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A B S T R A C T

The Border Gateway Protocol (BGP), acting as the communication protocol that binds the Internet, remains
vulnerable despite Internet security advancements. This is not surprising, as the Internet was not designed to
be resilient to cyber-attacks, therefore the detection of anomalous activity was not of prime importance to the
Internet creators. Detection of BGP anomalies can potentially provide network operators with an early warning
system to focus on protecting networks, systems, and infrastructure from significant impact, improve security
posture and resilience, while ultimately contributing to a secure global Internet environment. In this paper, we
present a novel technique for the detection of BGP anomalies in different events. This research uses publicly
available datasets of BGP messages collected from the repositories, Route Views and Réseaux IP Européens
(RIPE). Our contribution is the application of a time series data mining approach, Matrix Profile (MP), to
detect BGP anomalies in all categories of BGP events. Advantages of the MP detection technique compared
to extant approaches include that it is domain agnostic, is assumption-free, requires few parameters, does not
require training data, and is scalable and storage efficient. The single hyper-parameter analyzed in MP shows
it is robust to change. Our results indicate the MP detection scheme is competitive against existing detection
schemes. A novel BGP anomaly detection scheme is also proposed for further research and validation.

1. Introduction

The Internet was devised decades ago, yet a communication system
that binds this infrastructure, the Border Gateway Protocol (BGP), is
reliant on trust and remains vulnerable to both malicious and non-
malicious events [1–3]. Numerous cyber-attacks have affected inter-
networks with intense BGP traffic volume activity and ultimately over-
loaded the Internet [4–6]. For example, the Nimda incident caused a
surge in BGP traffic approximately 30 times more than the normal vol-
ume, impacting hundreds of thousands of devices [7–9]. BGP insecurity
places at risk the many businesses, transactions, devices, and global
matters of state that depend on an operationally stable and secure In-
ternet [10–12]. Recent BGP events have affected major Internet entities
including Akamai, Apple, Amazon, Facebook, Google, Mastercard, and
Microsoft [13–15], while from a nation-state perspective, BGP attacks
have reportedly been used by Russia against Ukraine [16,17].

There exists a range of approaches to the detection of BGP anoma-
lies. Comprehensive reviews of BGP anomaly detection techniques and
BGP security proposals have been conducted; detection approaches
have been categorized into machine learning (ML), reachability-based
approaches, statistical pattern recognition, time series analysis, and val-
idation studies based on historical BGP data, categorized by the type of
BGP incident category a technique was applied to (e.g., direct, indirect,
or outage events), and a review of BGP attacks and defenses [13,18].

∗ Corresponding author.
E-mail address: ben.scott@ecu.edu.au (B.A. Scott).

Similar to communication protocol and intrusion detection scheme
research more broadly, BGP anomaly detection studies are dominated
by approaches that involve large numbers of features, parameters,
domain-specific tuning, training and often contributing to unacceptable
computational cost [19–21].

For example, the use of Support Vector Machine (SVM) [22–27],
and Long Short-Term Memory (LSTM) approaches [6,20,22,28–31]
have been successful in detection of a range of BGP incidents includ-
ing Internet blackouts, leaks and worm attacks, though they often
require training, extensive parameterization and tuning. Other non-ML
approaches, such as the use of a Principal Component Analysis (PCA)
based subspace method with BGP volume extraction, have been suc-
cessful in detection, identification and differentiation of BGP anomalies,
though router configuration requirements showed prohibitive factors to
real-time detection [32].

Compared to other techniques, there are relatively fewer data min-
ing applications for BGP anomaly detection. We propose the Matrix
Profile (MP) family of algorithms as a candidate for BGP anomaly
detection. The MP approach has been evaluated on hundreds of time
series datasets [33,34], and has been shown to successfully detect
anomalies in data with periodic characteristics, with minimal param-
eterization [35]. It has never been applied to the problem of BGP
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anomaly detection. MP’s established domain-agnostic nature [34,36],
minimal parameter requirements [33,34], and handling of large, sparse
datasets [37,38] position it as a possible BGP anomaly detection solu-
tion. Moreover, its scalability and storage efficiency, proven at least in
other domains [36,38], suggest that it is suitable for the extensive data
associated with BGP. We also propose and introduce the Matrix Profile
BGP (MPBGP) anomaly detection scheme for scalable MP powered BGP
anomaly detection.

Key contributions of our paper are summarized as:

• We show that Matrix Profile detects BGP anomalies in all cat-
egories and is competitive when evaluated against existing de-
tection schemes. We directly compare the approach to Deep
Learning techniques and one non-ML technique using the same
BGP volume-centric incidents and features. In some incidents, MP
can detect anomalous activity earlier than other techniques.

• We test the only parameter within the package (window size) and
show it to be robust to change. We also test and validate the
assertion that MP can discover anomalies in datasets with missing
data, with no false negatives (FNs).

• We show that Matrix Profile provides a better understanding of
some key BGP incidents that are consistent with previous research
that showed potentially hidden anomalous behavior which may
represent an early stage of BGP anomalies.

The remainder of this paper is structured as follows: Section 2
provides the relevant background, while Section 3 presents links to
related work on BGP anomaly detection. In Section 4, we articulate
the Matrix Profile (MP) algorithm, followed by an outline of BGP
incidents in Section 5. Section 6 describes the methods, experiments,
and metrics used to evaluate our approach, and we report on the
findings in Section 7. The detection scheme is presented in Section 8,
with the effectiveness of MP anomaly detection discussed in Section 9.
The paper concludes in Section 10.

2. Background

BGP is the default inter-domain routing protocol for the Internet.
The protocol has been revised multiple times since the first Request
for Comment (RFC) proposal issued in 1989 [39–41]. RFCs exist as an
Internet engineering and governance corpus [42].

