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Abstract: Alzheimer’s disease (AD), the most prevalent form of dementia, is characterized by
the accumulation of amyloid-beta (Aβ) plaques and hyperphosphorylated tau tangles. Currently,
Alzheimer’s disease (AD) impacts 50 million individuals, with projections anticipating an increase to
152 million by the year 2050. Despite the increasing global prevalence of AD, its underlying pathology
remains poorly understood, posing challenges for early diagnosis and treatment. Recent research
suggests a link between gut dysbiosis and the aggregation of Aβ, the development of tau proteins,
and the occurrence of neuroinflammation and oxidative stress are associated with AD. However,
investigations into the gut–brain axis (GBA) in the context of AD progression and pathology have
yielded inconsistent findings. This review aims to enhance our understanding of microbial diversity
at the species level and the role of these species in AD pathology. Additionally, this review addresses
the influence of confounding elements, including diet, probiotics, and prebiotics, on AD throughout
different stages (preclinical, mild cognitive impairment (MCI), and AD) of its progression.

Keywords: Alzheimer’s disease (AD); gut–brain axis; dietary components; gut microbiota

1. Introduction

Unlike the typical aging process, Alzheimer’s disease (AD) is a progressive neurode-
generative condition characterized by a range of cognitive impairments affecting various
aspects of daily life. These impairments impact memory, thinking, decision making, com-
munication, problem solving, personality, and mobility [1,2]. In AD, the formation of
amyloid-beta (Aβ) plaques and hyperphosphorylated tau neurofibrillary tangles (NFTs)
leads to inflammation and a gradual decline in cognitive function [3]. Despite various
hypotheses about the development of AD, its onset and progression remain unclear.

Recent evidence suggests that the gut microbiota–brain axis could offer insights into
the early diagnosis and treatment of neurodegenerative disorders, including depression and
AD [4–6]. Gut health is significantly influenced by microbiota, which is largely composed
of diverse microorganisms and resides primarily in the gastrointestinal tract (GIT). The
gut microbiota’s role in AD pathogenesis has been extensively explored, revealing that
individuals with AD and mild cognitive impairment (MCI) exhibit a lower gut microbiota
diversity index than healthy controls [7,8].

Additionally, studies indicate similarities in the gut microbiota of individuals with
MCI and AD, offering potential insights into pre-dementia pathogenesis and the identifi-
cation of at-risk individuals [9,10]. Moreover, numerous studies are pursuing the goal of
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understanding and mitigating changeable risk factors for AD pathology, such as lifestyle,
different types of dietary patterns, and obesity. These external factors play a critical role
in AD development [11]. Conversely, research has shown that a healthy diet may offer a
non-pharmacotherapeutic approach to modulating AD neuropathological markers [12].
Therefore, researchers are studying several lifestyle and dietary patterns in order to de-
termine which patterns are most effective in preventing AD, focusing primarily on the
Mediterranean diet, DASH diet, MIND diet, and ketogenic diet [13].

Gut microbiota can be affected by several factors, including genetics, age, antibiotics,
and diet. Hence, this review aims to enhance our understanding of gut microbiota function,
the role of diet, and the connections of these factors to AD.

2. Alzheimer’s Disease

AD is a neurodegenerative disease that affects 50 million people worldwide. It is
estimated that this number will reach 152 million by 2050 [14,15]. AD is the 6th leading
cause of death among adults due to a decline in memory and cognitive functions [16].
Currently, in Australia, one in ten people over 65 have AD, and three in ten people over 85
have the disease [17]. In Australia, dementia is the second leading cause of death for all
residents, and according to provisional data, it is expected to become the leading cause of
death within the next few years. According to Austrian statistics, there are estimated to
be almost 29,000 people suffering from young-onset dementia in 2024, and the number is
expected to rise to over 41,000 individuals by 2054. It can include individuals in their 30s,
40s, and 50s [18]. A global estimate of the annual cost of AD and other forms of dementia is
USD $605 billion, equivalent to 1% of the global gross domestic product [19]. It is predicted
that by 2030, the costs associated with AD and dementia will more than double from
US$1.3 trillion per year to $2.8 trillion dollars per year, according to the World Alzheimer
Report 2023 [15,20]. There is no effective treatment for AD, which results in symptoms
worsening as the condition progresses. AD has been recognized as a global public health
priority by the World Health Organization (WHO) [21].

