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Abstract

Automatic pain assessment algorithms are used to improve pain assessment and assist

subsequent pain treatment and management for patients without healthcare provider su-

pervision. This thesis proposes a new pain assessment framework called "A Personalized,

Uncertainty-Aware, Trustworthy Algorithm for Effective Pain Assessment using Biosignals."

The framework takes into account the uncertainty of the data itself and the strong subjectivity

of the pain experience, utilizing heart rate variability analysis to assess data uncertainty and

test time adaptation to deal with distribution drift. It considers that pain data is imperfect, that

there are data-label inconsistencies, and that the personalization of pain prediction algorithms

is important. Our aim is to create complete frameworks for automated pain assessment that

reduce the complexity of algorithms while predicting well. We collected experimental pain

data and data from real pain patients, including post-surgical patients and women in labor.

Through experiments and analyses, the framework outperforms state-of-the-art methods.
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CHAPTER 1

Introduction

Automated pain assessment relies on algorithms for pain level prediction using the patient’s

own data, a process that does not require subjective patient involvement. The main application

scenarios include the post-surgical coma phase or in the ICU ward. This paper focuses on

building a framework for automatic pain assessment using the patient’s physiological signals

as input to the algorithm. In current clinics, subjective-based automated reporting is still the

main method of pain assessment, but this method is very time-consuming and laborious and

is not feasible for patients with speech dysfunction. The objective automatic pain assessment

algorithm was developed with the goal of serving as an assistant tool to close the loop of

pain management and treatment. This step is essential because of the patient’s need for pain

management and limited medical resources.

There are three main challenges in the development of automated pain assessment algorithms,

the first being pain data, which is often more difficult to publicize due to its experimental

specificity and the private nature of patient data, which has resulted in a very limited publicly

available pain dataset. The second is the uncertainty of the data, whether it is experimental

pain data or real pain patient data, whether the data collected is the patient’s facial expression

or physiological signals or a combination of the two, the data itself has a certain degree of

noise, and there is a certain degree of error in the correspondence between the data and the

label. The third one is that pain is highly variable between individuals due to the complexity

of pain itself and the fact that personality judgments of different pains are strongly subjective.

A number of studies have attempted different approaches to address the three previously

mentioned problems, focusing mainly on the analysis of data from real pain patients and

1



2 1 INTRODUCTION

the application of tree-based machine learning algorithms. These approaches are rather

fragmented and do not constitute an overall framework. This motivates the thesis, which

develops a new framework called A Personalized, Uncertainty-Aware, Trustworthy Algorithm

for Effective Pain Assessment using Biosignals.

The inputs to the proposed pain assessment framework are biosignals due to their relative

objectivity compared to facial expressions. Considering the natural ordering carried by pain

labels, the algorithm designs an ordered regression neural network as an inference model

by converting the ordered pain level prediction problem into a series of binary classification

problems. Within this framework, we substitute methods for data uncertainty assessment and

domain generalization with the aim of developing a personalized pain assessment algorithm as

well as taking data uncertainty into account. In addition to this, a hierarchical pain monitoring

system is proposed with the aim of reducing the computational power requirements of medical

hardware. This thesis first describes current research advances and methods in pain assessment

algorithms, focusing mainly on the study of pain algorithms based on physiological signals.

Chapter 3 focuses on the data collection study; in this chapter, we are doing three different

types of pain data collection by collaborating with healthcare companies and hospitals, which

are thermal stimulation pain data, maternal pain data, and postoperative patient pain data. The

technical chapters make the following contributions.

In Chapter 4, we introduce a personalized pain intensity inference model for automated

pain assessment in clinical settings. This method distinguishes itself in the domain of pain

personalization by facilitating both online and passive assessments of pain, demonstrating

efficacy comparable to approaches utilizing source data. Moreover, we have integrated a

novel test-time adaptation strategy aimed at minimizing the predictive entropy within ordinal

regression neural networks, thereby enhancing the precision and reliability of assessments.

Our algorithms were developed across two datasets: the public BioVid and the private Apon,

achieving state-of-the-art results on the public dataset. Further validation of our approach’s

effectiveness was conducted through its application on real patients, affirming the potential of

our methodology for practical medical scenarios.
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In Chapter 5, we introduce DUG-CORAL, an innovative approach for automatic pain assess-

ment that marries the concept of pain data uncertainty with the CORAL ordinal regression

algorithm. This method marks the first exploration into utilizing heart-related indicators

and derived heart rate variability (HRV) features for estimating individual data uncertainty,

subsequently integrating this uncertainty into the training process of an electrodermal activity

(EDA)-based pain prediction model. To tackle the inherent ambiguity in pain labeling, we

implement a task-importance weighting strategy during the loss calculation phase, aiming

to refine the model’s accuracy. Our extensive experiments conducted on the pain datasets,

BioVid (public) and Apon (private), showcase our method’s superior performance over tra-

ditional approaches. Additionally, we extend our validation to real pain patients, further

confirming the robustness and effectiveness of our approach in practical clinical scenarios

In Chapter 6, we present a novel machine-learning framework designed to identify pain and

assess pain intensity utilizing ultra-short segments of physiological signals, approximately 5

seconds in length. This framework demonstrates superior performance across various metrics,

outpacing the current state-of-the-art solutions. Our research further delves into the potential

of exclusively using Electrodermal Activity (EDA) and its derived features for the purpose

of automatic pain assessment, pioneering a simplified yet effective approach. In addition to

theoretical development, we have designed and executed experiments involving heat-induced

pain stimuli to empirically validate the feasibility and accuracy of automatic pain assessment.

Our methodologies are rigorously compared with leading-edge solutions using both publicly

available data and data collected by us. An extensive ablation study is conducted to underline

the effectiveness of our design, providing comprehensive insights into the contributions of

different components of our framework to its overall performance.

Many of the chapters in this thesis use a large number of similar symbols and notations.

However, due to unavoidable differences in problem settings, each chapter assumes a separate

set of symbols to avoid reader confusion. The second chapter has to do with pain data

collection and is the basis for algorithm development to be carried out later. The third and

fourth chapters are devoted to two key issues in pain algorithm development, one being
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FIGURE 1.1: Thesis Outlines and relationship between chapters

uncertainty and the other subjectivity. The fifth chapter is a study of the efficiency and

usability of the algorithm for applications in realistic scenarios.
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Pain has always been one of the main reasons for patients to seek medical help, and since

2013, when the first publicly available pain dataset, BioVid, was introduced, the development

of pain prediction algorithms has attracted the attention of both computer scientists and

healthcare practitioners, not only in terms of pain rating scores, but also in a number of areas,

such as the assessment of pain sensitivity, the assessment of the level of exposure to injuries,

the assessment of the pain perception state, and so on, with a number of achievements. The

increasing power of learning models has led to higher predictive capabilities. These models

are becoming accurate and lightweight, and AI predictive modeling can go a long way in

helping physicians in decision-making. The authors believe that AI-assisted pain assessment

and management must be the right direction for the future.



CHAPTER 2

Current Research Advances and Methods in Pain Assessment

Pain management has always been a major problem in the field of clinical medicine and the

main factor for many patients to seek medical services. More than 40% of postoperative

patients’ pain has not been fully controlled. For these patients, the pain has a serious impact

on their life and psychology. During the outbreak of the Wuhan epidemic in 2019, the closure

of the pain management department caused great challenges to the pain management of

patients with severe chronic pain. Many patients with chronic pain could not seek medical

help face-to-face during the isolation period, which led to the inability of patients to get timely

and effective pain management.

Pain assessment is the basis of pain management. At present, there are two main methods of

clinical pain assessment: self-report and doctor’s observation. However, these two methods

have obvious defects respectively. In the real medical scene, many patients can’t give

autonomous reports with clear cognition when they feel pain. It has been found that the

doctor’s observation method usually underestimates the patient’s real pain level, and the

objective observation method is always labor-intensive and impractical in pain monitoring.

Therefore, the automatic (intelligent) pain assessment tool is an essential component in the

future pain management system.

In the past ten years, with the development of machine learning and artificial intelligence,

automatic pain assessment tools based on facial expressions, physiological signals, and

behavior seem to be feasible solutions for patients with communication difficulties. At

present, the pain assessment method for dementia patients is still to use objective observation

assessment tools. In 2021, research by the University of California in the United States showed

6



2.1 PATIENTS SELF-REPORTING 7

that the change in skin conductivity was an important index that reflected pain. However, in

their research, the pain of patients was artificially aroused, not naturally caused by patients.

The International Association for the Study of Pain (IASP) conceptualizes pain as "an un-

pleasant sensory and emotional experience associated with actual or potential tissue damage,

or described in terms of such damage." This definition underscores the multifaceted nature of

pain, delineating at least three integral dimensions: unpleasantness, sensory experiences, and

emotional responses. Each dimension contributes equally to the patient’s pain experience,

rendering evaluations that focus on a single aspect both incomplete and insufficient. In the

future, the main obstacle to applying AI to automated pain assessment remains pain datasets;

as it stands, the majority of publicly available pain datasets are from experimental pain rather

than real patients with pain, and even when real pain data collection has been performed in

some studies, the data are not publicly available. Second, pain data tend to be labeled with

more homogeneous metrics rather than a composite score of pain concepts, which leads to

inconsistency in pain data and labeling.

2.1 Patients Self-Reporting

The pain rating scale measures how badly a patient suffers in pain. The measure often comes

from a patient’s self-reporting. Some common measurements are the Verbal Rating Scale

(VRS), Visual Analogue Scale (VAS), and Numerical Rating Scale (NRS). With VRS, one

reports pain intensity by choosing the best adjective to reflect the feeling. With VAS, the pain

intensity is decided by a point on a 100mm line. With NRS, one reports pain intensity by

deciding an interval level on an 11, 21, or 101-point box scale where two endpoints represent

no pain and worst pain (Williamson and Hoggart, 2005).

In clinical settings, the Visual Analog Scale (VAS) is prevalently utilized for pain assessment,

requiring patients to indicate their pain level along a continuum between two endpoints.

The distance from the starting point to the mark indicates the patient’s self-reported pain

intensity. Despite its widespread use, the VAS method has notable limitations. Firstly, it fails

to fully capture the ordinal nature of pain as an emotional experience, potentially preventing
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patients from indicating extreme pain levels that surpass their tolerance threshold. Secondly,

the subjective nature of pain assessment remains a challenge. Lastly, the assumption that

individuals in severe pain can accurately gauge and communicate their pain intensity is

problematic.

Pain scoring inherently represents a latent, continuous variable, yet research frequently

employs discretized scales—ranging from "slight" to "severe" or from "no pain" to "as painful

as possible"—to quantify the pain intensity. These methodologies often rely directly on VAS

scores for quantification, overlooking the nuanced complexities of pain experiences. Given

these considerations, there is a substantial global demand for objective pain assessment. The

burgeoning field of AI-assisted pain management offers considerable promise, heralding

advancements in the precision and understanding of pain evaluation and treatment strategies.

2.2 Objective Questionnaire

Most observational scales consider facial expressions, vocalizations, and body language,

while some scales also include vital signs. Assessing and comparing the validity of various

scales is difficult because studies vary widely in terms of design, methodology, subjects, and

conceptualization of pain phenomena. Significant prior training and experience is required

to reliably apply a scale. Even if trained medical personnel are able to record pain intensity

by observation several times a day, such frequent measurements may be minimized under

financial pressure unless cost savings are shown to be possible. As a result, relevant pain

events may be missed, or human observers may detect changes later(Werner et al., 2019).

2.3 Electrodermal Activity

Electrodermal Activity (EDA), a.k.a. Galvanic Skin Response or Skin Conductivity Level

(SCL), is the sympathetic activity from eccrine sweat glands on the skin. The EDA signal is

sensitive to psychological processes (Dawson et al., 2017). EDA has been used in multiple

psychology studies, for example, stress evaluation (Jiang and Chen, 2021) and emotion
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classification (Shukla et al., 2019). EDA is also easy to collect (Banganho et al., 2021). Many

commercial wearable sensors, such as Emptica E4 wristband (Ollander et al., 2016), can

continuously monitor skin conductivity changes.

2.4 Pain Assessment with EDA Signal

As a sensitive pain modality, EDA-based algorithms have been developed for automatic pain

assessment. Existing methods fall into three categories: (1) statistical methods, (2) machine

learning with hand-crafted features, and (3) deep learning models that extract features and

build models in a black-box manner.

The work (Treister et al., 2012) defines four levels in pain intensity, and the pain intensity

increases along with the level number. While the patients are tested in thermal stimuli, their

body signals, photoplethysmography, SCL, and electrocardiogram (ECG), are collected. The

data is then analyzed using the Friedman test and post-hoc Wilcoxon test. As a finding, a

linear model of SCL variables can separate no pain from others (p < 0.001). It also predicts

the pain levels (p < 0.001 to 0.02). In addition, the work (Sugimine et al., 2020) applies the

one-way analysis of variance with post-hoc Student–Newman–Keuls test on EDA signal. The

result shows that normalized SCL tells non-physical pain stimuli, including noisy auditory

and visual stimuli, which makes one think of the pain and physical pain stimuli apart.

The work (Chu et al., 2017) uses various basic statistical features (maximum, minimum,

median, and others) to represent 30-second ECG signals collected from the middle of electrical

stimuli of 1 minute. The authors use multiple machine learning algorithms on the concatenated

feature sets and observe that the models can predict pain states induced by four electrical

stimulus levels. The work (Susam et al., 2021) develops an SVM-based classification schema,

which uses the fusion of EDA signal and video data to detect clinically significant pain from

clinically nonsignificant pain in children.

A variety of multi-modal pain assessment algorithms have been proposed in recent years.

The work (Thiam et al., 2021) proposes novel multi-modal deep learning approaches based
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on bio-signals (EDA, electromyogram (EMG), ECG, and respiratory rate) and evaluates the

models on BioVid with an accuracy of 35.44% and a mean absolute error of 0.97 on five-level

pain intensity prediction task. The work (Thiam et al., 2019) uses a convolutional neural

network to achieve end-to-end learning schema in developing pain assessment algorithms.

The experimental result presents an accuracy of 36.54% on a five-class classification task

using the fusion of EDA, EMG, and ECG.

The success of these works opens the door for using EDA signals only for pain assessment.

However, all these works either use EDA and other physiological signals as inputs or a long

EDA signal for the model. We argue that these solutions still have room to improve on the

efficiency and medical device dependencies.

2.5 Automatic Pain Assessment Using Biosignals

Bio-signals have shown significant potential for pain assessment in numerous studies, with

skin conductance response and heart rate/heart rate variability being the most characterized

autonomic responses (Chae et al., 2022). Differential characteristics of EDA have been

identified as sensitive indices for classifying experimental pain stimulation induced by electric

pulse (Kong et al., 2021), heating (Pouromran et al., 2021), and cold pressor test (Winslow

et al., 2022). Furthermore, normalized skin conductance level can distinguish physical pain

stimuli from other sympathetic stimuli (Sugimine et al., 2020). ECG data has achieved an

81.9% F1 score for acute pain classification in laboratory and clinical settings (Winslow et al.,

2022). Studies have also validated the use of electrodermal activity for postoperative pain

assessment in real patients (Aqajari et al., 2021), and the effectiveness of pain assessment

using EDA and video on children following laparoscopic appendectomy (Susam et al., 2021).

These studies underscore the potential of pain assessment tools in real medical scenarios.

However, the transition of these learning methods from experimental to clinical settings is yet

to be achieved, and their datasets are not publicly available due to privacy concerns.
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2.6 Conclusion

In this section, we present prevalent clinical pain assessment methods that have proven

their effectiveness based on subjective pain reports. However, they also have practical

limitations, such as the requirement for verbal communication from the patient and the need

for human intervention by healthcare workers, among others. We present the progress in the

development of EDA signals and current algorithms for automated pain assessment using

EDA, demonstrating their research results. These findings demonstrate the great potential

of the EDA as an objective automated pain assessment metric, but to verify its true validity,

pain researchers still need to bring it into the clinic, a process that requires the combined

efforts of patients, physicians, and researchers. Research on objective pain markers other than

EDA (e.g., facial expressions and other physiological signals) has also yielded promising

results. The fusion of this range of objective indicators may be able to eliminate to some

extent the effects of non-specificity of a single indicator, which will lay the foundation for

future automated pain applications that can be practically applied to real pain patients.



CHAPTER 3

Data collection study

3.1 Experimental Pain Data Collection Study

We conducted a data collection study of an experimental electrical stimulation-induced pain

model in collaboration with Alpine Medical. In this study, we recruited a total of 60 volunteers,

and excluding invalid data, the total sample size totaled 1363 observations. Among them, 519

observations were mild pain, 517 observations were moderate pain, and 312 observations

were severe pain. The experiment is divided into 4 phases: experiment preparation phase,

pre-laboratory phase, experiment phase and data organization phase.

3.1.1 Experiment Background

Pain assessment is an essential step in pain management, and currently there are two main

methods of clinical pain assessment: autonomous report and physician observation; however,

the current methods of pain assessment have obvious flaws respectively. In real medical

scenarios, many patients are unable to give cognitively clear autonomous reports when they

feel pain. Physician observation has been found to underestimate the patient’s true pain and

is always labor-intensive, making it impractical for continuous pain monitoring. Therefore,

automated pain assessment tools are an essential component of future pain management

systems.
12
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3.1.2 Experimental Purpose

• Exploring the efficacy of electrodermal activity (EDA) as an important metric in

automated pain assessment

• Exploring the Optimal Time Window for EDA Signals to Assess Pain Levels in

Thermal Stimulation Simulated Pain

3.1.3 Experimental Apparatus

• Thermal stimulation equipment/electrical stimulation equipment

• Data acquisition equipment (EDA sensor, data acquisition software)

3.1.4 Experimental Steps

The experiment is divided into four stages: experiment preparation stage, pre-experiment

stage, experiment stage and data organization stage.

