
targeted negative ion mode analysis of central metabo-
lites (sugars, sugar phosphates, organic acids, purine,
and pyrimidines) using LC-MS/MS was also conducted.
Metabolites with coefficient of variation (CV%) > 25% or
missing > 75% were then excluded. Remaining missing
values were imputed using the k-nearest-neighbor
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imputation method (R package “VIM”). The metabolite
data, both targeted and untargeted, were subsequently
log10 transformed and pareto scaled prior to analysis.
Further details are available in the supplement, as well
as the list of identified metabolites (Supplementary
Table S1).

microRNA (miR) profiling
Small RNA sequencing (RNA-seq) was performed on
serum samples from 1134 GACRS children. The
sequencing of 492 baseline CAMP samples was
described previously.20 The same protocols were used to
sequence both cohorts.20 Serum samples were stored in
freezers at −80 ◦C at the Channing Division of Network
Medicine. Small RNA-seq libraries were prepared with
the Norgen Biotek Small RNA Library Prep Kit (Norgen
Biotek, Therold, Canada) and sequenced on the Illu-
mina NextSeq 500 platform. The ExceRpt pipeline was
utilized for the RNA-seq data quality control (QC).21

MiRs with fewer than five mapped reads in at least
50% of the subjects were removed from the analysis. All
samples successfully passed the QC in terms of both the
number of mapped reads and total reads, signifying the
availability of satisfactory miR concentration. DESeq2
was then used to normalize reads by relative log2
expression.22

Genetic profiling
Genotyping for CAMP and GACRS was previously
described.23 Briefly, genotyping for CAMP was per-
formed on baseline samples using either the Illumina
Quad 610 and Illumina 550 microarray chips (Illumina,
Inc., San Diego, CA), and genotyping for GACRS was
performed the Illumina BeadStation 500G platform
(Illumina Inc., San Diego CA). Genotype imputation
was performed using the Michigan Imputation Server38
with the Haplotype Reference Consortium (HRC) r1.1
201,639 reference panel. After imputation, only variants
with imputation quality r2 ≥ 0.3 and minor allele fre-
quency (MAF) ≥ 0.05 were retained.

Statistical analyses
A descriptive summary of the cohort demographics for
both CAMP and GACRS children was generated. The
overall study objective was to identify metabolites asso-
ciated with LFT and furthermore, to identify associated
miRs and associated variants within their target genes.
To address the high degree of collinearity commonly
seen in metabolomics data, our analytic approach
incorporated data reduction using principal component
analysis (PCA). By orthogonalizing the multivariate
data, PCA ensures the independence of each ordinary
least squares regression (OLR) model.24 Furthermore,
our analysis employed sequential association testing.
First, PCA utilizing levels of the 589 detected metabo-
lites, combining both untargeted and targeted metab-
olomic data, was performed in CAMP, and the

metabolite principal components (PCs) explaining up to
95% of the variance were extracted. Secondly, OLR
models were then used to assess the association be-
tween these metabolite PCs and LFT, while adjusting for
age, sex, body mass index (BMI), race, and height. The
four LFTs, namely normal growth, reduced growth,
early decline, and reduced growth with early decline,
were labeled as 1, 2, 3, and 4, respectively. The
increasing numerical value indicates a deteriorating
trajectory in the lung function, serving as a clear rep-
resentation of lung health. This ensured that in our
ordinal logistic regression models, the association pre-
cisely captures this gradation in the severity of LFTs.
Significant metabolite principal component-LFT associ-
ations were identified using a P-value threshold that
adheres to the Benjamini and Hochberg (BH) false
discovery rate (FDR) criterion of less than 0.05.25 To
discern metabolite loadings that were significantly
associated with the identified metabolite principal
component-LFT, we employed parallel analysis (R
package paran version 1.5.2).26,27 This analytical method
enabled us to set a threshold based on a P-value of 0.05
to determine significant metabolite loadings. Metabolite
set enrichment analyses (MetaboAnalyst v.5.028) was
then applied to these significant metabolite loadings in
each significant principal component to further explore
the metabolite pathways underlying LFT. The hyper-
geometric test was specified for the over-representation
analysis and relative-betweenness centrality for the
pathway topology analysis.

In addition to the primary analysis, we utilized lo-
gistic regression models for each LFT using a one-vs-
rest approach. Specifically, we analyzed one group vs.
the rest, for each LFT: NG, ED, RG, and RG + ED. In
these analyses, this classification was the binary
outcome, and its relationship with metabolite PCs was
controlled for variables like age, sex, BMI, race, and
height.

We evaluated these findings in a secondary cohort,
GACRS, by recapitulating significant metabolite load-
ings by utilizing the 589 metabolites levels in GACRS
with principal component loadings generated in CAMP.
Generalized linear models (GLM) were then used to
assess the association between significant metabolite
loadings and asthma phenotypes in both cohorts,
adjusting for age, sex, BMI, race (race adjustment for
CAMP only), and height (height adjustment for lung
function only). These asthma phenotype outcomes are
as follows: airway hyperresponsiveness (AHR)
(measured as PC20 in CAMP and PD20 in GACRS),
FEV1 percent predicted, FVC percent predicted, FEV1/
FVC, FEF25-75, FEF25-75/FVC, log10(IgE), log10 (Eosin-
ophil Count), and blood neutrophil percent. We then
identified associations between PCLF and miRs via
GLMs with significant metabolite loadings and miR as
the independent and dependent variables respectively,
adjusting for the same covariates. Association P-values
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from CAMP and GACRS were then combined using a
fixed-effect meta-analysis approach; significant associa-
tions were reported using a combined P-value that met
BH FDR < 0.05, and consistent direction of effects in
both cohorts.

Significant miR gene targets were extracted from
validated microRNA-target databases (miRecords, miR-
TarBase, and TarBase) using multiMiR (release 3.15).29

We then performed an eQTL analysis between signifi-
cant metabolite loadings and the identified miR gene
target SNPs in GACRS and CAMP, adjusting for age,
sex, and the first 4 genome-wide PCs. Association P-
values from CAMP and GACRS were then combined
using a fixed-effect meta-analysis; significant associa-
tions were reported using an effective number of inde-
pendent tests accounting for 80 percent of the variance
(ENT80).30,31

Ethics
The project was reviewed and approved. CAMP was
approved by the Mass General Brigham Research Com-
mittee at Brigham and Women’s Hospital (Protocol#:
2000-P-001130/55) by all participating clinical centers
and the data coordinating center. GACRS was approved
by the institutional review board of Mass General Brig-
ham Healthcare (Protocol#: 1999-P- 001549/29), and the
Hospital Nacional De Niños of Costa Rica. Child assent
and parental written consent was obtained.