2.1. Pathology of Alzheimer’s Disease

The neuropathological hallmarks of AD are extracellular Aβ plaques and the formation
of NFTs. The development of Aβ and NFTs results in the loss of synapses and neurons [22].
Aβ plaques develop initially in the basal, temporal, and orbitofrontal neocortex regions of
the brain and eventually spread into the neocortex, hippocampus, amygdala, diencephalon,
and basal ganglia [23]. There are several hypotheses that have been proposed to explain
the mechanism of action of Aβ peptides and NFTs in neurodegeneration of AD [22]. These
include the amyloid cascade hypothesis, the tau hyperphosphorylation hypothesis, and the
oxidative stress hypothesis. In addition, oxidative stress, mitochondrial dysfunction, and
neuroinflammation play crucial roles in neuropathological changes in the brain [24].

2.2. Amyloid-Beta Peptides

Aβ is a transmembrane protein that is produced by hydrolysing the amyloid precursor
protein (APP) via the amyloidogenic pathway [25]. This process is initiated by beta-site
APP cleaving enzyme 1 (Beta-Secretase 1 (BACE1)), which forms a large soluble protein
and a 99-amino-acid C-terminal fragment (C99). The C99 fragment is further processed
by a γ-secretase to produce Aβ in either its 40- or 42-amino acid form [26]. Aβ42 levels
have been identified as being important in early events in AD pathogenesis, especially the
ratio of Aβ42/Aβ40 [26]. Further, Aβ monomers aggregate into oligomers, protofibrils,
and amyloid fibrils. Fibrils of amyloid are larger and insoluble, and they can form plaques,
whereas oligomers of amyloid can travel throughout the brain [26,27].

2.3. Tau Proteins

An NFT consists of paired helical filaments and straight filaments, which contain an
abnormally phosphorylated form of the microtubule-associated protein tau. Tau is mainly
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found in neuronal axons of the brain [28]. When tau is acetylated or truncated, it is unable
to bind to microtubules, which promotes tau aggregation, mitochondrial dysfunction, and
synaptic deficiencies [29].

2.4. Oxidative Stress

Oxidative stress plays a significant role in the development and progression of AD
pathology. Oxidative stress occurs when there is an increase in free radicals, such as reactive
oxygen species (ROS) and reactive nitrogen species [30]. Under stressful conditions, ROS
formation increases within mitochondria and increases the risk of developing AD. In
AD, oxidative stress promotes Aβ deposition and tau hyperphosphorylation, as well as
subsequent loss of synapses and neurons [31].

3. The Gut–Brain Axis

The bidirectional communication between the enteric nervous system (ENS) and the
central nervous system (CNS), known as the gut–brain axis (GBA), establishes a connection
between the emotional and cognitive functions of the brain and peripheral intestinal
functions [32,33]. Recent studies highlight the significant role of gut microbiota in GBA
function, influencing the nervous, immune, and endocrine systems [34]. The microbiota
in the gut produces various of neuroactive substances, such as neurotransmitters, short-
chain fatty acids (SCFAs), and other bacterial metabolites, which influence neural activity
and brain function [34–38]. These substances are generated through the fermentation of
dietary fibre and other components (such as nitric oxide, ammonia, and ethanol) by gut
bacteria [35,39].

However, gut dysbiosis has been linked to conditions such as anxiety, depression,
autism spectrum disorders, and AD [40,41]. Consequently, the GBA has emerged as a
potential target for therapeutic interventions aimed at enhancing brain health and treating
neurological and psychiatric disorders. Enhancing brain health and treating brain-related
disorders can be achieved by modifying the gut microbiota through various interventions,
including dietary adjustments, prebiotics, probiotics, antibiotics, and faecal microbiota
transplantation [42–44]. Further research is required to gain a more profound understand-
ing of the complex interactions between the gut microbiota and the brain and to develop
effective therapeutic strategies based on this knowledge.

4. Gut Microbiota

The human gut microbiota comprises bacteria, fungi, archaea, viruses, and protozoans
existing in symbiotic relationships within the gastrointestinal tract [45]. In the human
intestine, there are approximately 1000 species and 7000 strains of bacteria, with Firmicutes
(such as Lactobacillus, Clostridium, and Eubacterium) and Bacteroidetes (including Bacteroides,
and Prevotella) being the predominant phyla [33,45,46]. Recent studies on the human
microbial flora emphasize the importance of maintaining a healthy intestinal microbiome,
as there is a continual fluctuation in the structure, quantity, distribution, and biological
characteristics of the endogenous intestinal flora.