3.1.5 Experimental Preparation Stage

• experimenter introduces the background, purpose, process and results of the ex-

periment to the volunteers, and answers the questions raised by the volunteers and

records them.

• Volunteers fill in the personal information form and volunteer consent form.

• Commissioning the experimental instruments

3.1.6 Pre-experiment Stage

Objective: To find out the pain threshold (mild, moderate and severe) of each volunteer for

thermal stimulation. Experimental parameters:

• The hot electrode is fixed on the skin of the forearm.

• the initial temperature is 32°C (baseline)
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• The temperature rises and falls at 8°C per second.

• The thermal stimulation time is 5 seconds. When the temperature is reached, the

calculation begins, excluding the time for temperature rise and fall.

• The stimulation interval is 30 seconds.

• The maximum temperature is set to 50°C

• Measurement of pain assessment: VAS

3.1.7 Pre-experiment Process

After everything is ready, the experimenter can start the experiment, adjust the temperature to

32°C for 30 seconds to ensure that the patient has no pain at this temperature, and the first

pain stimulation is performed after 30 seconds, so that the experimenter needs to record the

VAS score of the patient after each pain stimulation. Pre-experiment will be divided into two

groups: step-by-step group and cross-over group. Each time, the step-by-step type group

takes precedence over the cross-repetition type. The initial temperature of step-by-step type is

46°C, the temperature gradually increases, and each stimulation increases by 0.5°C. When

the temperature reaches 50°C, the experimental group is terminated. Based on the VAS score

given by the volunteers with the initial temperature of 46°C in the step-by-step group, the

selection of temperature in the cross-iteration group can be alternated in different temperature

ranges, and the thermal stimulation temperature of each time can be limited within the range,

with no fixed characteristic temperature. In the repeated group, the continuous stimulation

temperature will alternate continuously to ensure that there will be no pain memory effect.

3.1.7.1 Analysis on Pre-experiment Data

The total number of participants in the pre-experiment was 60. The purpose of the pre-

experiment was to find out each subject’s temperature threshold for mild, moderate and

severe pain. All subjects completed 2 groups (progressive and crossover) of pain assessment

experiments. In order to select subjects with more reasonable pain assessment individuals,

we depicted the mean VAS scores at each temperature based on the pre-experimental data

of each subject. On this basis, a reasonable temperature threshold was manually manually
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labeled reasonable temperature thresholds and excluded subjects with significant errors in

pain scores under incremental thermal stimulation conditions, of which 28 Subject 28, whose

data showed over-sensitivity to temperature, and subject 38, whose data appeared to be

significantly abnormal, were excluded.

FIGURE 3.1: Distribution of
VAS score (Subject 38)

FIGURE 3.2: Distribution of
VAS score (Subject 28)

Participants in the formal experiment: 58, subjects will have 10 pain stimuli at each pain

threshold in the formal experiment.

Mild, moderate, severe Mild, Moderate moderate, severe Mild, severe

34 9 3 2

Distribution of subjects’ bmi (body mass index) As can be seen from the graph, most of

the subjects showed normal levels of body mass index and very few subjects had bad indices

such as overweight and obesity.

Distribution of pain sensitivity According to the results of the pain sensitivity questionnaire,

the pain sensitivity of the subject population basically satisfied the normal distribution and

met the experimental conditions.

Pain Catastrophizing Scale The overall distribution was left-skewed according to the Pain

Catastrophizing Scale statistics, and the exact experimental impact remains to be further

investigated.
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FIGURE 3.3: Distribution of subjects’ bmi (body mass index)

FIGURE 3.4: Distribution of pain sensitivity

3.1.8 Experiment Stage

By calculating the average value of volunteers’ scores of different pain intensity in the pre-

experiment, the average value of temperature corresponding to the pre-experiment is calculated

here. This temperature value is used as the simulated temperature value of volunteers with

different pain levels in the formal experiment.
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FIGURE 3.5: Pain Catastrophizing Scale

In the formal experiment, the experimental parameters are exactly the same as those in

the pre-experiment. Each stimulus will randomly have a pain intensity, and the temperature

corresponding to the volunteer is the current stimulus temperature. Each volunteer experienced

50 stimuli, and the total time was about 30 minutes.

3.1.9 Data Organization Stage

• Collect, sort out and back up the experimental data.

• Volunteers fill in the pain sensitivity questionnaire and the pain disaster scale ques-

tionnaire.

3.1.10 Experimental Caveats

• Before the start of all experiments, it is necessary to repeatedly test the pain stimula-

tion equipment to make sure that there is no accident such as sudden temperature

rise.

• In the formal experiment, volunteers need to perform pain simulation test in an

unattended environment
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• Try to ensure that volunteers have no strong personal emotions such as happiness

and anxiety when participating in the experiment.

• Try to ensure that volunteers do experiments under stress-free conditions.

• Ensure the laboratory temperature and suitable lighting conditions.

3.1.11 Analysis

Whether there is a statistically significant difference in pain scores between subjects

at the same temperature. To test whether there is a significant difference in pain scores

among different objects at the same temperature, we can conduct a Friedman test for each

temperature level. This is because the data appears to be paired (multiple scores at each

temperature), and the Friedman test is suitable for non-parametric repeated measures data.

Results: According to the experimental results, there are 48 data points at 42.0°C, 40 data

points at 43.0°C, 42 data points at 43.5°C, 60 data points at 44.0°C, 60 data points at 44.5°C,

60 data points at 45.0°C, 60 data points at 45.5°C, 60 data points at 46.0°C, 34 data points

at 46.5°C, and 19 data points at 47.0°C. Temperatures with less than 10 data points are

disregarded.

The results of the Friedman test showed the statistical significance of pain scores at each

temperature. The p-values for most temperatures are far less than 0.05, indicating that there

are significant differences in pain scores among different subjects at these temperatures.

This means that for these specific temperatures, different subjects may experience different

intensities of pain.

Statistical difference in subjects’ ratings for the same temperature. Each subject under-

went six heat pain stimuli at the same temperature and provided six pain ratings.

Average number of identical ratings 3.81 0.635

Mean number of different ratings 2.19 0.375

Mean difference in ratings 0.57
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This shows that the number of pain scores giving the same rating on 6 occasions with the

same temperature stimulus was 3.81, the number of different number of ratings at 2.19 and

the mean difference between ratings at 0.57.

Segmentation of data according to pain intervals. the total number of samples are 516.

• Primary data, samples satisfy Six scoring ties (not including 0 points included), the

number of samples are 102, the percentage is 19.76%.

• Secondary data, 1) Four data with the same score (not including 0), six data in the

same interval (light, medium, heavy); 2) Six Data Convergence in a Pain Interval.

the number of samples are 57, the percentage is 11.04%.

• Tertiary data, 1) Four data with the same score (not including 0), and two others

not in the same pain interval; 2) Four data converge (are in the same interval) and

the other two are in adjacent intervals of this interval. the number of samples are

158, the percentage is 23.64%.

3.2 Clinical Pain Data Collection Study

The goal of this study is to investigate the pattern of pain and whether there is a clear

correlation between pain and electrical signals in human skin by collecting and analyzing

data from different types of subjects on pain manifestations and signs of stress.

This study was approved by the Institutional Review Board (IRB) of the Ethics Committee at

Shanghai First Maternity and Infant Hospital. The IRB approval number is KS21179, and the

approval was granted on March 1, 2023. The approved research protocol, which outlines the

objectives, methodology, anticipated risks, and benefits of the study, was strictly followed.

All participants provided informed consent prior to their inclusion in the study. The research

team, led by Hongyi Zhu, Vice-president of the Jiangsu Apon Medical Technology Co.,Ltd.,

can be contacted for further information at hongyi.zhu@gmail.com.
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The trial was randomized. Screened subjects were enrolled, and data on stress signs were

collected from different types of subjects (e.g., distinguishing between "trauma patients",

"laboring mothers", "ICU thoracic surgery patients", etc.) in the subject group. In the group of

subjects, data were collected on different types of stress signs (e.g. "trauma patient", "laboring

mother", "ICU thoracic surgery patient", etc.), with the following requirements: the presence

of a strong pain process and a significant change in the pain level over a certain period of time.

To investigate whether there is a clear correlation between pain and human skin electrical

signals, and whether it is feasible to investigate the idea of indirectly characterizing the degree

of stress pain in humans by human fingertip skin electrical signals.

3.2.1 Pain Patients

Acute trauma patients. Acutely traumatized patients are a category of patients with a high

level of pain. Before the patient is admitted to the hospital without intervention, data collection

of heart rate, skin conductance, body surface temperature, blood pressure, and evaluation of

pain signs (including pain level) is performed for about 3-5 minutes. A second collection

of the same types of signs and pain evaluation was performed during wound management

and analgesia (depending on the range of the collection device). Before the patient left the

hospital at the end of treatment, a final collection of the same type of sign data and pain

evaluation were performed as baseline data.

Maternity pain data. The collaboration between Apon Medical Company and Shanghai

First Maternity and Infant Healthcare Hospital (SFMICH) has resulted in the collection of

data on the pain generated by contractions in pregnant women. So far, the dataset contains 63

observations, and the average length of the data is about 30 minutes.

Mothers in natural labor will experience regular contractions in the first and second stage of

labor, with obvious pain in the contraction state, pain relief in the inter-contraction stage, and

pain reduction after the implementation of labor analgesia, which will continue until the end of

the labor for women in completely natural labor. After the laboring woman entered the labor

room to wait for labor, we observed and selected the women who had regular contractions,
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and collected the data of heart rate, skin conductance, body surface temperature, and blood

pressure for the first 3-5 minutes during the intervals, and evaluated the pain signs (including

the degree of pain), and collected the data of the second group of the same type of signs at the

stage of obvious pain in the period of contractions, and carried out the pain evaluation. When

labor entered the third stage of labor and the uterine opening was close to full, the third data

collection of the same type of signs and pain evaluation were performed. At the end of labor,

when maternal signs are stable and there is no pain (e.g., before leaving the hospital), a fourth

set of the same type of signs is collected as baseline data (which can be strongly influenced

by medications such as oxytocin).

Postoperative patient pain data . Apon Medical Company and Shanghai No. 4 People’s

Hospital collaborated to collect pain data from postoperative patients in scenarios including

before anesthesia, in the recovery room, and in the hospital room. So far, there are 94 data

items of different pain levels, and the average sampling time is 7 minutes.

Thoracic surgery targets diseases such as lung cancer, esophageal cancer, mediastinal tumors,

and chest wall deformities, and these surgeries are the most severe types of surgical procedures

in terms of postoperative pain due to their extensive and traumatic nature. One study reported

that timely video-assisted thoracoscopic surgery still resulted in moderate to severe pain

in 78% of postoperative patients: 27% with severe pain, 34% with severe pain, and 17%

with very severe pain. Before the patients entered the operating room to prepare for the

administration of anesthesia, the first 3-5 minutes of data collection of heart rate, skin

conductance, body surface temperature, blood pressure, and evaluation of pain phenotypes

(including pain level) were performed as baseline data for the subjects. After the procedure,

in the observation/resuscitation room, when the patient has largely regained consciousness,

a second data collection of the same type of signs is performed, as well as pain evaluation

(possibly for 2 days in the ICU). Depending on the patient’s second pain level, as well as

the level of care evaluation, the third and fourth same type of sign data collection, and pain

evaluation were performed in the ward before and after analgesic measures were taken.
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3.2.2 Data Acquisition Equipment

The eVu TPS is a lightweight and small portable sensor that can be used to measure biometric

data (heart rate variability, body surface temperature, skin conductance) and import the

data into corresponding connected smartphones, tablets and laptops. The product has been

validated by the FDA and obtained the FDA Medical Device Registration Certificate. The

product consists of a portable sensor, two fabric straps, micro USB charging cable, and a

carrying case; the sensor is mounted on a finger via a fabric strap and detects and transmits

three highly researched psychophysiological health measures: heart rate variability, skin

conductance, and body temperature. Data is transmitted in real time via Bluetooth to a

companion app (phone, tablet or laptop).

3.2.3 Physiological Signals

Heart rate variability. At rest, a healthy heartbeat speeds up with inhalation and slows

down with exhalation. These momentary variations between successive heartbeats are a good

measure of neurological health in terms of physical, emotional and mental function. Research

has shown that high heart rate variability is associated with better recovery from exercise,

greater resilience to psychophysical obstacles, and a positive mood and outlook on life. Stress,

especially prolonged stress, decreases heart rate variability. Training to increase HRV through

slow-paced, relaxed breathing can reduce the effects of stress on the nervous system, thereby

reducing negative psychophysiological problems.

Skin conductance. Emotional arousal affects the pores on the surface of our skin, which in

turn affects the subtle changes in sweating. Conductance measurements of the skin surface

are a biometric reflection of our mental activity and stress perception.

Body Surface Temperature. Cold hands may not only be due to cold weather, but may also

be the body’s response to elevated anxiety and stress. As a response to stressful moments of

tension, the body shunts blood away from the fingers. The logic behind this is that blood will

be needed for more important systems associated with the fight or flight response. Repeated
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and sustained stress causes the body to remain in a fight-or-flight state, diverting heat-rich

blood away from the hand, thereby lowering the temperature of the fingers. When the body

eventually begins to relax in response, the blood flow is allowed to return to the peripheral

portions of the hand, resulting in the heating of the fingers.

3.2.4 Experimenal Design

Subject selection:

• Age 18 years- 75 years (both 18 years and 75 years) and gender;

• Patients with moderate to severe pain, both pain VAS scores of 4 to 7;

• Patients who require analgesic treatment as assessed by a physician;

Specific types of subjects, different types of subjects corresponding to the intervention method

and data collection and evaluation of each different. Subject types include:

• Acutely traumatized patients

• Mothers who chose to have a natural birth (or implement labor analgesia) with

regular contractions

• Patients undergoing ICU thoracic surgery

Exclusion Criteria:

• Patients whose fingers are unable to wear fingertip electrical signal sensors;

• Patients with sensory dysfunction;

• Patients with hearing and speech disorders;

• People with allergy to anesthetic drugs;

• People with fabric strap allergies;

Other conditions that the investigator considers inappropriate for enrollment.
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3.2.5 Evaluation Method

Visual analogue scale (VAS). VAS is a strip scale with no markings on the patient’s side and

1 - 100 mm graduations on the physician’s side, with "no pain" at one end and "most severe

pain" at the other end, which is marked by the patient according to the intensity of the pain,

and the physician determines the score.

The Wong-Baker face pain rating scale. The Wong-Baker Face Pain Rating Scale (FPRS)

consists of 6 pictograms of different facial expressions ranging from smile or happiness to

tears. This method is suitable for people with communication difficulties, such as children,

the elderly, patients who are unconscious or unable to express themselves accurately in words,

but it is easily affected by emotional, cultural, educational and environmental factors, and

should be used in accordance with the specific situation.

Richmond Agitation-Sedation Score (RASS score).

Score Description Definition

+4 Combative Overtly combative or violent; immediate danger to staff

+3 Very Agitated Pulls or removes tubes or catheters; aggressive

+2 Agitated Frequent non-purposeful movement, fights ventilator

+1 Restless Anxious but movements not aggressive or vigorous

0 Alert and Calm -

-1 Drowsy Not fully alert, but has sustained awakening (eye-opening/eye contact) to voice (>10 seconds)

-2 Light Sedation Briefly awakens with eye contact to voice (<10 seconds)

-3 Moderate Sedation Movement or eye opening to voice (no eye contact)

-4 Deep Sedation No response to voice, but movement or eye opening to physical stimulation

-5 Unarousable No response to voice or physical stimulation

TABLE 3.1: Richmond Agitation-Sedation Scale (RASS)

3.3 Conclusion and Future Work

This section describes the details of the experimental design and data collection. The collected

pain datasets were named Apon (experimental pain), Apon-postoperative (postoperative
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patients), and Apon-labor (pregnant women). It was found that the data quality was higher

for the experimental pain data because environmental variables in real medical scenarios

are relatively difficult to control compared to laboratory settings. In the next technical

chapters, these three datasets will be used to validate the effectiveness of automated pain

assessment algorithms. Currently, there are very limited publicly available pain datasets, and

the development and public availability of pain datasets is a great contribution to the overall

research in the field of pain. We plan to make our pain datasets publicly available in the future

and collaborate with more hospitals to collect pain data.



CHAPTER 4

Pain Personalization via Test Time Adaptation

Clinical management of pain in patients typically relies on accurate and sustainable methods

of pain assessment. However, existing clinical pain assessment methods necessitate patient

self-reporting to achieve personalized evaluations, which not only fails to capture continuous

changes in pain during treatment but is also impractical for patients who are unable to provide

self-reports. To address this issue, we propose a personalized pain assessment learning

framework tailored to clinical use scenarios, which consists of three stages: pain model

training, pre-test fine-tuning, and test-time adaptation. To better describe the predicted results,

we use an ordinal regression neural network by transforming ordinal targets into binary

classification subtasks to fit the natural order of pain labels. We also designed an unsupervised

loss function to adapt all the model parameters by minimizing the entropy of the model’s

output distribution during the testing phase for new pain patients, thus allowing the model

to adapt better to new and unseen data distributions. Our method was developed on two

experimental pain datasets and validated on two additional real-world pain datasets, proving

the effectiveness of our approach.