Role of funders
The funding agencies did not have any role in the
design and conduct of the study; collection, manage-
ment, and interpretation of the data; or preparation,
review, or approval of the manuscript.

Results
Study populations
As detailed in previous work, 660 CAMP subjects were
classified into one of four distinct LFTs, which are listed
here in increasing order of severity: normal growth
(n = 163), early decline (n = 167), reduced growth
(n = 156), and reduced growth with early decline
(n = 174).4 Descriptive characteristics of CAMP (n = 660)
and GACRS (n = 1151) at the time of metabolomic
profiling (four years past baseline in CAMP) are shown
in Table 1. Both cohorts had similar sex distributions,
reflective of the higher incidence of childhood asthma in
boys. Notably, CAMP participants at the time of
metabolomic profiling were, on average, three years
older than their GACRS counterparts (mean age 13.51
vs. 9.22 years), which explains the observed differences
in height and BMI between the two groups. While
CAMP’s racial composition was diverse with 67.4%
White, 14.1% Black, 10.3% Hispanic, and 8.2% other
ethnicities, GACRS was exclusively Hispanic. Clinically,

CAMP exhibited slightly diminished lung function
metrics, with a mean FEV1% predicted at 94.40
compared to GACRS’s 98.89 and a mean FEV1/FVC of
77.92 against GACRS’s 84.23. Additionally, while
CAMP had higher IgE levels, eosinophil counts were
marginally elevated in GACRS. Additionally, CAMP had
higher log10 IgE levels with a mean level of 2.65, which
was higher than GACRS’s mean of 2.50. In contrast, for
log10 eosinophil count, GACRS presented a slightly
elevated mean value of 2.60 compared to CAMP’s 2.40.

Analysis of metabolite PCs with LFT
A total of 57 PCs explained 95 percent of the variance in
the metabolome and were evaluated for associations with
LFT using ordinal logistic regression. In our model, LFTs
were categorized as: 1 for normal growth, 2 for reduced
growth, 3 for early decline, and 4 for reduced growth with
early decline. Statically significant association was
observed with PC 29, hereafter referred to as PCLF, and
LFT (β = −0.13; SE = 0.04; P-value = 6.0 × 10−4; Q-
value = 0.03) (via OLR adjusted for age, sex, BMI, race,
and height) (Table 2). The coefficient β = −0.13 indicates
that for each unit increase in PCLF, there’s an associated
shift towards better LFT categories (e.g., from early decline
to normal growth). In Supplementary Table S2, metabo-
lites significantly associated with PCLF based on P-value <
0.05 (via OLR adjusted for age, sex, BMI, race, and height)
are detailed. For Fig. 1, to offer a more comprehensive
view, we expanded our inclusion criteria to an alpha sig-
nificance level of 0.20, allowing for a broader representa-
tion to elucidate pathway-specific effects more effectively.
Given that PCLF is associated with better LFT as it in-
creases, positive loadings represent metabolites conducive
to improved lung function, while negative loadings signify
metabolites linked to deteriorated lung function. Overall,
PCLF exhibited higher loadings from both endogenous
and exogenous metabolites, with a considerable propor-
tion of microbial-derived metabolites (Fig. 1 and
Supplementary Table S2). Carnitines and a large portion
of caffeine, urea, and bile acid pathways had strong pos-
itive PCLF loadings, while histamine, dihydrox-
yoctadecamonoenoic acids (diHOMEs), glucocorticoid,
and histamine metabolites were associated with worse
LFTs (Fig. 1 and Supplementary Table S2). Additionally,
based on the MetaboAnalyst metabolite set enrichment
analyses, only the histidine metabolism pathway was
identified as significantly associated, with a false discovery
rate (FDR) = 0.0002 (Supplementary Table S3).

In addition to this primary analysis, we conducted
supplementary analyses using a one-vs-rest strategy to
examine each LFT group individually, spanning NG vs.
rest (Supplementary Table S4), EG vs. rest (Supplementary
Table S5), NG vs. rest (Supplementary Table S6), and
NG + EG vs. rest (Supplementary Table S7). However, no
significant associations (Q-value < 0.05) were observed
with metabolite PCs.
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Replication of metabolite PCLF with asthma
phenotypes in GACRS
PCLF was recapitulated in GACRS using the CAMP
PCLF loadings. No significant associations were
observed with any demographic variables, including

age, sex and BMI (Table 3). Significant associations were
observed between PCLF and multiple lung function
measures in GACRS: FEV1/FVC (β = 0.59; P-
value = 2.37 × 10−4), FEF25-75 (β = ,0.03; P-value = 0.02),
and FEF25-75/FVC (β = 0.02; P-value = 1.75 × 10−4) (via

Phenotypic and Clinical Characteristics CAMP (n = 660) GACRS (n = 1151) P-value

Demographic variables

Age [in years], Mean (SD) 13.51 (1.76) 9.22 (1.88) <2e-16

Sex, n (%) 0.70

Female 262 (39.7%) 469 (40.7%)

Male 398 (60.3%) 682 (59.3%)

BMI [in kg/m2], Mean (SD) 21.92 (4.81) 18.28 (3.77) <2e-16

Race, n (%) <2e-16

White (%) 445 (67.4%) –

Black (%) 93 (14.1%) –

Hispanic (%) 68 (10.3%) 1151 (100%)

Other (%) 54 (8.2%) –

Treatment group, n (%) –

Budesonide 195 (29.5%) –

Nedocromil 465 (70.5%) –

Placebo 0 (0.0%) –

Prior ICS Usage, n (%) 2e-8

Yes 245 (37.3%) 588 (51.1%)

No 412 (62.7%) 563 (48.9%)

Height [in cm], Mean (SD) 159.45 (11.77) 132.66 (11.85) <2e-16

Clinical variables

AHR, Mean (SD)

PC20 0.93 (1.57) – –

PD20 – 1.93 (2.53) –

FEV1% Predicted, Mean (SD) 94.40 (14.20) 98.89 (17.15) 3e-8

FVC % Predicted, Mean (SD) 105.80 (12.85) 104.60 (16.51) 0.09

FEV1/FVC, Mean (SD) 77.92 (9.04) 84.23 (7.90) <2e-16

FEF25-75 [in L], Mean (SD) 2.47 (0.94)s 2.04 (0.74) <2e-16

FEF25-75/FVC, Mean (SD) 0.72 (0.23) 0.98 (0.31) <2e-16

log10 (IgE) [in kU/L], Mean (SD) 2.65 (0.63) 2.50 (0.67) 4.4e-6

log10 (Eosinophil Count) [in kU/L], Mean (SD) 2.40 (0.49) 2.60 (0.41) <2e-16

Neutrophil %, Mean (SD) 49.86 (10.90) – –

BMI = body mass index; CAMP = Childhood Asthma Management Program; GACRS = Genetics of Asthma in Costa Rica Study; SD = standard deviation; ICS = inhaled
corticosteroids; AHR = airway hyperresponsiveness; n = number. P-value based on the t-test for continuous variables and the chi-square test for categorical variables.