Autonomous Systems (ASes) are internetworked routing domains
administered by a single authority [43]. These structures are not sim-
ply physically or geographically bound but rather formed by corpo-
rate, organizational, and political relationships [44,45]; thus inferences
about their operation based simply on physical topology can be mis-
placed [46,47]. The strategic objectives of any AS are reliant on connec-
tivity and Network Reachability Information (NRI). The presence of NRI
is required for connectivity and AS connectivity is provided by BGP.
Two modes of BGP are available: Internal BGP (IBGP) and External BGP
(EBGP). Where IBGP can provide connectivity between routers within
a single AS, it is EBGP that connects BGP routers at different ASes [39].

All BGP messages are comprised of marker, length, and type fields
that form a fixed header of 19 octets. The marker field represents
the start of a message (16 octets, all set to 1), the length field (2
octets) identifies the total message length (including the header), and
the type field represents one of four message types (OPEN, UPDATE,
NOTIFICATION, and KEEPALIVE) [48–50]. Depending on the BGP
router vendor, a fifth type of BGP message (ROUTE REFRESH) can be
supported [51]. Once a Transmission Control Protocol (TCP) session
is established an OPEN message is transmitted; an initial exchange of
BGP messages is required to instantiate the ESTABLISHED state. Session
termination information is found in a NOTIFICATION message and
session maintenance information is provided for with the KEEPALIVE
message.

Routes are stored in a BGP peer in a set of databases known as
the Routing Information Base (RIB). The RIB consists of three distinct

components: Adj-RIB-In, Adj-RIB-Out, and the local RIB (Loc-RIB). The
Adj-RIB-In stores routes received from UPDATE messages (i.e., from
other peers); in other words, Adj-RIB-In represents routes that have
been learned from adjacent neighbors and are functional to the path
decision process. The Adj-RIB-Out stores routes sent out from this peer
via UPDATE messages, while the Loc-RIB contains the current optimal
routes used by this peer determined by Adj-RIB-In information and path
decision processes informed by its local policies. Incremental routing
information changes are achieved via announcement, withdrawal, or
existing attribute update messages following the RIB exchange.

It is from BGP anatomy and functionality that feature extraction
for anomaly detection schemes can be conducted. There are many
features that can be extracted from BGP traffic, and features can
also be aggregated for analysis (e.g., number of announcements and
withdrawals, NLRI prefix announced and withdrawn, can be aggregated
for analysis) [6,9]. These features can be broadly grouped into two
categories: BGP volume and AS-path [20,21]; previous research has
shown that BGP changes are primarily observed in volume features [6,
9]. MP is recognized in the literature for its efficiency in identifying
repeating patterns (motifs) and anomalies (discords) within voluminous
datasets [36,38]; this drives our investigation of a novel data mining
solution for BGP anomaly detection, leveraging MP’s domain-agnostic
nature, minimal parameter requirements, and adeptness in handling
large, sparse datasets efficiently [34,35,38].

3. Related work

BGP anomalies have been studied extensively in the literature, and
have been defined as damaging BGP activity that exist on a spectrum
of impact; the severity of which can range from the relatively innocu-
ous (e.g., route-flapping) through to destructive (e.g., BGP ‘hijacks’,
‘blackholing’ and rerouting) and be driven by non-malicious or ma-
licious intent [1,13,52]. Previous work produced a taxonomy of BGP
anomalies with categories named direct, indirect and outages (link
failure) [18]. We use six high-profile and well-studied incidents from
the three known categories (direct, indirect and outages) for a direct
comparison against other work that investigated the same well-studied
incidents and showed BGP changes are primarily observed in volume
features [6,9].

The direct anomaly category represents the range of BGP hijacks
currently known in addition to route leak incidents (e.g., the Telekom
Malaysia route leak). Indirect incidents include significant cyber-security
events that impacted Internet operations, such as web servers. Cyber-
attacks (e.g., Nimda, Code Red II, and Slammer worm attacks) are
examples of indirect incidents that affected ASes with intensified BGP
activity and ultimately overloaded the Internet. Outages caused by nat-
ural disasters and energy system failures (e.g., the Japanese Earthquake
and Moscow Blackout) represent the final category of BGP incidents.

Anomaly detection categories including ML-based approaches,
reachability-based methods, statistical pattern recognition, and val-
idation studies based on historical BGP data, have been surveyed
previously [9,18,53]. For example, numerous ML techniques for BGP
anomaly detection have been described in the literature [1,18,54–56].
Supervised learning techniques have shown mixed results [1]. Other
studies have used the same BGP incidents we outline in subsequent
sections to investigate Hidden Markov Model (HMM), Support Vector
Machine (SVM) and Deep Learning Recurrent Neural Networks (RNNs)
approaches [6,56,57]. The use of graph feature for detection of IP
prefix hijacking has been shown effective, such as the use of the
PageRank algorithm to develop an Ontological Graph Identification
(OGI) detection scheme [58]. Additionally, the use of graph features
as ML inputs for BGP anomaly detection has also been conducted [26].

BGP data can be successfully analyzed as a time series [5,6,9,
28]. There have been several time series techniques used to conduct
BGP anomaly detection; these include Daubechies 5 (db5) Wavelet
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Fig. 1. Code Red I top-k discords (𝑚1=599).

transform, Fast Fourier Transform (FFT) based techniques, and Re-
currence Quantification Analysis (RQA) [9,18]. BGP traffic has also
been modeled as a dynamical system displaying determinism, non-
linear, periodic, and stable characteristics [9]. Previous work has em-
ployed Auto-Correlation Functions and FFTs to identify periodicity
characteristics in unstable BGP traffic time series data [9,18].

Extant BGP anomaly detection approaches have varying strengths
and limitations. For example, some ML approaches have been incapable
of detecting AS-path spoofing from top-tier ASes [1], while time series
approaches using Wavelet Transforms show promise in locating the
source of an anomaly but are limited by time and inappropriate for real-
time detection [18,59]. Alternatively, other techniques have succeeded
with the identification and differentiation of BGP anomalies yet router
configuration prohibited real-time detection [32].