4.1 Introduction

In pain assessment and management, exploring pain management plans that are relevant to

the individual patient is essential to clinical practice, which is also seen as the next logical

step to accelerate innovation and development in the pain research field (Kearns, 1989). In

the real world, as the first and most important part of pain management, pain assessment

uses the individual patient’s self-report as the gold standard (Yang et al., 2021; Werner et al.,
26
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2019). However, this subjective approach to pain assessment 1) Requires the patients to be

cognitively competent, but some special groups of pain patients, such as infants, people with

dementia or speech disorders, are unable to provide subjective reports, 2) Subjective reports

of pain are not easily detected and quantified on an ongoing basis, which makes tracking

pain changes and treatment outcomes difficult, 3) Pain is a complex and dynamic experience,

and self-reports can vary over time, even under similar conditions, leading to inconsistent

assessments (Hyun et al., 2022). Therefore the development of objective pain assessment

tools to assist physicians in patient pain management is an urgent need.

Combining machine learning and patient-controlled analgesic pumps demonstrates practical

future scenarios for automatic pain assessment (Wang et al., 2020b). There have been

a number of research results showing the significant potential exhibited by biosignals as

inputs to pain assessment algorithms, with the electrical skin activity response and heart

rate/heart rate variability being the most characterized autonomic responses (Chae et al.,

2022), and in an experimental setting, the EDA can be recognized as a difference feature, and

in combination with the SVR algorithm, the results show that it can distinguish experimental

pain well (Pouromran et al., 2021). Recently, the existing automatic pain assessment solution

based on machine learning is now in the clinical validation phase, the study validated the

effectiveness of postoperative pain assessment in real patients using random forests as a

predictive model and electrical skin stimulation activity as a feature (Aqajari et al., 2021), as

well as the effectiveness of using EDA and video to assess pain in children after laparoscopic

appendectomy (Susam et al., 2021). These studies emphasize the potential of pain assessment

tools in real-world medical scenarios; however, these traditional machine learning methods

do not take into account the subjective nature of pain.

Subjectivity cannot be brought into the model as a feature due to the fact that it cannot be

quantified, but personalization of the model is an option to solve this problem. From the

perspective of the degree of personalization, personalization approaches in the field of pain

research can be divided into two categories: 1) Fully personalized, that is, the source data when

training the model and the target domain when testing it are the same subject. 2) Non-fully

personalized, that is, the training process of the model may include data from other subjects
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that are different from the test subject, and the effect of discriminating between personalised

differences is achieved by capturing and quantifying those personal traits that may influence

an individual’s perception and expression of pain. Currently, there are already studies that

bring personalization into the development of pain assessment algorithms, however, these

methods require extra individuals’ private information, such as inter-individual differences

(complexion, age, gender and race) (Uddin et al., 2023; Liu et al., 2017) and past pain

experience (Casti et al., 2020), require large model with more parameters (Lopez-Martinez

and Picard, 2017) and multiple personal models (Xu and de Sa, 2021), or require extra steps,

such as finding similar subjects (cluster-based) (Kächele et al., 2016), analysing bio-signal

information (Jiang et al., 2024).

Therefore, we propose a stage-by-stage personalized learning framework for pain assessment

called PCOR-PA. We consider the natural ordering of pain labels and the interpretability

of prediction results, and we adopt COnsistent RAnk Logits (CORAL), which is a rank-

consistent ordinal regression neural network where the probabilities decrease consistently, to

serve as the inference model structure. Considering the subjectivity of pain, combined with the

availability of data from pain patients in real medical scenarios, we fine-tuned the pre-trained

model using data from a time when pain did not occur and designed a new unsupervised loss

function to minimize the entropy of the output distribution of the CORAL model at the time

the model was tested on data from a real occurrence of pain. The main objective is to improve

the generalization ability of the model by reducing the uncertainty of the model on the test

data without retraining the model.

To summarize, there are three main areas of our contribution:

• A personalized pain intensity inference model for automated pain assessment in the

clinic. In terms of pain personalization, our method allows for online and passive

pain assessment and is even comparable to methods that use source data

• A novel approach to test-time adaptation is incorporated to minimize the predictive

entropy of ordinal regression neural networks.
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• Our algorithms are developed on two datasets, BioVid (public) and Apon (private),

on the public dataset we achieved the state of the art results. In addition, we take

the developed algorithms further on real patients to validate the effectiveness of our

approach.

4.2 Related Work

4.2.1 Personalization Techniques in the field of Pain

According to IASP’s six keynotes on pain, the first one is that "Pain is always a personal

experience that is influenced to varying degrees by biological, psychological, and social

factors". Pain is a subjective, unpleasant sensory and emotional experience that is highly

variable between individuals (Spisak et al., 2020). Nowadays, patient self-reporting is defined

as the "gold standard" in pain assessment (Yang et al., 2021; Werner et al., 2019). This also

demonstrates the significant role of personalized technology in the context of automated pain

assessment algorithms. In reality, due to the privacy of medical data, researchers cannot obtain

sufficient personal information for quantification; secondly, as pain is a subjective sensation,

its perception and expression vary from person to person, influenced by factors such as age,

gender, cultural background, and previous pain experiences. All these barriers make it very

challenging to establish a universal model capable of accurately assessing pain for everyone.

Currently, in the field of pain, machine learning all provides a powerful tool in the iden-

tification of pain phenotypes (Chesler et al., 2002), the assessment of treatment efficacy

(Lötsch et al., 2017), or in the analysis of clinical records (Patterson et al., 2015), in addition,

some of the latest technologies are capable of personalized inference and prediction. These

machine learning algorithms not only help doctors discover important information that may

be overlooked but also lay the foundation for customized medicine and precision medicine

(Lötsch and Ultsch, 2018).

Early work found that electrical changes in the skin may be used as an objective indicator to

differentiate between pain and discomfort in infants (Munsters et al., 2012). Recent advances
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in personalized pain assessment have leveraged both internal and external contexts, including

health conditions and physiological activities, along with inter-individual differences such

as age, gender, and race, to tailor pain prediction models more closely to individual needs

(Uddin et al., 2023; Jiang et al., 2024).

The application of multi-task learning, especially through hard parameter sharing, has been

explored to personalize output results in pain assessment (Lopez-Martinez and Picard, 2017).

This approach is complemented by the design of personalized pain assessment platforms that

incorporate visual, voice, and physiological cues, utilizing data such as frame-by-frame video

analysis of a patient’s past pain experiences for training fully personalized pain assessment

models (Casti et al., 2020).

Moreover, the fusion of hand-crafted personal features (complexion, age, and gender) with

multi-task learning has been demonstrated in automated pain assessment algorithms based on

facial expressions, offering a path towards greater personalization (Liu et al., 2017). Similarly,

the use of video data from individual subjects to train personal models, coupled with Tikhonov

regularization to integrate predicted variance, further advances the field of personalized pain

management (Xu and de Sa, 2021). The integration of personalized information, such as

individuals’ heart rate signals, into pain recognition and management systems, marks a

significant step forward in creating more sensitive and individualized pain assessment tools

(Jiang et al., 2024).

4.2.2 Test Time Adaptation

Domain adaptation assumes that we have a labeled training set (source domain), and an

unlabeled test set (target domain), and that unlabeled data from the target domain is utilized

during model training to improve the model’s ability to adapt between domains. With this

in mind, domain generalization further weakens this assumption by making data from the

target domain unavailable during model training, and the goal of domain generalization is to

create a model with strong generalization capabilities that can be applied to any unseen target
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domain. However, the most difficult aspect of domain generalization is also the unavailability

of the target domain, which is not available during training.

In the past two years, there have been a series of test time adaptive methods assuming that test

data comes in the form of online, attempting to allow pre-trained models to undergo target

domain adaptation during the testing phase in order to leverage their information to enhance

generalizability. Test-Time adaptive methods includes two main categories: Test-time training

(TTT) and Test-time adaptation (TTA). TTT methods focus on additional training of the model

at test time to adapt to the current task or data distribution. For example, the work (Zhang

et al., 2021) propose a new multivariate expert learning strategy is proposed that utilizes

self-supervised learning to aggregate multiple experts to deal with unknown test distributions

and the work (Sun et al., 2020) propose a self-supervised learning based approach to solve

the problem of distributional bias in test images. the test samples are augmented to form a

batch. Then, the entire batch is used to update the model through self-supervised loss. The

updated model is then utilized to make predictions on the current test samples.

TTA approaches do not change the training process, but usually combines pre-trained models

and test cases, including entropy minimisation (Wang et al., 2020a; Zhang et al., 2022),

Batchnorm Statistics Adaptation (Schneider et al., 2020; Lim et al., 2023) and Prototype-

Based Method (Iwasawa and Matsuo, 2021). A non-parametric test time adaptive approach is

proposed that does not require any gradient update, which solves the pressure of computational

overhead. By using a nonparametric KNN classifier, instead of the traditional linear layer, the

domain divergence is explicitly reduced (Zhang et al., 2023).

Test Time Adaptation focuses on adapting models to real-time data as they are used, aiming to

improve their performance in the current environment. This approach has emerged to enhance

model performance during the test phase and to address the issue of newcomers, providing a

personalized approach and offering a novel perspective on crafting solutions.
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4.3 Method

4.3.1 Problem settings & Notations

In this study, we have compiled a comprehensive dataset of physiological signals, denoted as

Ds, with the aim of analyzing and understanding the characteristics of pain-related signals.

The dataset encompasses signals from S distinct subjects, each with their series of biopotential

signals and corresponding pain level annotations.

For each subject j, where j ranges from 1 to S, we define a subset of the data Ds
j that contains

Nsj pairs of signals and their labels. This subset is formally represented as:

Ds
j :=

{
(xs

ij, y
s
ij)
}Nsj

i=1

where xs
ij is the i-th bio-signal from subject j, and ysij is the corresponding pain level label.

The complete training dataset Ds is the union of all individual subject subsets (Multi-Source

Domain):

Ds :=
S⋃

j=1

Ds
j

Let X t := (xt(τ))τ∈T , where T represents the entire time domain of a new coming subject

(target domain).

To focus on a specific segment of this data stream within a time interval from a to b, which

are points in T , we define the segment as X t
[a,b] := (xt(τ))τ∈[a,b]. The objective is to learn

a prediction rule f(·; θ), parameterized by θ, that can accurately predict the label yt[a,b] for

each segment X t
[a,b] in X t, where X t

[a,b] represents a segment of the continuous data stream

X t within the time interval [a, b], and yt[a,b] is the corresponding label for this data segment.

Using traditional machine learning methods, we usually train on the source dataset to find

the optimal model parameters θs, which is under the inductive setting. However, in the pain
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FIGURE 4.1: Overview of PCOR-PA

problem, the distribution of physiological data of the trained and tested subjects may change,

the main reason of which is the individual variability of pain. In order to solve this problem,

the test time adaptive methods, under transductive learning setting, has been first proposed

by the works (Sun et al., 2020; Wang et al., 2020a). Specifically, Test time adaptive method

first trains a model f(·; θs), and then adapts to the test data during inference X t. In this case,

the data distribution of the current testing subject is progressively updated and learned by the

model to improve performance.

4.3.2 Training schema

Our method comprises three stages. The first stage involves training a predictive model using

a training dataset composed of data from multiple source domains. We standardize the data

from each domain separately. The predictive model employs an ordered regression neural

network, incorporating the natural ordering of pain labels, drawing upon previous studies.

The second stage, referred to as the fine-tuning stage, addresses the clinical realities of pain.

Before deploying the model for an individual test patient, we can obtain "no pain" data for

this patient, which is data labeled as "0". In this stage, we utilize this data for supervised

learning, primarily adjusting the parameters of the batch normalization layer. In the final stage,

when testing our model on test patients, we update the model using unsupervised learning.

Specifically, for each test batch, we calculate a prediction entropy loss and minimize this loss
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to enhance the model’s generalization capability to the current test domain. In this stage, we

update both the batch normalization layer and the final linear layer. This approach is due to

the fact that, while the Empirical Risk Minimization (ERM) method learns sufficient feature

representations, the final linear layer often overfits the source domain (Rosenfeld et al., 2022).

This is why we choose to adjust the parameters of the final layer during testing. The decision

to update the batch normalization layer is motivated by our aim to address the distribution

shift problem (Segu et al., 2023; Chang et al., 2019).

Algorithm 1 Three-Stage Training and Adaptation Process
1: Input: Training dataset Dtrain comprising multiple patient domains, Test dataset Dtest

from a single patient domain
2: Output: Predictive model M adapted for the test patient domain
3: Phase 1: Training the Predictive Model
4: for each batch B ∈ Dtrain do
5: Update M using B: M ←M − η∇Ltrain(M,B)
6: end for
7: Phase 2: Fine-tuning with Test Dataset
8: Split Dtest into fine-tuning subset Dft and evaluation subset Deval

9: for each batch Bft ∈ Dft do
10: Fine-tune M using Bft: M ←M − η∇Lft(M,Bft)
11: end for
12: Phase 3: Test Time Adaptation
13: for each sample x ∈ Deval do
14: Apply unsupervised learning to update M : M ← UnsupervisedUpdate(M,x)
15: end for
16: Evaluate the adapted model M on Deval

17: return Final predictions by M on Deval

4.3.3 Rank consistent ordinal regression neural network

The concept underlying the ordinal regression algorithm consists of converting the ranking

challenge into multiple binary classification tasks. As elucidated in the study (Cao et al.,

2020), a rank yi is initially expanded into a vector of K − 1 binary labels y(1)i , . . . , y
(K−1)
i ,

where y
(k)
i = 1{yi > rk} signifies if yi surpasses rank rk. The boolean operation 1{·} returns

1 if its enclosed condition is met, and 0 otherwise. This expansion into binary labels facilitates

the training of K − 1 binary classifiers within the neural network’s output layer.
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Let W represent the weight parameters of the neural network, with the exception of the

bias terms in the final layer, and let bk be the bias associated with the kth output neuron. To

ensure rank consistency across its output layer tasks, all neurons in the final output layer share

identical weight parameters. The inputs to the final layer are denoted as {g(xi,W ) + bk}K−1
k=1 .

Define the logistic sigmoid function as σ(z) = 1
1+e−z . The empirical probability that the kth

binary classification task predicts y(k)i = 1 is given by:

P̂ (y
(k)
i = 1) = σ(g(xi,W ) + bk). (4.1)

During model training, the objective is to minimize the loss function:

L(W, b) = −
N∑
i=1

K−1∑
k=1

λ(k)
[
log(σ(g(xi,W ) + bk))y

(k)
i + log(1− σ(g(xi,W ) + bk))(1− y

(k)
i )

]
,

(4.2)

which represents the weighted cross entropy for the K − 1 binary classifiers. Here, λ(k)

indicates the loss weight for the kth classifier, a critical parameter for task k. Given the

challenges in optimizing λ(k), a non-uniform task weight scheme is preferred to address the

data imbalance issue.

4.3.4 Minimise prediction entropy at test time

Note that the theorem for rank-monotonicity proposed by the work (Li and Lin, 2006). By

minimizing the loss function defined in Eq. (2), the optimal solution (W∗,b∗) satisfies

b∗1 ≥ b∗2 ≥ . . . ≥ b∗K−1. the work (Cao et al., 2020) applies this theory to ordered regression

neural networks by adding the restriction of weight sharing, which ensures that the probability

curves produced by each binary classifier do not want to intersect, in this case with a sigmoid

function, so that if each classifier uses a different weight w, then their respective sigmoid

curves will have different slopes. This may result in the curves of different classifiers

intersecting at certain values of x. Intersecting curves mean that the model’s prediction of the

category is no longer monotonic at certain values of the feature x. For example, as x increases,

the model may predict a lower and then a higher category probability, which violates the basic

properties of ordered categories.
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In this way, in the simplified model pi = σ(wx + bi), Assume that x is the input feature

and f(x) represents the neural network’s function mapping. We have a shared weight w and

an ordered set of biases b1 > b2 > . . . > bK−1. Each bias defines a decision boundary that

partitions the input space into K intervals. For a given input x, we compute f(x) and compare

it against the biases to determine in which interval x falls, thereby determining the category

of x:

Category =



1, if f(x) + b1 ≤ 0

2, if f(x) + b1 > 0 and f(x) + b2 ≤ 0

3, if f(x) + b2 > 0 and f(x) + b3 ≤ 0

...

K, if f(x) + bK−1 > 0

Here, f(x) is typically the dot product wTx, though it could be a more complex non-linear

function in a neural network context. Each threshold bi corresponds to a specific decision

boundary that defines the conditions under which x falls between the ith and i+ 1th category.

In order to minimize the prediction entropy, we want f(x) to be close to the "middle" of the

interval of the class it predicts.

Let mi be the median of the ith interval, defined as:

mi =


b1, if i = 1

bi−1+bi
2

, if 1 < i < K

bK−1, if i = K

For a given input x, let c be the predicted category, then the loss is:

L(x) = (f(x)−mc)
2
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The objective is to minimize the expected loss over all inputs:

L = E [L(x)]

This loss encourages f(x) to be close to the center of the interval associated with its predicted

category.