Table 1: Characteristics of CAMP and GACRS at the time of metabolomic profiling.

Metabolite PC NG mean (SD) ED mean (SD) RG mean (SD) RG/ED mean (SD) Coefficient (Std. Error) P-value Q-value

PC29 (PCLF) 0.40 (1.85) −0.01 (1.82) −0.14 (1.83) −0.23 (1.93) −0.13 (0.04) 6.04E-04 0.03

PC12 −0.50 (3.16) −0.13 (2.81) −0.18 (2.91) 0.43 (2.74) 0.06 (0.03) 0.01 0.41

PC31 −0.17 (1.86) −0.22 (1.69) 0.29 (1.76) 0.11 (1.80) 0.09 (0.04) 0.02 0.45

PC57 0.15 (1.46) 0.03 (1.29) −0.03 (1.31) −0.14 (1.23) −0.11 (0.05) 0.05 0.54

PC14 0.14 (2.75) 0.18 (2.70) −0.29 (2.58) −0.05 (2.96) −0.06 (0.03) 0.05 0.54

PC = principal component; LFT = lung function trajectory; SD = standard deviation; BMI = body mass index; NG = normal growth; ED = early decline; RG = reduced growth;
RG/ED = reduced growth with early decline; LFT groups categorize lung growth patterns from childhood to early adulthood into distinct classifications based on the severity
of lung function decline and diminished lung growth throughout development, ordered from least to most severe as NG, ED, RG, and RG/ED.

Table 2: Associations of metabolite PCs with LFT via ordinal logistic regression, adjusted for age, sex, BMI, race, and height (P-value < 0.05).
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Sebacate
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Oxalic acid
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13-HODE

Indole-3-propanoic acid*
N-acetyltryptophan*

Serotonin*

Histidine*
1-methylhistamine*

Histamine*
N-acetylhistidine*

Urocanic acid*
2-Deoxyuridine

Uridine

N-carbamoyl-beta-alanine
Cortisol

Cortisone
Glycolithocholate*

Tauro-alpha-muricholate/tauro-beta-muricholate*

Taurodeoxycholic acid / Taurochenodeoxycholic acid*

Taurohyodeoxycholate/tauroursodeoxycholate*
Cholate*

Hyodeoxycholate/ursodeoxycholate*

Chenodeoxycholate*
Glycoursodeoxycholate*

Xanthine

Caffeine
Theophylline

Dimethylurate
Trigonelline

5-acetylamino-6-amino-3-methyluracil
Hydrocinnamate (3-phenylpropionate)*

Hippurate*
Hippuric acid*

Cinnamoylglycine*
Betaine*

Proline-betaine
C5 carnitine

C6 carnitine

C8 carnitine

C7 carnitine
Carnitine

C10:2 carnitine
Homoarginine

Arginine
Homocitrulline

Citrulline

N-acetylornithine
N-methylproline
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PCLF Loadings (Explained Variance = 1%)

Pathway

Bile Acid Metabolism

Carnitine Metabolism

Cofactors and Vitamins

Corticosteroids

Fatty Acid, Medium Chain

Food Component/Plant

Histidine Metabolism

Linoleic Acid Metabolism

Pyrimidine Metabolism

Tryptophan Metabolism

Urea Cycle

Xanthine Metabolism

Fig. 1: PCLF principal component loading plots organized by pathway with an overall significance threshold of alpha = 0.20. Bold
metabolites signify a P-value < 0.05. * refers to microbial metabolites. Significance was determined using parallel analysis, a method for
identifying significant loadings in a PC: alpha = 0.05 corresponds to an absolute loading greater than 0.0830, and alpha = 0.20 cor-
responds to an absolute loading greater than 0.0506. Positive loadings on PCLF represent metabolites associated with improved lung
function, while negative loadings indicate those linked to deteriorated lung function as PCLF itself is associated with shifts towards
better LFTs.
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GLMs adjusted for age, sex, BMI, race, and height).
Additionally, higher levels of PCLF were associated with
decreased circulating neutrophil percentage in both
CAMP (β = −0.61; P-value = 0.005) and GACRS
(β = −0.007; P-value = 0.01) (via GLMs adjusted for age,
sex, BMI, and race) (Table 3).

Association between metabolite PCLF, miRs, and
significant miR genetic targets
A microRNAome-wide association analysis of PCLF and
252 baseline CAMP miRs passing quality control iden-
tified one statistically significant miR after multiple
testing correction, miR-143-3p, where higher expression
levels were associated with lower PCLF (β = −0.08,
SE = 0.02; P-value = 1.3 75 × 10−4, Q = 0.03) (via GLMs
adjusted for age, sex, BMI, and race), indicating an as-
sociation with worse lung function outcomes (Table 4).
We then identified 1064 gene targets (37,427 SNPs) of
miR-143-3p based on the validated microRNA-target
databases (miRecords, miRTarBase and TarBase).29 Us-
ing an additive genetic model and meta-analyzing the

results across GACRS and CAMP, three SNPs were
significantly associated with PCLF based on the ENT80
threshold: chr7_5901578_T_C found in CCZ1 (β = 0.14,
SE = 0.04; P-value = 2.6 × 10−5); chr2_40180727_G_A
found in SLC8A1 (β = −0.16, SE = 0.04; P-
value = 3.9 × 10−5); and chr11_79047324_T_C found in
TENM4 (β = −0.22, SE = 0.05; P-value = 4.9 × 10−5) (via
GLMs adjusted for age, sex, and the first 4 genome-wide
PCs) (Table 5).