Compared to other techniques, there are relatively few data mining
applications for BGP anomaly detection. None of the extant examples
of data mining techniques for BGP anomaly detection have been di-
rectly compared to predominant ML and statistical pattern recognition
approaches [60,61]. Our work compares a novel BGP data mining
anomaly detection technique to Deep Learning models and one non-ML
statistical pattern recognition technique, using the same publicly avail-
able incident data [6,9]. MP is fundamentally different from traditional
training in ML models. While training in ML can involve adjusting
model parameters based on labeled data, MP computes a profile of the
time series data without any labels. The profiling in MP is a process of
understanding the inherent patterns in the data, not training on specific
outcomes. In contrast to ML approaches, MP requires no training and
has less parameters in comparison to the statistical pattern recognition
technique.

4. Matrix profile

Matrix Profile (MP) is a technique that can be used to detect anoma-
lies in time series data and has a sound theoretical basis (Euclidean
distance between elements of time series) that has been evaluated on
hundreds of time series datasets [33,34], although not in the domain of
BGP anomaly detection. Additionally, the MP package utilized in our
work has been used in a matrix profile-assisted LSTM model to forecast
COVID-19 cases [62]. Previous research has shown the MP technique
can successfully detect anomalies in data with periodic character-
istics, with minimal parameterization [35]. Given previous research
has illustrated that BGP traffic exhibits periodic characteristics, it is

hypothesized that MP could provide for a novel BGP anomaly detection
approach.

There are advantages using MP for analyzing time series data de-
scribed in the literature [34]. MP is domain-agnostic as it does not rely
on domain-specific features or patterns, instead, it captures intrinsic
structures within the time series data itself, making it applicable across
various domains (e.g., it has been applied to hundreds of different
time series datasets) without any domain-specific tuning. In contrast to
approaches that require extensive parameterization and tuning, MP can
be parameter-free and does not require training data. Unlike a majority
of time series detection algorithms, MP is unfazed by large, sparse
datasets. It allows for anytime computation whilst being extremely
scalable and storage efficient; massive datasets can be processed in
main memory, for example, and MP is extremely parallelizable. Due
to an exceptionally low parameter scope, MP discords minimize over-
fitting and are also free of data assumptions. MP has also shown it can
discover anomalies in datasets with missing data, with no FNs [63,64].

Developed from similarity-join research, the MP algorithm has
proven to be a useful application for similarity and anomaly detec-
tion in time series data [35]. The precursor data challenge originally
proposed was: given a collection of data objects, retrieve the nearest
neighbor for every object [34]. A full description of the mathematics
underpinning MP and an efficient algorithm to calculate a MP of a
time-series has been previously described in the literature [33,34,65],
however a brief summary of the core concepts of MP is provided below.

Consider a time series 𝑇 =
(

𝑡1, 𝑡2, 𝑡3,… , 𝑡𝑛
)

of length 𝑛, where 𝑡𝑖 are
real numbers for 𝑖 = 1, 2,… , 𝑛. A subsequence of length 𝑚 < 𝑛 is any
sequence of 𝑚 consecutive values from 𝑇 , and so a time series of length
𝑛 has a total of 𝑛-𝑚+1 subsequences. The set of all subsequences of 𝑇
that have a length 𝑚 will be denoted by 𝑇𝑚 =

{

𝑇1,𝑚, 𝑇2,𝑚,… , 𝑇𝑛−𝑚+1,𝑚
}

where 𝑇𝑖,𝑚 is the subsequence of length 𝑚 starting from 𝑡𝑖. For the
definitions that will follow it is useful to define the index sets 𝐼𝑚 =
{𝑖 ∈ Z ∶ 1 ≤ 𝑖 ≤ 𝑛 − 𝑚 + 1} and 𝐼𝑚,𝑖 =

{

𝑗 ∈ 𝐼𝑚 ∶ 𝑗 ≠ 𝑖
}

.
As an example, Fig. 1 is a BGP time series from the Code Red I event

(𝑛 = 7200). The choice of 𝑚 will determine the number of subsequneces.
For example, in Fig. 2, there would be a total of 5761 subsequences
(𝑛-𝑚+1) that can be generated by incrementally moving a window of
𝑚 = 1440 data points from left to right across the time series and shows
the time series with MP computed, with an example subsequence of
length m=1440 illustrated by the red section.

The all-subsequence set 𝑇𝑚 has a MP given by the vector 𝑃𝑇𝑚 =
(

𝑝1, 𝑝2,… , 𝑝𝑛−𝑚+1
)

, with elements 𝑝𝑖 given by:

𝑝𝑖 = min
𝑗∈𝐼𝑚,𝑖

𝑑
(

𝑇𝑖,𝑚, 𝑇𝑗,𝑚
)

, 𝑖 = 1, 2,… , 𝑛 − 𝑚 + 1 (1)
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Fig. 2. Code Red I most significant discord subsequence range (𝑚2=1440).

where 𝑑(𝑎, 𝑏) denotes the Euclidean distance function:

𝑑(𝑎, 𝑏) =

√

√

√

√

𝑚
∑

𝑖=1

(

𝑎𝑖 − 𝑏𝑖
)2 (2)

between vectors 𝑎 =
(

𝑎1, 𝑎2,… , 𝑎𝑚
)

and 𝑏 =
(

𝑏1, 𝑏2,… , 𝑏𝑚
)

. That is, each
element 𝑝𝑖 of the MP gives the minimum Euclidean distance between
the subsequence 𝑇𝑖,𝑚 and all other subsequences of 𝑇𝑚. A relatively
large value of 𝑝𝑖 would indicate that subsequence 𝑇𝑖,𝑚 is significantly
different to the other subsequences of 𝑇𝑚, and therefore may correspond
to an anomalous event. The MP index 𝑄𝑇 =

(

𝑞1, 𝑞2,… , 𝑞𝑛−𝑚+1
)

is a
vector of nearest neighbor indices corresponding to the MP vector 𝑃𝑇𝑚 .
That is, 𝑞𝑖 = 𝑗 means that subsequence 𝑇𝑗,𝑚 is the nearest neighbor of
subsequence 𝑇𝑖,𝑚.