An imbalance in intestinal flora is implicated in various diseases, including AD. Gut
microbiota imbalance is closely associated with deficiencies in gut barrier function and
intestinal permeability. A compromised gut barrier can lead to the release of microbial
metabolites into the bloodstream. If the blood–brain barrier (BBB) experiences leakage,
several proinflammatory cytokines can enter the central nervous system, triggering neu-
roinflammation by activating microglia and astrocytes [34,47].

5. Relationship between Gut Microbiota and AD

The microbiome’s involvement in AD pathogenesis has been observed in both animal
and human studies. Specifically, research has identified associations between certain micro-
bial organisms and the levels of cerebrospinal fluid (CSF) biomarkers related to AD. As an
example, associations were noted between lower levels of cerebrospinal fluid (CSF) biomark-
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ers, including the Aβ42/Aβ40 ratio, phosphorylated tau (p-tau), and the p-tau/Aβ42 ratio,
and the presence of Clostridiaceae (SMB53) and Erysipelotrichaceae (cc115). Conversely, Blau-
tia and Bacteroides spp. were associated with higher CSF biomarker levels [48]. Verhaar
et al. (2022) introduced a machine learning model that identified Lachnospiraceae spp., Lach-
noclostridium edouard, and Blautia faecis (Firmicutes) as the leading microbes in predicting
the presence of tau, based on the area under the curve (AUC). This study also highlighted
an association between gut microbiota composition and amyloid levels in the brain [49].
In five cross-sectional studies, associations were detected between the phylum Bacillota
(Lachnospiraceae, Ruminococcus torques, Roseburia hominis, Lachnoclostridium, Marvinbryantia
spp.) and the levels of Aβ and tau in both plasma and cerebrospinal fluid (CSF) [48,50–53].
Conversely, research identified higher levels of Alistipes spp. and Odoribacter splanchicus
associated with increased amyloid in the CSF and decreased p-tau in the CSF [50]. Li
et al. (2019) identified a negative correlation between amyloid burden and Lactobacillus
abundance, as well as a positive correlation between Akkermansia muciniphila (phylum:
Verrucomicrobiota) and medial temporal lobe atrophy [9]. Evidence from clinical and pre-
clinical studies indicated that A. muciniphila plays a significant role in the development of
depression, anxiety, Alzheimer’s disease, Parkinson’s disease, and other neuropsychiatric
disorders [54]. However, some researchers discovered that A. muciniphila significantly
reduced cognitive impairment in AD mouse models. It also improved the abundance of
gut microbes that produce SCFAs and neurotransmitters. Additionally, they found that
A. muciniphila reduced Aβ1–42 deposition in AD mice [55–57]. However, the underlying
mechanism of A. muciniphila’s effect remains controversial.

Furthermore, Li et al.’s study detected associations between higher abundances of
Fusicatenibacter, Blautia, and Dorea (family: Lachnospiraceae) and lower scores on the Mini-
Mental State Examination (MMSE) among AD patients (18.1), individuals with mild cog-
nitive impairment (MCI) (27.2), and normal controls (29.1). However, the presence of
Hungatella, Faecalibacterium, and Butyricicoccus (family: Clostridiaceae) was associated with
higher MMSE scores [9].

Both animal and human clinical research have reported alterations at the phylum level
in the gut microbiota of AD patients and AD transgenic animal models, specifically in
Firmicutes, Proteobacteria, and Bacteroidetes [58]. Although changes in Actinobacteria and
Verrucomicrobia have been observed, these phyla are less prevalent in the gut of individuals
with AD [58,59]. Cattaneo et al. (2017) demonstrated that individuals with amyloidosis
exhibit distinct gut microbiota compositions compared to those without brain amyloido-
sis [48]. This study also revealed increased levels of proinflammatory cytokines, such as
interleukin (IL)-6, CXCL2, NLRP3, and IL1β, in amyloid-positive patients compared to the
anti-inflammatory cytokine IL-10. Proinflammatory cytokines were positively correlated
with Escherichia/Shigella and negatively correlated with Eubacterium [48]. Additionally,
Vogt et al. (2017) observed a reduction in gut microbiome bacterial diversity in AD patients
compared to healthy age- and sex-matched control subjects. This was determined by
sequencing 16S rRNA amplicons from faeces isolated from AD patients with dementia.
Furthermore, they noted a decrease in Firmicutes and Bifidobacterium along with an in-
crease in Bacteroidetes in AD patients compared to healthy controls (HCs) [50]. Microbiome
studies conducted in China have also revealed differences in gut microbiota composition
between AD patients and HCs [9,51,53,60]. Studies of human cohorts have also revealed
links between specific gut bacteria and AD based on differentially abundant taxa (Table 1).