Algorithm 2 prediction entropy minimization on Coral

Require: x (input feature), w (shared weight), {bi}K−1
i=1 (ordered biases)

Ensure: Category of x and minimized loss L
f(x)← wTx ▷ Assume f(x) represents the neural network function
for i = 1 to K − 1 do

if f(x) + bi ≤ 0 then
Category← i
break

end if
end for
if f(x) + bK−1 > 0 then

Category← K
end if
Define mi for each interval:

mi =


b1, if i = 1
bi−1+bi

2
, if 1 < i < K

bK−1, if i = K

c← Predicted category for x
L(x)← (f(x)−mc)

2 ▷ Compute loss for input x
L ← E[L(x)] ▷ Minimize expected loss over all inputs

4.3.5 Subject-specific Batch Normalization

Let D = {D1, D2, . . . , DS} denote the entire dataset, where Ds represents the dataset for

subject s, and S is the total number of subjects. Each subject’s dataset Ds can further be

defined as a set of data points, i.e., Ds = {(xs1, ys1), (xs2, ys2), . . . , (xsns , ysns)}, where xsi

denotes the ith input feature for subject s, ysi denotes the corresponding label, and ns is the

total number of data points for subject s.
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During each training iteration, we construct subject-specific batches Bs instead of randomly

selecting data points from the entire dataset D. Such a batch can be represented as:

Bs = {(xsj, ysj)|j = 1, . . . ,M}

where M is the batch size and M ≤ ns, indicating that the number of data points in each

batch does not exceed the total number of data points in the subject’s dataset. In this manner,

all data points in batch Bs originate exclusively from one subject’s dataset Ds, allowing the

neural network to learn distribution characteristics specific to each subject during training.

The key advantage of this approach is its direct targeting of distribution shifts between

subjects by training the neural network to recognize and adapt to the unique data distribution

of each subject, potentially enhancing the model’s adaptability to individual differences and

its generalization capability.

4.3.6 Loss weight scheme for data unbalance

The problem of data imbalance is common in medical applications. In order to solve this

problem without increasing the arithmetic requirements and guaranteeing the data integrity,

we use the loss weight method to give different weights to the losses on the output layer to

regulate the influence of different classes on the model parameters. Here, we describe the two

strategies used in the following.

Firstly, a prevalent approach to mitigating data imbalance in machine learning, especially

when dealing with tasks or datasets comprising pairs of samples, involves the application

of differential loss weighting, called Inverse Frequency Weighting (IFW). This technique

assigns lower weights to samples or sample pairs that are abundant, while allocating higher

weights to those associated with underrepresented tasks. Mathematically, let wi denote the

weight for the i-th task, then wi is inversely proportional to the number of samples in that

task, formulated as wi =
1

Nα
i

, where Ni represents the number of samples in the i-th task,

and α is a parameter that controls the degree of weighting adjustment. This loss weighting
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schema ensures that the learning process pays greater attention to tasks with fewer samples,

thereby encouraging a more balanced performance across all tasks and addressing the issue

of data imbalance.

Secondly, in addressing the imbalance inherent in ordinal classification tasks, we refer to

the work (Han et al., 2020), introducing a Task Importance Weighting (TIW) strategy. For

each task derived from ordinal ranks, let Sk =
∑N

i=1 1{yki = 1} denote the count of instances

exceeding a rank threshold rk, with S1 ≥ S2 ≥ . . . ≥ SK−1 indicating decreasing instance

counts. The imbalance is quantified using Mk = max(Sk, N − Sk), and the task importance,

λk, is defined by normalizing the square root of Mk against the largest square root value

across all tasks:

λk =

√
Mk

max
1≤i≤K−1

√
Mi

This methodology ensures equitable weight allocation across binary classification tasks,

mitigating the effects of label imbalance.

4.4 Experiment Design and Implementation

In this section, we conduct experiments to demonstrate the effectiveness of PCOR-PA al-

gorithm in pain assessment and we apply our method to classify target labels from short

segments of EDA data. Our experimental results are obtained by averaging over 5 differ-

ent runs. Since the standard deviation is small in all experiments, we ignore the standard

deviation.

4.4.1 Dataset

We first developed and validated the proposed method in our private dataset Apon and

then further tested it externally with the publicly available pain dataset BioVid. The basic

information of the BioVid and Apon datasets is very similar. Recruitment was done on healthy

volunteers, and the number of people was respectively 87 and 60, respectively. They are

both pain triggered by thermal stimulation experiments, and the definition of pain is Pain
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stimulation at the pain threshold, pain tolerance, and two levels between them. The main

differences in the experiments were the length of the stimulus and the number of stimuli per

subject; Apon was a 30-second stimulus duration and a rest period of about 1 minute and

30 seconds between stimuli, with the stimulus occurring a total of 30 times. Biovid had a

5-second stimulus duration, with a rest period of 4 to 8 seconds, with the stimulus occurring a

total of 100 times.

In addition, we brought the algorithm into real medical scenarios where we collected data

from two different types of pain patients. The first type is post-surgical patients. For this

group of patients, we performed data collection and pain assessment reports (VAS scores) in

three different scenarios: pre-anesthesia, in the waking room, and in the hospital room, and in

each scenario, two self-reported pain assessments were performed, which were categorized

into dynamic pain scores and static pain assessments. Here, only the patient’s pain scores at

rest are considered due to uncertainty in dynamic pain scores. The length of data collected

for each patient was determined by the medical setting of the scenario at the time, with an

average length of 8 to 15 minutes. The second type of patient with pain we chose was a

woman in labor who required an anesthesiologist to assess her pain and administer analgesia

prior to entering into labor and delivery. At this stage, we were able to collect data including

facial expression, EDA, BVP, blood pressure, blood oxygen, heart rate, respiratory rate, the

intensity of contractions, the interval between contractions, and fetal heart rate. The data

collection experiments were all performed without interfering with the patient’s normal rest

and treatment.

After collecting and organizing the data and pain labels, we asked the physicians to perform

label revisions, which followed predetermined assessment rules, and the scores were con-

tinuous, i.e., in one piece of data, the physician would give different pain scores in different

intervals.



4.4 EXPERIMENT DESIGN AND IMPLEMENTATION 41

4.4.2 Metric

The Leave-One-Subject-Out (LOSO) cross-validation method is designed for evaluating

models on multi-subject datasets. It is particularly relevant in fields such as biomedical

and psychological research, where data are collected from multiple individuals. In the

LOSO approach, the dataset D consists of data from N different subjects, denoted as D =

{D1, D2, . . . , DN}. For each iteration i of the cross-validation, the data from one subject Di

is used as the test set, and the data from all remaining subjects, D \Di, are used for training

the model. This process is repeated N times, with each subject’s data being used as the test

set exactly once. The performance of the model is then averaged across all N iterations,

providing an estimate of its generalizability to new, unseen subjects. This method ensures

a stringent evaluation of the model’s ability to generalize across the variability inherent in

different subjects.

Combining Test-Time Adaptation (TTA) with a "Leave One Subject Out" approach involves

using TTA while systematically excluding one subject (or a group of data points) from the

training data and using it as a test set. In this setup, TTA fine-tunes the model for each

test subject individually, adapting the model to the specific characteristics of the left-out

subject’s data. This approach can be particularly useful in fields like medical imaging,

where personalized adaptation to individual patient data is crucial. By applying TTA in a

"Leave One Subject Out" scenario, the model can potentially achieve better performance and

generalization for each individual test subject.

Some previous pain studies have used metrics for regression questions because Pain labels

have a natural ordering. The researchers hope that the predictions of the model can be closer

to the true values rather than just considering whether the predictions match the true results.

In the evaluation of regression models, two commonly used metrics are the Mean Squared

Error (MSE) and the Root Mean Squared Error (RMSE), which measure the average of the

squares of the errors—that is, the average squared difference between the estimated values

and the actual value.
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• Mean Squared Error (MSE): The MSE calculates the average of the squares of

the errors or deviations; that is, the difference between the estimator and what is

estimated. MSE provides a measure of the quality of an estimator—it is always

non-negative, and values closer to zero are better. The MSE is defined as:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2

where n is the number of observations, Yi is the actual value of the observation, and

Ŷi is the predicted value.

• Root Mean Squared Error (RMSE): The RMSE is the square root of the mean

square error. It measures the standard deviation of the residuals or prediction errors.

Residuals are a measure of how far from the regression line data points are; RMSE

is a measure of how spread out these residuals are. The RMSE is defined as:

RMSE =

√√√√ 1

n

n∑
i=1

(Yi − Ŷi)2

RMSE is particularly useful when you want to gauge the error magnitude in the

same units as the response variable.

Both MSE and RMSE are crucial for understanding the accuracy and performance of a

regression model, with RMSE being more interpretable in terms of the original units of the

output variable.

The Quadratic Weighted Kappa (QWK) is a statistical measure used to assess the degree of

agreement between two raters on an ordinal scale, with a particular focus on the severity of

disagreements. It modifies the traditional Cohen’s kappa by incorporating a weight matrix W ,

where the weights are defined as:

Wij = (i− j)2

These weights exponentially penalize discrepancies based on the squared distance between

categories. The QWK is calculated using the formula:

κ =
p0 − pe
1− pe
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where p0 is the observed weighted agreement and pe is the expected weighted agreement

under random chance. Quadratic Weighted Kappa thus provides a more sensitive measure

of agreement that accounts for the ordinal nature of the data and the varying seriousness of

different types of disagreements.

For continuous prediction of accuracy, we introduce Maximum Consecutive High Error

(MCHE) defined as follows:

MCHE = max
i,j:i≤j

(j − i+ 1) subject to xk = 1 for all i ≤ k ≤ j

where, xt is defined as:

xk =

1 if |yk − ŷk| > θ

0 otherwise

In this formula, the sequence X = {x1, x2, . . . , xT} represents whether the prediction error

at each time point k exceeds a predefined threshold θ. If the absolute error |yk − ŷk| is

greater than θ, then xk = 1 indicating a significant error, otherwise xk = 0. MCHE is the

length of the longest consecutive sequence of xk = 1. The max function finds the maximum

length (j − i + 1) among all possible consecutive intervals [i, j] where xk = 1 throughout.

This metric effectively evaluates the stability and reliability of the prediction model under

consecutive extreme conditions.

Here, we also introduce a metric, called WMAE, that adjusts the weights based on the

continuity and magnitude of the prediction error. Such an indicator would better reflect the

continuous large errors you wish to avoid. Assume you have a time series with true values yt

and predicted values ŷt at time t, for t = 1, 2, . . . , T . Define the absolute error at time t as

et = |yt − ŷt|.

Introduce a threshold θ to identify “large errors.” If the error et exceeds this threshold, it’s

considered significant. We’ll define a sequence of weights wt that increase with consecutive

occurrences of large errors:

1. If et > θ, then nt = nt−1 + 1. 2. If et ≤ θ, then nt = 0.
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We can then define the weight wt as wt = 1 + αnt, where α is a positive parameter that

modulates the impact of consecutive large errors on the weight.

The overall weighted error metric E can be computed as:

E =

∑T
t=1 wtet∑T
t=1 wt

This formula weights each time point’s error et by wt, enhancing the effect of continuous

large errors on the overall assessment.

4.4.3 Domain generalization benchmarks

Compared Baselines. To validate the effectiveness of our algorithms, we implemented the

more common algorithms in domain adaptation and domain generalization, such as TENT

(Wang et al., 2020a), MEMO (Zhang et al., 2022), Domain-Adversarial Neural Networks

(DANN) (Ganin and Lempitsky, 2015), Mixup (Zhang et al., 2017), Correlation Alignment

(CORAL) (Sun and Saenko, 2016), Maximum Mean Discrepancy (MMD) (Borgwardt et al.,

2006), Disentanglement (Bui et al., 2021).

• TENT: It is designed for test-time adaptation, allowing a model to adjust to new,

unseen data during testing by minimizing the prediction entropy. It operates by

updating only the normalization statistics and affine parameters of a model’s feature

representations, without altering the core model parameters. This approach is

efficient and stable, as it focuses on low-dimensional, linear modulations (scales

and shifts) that are less prone to causing divergence from the model’s trained state.

TENT’s effectiveness is demonstrated through its application to various domain

adaptation scenarios, including image classification tasks with different datasets.

• MEMO: algorithm represents an innovative approach to enhancing model robust-

ness at test time through adaptation and augmentation. This technique is particularly

designed to address challenges related to distribution shifts between training and

deployment environments, a common scenario in real-world applications. Memo
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operates by dynamically adjusting the model’s parameters or applying strategic data

augmentations during the test phase, without the need for retraining or access to

the original training data. This process aims to align the model more closely with

the current data distribution encountered at test time, thereby improving prediction

accuracy and reliability.

• DANN: It addresses domain adaptation by introducing a domain classifier that

learns to distinguish between source and target domain features while the feature

extractor learns to generate domain-invariant features. This adversarial process is

facilitated by a gradient reversal layer, which updates the feature extractor to fool

the domain classifier, thereby encouraging domain invariance. DANN’s approach to

generating features that are indistinguishable across domains makes it a powerful

tool for domain adaptation.

• Mixup: It is a data augmentation technique that operates by creating virtual training

examples through the linear interpolation of pairs of examples and their labels. This

method encourages the model to behave linearly in-between training examples, which

can improve the model’s generalization performance and robustness to adversarial

examples. By training on these mixed examples, Mixup helps to reduce overfitting

and improve the model’s performance on unseen data

• CORAL: It aims to minimize domain shift by aligning the second-order statistics

(covariances) of source and target distributions, without requiring explicit domain

labels. This is achieved by adjusting the source features to have the same covariance

as target features, thereby making the features more similar across domains. CORAL

is particularly effective in situations where the domains are related but exhibit

variation in their data distributions.

• MMD: It is a measure of the distance between the distributions of source and target

domains. It works by computing the difference in expectations across domains for

a given function class. MMD can be used as a loss function to train models that

minimize the distributional discrepancy, ensuring that the learned representations

are domain-invariant. This makes MMD a valuable tool for both domain adaptation

and domain generalization tasks.
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• Disentanglement: It aims to learn representations that separate the underlying

factors of variation in the data. By disentangling these factors, the model can achieve

better generalization by focusing on the relevant features that are invariant across

domains. This approach is beneficial for tasks where the model needs to generalize

across different, unseen domains by capturing the essence of the data in a way that is

not specific to the domain it was trained on.

4.5 Result and Analysis

4.5.1 Comparison with domain adaptation algorithms

We compare our model with some traditional machine learning methods for EDA-based pain

assessment (support vector machine, Random forest). Also, we compare with other DG

algorithms designed for more general fields (TENT (Wang et al., 2021), DANN (Ganin and

Lempitsky, 2015), Mixup (Zhang et al., 2017), CORAL (Sun and Saenko, 2016), MMD

(Tzeng et al., 2014), Disentanglement (Bui et al., 2021), GroupDRO (Sagawa et al., 2019),

VERx (Krueger et al., 2021)). The baseline is Empirical Risk Minimization (ERM) which

minimizes the average loss across all the training examples from all the subjects. In our

experiments, we combined the ERM and TENT methods with different settings for the

updated model parameters in the TENT method (BN for Batch normalization layer, BN-L

for Batch normalization layer and linear layer, and C for the full set of parameters). We

conducted 10 rounds of experiment and reported means and standard deviations.

As can be seen from Table 2, the performance of PCOR-PA is superior to other methods.

PCOR-PA’s improved performance is attributed to the fact that it takes into account the pain

specificity between different patients throughout the training process. In addition, PCOR-PA

also breaks the "fair" to "good" kappa qualifier (Landis and Koch, 1977). This performance

was seen on both the biovid and apon datasets. This shows that PCOR-PA can effectively

improve the consistency of the pain level prediction model and match the actual situation more
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TABLE 4.1: Results of comparative study.(Bolding denotes the best.)

BioVid Apon
Method MAE RMSE QWK MAE RMSE QWK

Random Forest 0.930 ± 0.005 1.112 ± 0.005 0.436 ± 0.004 1.198 ± 0.006 1.482 ± 0.007 0.342 ± 0.008
SVM 0.915 ± 0.009 1.118 ± 0.008 0.445 ± 0.008 1.114 ± 0.008 1.320 ± 0.007 0.325 ± 0.009

ERM 1.019 ± 0.008 1.346 ± 0.009 0.389 ± 0.005 0.857 ± 0.005 1.111 ± 0.007 0.310 ± 0.005
ERM with TENT-BN 0.959 ± 0.004 1.295 ± 0.002 0.442 ± 0.005 0.838 ± 0.008 1.112 ± 0.010 0.418 ± 0.002

ERM with TENT-BN-L 0.959 ± 0.004 1.295 ± 0.002 0.442 ± 0.005 0.858 ± 0.005 1.112 ± 0.007 0.408 ± 0.007
ERM with TENT-C 0.958 ± 0.007 1.301 ± 0.005 0.425 ± 0.006 0.853 ± 0.006 1.114 ± 0.008 0.328 ± 0.002

ERM with Coral layer 1.053 ± 0.002 1.357 ± 0.005 0.362 ± 0.005 0.782 ± 0.004 1.018 ± 0.006 0.465 ± 0.004

DANN 0.901 ± 0.010 1.182 ± 0.008 0.476 ± 0.002 0.780 ± 0.005 0.998 ± 0.008 0.462 ± 0.008
Mixup 1.102 ± 0.013 1.115 ± 0.015 0.259 ± 0.012 1.005 ± 0.010 1.118 ± 0.011 0.298 ± 0.019

CORAL 1.230 ± 0.018 1.452 ± 0.012 0.198 ± 0.025 1.120 ± 0.009 1.479 ± 0.012 0.276 ± 0.010
MMD 1.284 ± 0.015 1.312 ± 0.016 0.223 ± 0.009 1.280 ± 0.012 1.396 ± 0.014 0.221 ± 0.001

Disentanglement 1.440 ± 0.005 1.798 ± 0.008 0.102 ± 0.008 1.774 ± 0.009 2.018 ± 0.012 0.070 ± 0.003
GroupDRO 1.119 ± 0.001 1.515 ± 0.001 0.366 ± 0.010 1.253 ± 0.007 1.121 ± 0.003 0.302 ± 0.006

VERx 0.986 ± 0.001 1.236 ± 0.001 0.392 ± 0.015 0.911 ± 0.004 1.213 ± 0.005 0.328 ± 0.007

Ours (PCOR-PA) 0.889 ± 0.018 1.202 ± 0.020 0.492 ± 0.017 0.775 ± 0.006 0.996 ± 0.004 0.513 ± 0.002

accurately. This is particularly valuable for clinically important decision-making systems that

require accuracy and reliability.