A time series discord 𝐷1 can be defined as 𝐷1 = 𝑇𝑖1 ,𝑚 where
𝑖1 =

{

𝑖 ∈ 𝐼𝑚 ∶ 𝑝𝑖 > 𝑝𝑗 ∀𝑗 ∈ 𝐼𝑚,𝑖
}

. That is, 𝐷1 the subsequence of 𝑇𝑚
that is most distant relative to its nearest neighbor [34]. The 𝑘th
discord of a time series can be defined as 𝐷𝑘 = 𝑇𝑖𝑘 ,𝑚 where 𝑖𝑘 =
{

𝑖 ∈ 𝐽𝑚,𝑘 ∶ 𝑝𝑖 > 𝑝𝑗 ∀𝑗 ∈ 𝐽𝑚,𝑘,𝑖
}

, 𝐽𝑚,𝑘 =
{

𝑖 ∈ 𝐼𝑚 ∶ 𝑇𝑖,𝑚 ∩𝐷𝑗 = 𝜙, 𝑗 = 1, 2,
… , 𝑘 − 1} and 𝐽𝑚,𝑘,𝑖 =

{

𝑗 ∈ 𝐽𝑚,𝑘 ∶ 𝑗 ≠ 𝑖
}

. That is, the 𝑘th discord is the
subsequence of 𝑇𝑚 that is most distant relative to its nearest neigh-
bor, excluding any subsequences that intersect/overlap a preceding
discord [33]. We can also extract the top-k discords. In the example
of Fig. 2, the red section is the 𝑘1 discord.

There are several MP algorithms that exist, and when an underlying
time series is large, the calculation of MP requires efficient algorithms;
the STAMP, STOMP and SCRIMP algorithms are examples of efficient
methods for calculating MP and time series discords that have been de-
scribed in the literature [34,65]. Additionally, MP can also be deployed
with zero parameters, using a pan-matrix-profile function; the package
we use has this capability and is publicly available [66].

The efficiency and scalability of the MP approach are exemplified by
a suite of algorithms tailored to various aspects of time series analysis.
STAMP, for example, offers an ‘anytime’ capability, allowing for early
insights into data patterns before the complete computation, making
it particularly useful for large datasets where computational resources
may be limited [34].

STOMP is an improvement over STAMP, and optimizes the ma-
trix profile calculation by utilizing an ordered-search mechanism that
significantly reduces the computational cost, making it suitable for
even larger datasets [36,38]. SCRIMP++, on the other hand, combines
optimal features from STAMP and STOMP, offering an efficient and
incremental calculation of the matrix profile, and facilitating real-
time analysis of streaming data [37]. These algorithms collectively
contribute to MP’s scalability and storage efficiency.

A driving hypothesis for this work is that identification of discords
in time series data might provide application for BGP anomaly de-
tection, given BGP traffic exhibits characteristics that MP has been
previously shown to detect. In addition, MP has been previously shown
to detect anomalies in other environments within one second, which is
an important indicator for the pursuit of near-real-time detection [35].
We seek to investigate the following questions:

• 𝑅1: Can Matrix Profile detect BGP anomalies?
• 𝑅2: Can Matrix Profile detect anomalous activity in different types

of BGP incidents using BGP volume features?
• 𝑅3: Is there any advantage with using Matrix Profile to detect

anomalies in BGP?

5. Selected BGP incidents

We utilize publicly available data that has been previously used
for work with both advanced nonlinear statistical analysis (RQA) and
deep learning (RNNs) [6,57], to investigate the applicability of MP
time series discords on the following BGP events. The MP software
package used is publicly available [66]. The incidents include examples
of all categories of BGP incident categories (direct, indirect and outage).
The datasets were originally obtained from the RIPE and Route Views
repositories, and the process of doing so has been documented in the
literature for replication [6,20,57].

5.1. Code Red I

The Code Red I is a well-studied worm that is understood to have
begun on July 15, 2001 and targeted web servers [6]. Studies have
used data derived from the Code Red I incident and applied various
machine learning approaches; specifically Long Short-Term Memory
(LSTM), Gated Recurrent Unit (GRU) and Broad Learning System (BLS)
techniques [28,57]. The RNN results produced an accuracy of 90.69%
for Code Red I.

5.2. Nimda

Nimda was a significant malware event that became public knowl-
edge approximately September 18, 2001 that did not specifically target
BGP but catalyzed BGP message overload across the Internet and thus
is categorized an indirect BGP anomaly [9,67]. Nimda increased BGP
volume traffic approximately 30 times from the normal volume of
BGP updates [9]. Various machine-learning approaches have been used
to analyze the Nimda incident, with LSTM detection achieving an
accuracy of 92.00% [57,68]. Other approaches, such as RQA, have
also used Nimda as a test-case, and successfully raised at least 10 True
Positive alarms across the event [9].

5.3. Slammer

The Slammer malware was first observed in early 2003 and targeted
servers [6]; while Slammer did not focus on BGP (indirect anomaly),
the computer worm did significantly impact BGP. The impact of Slam-
mer on BGP was shown to be rapid and devastating, contamination
of at least 90 percent of vulnerable targets occurred in approximately
10 min [4,18]. Various anomaly detection techniques have used the
incident as a test case. For example, RNN-based BGP anomaly detec-
tion approaches have previously utilized the Slammer incident as an
experimental dataset, using GRU with an accuracy of 95.21% [6].
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5.4. Moscow Blackout

The 2005 Moscow Blackout incident is an example of the anomalous
category known as an outage (or ’link failure’). The incident resulted in
hours of Internet ‘blackout’; the outage impacted a Russian Internet ex-
change and several businesses. Approaches that have used the Moscow
Blackout incident and associated data include machine-learning based
approaches, such as RNNs, and statistical analysis techniques, such as
RQA [6,18,57]. RQA has previously shown a high level of detection
accuracy in this event (99.99%), raising at least 10 validated alarms
across 597376 s of BGP updates [9].

5.5. Telekom Malaysia

Telekom Malaysia was an example of the Route Leak category of
BGP incidents that occurred in 2015, whereby misconfiguration at the
ISP resulted in a significant proportion of global routing table prefixes
(179000) leaked to multinational telco Level 3 Communications. With
Level 3 then accepting and propagating the IP prefixes. The incident has
been previously described and investigated using RQA with reported
accuracy of 100% [9].