Discussion
This study examined the relationship between metab-
olites and LFTs among children with asthma, with
further genomic characterization using miRs and their
gene targets. Using metabolite principal components
and four ordinal LFTs,4 we identified a significant
principal component associated with improved LFT in
CAMP; when we recapitulated this in GACRS we
observed a significant increase in many spirometric
measures with increasing PCLF, substantiating our

Phenotypic and Clinical Characteristics CAMP GACRS

Coefficient (Std. Error) P-value Coefficient (Std. Error) P-value

Demographic variables

Age [in years] −0.01 (0.04) 0.89 0.02 (0.04) 0.63

Sex 0.001 (0.04) 0.98 0.04 (0.04) 0.36

BMI [in kg/m2] −0.10 (0.10) 0.35 −0.09 (0.08) 0.27

Race −0.04 (0.05) 0.37 – –

Treatment Group −0.01 (0.05) 0.80 – –

ICS Usage −0.07 (0.04) 0.09 0.03 (0.04) 0.49

Height [in cm] −0.41 (0.25) 0.10 0.002 (0.002) 0.34

Clinical variables

AHR (PC20 in CAMP, PD20 in GACRS) −0.01 (0.03) 0.68 −0.14 (0.06) 0.02

FEV1% Predicted 0.77 (0.29) 0.008 0.15 (0.33) 0.64

FVC % Predicted 0.84 (0.26) 0.001 −0.61 (0.31) 0.05

FEV1/FVC 0.03 (0.19) 0.89 0.59 (0.16) 2.37E-04

FEF25-75 [in L] 0.01 (0.02) 0.45 0.03 (0.01) 0.02

FEF25-75/FVC 1.58 (4.93) 0.75 0.02 (0.01) 1.75E-04

log10 (IgE) [in kU/L] 0.01 (0.01) 0.52 −0.002 (0.01) 0.87

log10 (Eosinophil Count) [in kU/L] 0.01 (0.01) 0.23 −0.01 (0.01) 0.08

Neutrophil % −0.61 (0.22) 0.005 −0.007 (0.003) 0.01

BMI = body mass index; CAMP = Childhood Asthma Management Program; GACRS = Genetics of Asthma in Costa Rica Study; SD = standard deviation; ICS = inhaled
corticosteroids; AHR = airway hyperresponsiveness.

Table 3: Association between PCLF and demographic & clinical variables in CAMP and GACRS via generalized linear models, with clinical models
adjusted for age, sex, BMI, race (race adjustment for CAMP only), and height (height adjustment for lung function only).

miR CAMP GACRS Meta-Analysis

Coefficient (Std. Error) P-value Coefficient (Std. Error) P-value Coefficient (Std. Error) P-value Q-value

miR 143.3p −0.08 (0.03) 0.02 −0.09 (0.03) 0.002 −0.08 (0.02) 0.0001 0.03

miRs = microRNAs; BMI = body mass index; CAMP = Childhood Asthma Management Program; GACRS = Genetics of Asthma in Costa Rica Study.

Table 4: Associations between miRs and PCLF via generalized linear models, with adjustments for age, sex, BMI, and race (race adjustment specific to
CAMP) (Q-value < 0.05).
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initial finding. When considering potential genomic
influences, we identified a significant association be-
tween PCLF and baseline miR-143-3p, a miR that in-
hibits airway remodeling and has been identified as a
therapeutic target for asthma.32,33 SNPs in three miR-
143-3p target genes (CCZ1, SLC8A1, and TENM4)
were also significantly associated with PCLF. Metabo-
lites with strong loadings on the PCLF include urea
cycle, caffeine metabolites, corticosteroids, carnitines,
and microbial metabolites from secondary bile acid,
tryptophan, linoleate, and histidine metabolism path-
ways. Each of these metabolites has demonstrated
significant biological implications for both lung
inflammation and functional development, warranting
further investigation.

Multiple metabolites in the urea cycle had large
loadings on PCLF, with N-methylproline having the
largest loading of all metabolites and ornithine, citrul-
line, and arginine metabolites also contributing sub-
stantially. These metabolites have consistently been
identified as associated with asthma phenotypes, and as
discriminators of asthma diagnosis in large metab-
olomics studies.34 It has been demonstrated that argi-
nine metabolism is a key regulator of nitric oxide (NO)
and, subsequently, the development of lung inflamma-
tion, including pro-inflammatory processes.35,36 Howev-
er, randomized trials of arginine supplementation in
severe asthma did not demonstrate a significant reduc-
tion in exacerbations. In fact, this study found that
higher citrulline levels and a lower arginine availability
index were more efficacious, with higher exhaled NO
levels and lower exacerbation events.37 This study
observed consistent findings to this for citrulline and
arginine, suggesting that this same relationship may
also be important for long-term lung function.

Multiple exogenous metabolites evidenced high
loadings on PCLF, which is of particular interest because
these exposures may point towards modifiable ap-
proaches to optimizing LFTs. Notably, caffeine metab-
olites were associated with improved LFTs. There is a
strong biological rationale for this pathway, because a
primary derivative of caffeine is theophylline; an
approved asthma medication known for its positive ef-
fects on bronchodilation and suppression of airway

inflammation.38 Increased caffeine intake has been
suggested as a form of self-treatment for asthma.39,40

Though to confirm an increased caffeine intake, we
would require the nutritional information of the pa-
tients, which, unfortunately, is not available in either the
CAMP or GACRS. Regardless, these findings do sug-
gest that the potential benefits of caffeine intake may
extend beyond acute asthma treatment to potential long-
term benefits on lung function. Other well-known coffee
metabolites, including trigonelline41 and gut microbial-
derived metabolites of polyphenols (hydrocinnamate,
hippurate, and cinnamoylglycine),42,43 also contributed
positively to PCLF.

The association between reduced endogenous corti-
costeroids and worse LFTs is not surprising from a
physiological perspective. Reduced corticosteroids have
been identified as a hallmark sign of asthma with
further adrenal suppression of endogenous corticoste-
roids resulting from inhaled corticosteroid treatment.44

In this study, we identified reduced cortisol and corti-
sone associated with worse LFT. While ICS is often
confounded in studying this association between any
metric of disease severity and disease pathophysiology,
in using CAMP for this study, we benefit from the RCT
design with ICS that circumvents this potential con-
founding by asthma severity. Therefore, the observation
of decreased corticosteroids with worse LFT remains
substantiated as a feature of asthma physiology. This
study was limited in the assessment of steroid classes,
as cortisone and cortisol were the only measured
steroids.

Other strong contributors to PCLF included carni-
tines, diHOMES, and potential microbial-derived me-
tabolites from bile acid, histidine, and tryptophan
metabolism. Recent research has observed decreased
carnitines in association with severe asthma.45 We also
identified that increased carnitines were associated with
improved LFTs. Another compelling finding was the
negative loading of 9,10-diHOME and 12,13-diHOME
on PCLF. Both diHOMEs can be produced by gut bac-
teria and affect immune intolerance and are known
asthma risk factors.46 Severe asthma metabo-endotypes
have also demonstrated increased levels of diHOMES
compared with other metabo-endotypes.19 Previous

Gene SNP CAMP GACRS Meta-Analysis

Coefficient (Std. Error) P-value Coefficient (Std. Error) P-value Coefficient (Std. Error) P-value

CCZ1 chr7_5901578_T_C 0.18 (0.06) 0.001 0.12 (0.04) 0.001 0.14 (0.03) 2.55E-05
SLC8A1 chr2_40180727_G_A −0.22 (0.07) 0.001 −0.13 (0.05) 0.001 −0.16 (0.04) 3.86E-05
TENM4 chr11_79047324_T_C −0.26 (0.08) 0.0009 −0.18 (0.07) 0.0009 −0.22 (0.05) 4.95E-05

P-value significance threshold for multiple corrections was determined based on ENT80, calculated as 0.05/792. miR = microRNA; SNPs = single nucleotide polymorphisms;
eQTL = expression Quantitative Trait Loci; BMI = body mass index; PCs = principal components; CAMP = Childhood Asthma Management Program; GACRS = Genetics of
Asthma in Costa Rica Study.