Li et al. (2019) study revealed higher prevalence of Bacillota (Blautia, Dorea), Firmi-
cutes (Lactobacillus, Streptococcus), Verrucomicrobiota (Akkermansia), Actinobacteria (Bifi-
dobacterium), and Pseudomonadota (Acinetobacter) in individuals with AD compared to
healthy controls (HCs) [9]. Additionally, five cross-sectional studies identified Odoribacter
splanchnicus, Bacteroides, Prevotella, and Alistipes spp. as highly abundant in AD, while Fae-
calibacterium prausnitzii, Eubacterium, Anaerostipes, Ruminococcus, and Roseburia spp. showed
lower abundances in AD patients than in HCs [50–53,61]. Other reports also observed
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increased relative abundance of Actinobacteria and Bacilli, along with decreased relative
abundance of Negativicutes and Bacteroidia in the AD group [48,50–52].

Although these findings collectively suggest alterations in gut microbiota composition
in AD patients, it is essential to note that these studies primarily establish correlations,
and there is a lack of uniformity in the outcomes regarding the bacterial phyla altered in
AD patients.

Table 1. Alterations in microbial diversity associated with AD from human studies.

Sequencing
Methods

Sample Size Year
Results

ReferenceDecreased Microbiota Diversity
in AD

Increased Microbiota Diversity
in AD

16S rRNA
amplicon

sequencing for
faecal samples

25 AD
25 HCs 2017

Phyla: Firmicutes, Actinobacteria
Genera: Bifidobacterium, SMB53,

Dialister, Clostridium, Turicibacter,
Adlercreutzia, cc115

Phylum: Bacteroidetes
Genera: Blautia, Bacteroides,

Alistipes, Phascolarctobacterium,
Bilophila, Gemella

[50]

qPCR for faecal
samples

40 amyloid-positive
33 amyloid-negative

10 HCs
2017

Amyloid-positive group showed
lower abundance of E. rectale

than other groups

Amyloid-positive group
showed higher abundance of
Escherichia/Shigella than other

groups

[48]

16S rRNA
amplicon

sequencing for
faecal samples

43 AD
43 HCs 2018

Phylum: Actinobacteria
Classes: Negativicutes,

Bacteroidia
Orders: Bacteroidales,

Selenomonadales
Families: Lanchnospiraceae,

Bacteroidaceae, Veillonellaceae
Genera: Lachnoclostridium

Phylum: Bacteroidetes
Classes: Actinobacteria, Bacilli

Order: Lactobacillales
Families: Ruminococcaceae,

Enterococcaceae,
Lactobacillaceae

Genera: Bacteroides,
Ruminococcus, Subdoligranulum

[51]

NextSeq500/
Metagenomic

analysis for faecal
samples

24 AD
33 with other

dementia types
51 HCs

2019 Genus: Lachnoclostridium Genera: Bacteroides, Alistipes,
Odoribacter, Barnesiella [52]

16S rRNA
amplicon

sequencing for
faecal and blood

samples

30 AD
30 MCI
30 HCs

2019
Genera: Alistipes, Bacteroides,

Parabacteroides, Sutterella,
Paraprevotella

Genera: Dorea, Lactobacillus,
Streptococcus, Bifidobacterium,

Blautia, Escherichia
[9]

16S rRNA
amplicon

sequencing for
faecal samples

33 AD
32 amnestic MCI

32 HCs
2019 Phylum: Firmicutes

Phylum: Proteobacteria
Orders: Gammaproteobacteria,

Enterobacteriales
Family: Enterobacteriaceae

[53]

16S rRNA
amplicon

sequencing for
faecal samples

100 AD
71 HCs 2021 Genus: butyrate-producing

Faecalibacterium
Genus: lactate-producing

Bifidobacterium [62]

16S rRNA
amplicon

sequencing

20 MCI
22 HCs 2021

Genus: Bacteroides
Families: Veillonellaceae,

Ruminococcaceae

Genera: Blautia, Bacteroide
Family: Lachnospiraceae [63]