Table 3 shows the performance of the Apon-heat dataset when we consider the predictions of

the data as continuous rather than independent. Only the Apon-heat dataset was used because

the length of time for a single sample is about 30 or so, whereas a single sample in the Biovid

dataset is only 5.5 seconds of data for each independent thermal stimulus. For this analysis, we

introduce two new metrics for evaluating the continuity of the continuous prediction problem:

WMAE emphasizes the performance of the model at different time points, while MCHE

monitors the overall stability of the model. Under the setting of continuous prediction, we

use a sliding window to slice the EDA sequence, which may result in inconsistent label-data

pairing. In this scenario, we observed that PCOR-PA still outperforms the baseline method

and maintains a relatively competitive performance level compared to other DG methods.

We comparatively evaluated PCOR-PA and state-of-the-art methods on the Biovid Heat

Pain Database. To be consistent with previous work, we used MAE and RMSE to measure

regression problems, Also, we chose to compare BLN with P4 to compare binary classification

performance, as higher pain intensities are more likely to be recognized and may be considered

the upper limit of performance when recognizing a single pain intensity. To do this, we modify
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TABLE 4.2: Results of comparative study. (Bolding denotes the best, under-
lining denotes the second best)

Apon
Method MAE RMSE MCHE WMAE

Random Forest 1.152 ± 0.007 1.250 ± 0.009 1.358 ± 0.010 1.126 ± 0.008
SVM 1.011 ± 0.005 1.118 ± 0.006 1.102 ± 0.009 0.995 ± 0.007

ERM 0.857 ± 0.008 1.111 ± 0.012 1.210 ± 0.015 0.938 ± 0.005
ERM with TENT-BN 0.820 ± 0.004 1.024 ± 0.012 1.030 ± 0.003 0.953 ± 0.006

ERM with TENT-BN-l 0.825 ± 0.005 1.024 ± 0.009 1.030 ± 0.013 0.990 ± 0.012
ERM with TENT-C 0.850 ± 0.005 1.118 ± 0.007 0.985 ± 0.003 0.910 ± 0.015

ERM with Coral layer 0.802 ± 0.005 1.051 ± 0.003 0.955 ± 0.009 0.989 ± 0.001

DANN 0.790 ± 0.007 1.001 ± 0.010 0.921 ± 0.003 0.975 ± 0.009
Mixup 0.920 ± 0.012 1.212 ± 0.015 1.312 ± 0.003 1.152 ± 0.008

CORAL 0.924 ± 0.010 1.213 ± 0.012 1.321 ± 0.008 1.160 ± 0.006
MMD 0.924 ± 0.010 1.213 ± 0.012 1.321 ± 0.008 1.160 ± 0.006

Disentanglement 1.021 ± 0.020 1.444 ± 0.018 1.890 ± 0.012 1.212 ± 0.006
GroupDRO 0.910 ± 0.013 1.212 ± 0.008 1.218 ± 0.005 1.116 ± 0.012

VERx 0.853 ± 0.001 1.019 ± 0.003 0.958 ± 0.012 0.998 ± 0.005

Ours(PCOR-PA) 0.784 ± 0.003 1.015 ± 0.008 0.928 ± 0.008 0.925 ± 0.002

the output of the last coral layer into a single binary classification task. From the table 4.3, we

can observe that in the case where I use only EDA for individual physiological signal data,

we outperform the state-of-art methods in retaining all "pain" samples in the data. For the

BLN vs P4 task, our method also shows some improvement, which indicates the effectiveness

of our method.

TABLE 4.3: Comprison with the state of art methods. The regression and
classification results are provided in the form of [MAE, RMSE] and Accuracy
± standard deviation respectively

BioVid
Model Signal Regression [0-4] Regression [1-4] BLN vs P4 Accuracy (%)

LSTM-NN (Lopez-Martinez and Picard, 2018) Physiological(EDA + ECG) 1.05, 1.29 NA NA
NN (Lopez-Martinez et al., 2017) Physiological (EDA + ECG) +Video 0.77, 1.15 NA 82.75 ± 1.86

Random Forest (Kächele et al., 2015) Physiological(EDA + ECG + EMG)+Video NA 0.84, 0.98 84.20 ± 13.70
DDCAE (Thiam et al., 2021) Physiological(EDA + ECG + EMG) 0.97, 1.16 NA 83.99

NN (Jiang et al., 2024) Physiological (EDA + ECG) 0.93, 1.12 0.84, 1.00 84.58 ± 13.28

Our (PCOR-PA) Physiological (EDA) 0.88, 1.20 0.76, 1.03 85.12 ± 2.13

4.5.2 Ablation study

We conduct an ablation study to evaluate the effect of finetuning and test time adaptation on

the performance of PCOR-PA. We have four variants: (a) PCOR-PA w/o pre-test finetuning

(FT), (b) PCOR-PA w/o test time adaptation (TTA), (c) PCOR-PA w/o pre-test finetuning and
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test time adaptation, (d) PCOR-PA w/o any personalizing operation (PL). The personalization

operation is used in conjunction with both FT and TTA, which serves to do a personal

standarlization of the patient data, and ensures that the samples in a batch are all from the

same subject by using the batch in the training and testing of the model (see details in

Appendix c).

Table 4.4 demonstrates the results. we observe that PCOR-PA without FT or PCOR-PA

without TTA achieved the lowest MAE and kappa index in the BioVid and Apon datasets

respectively, suggesting that adapting the model using the target subject’s data is essential for

making accurate personalized pain assessments. There is a significant drop in performance

for PCOR-PA w/o PL, highlighting the importance of taking into account differences in data

distribution between patients.

TABLE 4.4: Results of Ablation study. (Bolding denotes the best, underlining
denotes the second best)

BioVid Apon
Method MAE RMSE QWK MAE RMSE QWK

PCOR-PA w/o FT 1.060 ± 0.004 1.359 ± 0.004 0.365 ± 0.005 0.910 ± 0.008 1.131 ± 0.010 0.333 ± 0.002
PCOR-PA w/o TTA 1.047 ± 0.008 1.344 ± 0.009 0.365 ± 0.012 0.928 ± 0.005 1.202 ± 0.003 0.302 ± 0.001

PCOR-PA w/o FT and TTA 0.891 ± 0.007 1.212 ± 0.005 0.506 ± 0.006 0.882 ± 0.003 1.112 ± 0.002 0.412 ± 0.005
PCOR-PA w/o PL 1.042 ± 0.001 1.314 ± 0.002 0.339 ± 0.002 0.876 ± 0.010 1.111 ± 0.013 0.425 ± 0.007

PCOR-PA 0.888 ± 0.002 1.198 ± 0.005 0.497 ± 0.002 0.775 ± 0.006 0.996 ± 0.004 0.513 ± 0.002

4.5.3 Finetuning on hyperparameters

1D-CNN for feature extraction. The model first processes the input through a sequence

of features containing two convolutional layers. The first convolutional layer uses 1 input

channel and 3 output channels, with a convolutional kernel size of 3, a step size of 1, and

a padding of 1. It is followed by a bulk normalization layer and a LeakyReLU activation

function, and then halves the data dimensionality through an average pooling layer. The

second convolutional layer receives 3 input channels and outputs 6 channels, with the same

configuration as the first convolutional layer, and is again passed through a bulk normalization,

LeakyReLU activation, and average pooling.
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Coral Layer. Coral layer is just a linear layer and accepts the input features x, represented

as a tensor with shape=(num_examples, num_features). It processes these features using the

coral_weights to generate a linear output for each example, which is then combined with

the coral_bias to produce logits. The shape of the logits is (num_examples, num_classes-1),

representing the model’s estimation of the ordinal thresholds for each class in an ordered

classification task.

Hyperparameters.

• LOSS weighting method: The output of the final layer of the model can be in-

terpreted as the prediction result of a series of dichotomous classification prob-

lems.Considering the imbalance of the data and the uncertainty of the data with

different pain levels, we experimented with three different approaches to the modula-

tion of the effect of the loss function on the updating of the model parameters.

• Learning Rates:

– 0.0001 for SGD: Used in the pre-test finetuning to optimize specific parameters,

likely those of the CORAL layer. This learning rate is crucial for making small,

precise updates to the model.

– 0.001 for Adam: Used during the test time adaptation phase to optimize a

subset of parameters for final adjustments based on the test data.

• Weight Decay: Set at 1e− 4 for SGD during fine-tuning, helping to prevent overfit-

ting by penalizing larger weights.

• Upper and lower bounds: In our design for calculating the loss of predictive

entropy for ordered regression networks, we want to minimize the median of the

predicted values and their prediction intervals, the intermediate classes can calculate

the median based on their neighboring classes, but the two largest and smallest

classes require an upper and lower bound in which the median can be calculated.

ablation study on parameters updating on pre-test finetuning stage.

ablation study on parameters updating on TTA stage.
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TABLE 4.5: Average performance (mean and standard deviation) on finetun-
ing different layers

BioVid Apon
Method MAE RMSE QWK MAE RMSE QWK

Finetuning on BN layer 0.895 ± 0.001 1.209 ± 0.002 0.507 ± 0.004 0.804 ± 0.008 1.142 ± 0.006 0.425 ± 0.003
Finetuning on BN + Coral layer 0.901 ± 0.003 1.201 ± 0.004 0.501 ± 0.004 0.776 ± 0.005 1.032 ± 0.008 0.479 ± 0.004

Finetuning on Coral layer 1.021 ± 0.010 1.288 ± 0.016 0.380 ± 0.011 0.825 ± 0.010 1.210 ± 0.008 0.422 ± 0.014
Finetuning on all layer 0.912 ± 0.017 1.250 ± 0.019 0.342 ± 0.016 0.858 ± 0.015 1.345 ± 0.013 0.410 ± 0.014

TABLE 4.6: Average performance (mean and standard deviation) on finetun-
ing different layers

BioVid Apon
Method MAE RMSE QWK MAE RMSE QWK

Finetuning on BN layer 0.895 ± 0.011 1.034 ± 0.012 0.483 ± 0.007 0.829 ± 0.008 1.207 ± 0.010 0.442 ± 0.012
Finetuning on BN + Coral layer 0.887 ± 0.006 1.028 ± 0.011 0.502 ± 0.009 0.795 ± 0.005 1.130 ± 0.007 0.452 ± 0.003

Finetuning on Coral layer 1.040 ± 0.015 1.350 ± 0.021 0.394 ± 0.007 0.814 ± 0.009 1.155 ± 0.005 0.432 ± 0.011
Finetuning on all layer 1.152 ± 0.007 1.312 ± 0.005 0.364 ± 0.006 0.952 ± 0.015 1.352 ± 0.018 0.328 ± 0.011

ablation study on TTA range.

TABLE 4.7: Average performance (mean and standard deviation) on finetun-
ing upper and lower bound for entropy loss (TTA stage)

BioVid Apon
Method MAE RMSE KAPPA MAE RMSE KAPPA

-10, 10 0.895 ± 0.011 1.109 ± 0.012 0.488 ± 0.006 0.782 ± 0.008 1.103 ± 0.005 0.501 ± 0.007
-20, 20 0.887 ± 0.006 1.103 ± 0.016 0.498 ± 0.008 0.779 ± 0.003 1.118 ± 0.003 0.508 ± 0.007
-50, 50 0.902 ± 0.006 1.203± 0.010 0.472 ± 0.009 0.793 ± 0.004 1.137 ± 0.004 0.462 ± 0.009

-100, 100 0.896 ± 0.009 1.135 ± 0.009 0.490 ± 0.005 0.785 ± 0.003 0.995 ± 0.004 0.499 ± 0.004
-1000, 1000 0.913 ± 0.009 1.211 ± 0.007 0.462 ± 0.008 0.810 ± 0.005 1.013 ± 0.004 0.452 ± 0.009

ablation study on loss weighting methods.
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TABLE 4.8: Comparison of validation loss (MAE and RMSE) of all three task
important weighting schemes on Biovid database

BioVid
Method Uniform Random Hard

ERM 0.960, 1.360 0.968, 1.359 0.941, 1.333
ERM with TENT-BN 0.956, 1.348 1.011, 1.389 0.938, 1.274
ERM with TENT-C 1.014, 1.419 1.050, 1.450 0.958, 1.301

ERM(Coral) 0.910, 1.162 0.884, 1.186 0.896, 1.171
DANN 0.890, 1.156 0.888, 1.180 0.887, 1.182
Mixup 1.102, 1.115 1.207, 1.399 1.155, 1.527

CORAL 1.230, 1.452 1.320, 1.521 1.212, 1.401
MMD 1.284, 1.312 1.012, 1.432 1.144, 1.448

Disentanglement 1.440, 1.798 1.485, 1.832 1.312, 1.603
GroupDRO 0.982, 1.302 1.018, 1.452 0.975, 1.210

VERx 0.912, 1.201 0.962, 1.333 0.901, 1.105

Ours (PCOR-PA-bn) 0.890, 1.189 0.899, 1.177 0.889, 1.159
Ours (PCOR-PA-c) 0.897, 1.214 0.915, 1.240 0.896, 1.189

TABLE 4.9: Comparison of validation loss (MAE and RMSE) of all three task
important weighting schemes on Apon database

Apon
Method Uniform Random Hard

ERM 0.869, 1.116 0.861, 1.124 0.857, 1.111
ERM with TENT-BN 0.869, 1.117 0.862, 1.127 0.858, 1.112
ERM with TENT-C 0.859, 1.122 0.860, 1.118 0.853, 1.114

ERM(Coral) 0.777, 1.017 0.786, 1.019 0.782, 1.018
DANN 0.785, 1.031 0.791, 1.120 0.780, 0.998
Mixup 1.012, 1.230 1.085, 1.334 1.005, 1.118

CORAL 1.118, 1.358 1.115, 1.288 1.120, 1.479
MMD 1.110, 1.247 1.155, 1.286 1.280, 1.396

Disentanglement 1.874, 2.210 1.596, 2.230 1.774, 2.018
GroupDRO 1.010, 1.201 1.201, 1.352 0.988, 1.102

VERx 0.965, 1.155 1.215, 1.448 0.965, 1.201

Ours (PCOR-PA-bn) 0.779, 1.001 0.782, 1.121 0.775, 0.996
Ours (PCOR-PA-c) 0.798, 1.155 0.785, 1.130 0.780, 1.106

4.6 External Validation on Real Pain Patients

In this section, we used two datasets collected from real patients, which are Apon-postoperative

and Apon-labor. In order to ensure the quality of the datasets, we performed data cleansing

and filtering on these two data respectively. The data collection methods for these two datasets

have been described in Section 4.4.1. Here, I will describe both datasets in detail, as well as

the process of preparing the datasets.



4.6 EXTERNAL VALIDATION ON REAL PAIN PATIENTS 53

4.6.1 Data exploration

In a real medical environment, using Evu sensor as the acquisition device, the collected eda

device has anomalous data with a value <1 within a few minutes. As a reference, the mean

value of the eda signal in apon’s internal experimental dataset is 5.59, and the mean value of

the eda signal in biovid’s public dataset is 3.44. In addition to this, the bvp signal also suffers

from missing data and uneven data profiles. bvp data is representative of heart rate, which

should fluctuate continuously and evenly. we applied four different method to solve this

problem: 1) contact the manufacturer of the device collection to try to solve the problem. 2) in

the process of data collection, pay more attention to the wearing of the device and the position

of skin contact, to find the most appropriate contact method, as well as real-time monitoring

of dynamic data changes, if there are unusual changes in the value of the collection process,

you can record the scene that occurred at that time (such as changes in the wearing position of

the device, etc.) 3) the need for pre-experimentation to find the most appropriate way to wear

the device in the current medical environment. This takes into account that in a hospital, the

patient may be doing something that causes the sensor to shift. 4) the use of multiple devices

with simultaneous data acquisition.

4.6.2 Data cleaning

Due to the inability to control environmental variables under experimental conditions in real

medical scenarios, we conducted a separate data quality analysis for each case (subject). For

privacy reasons, each case is identified by an ID instead of a name. The following are some

examples:

• ID 415138: The maximum values of the skin electrical signals in the pre-anesthesia

and awakening rooms were 0.8 and 0.2, respectively. In contrast, the skin electrical

signals in the wards showed complete performance. For the ECG data, significant

missing data were observed in all three data sessions in the awakening room only.
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• ID 415734: All skin electrical signals showed numerically small values. The

complete waveform of the SCR event was visible only in the pre-anesthesia data.