Table 5: Associations between miR-143-3p gene targets SNPs and PCLF via an eQTL analysis, with adjustments for age, sex, BMI, and the first 4
genome-wide PCs (P-value < 6E-05).
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research has demonstrated that conjugated bile acids
have a protective effect on asthma via inhibiting
unfolded protein response (UPR) transducers that
attenuate allergen-induced airway inflammation.47 Our
findings suggest that there are both positive and nega-
tive weightings of bile acids on PCLF, which may be
attributed to the complex interplay between primary and
secondary bile acid metabolism pathways. Further
research is needed to clarify if the mechanistic effect on
conjugated bile acids may influence long-term lung
function. Metabolites involved in histidine metabolism
were also represented in PCLF, with histamine metab-
olites being strong drivers of worse LFTs, suggesting
that those with worse LFTs also have higher histamine
levels, which should not be surprising as these in-
dividuals likely have a more severe allergic phenotype.
Furthermore, as the only pathway that was found to be
significantly associated with PCLF (via the Metab-
oAnalyst metabolite set enrichment analyses), it un-
derscores the importance of histidine metabolism.
Histamine, a prominent product of histidine meta-
bolism, has long been recognized for its central role in
allergic reactions and asthma pathophysiology.48,49

Recent studies indicate a rise in microbes that secrete
histamine in the gut of individuals with asthma.50 Such
microbes appear to have a discernible impact on lung
immune responses.51 Considering that shifts in micro-
bial composition and metabolism during infancy can
shape the risk of asthma in childhood,52,53 it underscores
the importance of delving deeper into histidine meta-
bolism and its potential microbial roots in severe
childhood asthma cases. Finally, we observed an inverse
relationship between tryptophan metabolites and PCLF,
which further validates the literature suggesting in-
creases in tryptophan metabolites are associated with
increased severity.54,55

While several of these metabolites have previously
been associated with other asthma phenotypes, this
study identified a composite measure of metabolites that
is associated with long term lung function. While many
of the metabolites contributing to LFT have concrete
biological links to asthma, several of them may also
provide clues into potential modifications that may alter
adverse LFTs. While further work is certainly merited to
substantiate these metabolite pathways, it is still worth
considering their potential to provide simple, long-term
solutions for improving overall health outcomes. This is
a critical point to consider, given that the overall burden
from asthma increases as lung function continues to
decline with age, including an increased risk of chronic
obstructive pulmonary disease.56 Any intervention
resulting in incremental improvement in LFT may
substantially improve overall health outcomes. Particu-
larly, the significant role of exogenous metabolites, such
as caffeine derivatives, in optimizing LFT points to
feasible, non-invasive interventions that could be bene-
ficial in real-world settings. Likewise, the notable

associations we observed between specific endogenous
metabolites and LFTs underline the intricate interplay of
our body’s internal biochemical processes. The balance
of these endogenous metabolites is crucial as they are
not only markers of metabolic activity but also regulators
of various physiological processes. For instance, dis-
ruptions in the urea cycle, as indicated by the levels of
ornithine, citrulline, and arginine, can influence nitric
oxide production, which in turn can modulate inflam-
mation and bronchial responsiveness, both of which are
critical in asthma pathophysiology.57 Similarly, alter-
ations in tryptophan metabolism can affect serotonin
levels, which have been linked to bronchoconstriction
and immune responses.58–60 Thus, understanding and
maintaining optimal levels of these endogenous me-
tabolites can potentially offer avenues for therapeutic
interventions, aiming to restore the body’s natural
equilibrium and, in turn, improve lung function and
overall asthma outcomes.

MiRs are small noncoding RNAs that play an
important role in regulating gene expression for specific
target genes. There was one significant miR associated
with PCLF, miR-143-3p. Mechanistic studies have
demonstrated that miR-143-3p is functionally relevant
by inhibiting airway remodeling and potentially modu-
lating inflammatory or pro-inflammatory processes.32,33

In the present study, however, higher levels of miR-
143-3p were associated with worse LFTs, a finding that
appears to challenge its mechanistically understood role.
One plausible explanation could be a compensatory in-
crease in miR-143-3p levels as a protective response to
deteriorating lung function. Alternatively, while miR-
143-3p has been known to inhibit airway remodeling,
it’s possible that in certain microenvironments or stages
of asthma progression, its role might diverge from its
typical anti-inflammatory function. Furthermore, in-
teractions with other molecules or cellular pathways
might influence how miR-143-3p affects LFTs. This
underscores the importance of studying miRNAs within
specific physiological contexts and highlights the intri-
cate balance and fine-tuning involved in gene regulation
and its impact on disease outcomes. Future in-
vestigations are warranted to further elucidate the nu-
ances of miR-143-3p’s role in asthma and its connection
with lung function.

Furthermore, SNPs in miR-143-3p gene targets
(CCZ1, SLC8A1, TENM4) associated with PCLF also
have a strong biologic rationale for their involvement in
asthma; SLC8A1 has been implicated in asthma and
exhaled NO levels previously,61 and plasma concentra-
tion of TENM4-a protein involved in neural
development-was found to be a risk factor for hay fever,
allergic rhinitis, and asthma,62 there is no clear rela-
tionship between CCZ1 and asthma. The association of
certain SNPs in the gene targets of miR-143-3p with
PCLF adds another layer of complexity to our under-
standing of the genetic underpinnings of asthma and
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lung function. Specifically, the involvement of SLC8A1
in asthma and its association with exhaled NO levels
suggest that it may play a pivotal role in airway
inflammation, a hallmark of asthma. Additionally, the
link between plasma concentrations of TENM4—a
protein integral to neural development—and allergic
conditions hints at the intricate web of physiological
processes that might converge to influence asthma
phenotypes. While the exact mechanisms remain to be
fully elucidated, these findings underscore the inter-
connectedness of seemingly distinct biological pathways
in determining respiratory health outcomes. Interest-
ingly, while CCZ1 is a gene target of miR-143-3p, its
direct relationship with asthma remains ambiguous.
This highlights the diversity in function and impact of
miR target genes and prompts further exploration to
discern the potential role, if any, of CCZ1 in asthma
pathogenesis.