5.6. WannaCrypt

The WannaCrypt incident of 2017 is the most recent of all the cases
investigated in this paper. WannaCrypt was a devastating ransomware
worm that obtained administrative privileges by deploying multiple ex-
ploits in systems running legacy Microsoft Windows operating systems.
The WannaCrypt-related BGP data has been studied with deep learning
RNNs (LSTM and GRU) and BLS, which were considered applicable due
to their unique structure and capability to classify time series data [6].
Accuracy of 72.63% was achieved.

6. Methods

The BGP datasets we use for the evaluation of MP were drawn from
established repositories (RIPE and Route Views) and are publicly avail-
able [6,20]. BGP update messages originally exist in multi-threaded
routing toolkit (MRT) format within BGP repositories. As outlined in
previous research [6], a Perl-based parsing tool is used to extract these
datasets to ASCII, and a C# tool is used to extract features for the final
datasets. Previous research has shown that BGP changes are primarily
observed in volume features [6,9]. BGP anomalies caused by Slammer
and WannaCrypt manifested noticeable changes in volume (e.g., BGP
announcements and withdrawals) [6,18,21]. The research focus for
these series of experiments was on BGP Volume features. We leave
AS-PATH feature analysis for future research.

The MPA package used in our research is publicly available [66].
The use of the MPA package extends the functionality of conventional
MP analysis by incorporating advanced algorithms such as STOMP,
MASS, and SCRIMP++ [66], allowing for a comprehensive exploration
of time series discords within BGP data. BGP Volume features are
utilized, and we are interested in the presence of discords in the time
series data. That is to say subsequences with the large (maximal)
distances to their nearest neighbors. As described in Section 4, for
a time series 𝑇 , the MP of 𝑇 will include a vector of subsequence
pair distances (the distance profile) and a distance to nearest neighbor
indexation (profile index).

While window selection in MP can be automated, effectively making
MP parameter-free, the window size (𝑚) has been described as robust
such that effectively halving or tripling the window size has minimal
impact on results [34,66]. It has also been stated that too small an 𝑚 can
increase false negatives and too large an 𝑚 can produce false positives;
with a priori knowledge of the anomaly length or duration shown as
the optimal choice [34,69].

That is to say reported incident and attack knowledge is hypothe-
sized as the ideal window sizes (e.g., 𝑚1 and 𝑚2). As such, we choose
the anomaly duration as characterized by previous work with the same
datasets as 𝑚1 and the broadly reported period of the incident (eg.,
24 h or 1440 min) as 𝑚2, where possible. For direct comparison against
the RQA technique and associated alarms, a smaller window size is
required for the analysis of more than 10 alarms in some incidents.
A comparable window size in these experiments is used (𝑚 = 120).

Having a priori knowledge of attack duration is not always possible,
nor realistic, and we tested 𝑚 robustness by examining a range of 𝑚 val-
ues. Further evaluation of the MP detection scheme uses conventional
combinations of false positive (FP), false negative (FN), true positive
(TP) and true negative (TN), where the aforementioned have the usual
definitions. As previous work has done with the same datasets [6,9],
we utilize detection accuracy and F-score (𝐹1) metrics. Accuracy (𝐴) is
a measure of correctly classified anomalies:

A = TP + TN
TP + FP + FN + TN

(3)

and F-score (specifically 𝐹1, the harmonic mean of precision and recall)
is a function of successful anomaly detection:

F1 =
2TP

2TP + FP + FN
(4)

The performance evaluation is based on the MP values of the time
series data. For each sliding window, the MPA package computes its MP
value, which represents its distance to its nearest neighbor in the time
series, as described in Section 4. Windows with MP values exceeding
a certain threshold are flagged as anomalies. For performance evalu-
ation, the comparative works utilized 𝐴 and 𝐹1 score as evaluation
metrics only, and we adopted the same for a consistent comparison.
Use of additional performance metrics, such as Matthew’s Correlation
Coefficient (MCC), was constrained by the available data from the
referenced studies we are directly comparing against, as not all the
requisite information was available.

Our novel approach to BGP anomaly detection is compared to
Deep Learning techniques (LSTM and GRU) and one non-ML statistical
pattern recognition technique (RQA), using publicly available incident
data [6,9]. Multiple RNN models (LSTM and GRU) are included due to
their efficacy in handling sequential data and proven detection of BGP
anomalies [6]. LSTM’s design includes mechanisms to learn long-term
dependencies, avoiding the vanishing gradient problem, while GRU
models provide a simplified structure that can perform comparably
with fewer parameters [6].

For a non-ML comparative analysis, the advanced nonlinear statis-
tical analysis technique RQA for BGP anomaly detection is reported
on [9], providing insights into the dynamical properties of the BGP
time series data [70,71]. The RQA detection scheme reported on perfor-
mance metrics (𝐴 and 𝐹1) for Nimda, Moscow Blackout, and Telekom
Malaysia using RIPE data [9]. As in the RQA study, we also complete
manual investigation of source data to determine if a discord event
is a TP or FP. While manual inspection is valuable and necessary for
research and validation purposes, it is not scalable for a fully developed
and operational detection scheme. In this stage of research, manual
inspection is crucial to validate true positives, false positives, and
other metrics, ensuring the robustness of our approach. The compar-
ative work with machine learning anomaly detection approaches for
Slammer and WannaCrypt, have described best 𝐴 and 𝐹1 results from
using BGP update message data collected by Route Views, and for all
remaining incidents we use the RIPE datasets [6].

7. Results and performance evaluation

We applied the MP technique to each of the BGP incident datasets
previously described. We report on the results in chronological order
thus: Code Red I (July 2001), Nimda (September 2001), Slammer (Jan-
uary 2003), Moscow blackout (May 2005), Telekom Malaysia (June
2015) and WannaCrypt (May 2017) (see Fig. 12).
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Fig. 3. RQA alarms raised in Nimda [9].