16S rRNA
amplicon

sequencing for
faecal samples

11 MCI
11 AD
34 HCs

2022

Phylum: Firmicutes
Genera: Bilophila, Faecalibacterium

Classes: Clostridia,
Deltaproteobacteria

Orders: Clostridiales,
Desulfovibrionales

Families: Lachnospiraceae,
Desulfovibrionaceae,

Ruminococcaceae

Phylum: Bacteroidetes
Class: Bacteroidia
Order: Bacteroidal

[64]

16S rRNA
amplicon

sequencing for
faecal samples

27 MCI
47 AD
51 HC

2022 Genera: Roseburia, Lactobacillus,
Fusicatenibacter Genera: Prevotella, Bacteroides [65]

AD, Alzheimer’s disease; MCI, mild cognitive impairment; HC, healthy control.
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6. Diet, Alzheimer’s Disease, and Microorganisms

The impact of diet on health can be either beneficial or detrimental. There is a possibil-
ity that diet plays a role in influencing microbial communities [66,67]. Various factors such
as dietary patterns, microbiome-specific interventions, and the consumption of natural sup-
plements have the potential to significantly modify the composition of the microbiota. This
alteration, in turn, affects the gut–brain axis (GBA), potentially leading to the alleviation of
AD-related pathology [68,69] (Figure 1).
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Figure 1. Findings relating to gut–brain–microbiome interactions (created with BioRender.com,
24 January 2024). ↑ increase ↓ decrease.

A. Consuming a diet rich in fats (MUFAs, PUFAs), carbohydrates (fibre), and proteins,
along with incorporating probiotics, prebiotics, and engaging in daily activities such as
good sleep and exercise, has been associated with improved mental health. This dietary
pattern is linked to an increase in beneficial microbial species such as Prevotella, Bacteroidetes,
and Lactobacillus, while concurrently reducing levels of Firmicutes, Escherichia coli, and
Ruminococcus.

B. An unhealthy lifestyle marked by stress; anxiety; and the consumption of high-
fat, high-sugar, and processed foods has been associated with an increase in Firmicutes,
Bacteroides, Escherichia, Shigella, and Klebsiella, while simultaneously decreasing levels of
Lactobacillus, Roseburia, and Bacteroides.

6.1. Dietary Protein and Gut Microbiota

Protein stands as an essential macronutrient required by the human body. The quantity
and source of protein intake, whether animal- or plant-based, can impact overall health
and brain function [70]. The prolonged consumption of protein may influence the risk
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of cognitive decline, with higher protein intake being associated with a lower level of
subjective cognitive impairment [71]. According to Fernando et al. (2018), a diet rich in
protein may have a protective effect against brain amyloid-beta (Aβ) burden, especially
before the onset of objective memory decline in older adults [72]. During the digestive pro-
cess, unabsorbed dietary protein undergoes fermentation by proteolytic bacteria, resulting
in beneficial end products that influence both host function and the composition of the
microbiota [73]. Protein-rich diets have been linked to a reduction in anti-inflammatory
bacteria, such as Bifidobacterium adolescentis, in the intestine, along with an increase in proin-
flammatory bacteria such as Bacteroides and Clostridium spp. [74]. Furthermore, studies
have indicated a correlation between the intake of animal-derived proteins and a higher
prevalence of AD due to the production of neurotoxic end products [75]. Conversely,
substituting plant-derived proteins has been associated with reduced dementia-related
mortality and improved brain health. Additionally, animal proteins may contribute to
inflammation by promoting the growth of anaerobic bacteria such as Bacteroides, Alistipes,
and Bilophila [76–78]. In contrast, plant-based proteins stimulate the growth of probiotic
microorganisms such as Bifidobacterium and Lactobacillus while reducing the growth of
pathogenic taxa such as Bacteroides fragilis and Clostridium perfringens [76,79–81]. Studies
have shown a reduction in Roseburia and Eubacterium rectale in the intestinal microflora
and a decrease in butyrate in the faecal matter of individuals following a high-protein or
low-carbohydrate diet.