There are several strengths and limitations of this
study. This study looked at the association between
metabolites and LFTs among children with asthma, as
opposed to single time-point LF measures, with further
characterization using miR and genetics. Second, this
analysis includes a diverse range of children, including
White, Black, and Hispanic. Therefore, the findings
from this study may generalize to several populations.
To date, no studies have examined the relationship be-
tween both metabolomics and miRs together among
children with asthma, another point of innovation.
However, there are several limitations that should be
considered. While we employed the GACRS cohort to
replicate the metabolite PCLF findings and observed
consistent associations with alternative asthma pheno-
types, the necessity of a cohort with LFT data is para-
mount. Currently, there’s an absence of such a cohort,
underscoring the need to establish a large cohort to
validate the findings of this study. The metabolomic
profiling utilized relative quantification for most of the
metabolites that were profiled, as is the case in the
majority of global metabolomics profiling platforms.
The miRs profiling was performed at a different time
point in CAMP; however prior work has shown miRs
have long-term effects on asthma and lung function.20,63

Future research that employs targeted metabolomic
analyses on identified LFT-related metabolites and their
pathways, and simultaneously profile miRs, is necessary
to better elucidate their relationship with miR-143-3p.
Additionally, while our study identified miR-143-3p as
a microRNA associated with PCLF, the exact functional
role of this miRNA remains to be confirmed through
advanced experimentation. Subsequent studies
employing targeted functional assays will be crucial in
determining the precise function of miR-143-3p in
relation to LFT. Finally, to address the high degree of
collinearity commonly seen in metabolomics data, our
analytic approach for this primary analysis into LFTs
and metabolomics incorporated data reduction using

PCA, a standard approach for metabolomics data.64,65

Given that machine learning methods like neural net-
works and random forests might offer more nuanced
and comprehensive interpretations,66,67 research towards
utilizing alternative non-linear data reduction approach
for future studies is warranted.

This study identified a PCLF using metabolomics
profiling that provides valuable information on physi-
ology and insight into potential modifications that may
improve overall LFTs. We further identify miR-143-3p
as associated with PCLF, further implicating pathways
of inflammation.

Contributors
JLS and KM contributed to conceptualization of the study; MH per-
formed the quality control; KM performed the primary statistical data
analyses. NP, PK, RSK, and KM contributed to the downstream ana-
lyses. CC and RG generated the metabolomic data for TOPMed. JLS,
SB, and MM verified the underlying data. DB, JLS, CEW, KM, NP,
RSK, SNR, and MM contributed to the original draft preparation. All
authors reviewed, provided feedback on, and approved the final
manuscript.

Data sharing statement
The genetic, metabolomic, and phenotype data supporting the findings
of this study can be accessed openly in the database of Genotypes and
Phenotypes (dbGaP) under the following accessions: CAMP Study
(Accession: phs001726.v2.p1) and GACRS Study (Accession:
phs000988.v5.p1). Additionally, microRNA data can be accessed openly
in the Gene Expression Omnibus (GEO) with the respective accessions:
CAMP Study (Accession: GSE134897) and GACRS Study (Accession:
GSE244573).

Declaration of interests
JLS is a scientific advisor to Precion, Inc., receives grants and consulting
fees from TruDiagnostic and Ahara Corp, and holds patents with Tru-
Diagnostic. KLS is employed by Vertex Pharmaceuticals. STW is a board
member of Histolix and receives royalties from UpToDate. All other
authors declare no potential, perceived, or real conflict of interest
regarding the content of this manuscript.

Acknowledgements
Molecular data for the Trans-Omics in Precision Medicine (TOPMed)
program was supported by the National Heart, Lung, and Blood Institute
(NHLBI). Metabolomics for “NHLBI TOPMed: Childhood Asthma Man-
agement Program (CAMP)" (phs001726) and “NHLBI TOPMed: The
Genetic Epidemiology of Asthma in Costa Rica (CRA)” (phs000988) was
performed at Broad Institute and Beth Israel Metabolomics Platform
(HHSN268201600034I). Core support including phenotype harmoniza-
tion, data management, sample-identity QC, and general program coor-
dination were provided by the TOPMed Data Coordinating Center
(R01HL-120393; U01HL-120393; contract HHSN268201800001I). Cur-
rent work was supported by NIH NHLBI grants R01 HL139634, R01
HL155742 and K99HL159234.

Appendix A. Supplementary data
Supplementary data related to this article can be found at https://doi.
org/10.1016/j.ebiom.2024.105025.

References
1 Network TGA. The global asthma report. Auckland: New Zealand;

2018.
2 Collaborators GBDCRD. Global, regional, and national deaths,

prevalence, disability-adjusted life years, and years lived with
disability for chronic obstructive pulmonary disease and asthma,
1990-2015: a systematic analysis for the Global Burden of Disease
Study 2015. Lancet Respir Med. 2017;5(9):691–706.

Articles

www.thelancet.com Vol 102 April, 2024 11

https://doi.org/10.1016/j.ebiom.2024.105025
https://doi.org/10.1016/j.ebiom.2024.105025
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref1
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref1
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref2
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref2
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref2
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref2
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref2
www.thelancet.com/digital-health


3 Nurmagambetov T, Kuwahara R, Garbe P. The economic burden of
asthma in the United States, 2008-2013. Ann Am Thorac Soc.
2018;15(3):348–356.

4 McGeachie MJ, Yates KP, Zhou X, et al. Patterns of growth and
decline in lung function in persistent childhood asthma. N Engl J
Med. 2016;374(19):1842–1852.

5 Dunn WB, Broadhurst DI, Atherton HJ, Goodacre R, Griffin JL.
Systems level studies of mammalian metabolomes: the roles of
mass spectrometry and nuclear magnetic resonance spectroscopy.
Chem Soc Rev. 2011;40(1):387–426.

6 Kelly RS, Dahlin A, McGeachie MJ, et al. Asthma metabolomics
and the potential for integrative omics in research and the clinic.
Chest. 2017;151(2):262–277.

7 Pite H, Morais-Almeida M, Rocha SM. Metabolomics in asthma:
where do we stand? Curr Opin Pulm Med. 2018;24(1):94–103.

8 Schoettler N, Strek ME. Recent advances in severe asthma: from
phenotypes to personalized medicine. Chest. 2020;157(3):516–528.

9 Desai M, Oppenheimer J. Elucidating asthma phenotypes and
endotypes: progress towards personalized medicine. Ann Allergy
Asthma Immunol. 2016;116(5):394–401.