The RQA scheme has been previously applied to Nimda, Moscow
Blackout, and Telekom Malaysia only. The RNN schemes have been
applied to Code Red I, Nimda, Slammer, Moscow blackout, and Wan-
naCrypt only. We compared the MP method against these detection
schemes. As previously outlined, an ideal 𝑚 parameter selection can
be chosen with a priori knowledge of the reported incident, however,
this is not always possible nor realistic and we therefore tested a range
of 𝑚 values with acceptable accuracy across 60 different 𝑚 parameters
(𝐴 = 99.95 and 𝐹1 = 92.57).

The five-day Code Red I dataset (𝑛 = 7200) shown in Figs. 1
and 2 includes data for the day of the reported attack, coupled with
data for two days prior and two days following the reported incident.
A 599-minute period of traffic has been previously characterized by
RNNs as anomalous (𝐴 = 95.92 and 𝐹1 = 73.96) [6]. We utilize the
previously characterized anomalous time period (599) as 𝑚1 and one
day of the reported incident period (1440 min) as 𝑚2. We identify up
to 10 discords and manual inspection of the data confirms that nine
discords are TP alarms, while it is uncertain if a final discord is an FP
or early detection of anomalous activity. We deem it to be FP until
evidence suggests otherwise.

We conduct a top-k discord analysis (k=2) to analyze the top
discords within the 𝑚1 (599) and 𝑚2 (1440) window sizes (see Figs. 1
and 2). As shown in Fig. 1, the 𝑘1 discord of 𝑚1 (599) signals an
alarm at 3320 min, some 361 min earlier than the previously RNN
characterized anomaly period [6], and a manual inspection confirms
the discord subsequence range is encapsulated within the attack period.
The 𝑘2 discord of 𝑚1 (599) shown in Fig. 1, is also validated as a
TP within the attack period. The 𝑘1 discord in the 𝑚2 analysis shown
in Fig. 2 also signals an early alarm (at 2900 min), and a manual
inspection confirms the discord subsequence range is encapsulated
within a previously classified attack period. While a number of TP late
alarms were identified, they are excluded from further analysis.

The RQA scheme has previously reported 13 alarms signaled (10
TPs and 3 FPs) for the Nimda incident, with accuracy and F-score of
99.99% and 86.95% respectively (see Fig. 3 and Table 1). We compare
the MP scheme with 13 discords across the same incident shown in
Fig. 4. Similarly to the RQA technique [9], we establish that 10 alarms
(including at least four alarms during the event date) are TP while
it remains uncertain if three alarms constitute FP alarms or early
anomaly detection. We deem these FPs until evidence proves otherwise.
A period of 3674–4974 (1300 min) has been previously characterized
by RNNs as anomalous. As previously described, incident and attack
a priori knowledge has been hypothesized as the ideal window sizes

(e.g., 𝑚1 = 1300). As seen in Fig. 5, BGP volume traffic increased up
to approximately 30 times from normal during Nimda, and the top-k
analysis for window size 𝑚1 shows one early alarm (at 1100 mins) and
one alarm during the event (at 4360 mins). Additionally, analysis of the
discord subsequence for the 𝑚2 parameter produced an early alarm (𝑘2)
at 1100 min, and extends into the previously RNN-classified anomalous
traffic period.

The Slammer incident (𝑛 = 7200 mins) shown in Fig. 6 has been
previously classified to have an 868-minute anomalous period (3200
- 4068 min) within a 24-hour period. As with previous experiments,
previously classified anomalous activity serves as 𝑚1 (868 min) and
the 24-hour reported incident period serves as 𝑚2 (1440 min). The
𝑘2 discords for 𝑚1 (868) and 𝑚2 (1440) both signal early TP alarms,
Fig. 6 illustrates the top-k discords for 𝑚1. The 𝑘2 discord shown
in purple signals at 3030 min, extending into the previously RNN
characterized anomalous period (3200-4068 min). One discord in this
incident remained unclear whether it is a false alarm, and we label it
FN until evidence can establish otherwise.

The RQA scheme has previously reported 12 alarms for the Moscow
Blackout incident; 10 TPs and 2 FPs with accuracy and F-score of
99.99% and 90.90% respectively (Fig. 7). We compare the MP scheme
with 12 discords analyzed across the same incident in Fig. 8. Similarly
to the RQA study [9], we establish that 10 alarms (including at least
four alarms during one established anomalous range between 2500–
4500 mins shown in Fig. 8) are TP, while it remains uncertain if two
of the alarms constitute FP alarms or early anomaly detection. An
analysis of 𝑚2 (1440) produced an early 𝑘1 discord and the subsequence
range (shown in red in Fig. 9) begins at 2800 mins and extends into
the previously RNN classified anomalous period. In total, we validate
that 10 alarms are TP while two remain unclear if they are FP or
represent anomalous activity. We deem these two alarms FP until
further evidence proves to the contrary.

With regards to the Malaysia Telekom incident, the RQA scheme
has previously reported 8 alarms signaled found and all were TPs
with accuracy and F-score of 100% and 100% respectively (Fig. 10).
We compare the MP scheme with 8 discords across the same incident
shown in Fig. 11 (𝑚 = 120). Via manual inspection of the dataset and
reported event, we establish that 7 BGP anomaly alarms are TP, and we
deem one early signal as an FP alarm. The earliest alarm was identified
at approximately 150 min in the incident which is comparable to the
signal identified at approximately 63 min with the RQA technique. As
shown in Table 1, the MP has acceptable performance when directly
compared with the RQA technique.
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Fig. 4. MP alarms raised in Nimda.

Fig. 5. Top-k discords for Nimda (𝑚1 = 1300).

Fig. 6. Slammer top-k discord subsequences (𝑚1 = 868).

The WannaCrypt event has a 5759-minute period of traffic pre-
viously characterized by RNNs as anomalous. Due to the time series
length (𝑛), an 𝑚 of 5759 will only produce a single significant discord
and associated subsequence range, despite what top-k value is chosen.
Therefore, for top-k analysis, we chose a 48-hour (2880) and 24-hour

(1440) period to examine for 𝑚1 and 𝑚2 respectively. As is shown for
𝑚1 (2880), the discords are both signaled during the previously RNN
classified range (see Fig. 12). The 𝑘1 discord begins at 3860 min and
the 𝑘2 at 6850 min. A top-k analysis of 𝑚2 (1440) also identified the
𝑘1 discord during the previously RNN classified range, whilst the 𝑘2
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Fig. 7. RQA alarms raised in Moscow Blackout [9].