6.2. Dietary Fibre and Gut Microbiota

In general, carbohydrates can be categorized into simple sugars (monosaccharides,
disaccharides) and complex sugars (starch, fibre). Dietary fibre serves as a beneficial
reservoir of “microbiota-accessible carbohydrates” (MACs), enabling microbes to provide
the host with both energy and carbon. Additionally, fibre has the ability to alter the flora
of the intestinal tract. Fibres are therefore recognized as prebiotics, and increased intake
of simple sugars is associated with an elevated risk of AD, whereas higher fibre intake
is linked to a reduced risk of AD [79,82]. The consumption of soluble fibre promotes the
production of short-chain fatty acids (SCFAs) by gut bacteria [83,84]. Evidence suggests
that soluble fibre intake reduces propionate formation, enhances butyrate production,
diminishes the activation of astrocytes, and improves cognitive function in the APP/PS1
mouse model of AD; these effects are attributed to gut microbiota dysbiosis [85].

A study indicated that individuals with a high fibre intake exhibited an increased
prevalence of probiotic bacteria, including Lactobacillus, Bifidobacterium, and Roseburia,
consequently reducing the Firmicutes:Bacteroidetes ratio [78,80].

6.3. Dietary Fat and Gut Microbiota

Dietary fats come in two main types, namely, saturated and unsaturated; the con-
sumption of fats such as free fatty acids (FFAs), monounsaturated fats (MUFAs), and
polyunsaturated fats (PUFAs) can influence the functions of numerous beneficial microor-
ganisms such as Prevotella, Bifidobacterium [78]. MUFAs and PUFAs are associated with
positive effects, including enhanced brain function and the prevention of neurodegenera-
tive diseases [86–88]. A high intake of saturated fats and trans fats is associated with an
increase in proinflammatory bacteria, while a high intake of MUFAs and PUFAs enhances
the production of short-chain fatty acid (SCFA)-producing bacteria.

Studies have shown that saturated fats reduce anti-inflammatory bacteria (Lactobacillus
intestinalis) and increase proinflammatory bacteria (Clostridial, Bacteroides, Bilophila, and En-
terobacteriaceae) in mouse models [89]. Studies related to humans showed that saturated fat
consumption led to an increase in the phylum Actinobacteria, while the phylum Firmicutes
decreased in human studies. Additionally, the consumption of fish oil, rich in omega-3 PU-
FAs, increased the abundance of beneficial microbes, including Bifidobacterium, Adlercreutzia,
Lactobacillus, Streptococcus, and Akkermansia muciniphila in transgenic mouse models [90]. In
human studies, omega-3 PUFAs were shown to decrease the Firmicutes:Bacteroidetes ratio
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and increase the abundance of SCFA-producing bacterial genera, such as Bifidobacterium,
Lachnospiraceae, and Roseburia [91–93]. High MUFA intake leads to increased levels of bacte-
ria such as Parabacteroides, Roseburia, and Oscillospira, while decreasing proinflammatory
bacteria such as Prevotella [94].

6.4. Polyphenols

Polyphenols are micronutrients with antioxidant properties that naturally occur in
plants and plant-based foods [95]. The majority of polyphenols can be found in fruits
and vegetables such as grapes, blackcurrants, cocoa, black and green olives, oranges,
apples, almonds, flax seeds, pomegranates, red onions, and tomatoes. It is also possible to
find polyphenols in coffee, green tea, and wine [96,97]. Polyphenols have been shown to
affect the composition and diversity of intestinal microbiota. A diet rich in polyphenols
promotes the growth of beneficial microbes, such as Bifidobacterium, and Lactobacillus, and
lowers levels of pathogens, including Staphylococcus aureus, Salmonella typhimurium, and
Clostridium spp. [98,99]. In addition to their anti-inflammatory properties, polyphenols and
their metabolites have been shown to prevent cognitive decline. It has also been found that
dietary polyphenols may prevent neurodegenerative conditions through the AGEs-RAGE
axis, as well as by regulating the microbiota–gut–brain axis [100].

6.5. Dietary Patterns and Gut Microbiota

A growing body of evidence indicates that alteration of gut microbiota due to diets rich
in vegetables, legumes, grains, nuts, and fish, with a preference for plant-based foods over
animal products, holds the potential to prevent the intestinal inflammatory processes that
underlie many chronic diseases including AD [101,102]. The most studied dietary patterns
are the Mediterranean diet (MeD), Dietary Approaches to Stop Hypertension (DASH),
the Mediterranean–DASH Intervention for Neurodegenerative Delay (MIND), and the
ketogenic diet (KD) in related to AD in the elderly population [68,103,104] (Figure 2).