Only a few data points were missing in the BVP data.

• ID 416139: The tonic component in the pre-anesthesia phase was distinct and

complete, showing an upward trend with a complete SCR response. However, in

the resuscitation room and ward, the BVP data were invalid, possibly due to signal

interference or incomplete wear of the equipment.

• ID 416130: The output format of Data No.1 differed from the rest of the data.

• ID 415315: Pre-anesthesia data were normal, with a monotonically rising trend in

skin electrical signals during the awakening and ward phases. However, the VAS

score indicated that the patient did not respond to pain.

• ID 413343: A sudden rise in the pre-anesthesia phase occurred simultaneously in

one of the EDA and BVP signals. No significant fluctuations were observed in the

galvanic skin data in the awakening room or ward.

After evaluating each patient’s pain, we summarized some obvious data quality issues as

follows:

• The values of skin electrical data were too small in some cases. Possible reasons

include: 1) They represent normal data; 2) The data was collected in a position where

valid skin electrical readings could not be obtained without affecting cardiac electrical

signals; 3) Systemic problems with the device, where there was no noticeable change

in the patient’s data for up to a couple of minutes.

• Data format inconsistencies.

• Obvious sections of missing data where there is a sudden jump in ECG values. It

is possible to determine the timing of the missing data so that algorithms can more

accurately fill in the gaps.

To address these issues, we employed the following data cleaning and filtering process to

ensure the dataset’s quality: 1) Checking data integrity, identifying and dealing with missing

values. For physiological signals, missing values may result from equipment malfunction or
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sensor detachment. Short-term missing values are filled using interpolation methods (e.g.,

linear or nearest neighbor interpolation), and data are marked as unavailable for long periods.

2) Identifying outliers using statistical methods (e.g., box plot analysis) or machine learning

models (e.g., isolated forests), which may result from sensor errors, data entry mistakes, or

atypical physiological states of the patient. Outlier data points are corrected or removed as

appropriate. 3) Improving signal quality for measures such as skin resistance, blood volume

pulse (BVP), and skin temperature using signal processing techniques, including filtering and

denoising. For instance, a low-pass filter is applied to eliminate high-frequency noise, and a

moving average or median filter is used to smooth the data. 4) Integrating data from disparate

sources into a consistent format to ensure completeness of each patient’s data record, with

accurate timestamps and other relevant information.

4.6.3 Data preparation

The length of real patients’ data is different, and we need to do data slicing with sliding

window before feeding the data into the model. Here we introduce the method of slicing

window for data segmentation.

Consider a physiological signal represented as a time series, {x(t)}, where t = 1, 2, . . . , N

indexes time and N is the total count of data points. To analyze this signal, we apply a sliding

window technique, which partitions the data into overlapping segments.

The procedure involves two parameters: the window length, W , indicating the number of data

points in each segment, and the step size, S, specifying how many points to move forward

between segments. Generally, S is less than or equal to W , allowing for segments to overlap

when S < W .

For any segment i, the data it contains, Xi, is defined as:

Xi = {x(t)}min(iS+W,N)
t=iS+1
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with i ranging from 0 up to
⌊
N−W

S

⌋
, ensuring coverage of the entire dataset while accommod-

ating for the final segment that may contain fewer than W points.

4.6.4 Related Results

Finally, we present the results of externally validating real pain patients to highlight PCOR-

PA’s ability to provide valuable pain evaluation, which ultimately contributes to better personal

pain management. In the following, we describe two real pain patient datasets: Apon-

postoperative and Apon-pregnancy.

Apon-postoperative. Postoperative pain management has been a challenge for a number

of reasons including complex pathomechanisms, inappropriate use of opioids and resource

constraints in pain management . We conducted data collection at Union Hospital for

patients undergoing ICU and thoracic surgery in the following three scenarios: pre-operative,

anesthesia awakening room, and post-operative ward. While data collection was being

conducted, physicians recorded pain levels through subjective VAS scores.

Apon-pregnancy. We apply our algorithms to a medical scenario of maternal pain in

which an anesthesiologist needs to assess a pregnant woman’s pain and analgesia before she

enters the delivery room to give birth. Without interfering with the normal analgesic process,

we perform data collection, including facial expression, EDA, blood volumn pulse, blood

pressure, blood oxygen, heart rate, respiratory rate, contraction intensity, contraction interval,

and fetal heart rate. When organizing the data, we asked obstetricians and gynecologists

to perform continuous pain intensity labeling based on the information we provided in the

data, where the pain labels were all derived from doctors’ objective judgments of maternal

paroxysms.

Table 4.10 shows the performance of result on patient on real world database. From the results

of the Apon-postoperative dataset, we found a decrease in accuracy. The main reason for

this may be that the postoperative pain dataset was collected from three different scenarios,

and due to the many uncontrolled variables in real healthcare environments, pooling these
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data from different scenarios can lead to noise in the data. However, our algorithm still

outperforms the baseline model. On the contrary, in the Apon-pregnancy dataset, we found

good results, probably because the maternal pain is acute and the pain response is obvious,

and another reason is that for the maternal pain data, the pain labels are evaluated by experts.

TABLE 4.10: Results of comparative study

Apon-postoperative Apon-pregnancy
Method MAE RMSE QWK MAE RMSE QWK

Random Forest 1.182 ± 0.002 1.412 ± 0.009 0.269 ± 0.009 0.653 ± 0.004 0.825 ± 0.010 0.528 ± 0.009
SVM 1.011 ± 0.003 1.213 ± 0.002 0.278 ± 0.005 0.722 ± 0.004 0.989 ± 0.005 0.519 ± 0.005

ERM 1.117 ± 0.011 1.385 ± 0.013 0.391 ± 0.004 0.810 ± 0.008 1.016 ± 0.006 0.502 ± 0.007
ERM with TENT-BN 1.052 ± 0.005 1.222 ± 0.006 0.358 ± 0.002 0.792 ± 0.005 0.952 ± 0.006 0.473 ± 0.005

ERM with TENT-BN-L 1.116 ± 0.004 1.314 ± 0.003 0.329 ± 0.007 0.833 ± 0.003 1.028 ± 0.004 0.402 ± 0.005
ERM with TENT-C 1.209 ± 0.009 1.482 ± 0.015 0.201 ± 0.009 0.988 ± 0.002 1.259 ± 0.007 0.359 ± 0.007

ERM with Coral layer 1.082 ± 0.003 1.203 ± 0.002 0.386 ± 0.002 0.774 ± 0.004 0.910 ± 0.002 0.497 ± 0.002

DANN 0.880 ± 0.006 1.025 ± 0.003 0.499 ± 0.003 0.724 ± 0.005 0.976 ± 0.004 0.518 ± 0.005
Mixup 1.018 ± 0.010 1.263 ± 0.009 0.297 ± 0.005 0.974 ± 0.008 1.176 ± 0.009 0.368 ± 0.005

Ours (PCOR-PA) 0.858 ± 0.003 0.974 ± 0.006 0.505 ± 0.005 0.602 ± 0.004 0.819 ± 0.004 0.582 ± 0.004

4.6.4.1 Comparison with research results on real-world pain databases

This table 4.11 presents a comparative analysis of various methods applied to a real-world

pain database, focusing on their performance across both regression and classification tasks.

The comparison spans different sources of pain, such as heat (DUG-CORAL), sickle cell

disease, electric pulses, shoulder pain, laparoscopic appendectomy, and two conditions related

to the Apon dataset (post-operative and labor).

For the regression task, the effectiveness of pain assessment methods is evaluated using

Mean Absolute Error and Root Mean Square Error as metrics. Specifically focusing on the

Apon data, the post-operative scenario shows an MAE of 0.858 and an RMSE of 0.974,

indicating the level of deviation from the actual pain levels. These relatively high values

suggest challenges in precisely estimating post-operative pain using Electrodermal Activity

(EDA) as the sensor. In contrast, the labor pain scenario under Apon presents a lower MAE

of 0.602 and an RMSE of 0.819, demonstrating a better performance in estimating pain levels

more accurately for labor pain with the same type of sensor.
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Regression Classification
Pain sources Input sensors MAE RMSE ACC

Heat (DUG-CORAL) EDA 0.755 0.942 53.79%
Sickle cell disease (Yang et al., 2019) HR, RR, GSR, SkinTemp, etc. N/A 1.526 N/A

Electric pulses (Kong et al., 2021) EDA 0.885 1.129 N/A
Shoulder Pain (Xu and de Sa, 2021) video 0.63 1.13 N/A

laparoscopic appendectomy (Susam et al., 2021) EDA N/A N/A 45.45%
laparoscopic appendectomy (Susam et al., 2021) Video N/A N/A 77.27%
laparoscopic appendectomy (Susam et al., 2021) EDA, Video N/A N/A 36.36%

Apon-postoperative (PCOR-PA) EDA 0.858 0.974 40.20%
Apon-labor (PCOR-PA) EDA 0.602 0.819 60.81%

TABLE 4.11: Comparison with the existing methods on real-world pain database

In terms of classification tasks, the accuracy percentage provides insights into how well the

pain assessment methods can classify pain levels correctly. The Apon data reveals a stark

contrast between the post-operative and labor scenarios. The post-operative pain assessment

achieves a classification accuracy of only 40.20%, which is significantly low, highlighting the

difficulty in accurately classifying pain levels in post-operative conditions. On the other hand,

the labor pain scenario shows a much higher classification accuracy of 60.81%. This indicates

that, despite the challenges, the method used for labor pain assessment is considerably more

effective at classifying pain levels correctly compared to the post-operative scenario, though

there is still room for improvement.

4.7 Conclusion and Future Work

The high subjectivity of pain, coupled with its resistance to quantification, presents significant

challenges to the development of automated pain assessment algorithms. In this paper, we

introduce a test-time adaptive learning framework for personalized pain models, PCOR-PA,

which fully leverages the availability of pain data in medical settings and minimizes the

prediction entropy of ordered regression networks. This approach enables pain prediction

models to adapt to previously unseen test subjects, effectively aligning the model with

the current test data distribution. PCOR-PA offers a novel solution for personalized pain

assessment, surpassing existing methods in domain generalization.
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In the future, we will focus on integrating facial expressions and physiological signals through

multimodal learning; exploring how to construct data-balanced batches for each subject while

preserving the advantages of subject-independent batches; and conducting in-depth analyses

of the learned models to enhance their interpretability.



CHAPTER 5

A Data-Uncertainty Guided Approach for Effective Pain Assessment

Pain, a primary reason for seeking medical help, requires essential pain assessment for

effective management. Studies have recognized electrodermal activity (EDA) signaling’s

potential for automated pain assessment, but traditional algorithms often ignore the noise

and uncertainty inherent in pain data. To address this, we propose a learning framework

predicated on data uncertainty, introducing two forms: a) subject-level stimulation-reaction

drift; b) ambiguity in self-reporting scores. We formulate an uncertainty assessment using

Heart Rate Variability (HRV) features to guide the selection of responsive pain profiles and

reweight subtask importance based on the vagueness of self-reported data. These methods

are integrated within an end-to-end neural network learning paradigm, focusing the detector

on more accurate insights within the uncertainty domain. Extensive experimentation on both

the publicly available BioVid dataset and the proprietary Apon dataset demonstrates our

approach’s effectiveness. In the BioVid dataset, we achieved a 6% enhancement over the

state-of-the-art methodology, and on the Apon dataset, our method outperformed baseline

approaches by over 20%.

5.1 Introduction

Pain assessment is crucial for healthcare professionals in devising effective pain management

plans. Effective pain assessment involves a blend of subjective reports, objective measures,

and computational models to gauge pain levels. Despite being the current gold standard,

self-reported pain scales are inherently variable and subjective (Kong et al., 2021), and

are challenging to administer with infants or individuals with communication difficulties.
60
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Complementing self-reports, objective measures like physiological indicators (e.g., heart rate,

blood pressure, facial expressions) and behavioral indicators (e.g., mobility, sleep patterns) can

provide valuable pain-related information. Leveraging Artificial Intelligence-Assisted Patient-

Controlled Analgesia (AI-PCA) (Wang et al., 2020b), objective and continuous pain state

evaluation can be achieved through algorithmic approaches. However, due to the complexity

of pain as a phenomenon (von Hehn et al., 2012) and the lack of identified biomarkers

reflecting its fundamental mechanisms (Van Der Miesen et al., 2019), the search for objective

biomarkers to elucidate pain mechanisms remains a pressing need (Tracey et al., 2019).

Uncertainty

NRS
0 10

No Pain
Mild

Moderate
Severe

Pain tolerance

VRS

(b)(a)

Pre-experimental Experimental

37.5℃ 37.5℃

FIGURE 5.1: Examples of uncertainty in pain stimulation experiments include:
(a) the inconsistency in stimulation-reaction, where pain perception varies
between the pre-experiment and the formal experiment, and changes over time;
(b) the uncertainty in subjective pain assessment, which increases as the rating
approaches the middle of the pain scale.

The AI-PCA system utilizes facial expressions and bio-signals as inputs. While facial expres-

sion data can be noisy and resource-intensive in real medical settings, physiological signals,

e.g., electrocardiograms (ECG), EDA, electromyograms (EMG), electroencephalograms

(EEG), respiratory rates, and blood pressures are preferred due to their objectivity and lower

equipment requirements. Biosignal-based methods have emerged as effective means for pain

assessment, focusing on feature learning in time, frequency, and wavelet domains, along with

sequence learning methods like LSTM and attention mechanisms.

Existing methods often overlook the intrinsic uncertainty present in pain data, potentially

compromising the accuracy of pain assessment algorithms. These algorithms, based on
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noisy data and approximate models, can produce inaccurate results, influencing physician

decision-making and interpretation of intervention effects (Madden et al., 2021). To fully

harness the potential of machine learning algorithms in the AI-PCA system, it is crucial to

quantify this uncertainty, typically represented as data uncertainty. Data uncertainty in pain

data manifests as sensor noise, cognitive ambiguity in active reports, and drift in experimental

pain response-stimulus. Each one could significantly impact pain assessment. It is unrealistic

to assume noiseless sensors or control for changes in subject responses to experimental stimuli,

let alone account for uncontrollable environmental variables in clinical data and their impact

on the patient.

We present a new learning framework to tackle the challenges in pain assessment by consider-

ing uncertainty in labeled data. Our approach comprises three key components. First, subject

batch normalization is utilized to stabilize data distribution by exploiting inherent similarities

within data from the same subject. This reduces inter-subject data distribution differences.

Second, we avoid incorporating ultrashort HRV features into the prediction model training

due to their lower predictive capability compared to EDA signals. Instead, we leverage the

low-noise nature of HRV features for assessing subjects with prior uncertainty. The dispersion

of HRV features for each individual is calculated and used as a scaling factor during pain

assessment model training. Third, to address pain ambiguity characteristics (high-low-high),

we propose a pain-specific task weighting scheme combined with the coral framework. This

conversion transforms the regression problem into a series of binary classification tasks (T0

vs. T1, T1 vs. T2, T2 vs. T3), and for tasks with high ambiguity, their loss weight is actively

increased.

5.2 Data Uncertainty in Pain Assessment

Pain data uncertainty stems from two main sources. The first, subjectivity, arises from

individual variations in pain sensitivity, influenced by personal characteristics and context,

complicating objective measurement (Lundberg et al., 2022). The second, cognitive ambiguity,
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occurs when individuals find it difficult to discern intermediate pain states, neither pain-free

nor at pain tolerance levels.

Pain studies gather data from two sources: experimental pain stimuli in healthy individuals

and actual pain experiences in patients. The thermal stimulation pain experiment process

consists of calibrating the stimulus and collecting data. Assuming consistency in stimulus

intensities across both stages overlooks intraindividual variability (Madden et al., 2021),

leading to shifts in stimulus-response relationships and changes in pain-affecting factors

(Mosley and Butler, 2017). This results in data-label noise and uncertainty in automatic

pain assessment modeling. In clinical settings, uncertainties arise from factors like patient

physiology, movement, ongoing treatment, and external interference, necessitating careful

evaluation.

Traditional subjective pain rating scales, such as the Verbal Rating Scale (VRS), Visual

Analogue Scale (VAS), and Numerical Rating Scale (NRS), are standard in pain studies. VAS

and NRS measure pain intensity on scales of 0 to 100 mm and 0 to 10 points, respectively,

while VRS uses adjectives (Williamson and Hoggart, 2005). In thermal stimulation experi-

ments, the Standard-Method-of-Limits calibrates stimulus intensity, identifying painless and

pain tolerance thresholds but lacking intermediate pain level reports (Kamper-Fuhrmann et

al., 2023). Assuming equidistant intermediate pain thresholds between these extremes is

unreasonable (Walter et al., 2013). In clinical settings, patients’ self-reported pain usually

identifies no pain and pain tolerance accurately, but assessing intermediate levels introduces

ambiguity.

Patient pain perception often involves significant uncertainty due to subjectivity (Zaman et al.,

2021). While data uncertainty can be reduced with sufficient data (Kendall and Gal, 2017),

the unique nature of pain experiments and limited pain-related databases leave uncertainty

unaddressed in automated pain assessment algorithms. Recent work (Xu and de Sa, 2021)

incorporates uncertainty into pain assessment algorithms, using the optimal linear combination

model to reduce epistemic uncertainty from facial expressions, enhancing results.