Fig. 8. MP alarms raised in Moscow Blackout.

Fig. 9. Top-k subsequence for Moscow Blackout (𝑚2 = 1440).
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Fig. 10. RQA alarms raised in the Malaysia Telekom incident [9].

Fig. 11. MP alarms raised in the Malaysia Telekom incident.

Table 1
Performance evaluation.
Incident/technique RQA (A) RNNs (A) MP (A) RQA (𝐹1) RNNs (𝐹1) MP (𝐹1) RQA (mins) RNNs (mins) MP (mins)

Code Red I – 95.92 99.98 – 73.96 94.74 – 3681 2900
Nimda 99.99 92.00 99.85 86.95 95.83 86.96 83.3 3674 1100
Slammer – 95.72 99.98 – 81.77 94.74 – 3200 2240
Moscow Blackout 99.99 98.30 99.97 90.90 35.15 90.91 417 3121 2770
Telekom Malaysia 100 – 99.99 100 – 93.33 3000 – 650
WannaCrypt – 72.63 99.99 – 74.21 94.74 – 2881 2050

discord is an earlier alarm signaled at 2050 min. In total, we identified
9 TP alarms and 1 alarm that we deem an FP, as on manual inspection
of the event data and reports, it remains unclear if the activity is
anomalous.

8. Detection scheme

The MPBGP detection scheme is designed to be configured for
both research purposes (e.g., networking testbeds and simulations) and
real-world deployment (e.g., configured at BGP speakers or to obtain

collector data). Preprocessing configuration is dependent on the use of
the scheme. The specific configuration of the BGP speaker to enable
BGP monitoring and exporting of data depends on the software being
used (e.g., BIRD, Quagga, or ExaBGP). The MPBGP scheme contains
configuration files and specific modules to communicate with BGP
speakers and handle BGP protocol messages, for example, to provide
the necessary functionality to establish a BGP session, send and receive
BGP messages from a peer, collector or testbed environment. Regardless
of the deployment environment, the feature extraction and preprocess-
ing steps are the same. These steps are: extract the multi-threaded
routing toolkit (MRT) format BGP data to ASCII using a BGP parser
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Fig. 12. WannaCrypt top-k analysis for 𝑚2 (2880).

Algorithm 1: MPBGP Anomaly Detection Algorithm.
procedure MPBGPDetect(𝑇 , 𝑤𝑖𝑛𝑑𝑜𝑤𝑠𝑖𝑧𝑒, 𝑘)

𝑑𝑎𝑡𝑎𝑠𝑒𝑡 ← 𝑛𝑝.𝑑𝑎𝑡𝑎𝑙𝑜𝑎𝑑(𝐷)
𝑝𝑟𝑜𝑓𝑖𝑙𝑒 ← 𝑚𝑝.𝑐𝑜𝑚𝑝𝑢𝑡𝑒(𝑑𝑎𝑡𝑎𝑠𝑒𝑡, 𝑤𝑖𝑛𝑑𝑜𝑤𝑠𝑖𝑧𝑒)
𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑠 ← 𝑚𝑝.𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟.𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑠(𝑝𝑟𝑜𝑓𝑖𝑙𝑒, 𝑘 = 𝑘, 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑜𝑛𝑧𝑜𝑛𝑒 =

𝑤𝑖𝑛𝑑𝑜𝑤𝑠𝑖𝑧𝑒)
𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑛𝑢𝑚 ← 𝑙𝑖𝑠𝑡(𝑟𝑎𝑛𝑔𝑒(1, 𝑘 + 1))
for 𝑖 = 0 to 𝑘 − 1 do

if 𝑖 == 0 then
𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑛𝑢𝑚[𝑖] ← 𝑠𝑡𝑟(𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑛𝑢𝑚[𝑖]) + "𝑠𝑡"

else if 𝑖 == 1 then
𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑛𝑢𝑚[𝑖] ← 𝑠𝑡𝑟(𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑛𝑢𝑚[𝑖]) + "𝑛𝑑"

else if 𝑖 == 2 then
𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑛𝑢𝑚[𝑖] ← 𝑠𝑡𝑟(𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑛𝑢𝑚[𝑖]) + "𝑟𝑑"

else
𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑛𝑢𝑚[𝑖] ← 𝑠𝑡𝑟(𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑛𝑢𝑚[𝑖]) + "𝑡ℎ"

end if
end for
𝑚𝑝𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 ← np.append(𝑝𝑟𝑜𝑓𝑖𝑙𝑒[′𝑚𝑝′], [np.nan] ∗ (𝑝𝑟𝑜𝑓𝑖𝑙𝑒[′𝑤′] −

1))
𝑓𝑖𝑔, 𝑎𝑥 ← plt.subplots(1, 1, 𝑓 𝑖𝑔𝑠𝑖𝑧𝑒 = (16, 3))
𝑎𝑥.𝑝𝑙𝑜𝑡(𝑝𝑟𝑜𝑓𝑖𝑙𝑒[′𝑑𝑎𝑡𝑎′][′𝑡𝑠′])
𝑎𝑥.𝑠𝑒𝑡𝑡𝑖𝑡𝑙𝑒(𝑓 "𝑊 𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒(𝑤𝑖𝑛𝑑𝑜𝑤𝑠𝑖𝑧𝑒)")
𝑎𝑥.𝑠𝑒𝑡𝑦𝑙𝑎𝑏𝑒𝑙(′𝐷𝑎𝑡𝑎′)
for 𝑖, 𝑑𝑖𝑠𝑐𝑜𝑟𝑑 in enumerate(profile[’discords’]) do