10 Decrue F, Gorlanova O, Usemann J, Frey U. Lung functional develop-
ment and asthma trajectories. Semin Immunopathol. 2020;42(1):17–27.

11 Lee A, Kim SN. Serum MicroRNA on inflammation: a literature
review of mouse model studies. Biomarkers. 2020;25(7):513–524.

12 Hough KP, Curtiss ML, Blain TJ, et al. Airway remodeling in
asthma. Front Med. 2020;7:191.

13 Sharma R, Tiwari A, McGeachie MJ. Recent miRNA research in
asthma. Curr Allergy Asthma Rep. 2022;22(12):231–258.

14 Thomsen SF. Genetics of asthma: an introduction for the clinician.
Eur Clin Respir J. 2015;2. https://doi.org/10.3402/ecrj.v2.24643.

15 Ober C, Yao TC. The genetics of asthma and allergic disease: a 21st
century perspective. Immunol Rev. 2011;242(1):10–30.

16 Toskala E, Kennedy DW, eds. Asthma risk factors. International
forum of allergy & rhinology. Wiley Online Library; 2015.

17 The childhood asthma management program (CAMP): design,
rationale, and methods. Childhood asthma management program
research group. Control Clin Trials. 1999;20(1):91–120.

18 Kelly RS, Virkud Y, Giorgio R, Celedon JC, Weiss ST, Lasky-Su J.
Metabolomic profiling of lung function in Costa-Rican children with
asthma. Biochim Biophys Acta Mol Basis Dis. 2017;1863(6):1590–1595.

19 Kelly RS, Mendez KM, Huang M, et al. Metabo-endotypes of
asthma reveal differences in lung function: discovery and validation
in two TOPMed cohorts. Am J Respir Crit Care Med.
2021;205(3):288–299.

20 Tiwari A, Li J, Kho AT, et al. COPD-associated miR-145-5p is
downregulated in early-decline FEV(1) trajectories in childhood
asthma. J Allergy Clin Immunol. 2021;147(6):2181–2190.

21 Rozowsky J, Kitchen RR, Park JJ, et al. exceRpt: a comprehensive
analytic platform for extracellular RNA profiling. Cell Syst.
2019;8(4):352–357.e3.

22 Love MI, Huber W, Anders S. Moderated estimation of fold change
and dispersion for RNA-seq data with DESeq2. Genome Biol.
2014;15(12):550.

23 Joo J, Mak ACY, Xiao S, et al. Genome-wide association study in
minority children with asthma implicates DNAH5 in bronchodi-
lator responsiveness. Sci Rep. 2022;12(1):12514.

24 Reinke SN, Chaleckis R, Wheelock CE. Metabolomics in pulmo-
nary medicine: extracting the most from your data. Eur Respir J.
2022;60(2):2200102.

25 Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the
false discovery rate in behavior genetics research. Behav Brain Res.
2001;125(1–2):279–284.

26 Franklin SB, Gibson DJ, Robertson PA, Pohlmann JT, Fralish JS.
Parallel analysis: a method for determining significant principal
components. J Veg Sci. 1995;6(1):99–106.

27 Peres-Neto PR, Jackson DA, Somers KM. Giving meaningful
interpretation to ordination axes: assessing loading significance in
principal component analysis. Ecology. 2003;84(9):2347–2363.

28 Pang Z, Chong J, Zhou G, et al. MetaboAnalyst 5.0: narrowing the
gap between raw spectra and functional insights. Nucleic Acids Res.
2021;49(W1):W388–W396.

29 Ru Y, Kechris KJ, Tabakoff B, et al. The multiMiR R package and
database: integration of microRNA-target interactions along with their
disease and drug associations. Nucleic Acids Res. 2014;42(17):e133.

30 Nyholt DR. A simple correction for multiple testing for single-
nucleotide polymorphisms in linkage disequilibrium with each
other. Am J Hum Genet. 2004;74(4):765–769.

31 Li M-X, Yeung JMY, Cherny SS, Sham PC. Evaluating the effective
numbers of independent tests and significant p-value thresholds in
commercial genotyping arrays and public imputation reference
datasets. Hum Genet. 2012;131(5):747–756.

32 Cheng W, Yan K, Xie LY, et al. MiR-143-3p controls TGF-β1-
induced cell proliferation and extracellular matrix production
in airway smooth muscle via negative regulation of the nu-
clear factor of activated T cells 1. Mol Immunol. 2016;78:133–
139.

33 Cai XJ, Huang LH, Zhu YK, Huang YJ. LncRNA OIP5-AS1 ag-
gravates house dust mite-induced inflammatory responses in hu-
man bronchial epithelial cells via the miR-143-3p/HMGB1 axis.
Mol Med Rep. 2020;22(6):4509–4518.

34 Kelly RS, McGeachie MJ, Lee-Sarwar KA, et al. Partial least squares
discriminant analysis and bayesian networks for metabolomic
prediction of childhood asthma. Metabolites. 2018;8(4):68.

35 Benson RC, Hardy KA, Morris CR. Arginase and arginine dysre-
gulation in asthma. J Allergy. 2011;2011:736319.

36 Zimmermann N, Rothenberg ME. The arginine-arginase balance
in asthma and lung inflammation. Eur J Pharmacol.
2006;533(1–3):253–262.

37 Liao SY, Showalter MR, Linderholm AL, et al. l-Arginine supple-
mentation in severe asthma. JCI Insight. 2020;5(13):e137777.

38 Rabe KF, Dent G. Theophylline and airway inflammation. Clin Exp
Allergy. 1998;28(Suppl 3):35–41.

39 Welsh EJ, Bara A, Barley E, Cates CJ. Caffeine for asthma. Cochrane
Database Syst Rev. 2010;2010(1):Cd001112.

40 Han YY, Forno E, Celedón JC. Urinary caffeine and caffeine me-
tabolites, asthma, and lung function in a nationwide study of U.S.
adults. J Asthma. 2022;59(11):2127–2134.

41 Hang D, Zeleznik OA, He X, et al. Metabolomic signatures of long-
term coffee consumption and risk of type 2 diabetes in women.
Diabetes Care. 2020;43(10):2588–2596.

42 Wikoff WR, Anfora AT, Liu J, et al. Metabolomics analysis reveals
large effects of gut microflora on mammalian blood metabolites.
Proc Natl Acad Sci U S A. 2009;106(10):3698–3703.

43 Ogawa M, Suzuki Y, Endo Y, Kawamoto T, Kayama F. Influence of
coffee intake on urinary hippuric acid concentration. Ind Health.
2011;49(2):195–202.