64 5 A DATA-UNCERTAINTY GUIDED APPROACH FOR EFFECTIVE PAIN ASSESSMENT

5.3 Problem Statement

This paper addresses the practical issue of pain assessment in real clinical settings. We

define a dataset as D = ⟨X, Y ⟩, where X = {x0, x1, ..., xT} denotes a continuous stream

of physiological signals, and Y = {y0, y1, ..., yT} corresponds to sequence of pain intensity

over time. At any given time t, we have yt ∈ {r1, r2, ..., rk}, where r1 denotes no pain and rk

signifies the most severe pain level. The task is to determine, at any time, whether a patient

is in pain and, if so, the intensity of the pain. Accurate pain intensity estimation requires

analyzing the sequence of signals, not just a single time point. The goal is to find a function

f : X → Y that minimizes

N∑
i=1

T∑
t=0

l(f(X0:t), y
i
t) (5.1)

where N is the number of observed subjects and l denotes an error function, measuring the

difference between f(X0:t) and yit. As per equation (5.1), the input of f includes a signal

sequence within the time range [0, t]. The input sequence length, denoted as O(t), increases

proportionally with t. This setting becomes impractical due to the escalating computational

and storage demands with the increase in t. Hence, we propose a model denoted as f with the

following property:

f(X0:t) = f(Xt−∆t:t) (5.2)

for some small ∆t > 0 and for all t ≥ 0. We refer to the model with this property as a

short-term Markovian model model. In this work, we consider models with ∆t ≤ 6s as

practical models, as suggested in (Kong et al., 2021).

5.4 Our Approach

In this section, we present our DUG-CORAL framework for pain assessment. This framework

includes two essential features for robust pain intensity modeling: 1) Uncertainty incorpora-

tion with automatic pain intensity prediction and 2) Addressing pain-specific self-reporting
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ambiguities. As shown in Figure 6.2, the modeling process in our design is divided into two

phases: a) conduct HRV analysis to estimate the subject’s physiological response uncertainty,

and b) consistent rank ordinal regression neural network training, where this uncertainty is

integrated into the training process. We also include subject batch normalization to quantify

uncertainty further. Additionally, we outline the design of a pain-specific task weighting

scheme to handle self-reporting ambiguity.

…
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Normalization
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Block 2:
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+Batch 
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+AvgPooling

…

Output layerConvolutional layers

Ordinal label Encoding

Apon Data Set 

Peak detection RR intervals Time domain PC1

Principle Component 
Analysis
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Coefficient of Variation

Subject-Independent Uncertainty Estimation

Modelling
EDA signal 

Subject Batch Generation

FIGURE 5.2: Framework of DUG-CORAL ranker on Apon database

5.4.1 Subject-Independent Uncertainty Estimation

Many algorithms for multi-modality-based pain assessment have discovered that EDA signals

are more sensitive to pain than ECG signals. This sensitivity is not significantly enhanced

by multi-modal fusion, likely due to the length of the ECG signal. In the study by (Jiang

et al., 2017), HRV analysis of 40-second data was found to be significant only for pain/no

pain classification problems. However, a 40-second pain assessment time falls short of actual

medical requirements in objective pain assessment algorithms. In this work, we thus depart

from a multi-modal approach and utilize ECG data to assess patient uncertainty. This strategy

aims to enhance the accuracy and generalization of the EDA-signal-based pain assessment

algorithm.
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Algorithm 3 Subject-independent uncertainty estimation
Input: A dataset consisting of n subjects, where each subject i has mi signals (Heart related indicators

used for HRV analysis).
Output: CVi for each subject i where i from 0, 1, ..., n

1: Let D be the entire dataset
2: for i = 1 to n do
3: Let Di be the subset corresponding to subject i from D

4: for each Signal sji in Di do
5: Detect peaks:
6: peaks← DETECTIONPEAK(sji )
7: Calculate intervals:
8: RR_intervals← CALCULATEDIFF(peaks)
9: Extract features:

10: features["MEAN", "SDNN", "RMSSD"]← FEATUREEXTRACTION(RR_intervals)
11: end for
12: Apply PCA:
13: PC1← PCA(features)
14: Calculate coefficient of variation:
15: CVi← CALCULATECV(PC1)
16: end for

Suppose that we are given a heart-related signals data set of N subjects which can be

represented as D = {S1, S2, ..., SN}. For each subject Si, it contains a collection of mi

signals, the set of signals of each subject Si =
{
xi
1(t), x

i
2(t), ..., x

i
mi
(t)

}
. Each xi

j(t) is an time

series data belonging to subject Si, where i = 1, 2, ..., n, j = 1, 2, ...,mi and t is total length

of signal. For each subject’s signals, we first partition each signal xi
j(t) into segments of equal

length {seg1, seg2, ..., segk}. Then, we merge these segments and extract each segment’s HRV

related features. Since the segmented signal fragments are relatively short, less than 6 seconds,

we focus on extracting HRV-related features: {MEAN,SDNN,RMSSD} in the time

domain and nonlinear domain while disregarding frequency domain features. Let FSi
be the

HRV feature set for subject Si, and its elements can be denoted as FSi
= {FSi,1, FSi,2, FSi,3}.

Later, to comprehensively assess the set of features extracted from these, Principal Component

Analysis (PCA) is used to determine the major differences in these features. Standardizing

the features to have a mean of zero and a variance of one ensures that features with varying

scales do not wield disproportionate influence over the PCA process. Let Fstd =
F−µ
σ

, where

µ is the mean of F , and σ is the standard deviation of F . Let C be the covariance matrix of
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the standardized HRV feature Fstd, which is provided as:

C = cov(Fstd) (5.3)

Let λ1, λ2, ..., λn be the eigenvalues of C, and v1, v2, ..., vn be the corresponding eigenvectors

and sort the eigenvectors based on their corresponding eigenvalues in descending order. Let

vpc1 be the eigenvector corresponding to the highest eigenvalue λ1. Let pc1scores be the scores

of HRV feature set Fstd projected onto pc1.

PC1scores = Fstd × vPC1 (5.4)

For physiological signaling, each subject’s physiological state is different because the metric of

their physiological data is different. Here, we choose to use the coefficient of variation instead

of variance or range, which can well eliminate the effect of the scale of the physiological data

of different subjects. We define the subject uncertainty as:

CV =
STDPC1score

MEANPC1score

(5.5)

which will be used in the further modelling phase. The overall process is described in

Algorithm 1.

5.4.2 DUG-CORAL Training

For the final pain intensity inference model, we are aware of the ordinality of pain intensity

labels and uncertainty of pain-related databases, i.e., observation uncertainty on experimental

pain and label ambiguity. Here, we introduce the data uncertainty-guided ordinal regression

algorithm for pain assessment. The only input to the pain assessment algorithm is the EDA

signal. Feature learning for EDA signals is not our focus in this article. For simplicity, we use

two layers of 1-dimensional CNN as the feature extractor. As an ordered regression problem,

we employ CORAL (Cao et al., 2020) for classification Loss .
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5.4.2.1 CORAL framework

The idea behind the ordinal regression algorithm is to transform the ranking problem into a

series of binary classification problems. According to the work in (Cao et al., 2020), a rank yi

is first extended into a vector of K-1 binary labels y(1)i , ..., y
(K−1)
i such that y(k)i = 1{yi > rk}

indicates whether yi exceeds rank rk. The boolean test 1 {·} equals 1 if the inner condition is

true and otherwise. By incorporating the expanded binary labels in the model training process,

we can train the K-1 binary classifier in the output layer of the neural network.

Algorithm 4 Uncertainty guided training procedure
Input: EDA signal set X , pain rating y, Initial model parameterθ, learning rate α, Number of training

epochs T , subject uncertainty CVs1,s2,...,sn

Output: trained model with updated parameters: θt
1: Initialize θt = θs
2: for epoch = 1 to T do
3: for (Xbatchi

, Ybatchi
) from subject i do

4: compute the forward pass: f(Xbatch, θ)
5: compute the coral loss: L(F (Xbatch, θ), ybatch)
6: compute the gradient: ∆L(θ)
7: Update model parameters: θ ← θ − CVi · α · ∇L(θ)
8: end for
9: end for

Let W denote the weight parameters of the neural network, excluding the bias terms in the

final layer, and bk denote the bias corresponding to the kth output neuron. All neurons in

the final output layers share the same weight to achieve rank consistency among its output

layer tasks. The inputs of final layer is denoted {g(xi,W ) + bk}k−1
k=1. Let σ(z) = 1

1+e−z be the

logistic sigmoid function. The predicted empirical probability for binary classification task k

is defined as:

P̂ (y
(k)
i = 1) = σ(g(xi,W ) + bk). (5.6)

For model training, we minimize the loss function:

L(W, b) = −
N∑
i=1

K−1∑
k=1

λ(k)[log(σ(g(Xi,W ) + bk))y
(k)
i

+ log(1− σ(g(Xi,W ) + bk))(1− y
(k)
i )]

(5.7)
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which is the weighted cross entropy of K − 1 binary classifiers in the above equation. λ(k)

denotes the weight of loss associated with the kth classifier, which is the important parameter

for task k. Considering the difficulty in optimizing λ(k), we opt for its selection through a non-

uniform task weight scheme. This paper introduces our novel approach: an uncertainty-guided

non-uniform weighting scheme tailored for automatic pain assessment.

5.4.2.2 Subject-independent standardization and batch normalization

In neural network training, there are two common techniques that can be combined to enhance

training effectiveness. In this work, we propose subject-independent standardization and batch

normalization. Firstly, regarding feature standardization, considering our dataset comprises

data from various individuals, we have taken into account the diversity in data distribution

across subjects. Rather than applying feature standardization across the entire dataset as

typically done, we have chosen a different approach. We have individually processed the data

of each subject, ensuring that the mean of their data features is centered around zero, with

a variance of one. Secondly, during the preparatory phase of neural network training, we

have adopted an alternative approach from the conventional method. Instead of randomly

dividing the data into batches, we organize the data into batches based on individual subjects.

To elaborate, each batch exclusively contains data from a single individual. This methodology

elevates the significance of batch normalization. By calculating the mean and variance on

each small batch of data, we normalize the inputs for every neuron. This practice efficiently

mitigates internal covariate shifts during the training process, consequently enhancing the

stability of the model’s training process.

Suppose Bj is jth batch, we denote each batch as:

Bj = {(Xi, yi) | Si = sj} (5.8)

where sj is the subject of jth batch
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The operation of Batch Normalization can be represented as:

BN(Xi) =
Xi − µi√
σ2
i + ϵ

⊙ γ + β (5.9)

where µi =
1
Ni

∑Ni

n=1X
(n)
i denotes the mean of the ith batch, σ2

i = 1
Ni

∑Ni

n=1(X
(n)
i − µi)

2

denotes the variance of the ith batch, γ and β are the learnable parameters of the Batch

Normalization layer, ϵ is a small positive value to avoid dividing by zero.

Constructing batches exclusively from the same subject for batch normalization provides two

key benefits: 1) It reduces internal covariate shift by ensuring that the signals in each batch

have more consistent distributions. 2) It avoids batch effects that can occur when combining

data from multiple heterogeneous subjects in the same batch. Calculating batch statistics on

these homogeneous batches enables more effective normalization of network activations by

reducing variance across batches. This leads to more stable training and faster convergence,

as demonstrated in our ablation study (Figure 3). To further enhance the performance of our

model, we will investigate the construction of data-balanced batches for each subject while

preserving the advantages of subject-independent batches.

5.4.2.3 Pain-Specific Non-uniform Weighting Scheme for Solving Label Ambiguity

The recognition system of humans indicates that people are more aware of the two limits

of pain: no pain and pain tolerance, than of the intensity of pain in between. Therefore, we

hypothesized that in the subjective report of pain (i.e., the labelling of the data), there is a

smaller likelihood of greater ambiguity for two extremes of pain intensity; conversely, there

is a high likelihood of greater ambiguity for intermediate pain scores. For this reason, we

introduce a non-uniform weighting scheme to emphasize the ambiguity degree of data labels

in automatic pain assessment. For training, we minimize the loss function.

5.4.2.4 Uncertainty-Guided Factor for Weight Adjustment

Previously, we obtained the data uncertainty for each subject by calculating the degree of

discretization of their heart-related features, and we brought this uncertainty into the training
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BioVid
Model Input sensors MAE RMSE

Multi-stage ensemble classifier(Kächele et al., 2017) EDA, ECG, EMG and videos 0.99 1.16
DDCAE (Thiam et al., 2021) EDA, ECG, EMG 0.97 1.16
SVR (Pouromran et al., 2021) EDA 0.93 1.16

Domain Adaptation (Rajasekhar et al., 2021) Facial expression (Video) 1.16 N/A
SVR with trajectories (Szczapa et al., 2022) Facial landmark coordinates (Video) 1.13 1.47

CORN (Ji et al., 2023) EDA 0.90 1.22
DUG-CORAL (ours) ECG, EDA 0.83 1.25

TABLE 5.1: Comparison with the existing methods on BioVid database

of the EDA-based ordinal regression neural network. To intern this, we used subject batch for

the training of the neural network, where training batches are belongs to the same subject.

The weight adjustment factor is generated by the uncertainty of the data for each object and

it belongs to a certain range (Wmin, ...,Wmax), where 0 < Wmin < 1 and 1 < Wmax < 2

because we want to control the effect of a single subject on the model weights within a

reasonable range to ensure the generalization ability of the model. Here we use the tanh

function for scaling, which moves the mean of the data around zero.

CVscale =

(
tanh(CV ) + 1

2

)
· (Wmax −Wmin) +Wmin (5.10)

For these subjects W < 1, we consider the uncertainty in their data to be larger and therefore

reduce the influence of these data on the parameters of the model. Conversely, for subjects

whose W > 1, we consider their data to be of relatively high quality and therefore increase

their impact on the model parameters.

We use HRV features as a scaling factor to reduce the impact of data from subjects with

high uncertainty on the model parameters. In conjunction with the subject-independent batch

training, the data batch of a subject with high uncertainty will have less influence on parameter

updating and vice versa. In response to the second question, the dispersion of HRV features

(Mean, SDNN, RMSSD) is used as a surrogate for uncertainty without the help of other

signals. HRV tends to be relatively robust during pain experiments, with limited influence

from environmental factors or individual variations in pain sensitivity or anxiety. A high
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dispersion in HRV features could signify autonomic nervous system responses to varying

levels of induced thermal pain.

5.5 Experiments

5.5.1 Datasets and Experimental Settings

The Apon dataset comprises data from 59 participants, including 30 males and 29 females,

all healthy and inexperienced in pain assessment. The experiment involved three pain levels

(mild, moderate, and severe), each subjected to 20 sessions of 30-second thermal stimulation,

followed by a 90-second interval. Forty-seven subjects completed all three levels, while the

remaining 11 only finished the mild and moderate levels. We utilized the eVu TPS (Thought

Technology, 2023) wearable sensor to record psychological data, such as skin conductance

level and blood pressure pulse, at a 256 Hz sampling rate. Data recording began 10 seconds

before and ended 30 seconds after the heat stimulation. During the data preparation phase, we

segmented the data using a 5-second sliding window, labeling segments before stimulus onset

as "no pain" and those after as the corresponding pain level ("Mild", "Moderate", "Severe")

based on the current temperature.

The BioVid heat pain dataset, containing bio-signals (ECG, EMG, and EDA), is the only

publicly available resource of its kind. It is divided into two parts; we utilize part A, comprising

87 subjects with 100 data pieces each. These data correspond to different pain levels (T0,

T1, T2, T3, T4), with 20 thermal stimulation experiments conducted for each level. Each

signal recording lasts 5.5 seconds, with intervals of 8-12 seconds between adjacent stimuli.

The original sampling rate is 512 HZ. To align with the Apon dataset’s frequency, we

downsampled the EDA signal to 256 HZ during data preparation. We excluded the EMG

signal, as it corresponds to facial expression changes, and facial information related to pain is

not considered in our work. We chose to use only Part A of BioVid to enable direct comparison

to existing benchmarks, as most SOTA results are based on Part A inputs. Additionally, the
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Apon
Method Time Frequency Wavelet Catch22 Tsfresh

SVR 1.44, 1.84 1.10, 1.40 1.15, 1.50 1.18, 1.44 0.95, 1.47
RF 0.96, 1.10 0.97, 1.13 0.98, 1.14 0.97, 1.10 0.94, 1.38

AdaBoosting 0.96, 1.08 0.96, 1.09 0.97, 1.09 0.97, 1.09 0.96, 1.45
CORAL 0.78, 1.01 0.77, 0.99 0.78, 0.98 0.80, 1.07 0.76, 0.95

DUG-CORAL 0.77, 0.98 0.77, 0.98 0.77, 0.97 0.79, 1.05 0.75, 0.94

TABLE 5.2: Comparison with the baseline methods on Apon database. The
results are provided in the form of (MAE, RMSE)

other parts B, C, and D differ in video (B – partially occluded faces, C – longer videos, D –

posed pain and basic emotions) but not in ECG and EDA signals.

For both datasets, pain is simulated using thermal stimulation, which may constitute a bias for

the study. To our knowledge, thermal stimuli is still the common approach to simulate pain

as it can produce a reproducible pain experience in a controlled setting. BioVid is the only

publicly available experimental pain dataset that contains the bioelectrical signals (ECG and

EDA) we need. Other publicly available pain-related datasets, such as BP4D+ (cold stimuli),

are too small to be used in our study, as they have only 140 samples compared to BioVid’s

8700 samples.