𝑥 ← np.arange(𝑑𝑖𝑠𝑐𝑜𝑟𝑑, 𝑑𝑖𝑠𝑐𝑜𝑟𝑑 + 𝑝𝑟𝑜𝑓𝑖𝑙𝑒[′𝑤′])
𝑦 ← 𝑝𝑟𝑜𝑓𝑖𝑙𝑒[′𝑑𝑎𝑡𝑎′][′𝑡𝑠′][𝑑𝑖𝑠𝑐𝑜𝑟𝑑 ∶ 𝑑𝑖𝑠𝑐𝑜𝑟𝑑 + 𝑝𝑟𝑜𝑓𝑖𝑙𝑒[′𝑤′]]
𝑎𝑥.𝑝𝑙𝑜𝑡(𝑥, 𝑦, 𝑐 =′ 𝐶 ′ + 𝑠𝑡𝑟(𝑖 + 3),

𝑙𝑎𝑏𝑒𝑙 = "𝐷𝑖𝑠𝑐𝑜𝑟𝑑".𝑓𝑜𝑟𝑚𝑎𝑡(𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑛𝑢𝑚[𝑖]))
end for
plt.legend()
plt.show()

end procedure

and scanning tool whereby feature extraction is then completed and
the output datasets are then used by the MPBGP algorithm.

The heart of the MP detection engine was described in Section 4,
and is an algorithm that takes the preprocessed BGP feature extracted
data and computes the matrix profile of the time series using a default
or chosen window size, finding the top k discords (i.e., subsequences

that are most different from the rest of the time series). The algorithm
is shown in 1. The BGP discords are then plotted into an operator
dashboard for visualization and analysis purposes. The implications
for use of the detection scheme in future research are discussed in
Section 9.

9. Discussion and future work

The advantages of MP as an anomaly detection scheme for BGP
are due to the inherent advantages of the MP discords and the un-
derlying algorithms themselves. MP is domain agnostic, free of data
assumptions, and due to minimal parameters, there is a minimized risk
of over-fitting. MP has also shown it can discover anomalies in datasets
with missing data without producing FNs, as evidenced by the missing
data points in the Nimda dataset that our work has utilized.

As one of the very few parameters in MP, the window size (𝑚)
has been previously described as robust to change, and we tested this
assertion. Ultimately, our results are consistent with previous research
that asserts an ideal 𝑚 size for MP can be informed by a priori knowl-
edge. Second, the assertion that 𝑚 is robust in the absence of a priori
knowledge is supported by the results. From the range of window sizes
(𝑚) tested, there were a total of 27% late alarms while 73% were
signaled either early or during the reported incident, producing 55 TP
alarms and 5 alarms we deem as FP, showing that the MP parameter is
robust with respect to change. This emphasizes MP’s capability for early
detection, which is crucial for timely intervention before substantial
impact.

Manual investigation of source data is not a trivial process, however
it is necessary to determine if a discord event is a TP or FP, therefore
we conduct this process with all discord alarms. MP is competitive, and
in some cases, outperforms other detection schemes—the performance
evaluation summary can be seen in Table 1.

In other environments, MP has been shown to be capable of detect-
ing anomalies within the first–second. Previous work using advanced
non-linear statistical analysis techniques, modeling BGP as a dynamical
system, has also indicated that hidden anomalous behavior can repre-
sent an early stage of BGP anomalies. As such we compared MP against
the RQA scheme that modeled BGP as a dynamical system—we identify
similar early alarms and find MP to be competitive across the incidents
directly compared: Nimda, Moscow Blackout, and Telekom Malaysia.
Our work focused on BGP volume features, however we propose an
investigation of MP using BGP path features for future work.
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When compared against the RNN approach, the MP detection scheme
signals earlier TP alarms in all the incidents investigated. The most
significant early discord for Code Red I began some 781 min (ap-
proximately 13 h) before the previously deep learning RNN detected
anomalous traffic, underscoring MP’s early detection capabilities. Sim-
ilar early alarms were identified in the Nimda, Slammer, Moscow
Blackout, and WannaCrypt incidents, with MP signaling significant
early discords well before RNNs, highlighting the importance of early
detection for effective BGP anomaly mitigation.

The ability to detect BGP anomalies early, as demonstrated by MP, is
akin to having a highly accurate fire alarm that alerts well in advance of
an emergency, rather than too late to be of any use. A highly accurate
but late fire alarm is of limited use. This early warning capability is
the most crucial aspect of our findings. It is important to also highlight
that this work desired to evaluate an under-represented area of BGP
anomaly detection technique (data mining) with a direct comparative
evaluation to well established ML and statistical pattern recognition
techniques. As outlined in previous sections, the driving motivation of
this paper was to first validate if MP can detect BGP anomalies, if there
is any advantage using it, and how it performs with some of the most
well studied volume-centric incidents and compared directly against
other methods that used the same incidents using the same performance
evaluation metrics.

Development and improvement of MP algorithms is also an active
area of research whereby multi-dimensional variants may support im-
provements in MPBGP and is left for future research. Nevertheless,
the use of the same publicly available datasets with publicly available
packages allows for our results to be tested transparently against other
approaches.

10. Conclusion

The suitability of using Matrix Profile (MP) for BGP anomaly de-
tection has been evaluated in the context of all categories of BGP
incidents. The advantages of MP that have been explored in the lit-
erature, discussed and evaluated in the context of BGP within this
work, represent a promising novel BGP anomaly detection scheme.
For example, BGP speaker configuration requirements have shown
that some approaches can be prohibitive to real-time detection. The
use of MP for anomaly detection in BGP research provides several
advantages over existing techniques (as it has done in other domains).
In contrast to many other approaches to BGP anomaly detection, MP is
essentially parameter-free, MP is unimpeded by large, sparse datasets,
whilst being extremely scalable and storage efficient–it is possible for
massive datasets to be processed in main memory and handles missing
data with no FNs. As mentioned in Section 9, MP discords minimize
over-fitting and are also free of data assumptions. When considering
the requirement for configuration of any anomaly detection scheme on
BGP speakers, the advantages of MP are apparent. Our contribution is
the application of a time series approach to detect BGP anomalies in all
categories of BGP events. The single parameter analyzed in MP shows it
is robust to change. Our results indicate that the MP detection scheme
is competitive against existing detection schemes.
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