44 Kachroo P, Stewart I, Kelly R, et al. The systematic use of metab-
olomic epidemiology, biobanks, and electronic medical records for
precision medicine initiatives in asthma: findings suggest new
guidelines to optimize treatment. Nat Portfolio. 2022. https://doi.
org/10.21203/RS.3.RS-268507/V1.

45 Reinke SN, Naz S, Chaleckis R, et al. Urinary metabotype of severe
asthma evidences decreased carnitine metabolism independent of
oral corticosteroid treatment in the U-BIOPRED study. Eur Respir J.
2022;59(6):2101733.

46 Levan SR, Stamnes KA, Lin DL, et al. Elevated faecal 12,13-
diHOME concentration in neonates at high risk for asthma is
produced by gut bacteria and impedes immune tolerance. Nat
Microbiol. 2019;4(11):1851–1861.

47 Nakada EM, Bhakta NR, Korwin-Mihavics BR, et al. Conjugated bile
acids attenuate allergen-induced airway inflammation and hyper-
responsiveness by inhibiting UPR transducers. JCI Insight. 2019;4(9):
e98101.

48 Yamauchi K, Ogasawara M. The role of histamine in the patho-
physiology of asthma and the clinical efficacy of antihistamines in
asthma therapy. Int J Mol Sci. 2019;20(7):1733.

49 White MV, Slater JE, Kaliner MA. Histamine and asthma. Am Rev
Respir Dis. 1987;135(5):1165–1176.

50 Barcik W, Pugin B, Westermann P, et al. Histamine-secreting
microbes are increased in the gut of adult asthma patients. J Allergy
Clin Immunol. 2016;138(5):1491–1494.e7.

51 Barcik W, Pugin B, Brescó MS, et al. Bacterial secretion of hista-
mine within the gut influences immune responses within the lung.
Allergy. 2019;74(5):899–909.

52 Arrieta MC, Stiemsma LT, Dimitriu PA, et al. Early infancy mi-
crobial and metabolic alterations affect risk of childhood asthma.
Sci Transl Med. 2015;7(307):307ra152.

53 Smits HH, Hiemstra PS, Da Costa CP, et al. Microbes and asthma:
opportunities for intervention. J Allergy Clin Immunol.
2016;137(3):690–697.

54 van der Sluijs KF, van de Pol MA, Kulik W, et al. Systemic tryp-
tophan and kynurenine catabolite levels relate to severity of
rhinovirus-induced asthma exacerbation: a prospective study with a
parallel-group design. Thorax. 2013;68(12):1122–1130.

Articles

12 www.thelancet.com Vol 102 April, 2024

http://refhub.elsevier.com/S2352-3964(24)00060-4/sref3
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref3
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref3
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref4
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref4
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref4
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref5
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref5
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref5
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref5
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref6
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref6
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref6
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref7
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref7
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref8
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref8
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref9
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref9
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref9
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref10
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref10
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref11
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref11
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref12
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref12
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref13
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref13
https://doi.org/10.3402/ecrj.v2.24643
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref15
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref15
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref16
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref16
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref17
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref17
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref17
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref18
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref18
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref18
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref19
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref19
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref19
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref19
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref20
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref20
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref20
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref21
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref21
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref21
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref22
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref22
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref22
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref23
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref23
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref23
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref24
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref24
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref24
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref25
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref25
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref25
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref26
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref26
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref26
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref27
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref27
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref27
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref28
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref28
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref28
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref29
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref29
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref29
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref30
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref30
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref30
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref31
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref31
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref31
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref31
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref32
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref32
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref32
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref32
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref32
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref32
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref33
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref33
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref33
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref33
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref34
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref34
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref34
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref35
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref35
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref36
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref36
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref36
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref37
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref37
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref38
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref38
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref39
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref39
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref40
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref40
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref40
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref41
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref41
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref41
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref42
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref42
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref42
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref43
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref43
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref43
https://doi.org/10.21203/RS.3.RS-268507/V1
https://doi.org/10.21203/RS.3.RS-268507/V1
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref45
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref45
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref45
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref45
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref46
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref46
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref46
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref46
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref47
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref47
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref47
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref47
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref48
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref48
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref48
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref49
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref49
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref50
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref50
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref50
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref51
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref51
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref51
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref52
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref52
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref52
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref53
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref53
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref53
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref54
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref54
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref54
http://refhub.elsevier.com/S2352-3964(24)00060-4/sref54
www.thelancet.com/digital-health


55 Gostner JM, Becker K, Kofler H, Strasser B, Fuchs D. Tryptophan
metabolism in allergic disorders. Int Arch Allergy Immunol.
2016;169(4):203–215.

56 Lange P, Celli B, Agustí A, et al. Lung-function trajectories leading
to chronic obstructive pulmonary disease. N Engl J Med.
2015;373(2):111–122.

57 Prado CM, Martins MA, Tibério IF. Nitric oxide in asthma phys-
iopathology. ISRN Allergy. 2011;2011:832560.

58 Barnes PJ. Histamine and serotonin. Pulm Pharmacol Therapeut.
2001;14(5):329–339.

59 Nau F Jr, Miller J, Saravia J, et al. Serotonin 5-HT₂ receptor acti-
vation prevents allergic asthma in a mouse model. Am J Physiol
Lung Cell Mol Physiol. 2015;308(2):L191–L198.

60 Herr N, Bode C, Duerschmied D. The effects of serotonin in im-
mune cells. Front Cardiovasc Med. 2017;4:48.

61 Liu K, Liu Z, Qi H, et al. Genetic variation in SLC8A1 gene involved
in blood pressure responses to acute salt loading. Am J Hypertens.
2018;31(4):415–421.

62 Li A, Liao W, Xie J, Song L, Zhang X. Plasma proteins as occupa-
tional hazard risk monitors for populations working in harsh en-
vironments: a mendelian randomization study. Front Public Health.
2022;10:852572.

63 McGeachie MJ, Davis JS, Kho AT, et al. Asthma remission: pre-
dicting future airways responsiveness using an miRNA network.
J Allergy Clin Immunol. 2017;140(2):598–600.e8.

64 Worley B, Powers R. Multivariate analysis in metabolomics. Current
metabolomics. 2013;1(1):92–107.

65 Lamichhane S, Sen P, Dickens AM, Hyötyläinen T, Orešič M. An
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