There are key differences among the Mediterranean, MIND, DASH, and ketogenic
diets, as illustrated in Table 2, regarding the types of foods consumed in each dietary pat-
tern [105]. All these dietary patterns have been associated with neuroprotective properties.
The Mediterranean diet is associated with a reduced risk of cognitive decline in populations
that consume it [105,106]. Consumption of the DASH diet has also been associated with
improved cognitive function and a lowered risk of AD [107,108]. Evidence indicates that
the MIND diet reduces cognitive impairment risk [109]. There is evidence that a keto-
genic diet reduces or delays cognitive impairment in older individuals through different
pathophysiological mechanisms [110,111].

Table 2. Components of the Mediterranean, MIND, DASH, and ketogenic diets.

Mediterranean Diet [105,112] MIND Diet [105,113] DASH Diet [114] Ketogenic Diet [112]

Moderate to high
consumption

Whole grains, vegetables, fruits,
olive oil, olives, nuts, seeds,

potatoes, legumes,
low-fat dairy,

red wine, eggs, poultry,
fish/seafood

Whole grains, beans, nuts, green
leafy vegetables,

berries,
olive oil,
poultry,

fish,
red wine

Grains,
legumes,

fruits,
vegetables,

nuts,
seeds,

poultry,
fish,

low-fat dairy

Meat,
fish/seafood,
high-fat dairy

Low consumption
Red meat,

sweets,
salt

Red meat, sweets Red meat,
sweets

Restricted - - -

Legumes,
wines, beer,

flour products,
starch-rich vegetables,
whole/refined grains,

fruit juices
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Figure 2. Dietary pattern interventions to delay the progression of Alzheimer’s disease (cre-
ated with BioRender.com). Dietary patterns such as the Mediterranean diet, DASH diet (Dietary
Approaches to Stop Hypertension), MIND diet (Mediterranean–DASH Intervention for Neurodegen-
erative Delay), and ketogenic diet are associated with improved cognitive, behavioural, and brain
function. ↑ increase ↓ decrease.

Several studies have been conducted to examine the relationship among the MeD,
gut bacteria, and AD. The MeD consists of a diet rich in vegetables, fruits, nuts, whole
grains, and olive oil, with moderate consumption of fish, poultry, and red wine, as well
as polyphenols, fibre, and carbohydrates with a low glycaemic index. Therefore, the MeD
promotes the growth of saccharolytic microbial species (Bacteroidetes, Firmicutes, and
Actinobacteria) as well as the release of beneficial metabolites [115–117]. Consumption
of the MeD has been shown to result in elevated levels of gut bacteria producing SCFAs,
such as Bifidobacterium, Roseburia, and Lactobacillus, and reduced levels of proinflammatory
bacteria such as Prevotella and Clostridium [97,118–120]. Additionally, the MeD has been
linked to reduced human systemic inflammation through the promotion of beneficial
fibre-degrading bacteria such as Cellulosilyticus, Faecalibacterium prausnitzii, and Eubacterium
eligens [121]. Based on a meta-analysis, MeD diet compliance is also associated with reduced
MCI and AD risk. This study included 34,168 participants, demonstrating a reduction of
17% in the risk of MCI and a reduction of 40% in the risk of AD. In addition, 612 non-frail
or pre-frail individuals across five European countries were examined over a 12-month
period; the findings showed that inflammation was reduced and that cognitive function
was improved [122,123]. Mediterranean-diet followers had a 20% lower risk of dementia,
according to a study conducted in 16,160 elderly participants in the EPIC-Spain Dementia
Cohort [124]. Based on a systematic review, the Mediterranean diet has been shown to
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have beneficial effects on the cognitive function of the aging population after 10 weeks of
adherence [125,126].

The ketogenic diet (KD), characterized by high fat (75%) and protein (20%) intake,
with minimal carbohydrates (5%), aims to induce a state of ketosis [127]. Studies on
individuals with MCI or AD show significant improvements in cognitive function with KD
consumption, along with alterations in the microbiota, affecting species such as Akkermansia
and Parabacteroides [128,129]. However, research on humans suggests that KD consumption
reduces beneficial microbes, including Bifidobacteria, Dialister, E. rectale, Bacteroides, and
Roseburia, while increasing proinflammatory bacteria such as E. Coli and Desulfovibrio
spp. [130–133].

A study in MCI individuals on a high-fat modified Mediterranean KD (MMKD)
observed changes in GABA-producing bacteria and GABA levels, emphasizing the need
for caution in prolonged fasting due to potential risks of toxic levels and ketoacidosis
in older individuals [128]. Moreover, high adherence to the DASH and MIND diets has
been associated with reduced AD risk. Moreover, these dietary patterns contain nutrients
with antioxidant and anti-inflammatory properties, contributing to the suppression of Aβ

deposition [103,122].

7. Prebiotics, Probiotics, and Alzheimer’s Disease

Probiotics are living bacteria that promote the health of the host, while prebiotics
are fibre substances degraded by gut microbiota [43,134]. The use of probiotics, such
as lactic acid bacteria and Bifidobacterium, to reduce neuroinflammation has attracted
attention [135,136]. However, there is still limited research on the therapeutic effects of
probiotics and prebiotics in AD.

7.1. Prebiotics and Alzheimer’s Disease

Prebiotics are substrates selectively metabolized by host microorganisms to generate
health benefits [137]. Recent studies in both animals and humans have investigated the
impact of prebiotics on mental health. As an illustration, Liu et al. (2021) treated 5XFAD
mice with the prebiotic mannan oligosaccharide, noting decreases in cognitive deficits,
amyloid plaques, oxidative stress, and microglial activation, alongside modifications in
the gut microbiome [138]. Additionally, Chen et al. (2017) noted that the prebiotic R13
tropomyosin receptor kinase B (TrkB) inhibited the proinflammatory pathway in the gut,
leading to reduced amyloidogenesis and oxidative stress [28]. The prebiotic sodium oligo-
mannate (GV-971) is utilized to enhance cognitive function and treat mild to moderate AD.
Evidence suggests that GV-971 can reverse cognitive impairment; rectify gut dysbiosis;
suppress neuroinflammation; and permeate the blood–brain barrier to directly bind to Aβ,
inhibiting Aβ fibril formation [139].

7.2. Probiotics and Alzheimer’s Disease

The microbiota associated with probiotics can enhance cognitive function and play a
positive role in preventing memory loss in Alzheimer’s disease (AD) [140,141]. Lactobacillus
and Bifidobacterium are among the most commonly utilized probiotic genera [43]. Eight
weeks of consumption of Bifidobacterium breve, Bifidobacterium longum, and Bifidobacterium
infantis resulted in altered intestinal microbiome composition and increased levels of SCFAs
in serum (acetate), brain (lactate and acetate), and serum (acetate and lactate). Notably,
the proliferative marker Aβ and glial fibrillary acid protein did not exhibit significant
changes [142,143].

An additional study demonstrated that combining probiotics with vitamin formula-
tions resulted in reduced Aβ levels and improved cognitive performance in transgenic
mouse models [144]. The same research group observed that when Bifidobacterium lactis
Probio-M8 was administered for 45 days, it resulted in a reduced number of Aβ plaques,
alterations in gut microbiota composition, and improved cognitive performance [145]. As
per Akbari et al. (2016), probiotic milk containing Lactobacillus acidophilus, Lactobacillus casei,
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Bifidobacterium bifidum, and Lactobacillus fermentum is associated with significantly improved
Mini-Mental State Examination (MMSE) scores, reduced plasma malondialdehyde (MDA),
and decreased plasma C-reactive protein (CRP) [146]. When MCI patients were treated
with Bifidobacterium breve A1 for 16 weeks, the findings showed a significant improvement
compared to the placebo group in neuropsychological assessments, including the Repeat-
able Battery for the Assessment of Neuropsychological Status (RBANS) and the Japanese
version of the MCI Screen (JMCIS) [147].

These studies concluded that probiotics, prebiotics, synbiotics (combinations of pro-
biotics and prebiotics), and postbiotics (functional bioactive compounds such as SCFAs),
could modify AD-related neuropathology and disease progression effectively, presenting a
novel therapeutic approach [12,147].

8. Conclusions

Gut dysbiosis assumes a pivotal role in the pathology of AD, offering a non-invasive
diagnostic and potential treatment avenue. The intricate interplay between gut microbiota
and AD pathogenesis involves abnormalities in Aβ, tau phosphorylation, neuroinflam-
mation, dysregulation of neurotransmitters, and oxidative stress. While various studies
have identified functional bacteria linked to AD pathology and altered brain function,
conclusive results remain elusive. Factors contributing to this ambiguity include a focus on
genus-level associations without delving into species-level specifics and a lack of consider-
ation for dietary changes. Ongoing research endeavours are dedicated to unravelling these
mechanisms, promising valuable insights into the nuanced contributions of gut microbiota
and dietary influences on cognition, dementia, and AD.
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