5.5.1.1 Evaluation Protocols

In alignment with real healthcare scenarios, we investigate the subject-independent pain

assessment problem, where training and testing biosignal observations come from different

subjects. We utilize the leave-one-subject-out (LOSO) cross-validation method, consistent

with existing literature. This approach involves cyclically selecting one subject’s biosignals

for testing and using the remaining subjects’ biosignals for training. After each subject has

been tested once, the average prediction performance is calculated. Our study targets an

ordered regression challenge, leading us to choose Mean Absolute Error (MAE) and Root

Mean Squared Error (RMSE) as our regression metrics.
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FIGURE 5.3: Ablation study and training loss. EDA refers to training process
of DUG-CORAL without SI-standardization (SI-S) and SI-Batch normaliza-
tion (SI-BN)

5.5.2 Results

5.5.2.1 Tests on BioVid

In line with previous work, we evaluate DUG-CORAL against state-of-the-art methods using

the BioVid heat pain database, employing MAE and RMSE to assess regression performance.

The comparisons are detailed in Table 5.1. It is worth noting that in our algorithm, the ECG

signal was not utilized as an input for the prediction model but was employed to estimate each

subject’s uncertainty prior to model training. The table reveals that our algorithm significantly

improves MAE, achieving state-of-the-art results. However, when considering RMSE, our

method’s effectiveness diminishes in comparison to other techniques. Given that RMSE

emphasizes larger errors more than MAE, a plausible interpretation is that our method may

produce a residual number of predictions with substantial error, although this error remains

minimal in the majority of cases.
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BioVid Apon
HRV feature Initial [0.5, 1.5] [0.8, 1.2] [0.9, 1.1] Initial [0.5, 1.5] [0.8, 1.2] [0.9, 1.1]

MEAN 0.955, 1.562 0.852, 1.310 0.840, 1.311 0.835, 1.285 0.965, 1.418 0.885, 1.230 0.858, 1.166 0.854, 1.142
SDNN 0.913, 1.474 0.883, 1.399 0.856, 1.323 0.838, 1.362 0.947, 1.350 0.841, 1.160 0.842, 1.122 0.835, 1.135

RMSSD 0.903, 1.457 0.885, 1.401 0.852, 1.313 0.839, 1.288 0.860, 1.170 0.861, 1.168 0.825, 1.099 0.836, 1.109
PC1 (time) N/A 0.873, 1.401 0.825, 1.262 0.826, 1.248 N/A 0.833, 1.155 0.804, 1.120 0.813, 1.135

TABLE 5.3: Comparison of performance using different scale range of HRV
features (Mean, SDNN, RMSSD and PC1) on both BioVid and Apon databases.
The results are provided in the form of (MAE, RMSE)

5.5.2.2 Tests on Apon

In order to compare the efficacy of our algorithms, we chose some benchmark methods,

including support vector regressor (SVR), Random forest (RF), and adaptive boosting method

(Ada boosting), which are some classic machine learning algorithms and some of them were

used in the state of the art method in pain research. In order to explore the efficiency of our

algorithm in different latent spaces, we extracted features from various domains, the time

domain, frequency domain, and wavelet domain. Additionally, we utilized time series feature

libraries such as Catch22 and TSfresh for feature extraction. Details are provided in Appendix

(Xinwei Ji, 2023). As seen in Table 5.2, CORAL’s prediction results demonstrate significant

improvement across all feature spaces, while DUG-CORAL exhibits subtle enhancements

based on the CORAL algorithm. We also evaluated the efficacy of our proposed algorithm

using the Apon private dataset and compared the outcomes with those from other studies in

real healthcare settings. The detailed results are provided in Appendix (Xinwei Ji, 2023). We

used SVR as a baseline for both datasets. Three baseline methods from Table 1 (Multi-stage

ensemble classifier, Domain Adaptation, SVR with trajectories) were excluded from the Apon

dataset test because they include the video modality.

The details of feature extraction methods are provided as follows: we compare different

feature extraction methods on the Apon dataset, focusing on features from the time, frequency,

and wavelet domains, alongside two comprehensive feature libraries: Catch22 and Tsfresh.

Time Domain Features: Given a signal X with N samples, we compute the following time

domain features:
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• Mean of X: X̄ = 1
N

∑N
i=1 Xi, representing the average value.

• Maximum value in X: max(X) = max(Xi), the highest amplitude in the signal.

• Root Mean Square (RMS) of X: RMS(X) =
√

1
N

∑N
i=1 X

2
i , quantifying the signal’s

power.

• Variance of X: Var(X) = 1
N

∑N
i=1(Xi − X̄)2, indicating signal variability.

• Standard Deviation of X: Std(X) =
√

Var(X), the spread of the signal amplitude.

• Further features include Peak, Peak-to-Peak, Crest Factor, Skewness, Kurtosis

(Excess Kurtosis), Form Factor, Pulse Indicator, Interquartile Range, and Waveform

Length, each providing unique insights into the signal’s characteristics.

Frequency Domain Features: After converting the signal X to its frequency representation

using the Fast Fourier TransformF(X), we obtain the spectral power S(k) = |F(X)(k)|2 /N

for each frequency component k. Based on this, we compute the following features to

characterize the frequency content of the signal:

• Maximum spectral power: freq_max = max(S(k)), highlighting the frequency with

the maximum power.

• Sum of all spectral power values: freq_sum =
∑N

k=1 S(k), indicating the total power

across all frequencies.

• Mean of the spectral power: freq_mean = 1
N

∑N
k=1 S(k), offering an average power

per frequency component.

• Variance of the spectral power: freq_var = 1
N

∑N
k=1(S(k)−freq_mean)2, measuring

the dispersion of power across frequencies.

• Peak of the spectral power: freq_peak = max(|S(k)|), identifying the peak power

irrespective of frequency.

• Skewness of the spectral power: freq_skew =
1
N

∑N
k=1(S(k)−freq_mean)3

(freq_std)3 , with freq_std

being the standard deviation of S(k), captures the asymmetry of the power distribu-

tion across frequencies.

• Kurtosis of the spectral power: freq_kurtosis =
1
N

∑N
k=1(S(k)−freq_mean)4

(freq_std)4 − 3, assess-

ing the "tailedness" of the power distribution, where a higher kurtosis indicates a

distribution with heavier tails.
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Wavelet Domain Features: Using the Discrete Wavelet Transform (DWT) with Daubech-

ies wavelets, we decompose X into approximation and detail coefficients, cA and cDn,

respectively. From these, we compute:

• Mean and standard deviation for each order of Daubechies wavelets (cD1 through

cD5), capturing both the average and variability of the detail coefficients, providing

insight into the signal’s hierarchical structure.

Catch22: The Catch22 library is a concise yet powerful tool, generating 22 features from

the Hctsa (Highly Comparative Time Series Analysis) toolbox. These features, organized

into six categories—distributions, simple time statistics, linear autocorrelation, nonlinear

autocorrelation, continuous variance, and fluctuations—provide a broad analysis spectrum

from a compact feature set.

Tsfresh: Tsfresh systematically extracts high-quality features from time series data, categor-

izing them into five main groups: distribution (both parametric and non-parametric measures),

autocorrelation, frequency domain characteristics, linearity tests, and information content

measures. This library focuses on comprehensive feature engineering to capture the essence

of time series in various aspects.

5.5.3 Ablation Study

5.5.3.1 Impact of Subject-Independent Data Normalization

To explore the impact of subject-independent standardization (SI-standardization) and batch

normalization (SI-Batch normalization), we conducted an ablation study, the results of which

are depicted in Figure 5.3. Both SI-standardization and SI-Batch normalization expedite

convergence in the Apon and BioVid datasets, with the effect being particularly pronounced

in the BioVid dataset. The less apparent impact on the Apon dataset may be attributed to the

nature of the Apon data, which was derived by slicing from a lengthy signal sequence, leading

to inherent correlations within the data. Since SI-standardization and SI-batch normalization

show notable performance improvement, we have externally validated the effectiveness of
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this technique with real patient data. Further details can be found in Appendix (Xinwei Ji,

2023).

5.5.3.2 Impact of Scale Range of Subject Uncertainty Factor

We performed HRV analysis on each subject, calculating a discrete coefficient as an un-

certainty factor for each subject. To explore the scaling range of this factor, we conducted

experiments and compared the effects of three individual HRV features (MEAN, SDNN,

and RMSSD) in the time domain with their main principal component. As shown in Table

5.3, the principal component’s effect outperforms that of using MEAN, SDNN, and RMSSD

individually. We also determined that the optimal scaling range is between 0.8 and 1.2.

5.5.3.3 Impact of Task Important Weighting Scheme

DUG-CORAL views the ordinal regression problem as a series of K − 1 binary classification

tasks (T0 vs. T1, T1 vs. T2..., Tk−1 vs. Tk), and we assume that these tasks have different

levels of difficulty due to the ambiguity of human cognition. Here, we compare DUG-CORAL

using different task weighting schemes as below: 1) Scheme I: In the first scheme, the model

is trained for tasks with an equal weighting scheme. 2) Scheme II: In the second scheme,

we first randomly sample K-1 numbers from the standard normal distribution (Mean value

is 0, the standard deviation is 1) and put them into the softmax function. Finally, we obtain

numbers as task weight factors. 3) Scheme III: In the third scheme, we adopted an adaptive

loss weighting scheme considering the homoscedastic uncertainty (Kendall et al., 2018). 4)

Scheme IV: In the fourth scheme, hard weighting scheme for BioVid is applied as wT0vsT1

= 0.4, wT1vsT2 = 0.1, wT2vsT3 = 0.1, wT3vsT4 = 0.4. For Apon, wT0vsT1 = 0.4, wT1vsT2 = 0.2,

wT2vsT3 = 0.4. We adopted the principle that for tasks with low ambiguity, the importance is

high. 5) Scheme V: In the fifth scheme, a hard weighting scheme for BioVid is applied as

wT0vsT1 = 0.1, wT1vsT2 = 0.4, wT2vsT3 = 0.4, wT3vsT4 = 0.1. For Apon, wT0vsT1 = 0.3, wT1vsT2 =

0.4, wT2vsT3 = 0.3. We adopted the principle that for tasks with high ambiguity, the importance

is high.
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Dataset Scheme MAE↓ RMSE↓
IV 0.865 1.351
II 0.858 1.339

BioVid I 0.845 1.294
III 0.842 1.30
V 0.839 1.271
III 0.785 0.998
IV 0.782 0.996

Apon II 0.781 0.996
I 0.776 0.986
V 0.773 0.980

TABLE 5.4: Comparison of validation loss (MAE and RMSE) of all five task
important weighting schemes on both BioVid and Apon databases

Results on both BioVid and Apon datasets are summarized in Table 5.4. Weighting scheme

V outperforms the other schemes by giving more weight to the more challenging binary

classification tasks. This approach balances the optimization process between tasks, ensuring

that neither difficult nor easy tasks are neglected.

5.5.4 Additional comparison with other pain-related studies in real

healthcare settings

From Table I, we can see that using the EDA signal alone, our experimental results are better

than the work (Kong et al., 2021) on both MAE and RMSE. In contrast to the study using

video as input, our algorithm is slightly better than the work (Yang et al., 2019) on RMSE,

which indicates that there are fewer cases of huge errors in our algorithm. Additionally, we

treat the problem as a classification problem and replace the validation loss with accuracy,

and our algorithm achieved 53.79% accuracy on the 4-level pain intensity assessment, which

is better than the work using only EDA signal (Susam et al., 2021).

5.5.5 External validation on data from real patients

In the experimental section, we have shown the efficacy of SI-standarlization and SI-batch

normalization on apon and biovid datasets. Here, we present its efficiency on real patient

database. The real patient dataset consists of two parts, postoperative patients and label
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Regression Classification

Pain sources Input sensors MAE RMSE ACC

Heat (ours) EDA 0.755 0.942 53.79%

Sickle cell disease (Yang et al., 2019) HR, RR, GSR, SkinTemp, etc. N/A 1.526 N/A

Electric pulses (Kong et al., 2021) EDA 0.885 1.129 N/A

Shoulder Pain (Xu and de Sa, 2021) video 0.63 1.13 N/A

laparoscopic appendectomy (Susam et al., 2021) EDA N/A N/A 45.45%

laparoscopic appendectomy (Susam et al., 2021) Video N/A N/A 77.27%
laparoscopic appendectomy (Susam et al., 2021) EDA, Video N/A N/A 36.36%

TABLE 5.5: Comparison with the existing methods on Biovid database

pain patients, with a total of 17 postoperative patients and 23 label pain patients. Here, we

categorized the VAS scores collected by medical workers into 4 levels, no pain, mild, moderate,

and severe, corresponding to VAS score intervals of 0, 1-3, 4-6, and 7-10, respectively. From

Figure 5.5.5, we can see that SI-standarlization and SI-batch normalization can still work well

on real patient datasets.

FIGURE 5.4: Ablation study and training loss on real patient database. EDA
refers to training process of DUG-CORAL without SI-standardization and
SI-Batch normalization

5.6 Conclusion and Future Work

Pain assessment and monitoring demand an objective, precise predictive model, but uncertain-

ties in pain datasets and the absence of robust biological pain biomarkers hinder real-world
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medical applications. In this paper, we introduce DUG-CORAL, a model based on the

Ordered Regression Neural Network, enhanced with uncertainty assessment through HRV

analysis and label ambigurity-based task weighting scheme. By relying solely on EDA signals,

DUG-CORAL surpasses existing methods in pain prediction, including those utilizing facial

expressions and multimodal data.

In the future, we will focus on integrating facial expressions and physiological signals through

multimodal learning; investigating the construction of data-balanced batches for each subject

while preserving the advantages of subject-independent batches; and conducting in-depth

analyses of the learned models to enhance their interpretability.



CHAPTER 6

Automatic Pain Assessment with Ultra-short Electrodermal Activity

Signal

Automatic pain assessment systems can help patients get timely and effective pain relief

treatment whenever needed. Such a system aims to provide the service with pain identification

and pain intensity rating functions. Among the physiological signals, the electrodermal

activity (EDA) signal emerges as a promising feature to support both functions in pain

assessment. In this work, we propose a machine learning framework to implement pain

identification and pain intensity rating using only EDA and its derived features. Our solution

also explores the feasibility of using ultra-short EDA segmentation of about 5 seconds to

meet real-time requirements. We evaluate our system on two datasets: Biovid, a publicly

available dataset, and Apon, the one we build. Experimental results demonstrate that using

just the ultra-short EDA signal as input, our algorithm outperforms state-of-the-art baselines

and achieves a low regression error of 0.90.

6.1 Introduction

Suffering in pain is an unpleasant experience for all patients. Nowadays, pain assessment has

become an essential component in pain management. Unfortunately, the existing methods

are laborious and require great care in handling (Kappesser and Williams, 2010). They are

generally completed by either patient self-reporting or observed by others. For patient self-

reporting, the subjective pain assessment often leads to not the best treatment plan for patients,

particularly for those with communication disorders, e.g., dementia patients (Jonsdottir and
82
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Gunnarsson, 2021). As observed by others, the observers could underestimate the pain

suffered by the patients and create barriers to adequate pain relief (Achterberg et al., 2013).

Automatic pain assessment is a new proposal to provide objective pain measurement while

eliminating potential human errors. Some preliminary studies (Rajasekhar et al., 2021; Susam

et al., 2021) have been proposed with the help of computing techniques. In these studies,

facial expression and physiological signals are the two main approaches to achieving the goal

and facilitating a proper response in time (Achterberg et al., 2020). Compared with facial

expression, physiological signals are a more objective and quantitative measure to reveal pain

as they directly reflect physiological changes in our bodies. Using machine learning to analyze

physiological signals recognized as a valuable approach for pain assessment (Bhatkar et al.,

2022; Posada-Quintero et al., 2021; Chu et al., 2017). It is important to note that these works

like simultaneously using multiple physiological signals over a long period (lasting more than

10 seconds) to make decisions. Intuitively, a long signal often contains more information

than a short one (lasting less than 10 seconds) to reflect patient conditions better (Leiner et

al., 2012; Posada-Quintero and Chon, 2020). However, the acquisition of the needed and

well-aligned physiological signals often relies on the availability of the corresponding sensors

in a controlled environment. Sometimes, the physical conditions of the patients can also

limit the monitoring of physiological signals. Patients with heart-related diseases could have

abnormal electrocardiogram signals in nature.

In this work, we propose a low-latency automatic pain assessment framework with an ultra-

short single physiological signal to address the above issues. The EDA signal is cherry-picked

from numerous physiological signals to serve as the sole input for our framework. Our

selection centers on the pain stimulus intensity being sensitively correlated with the human

sympathetic nervous system. As a surrogate measure of sympathetic function, the EDA

response is the most well-characterized body response signal to pain (Chae et al., 2022). To

reduce latency, we design a lightweight pain identification model as a background daemon

to detect if a patient undergoes pain by using only a limited number of EDA features. Upon

pain is detected, we perform a pain intensity rating model using the EDA signal with a length

of 5 seconds, which we refer to as the ultra-short signal. The ultra-short signal we used is
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the segment starting from the pain detected. As a natural stress response, we believe this

signal segment contains rich information about the pain experience beyond that provided by

the other segments. Meanwhile, we integrate the feature libraries and feature engineering

techniques to derive insightful features from the ultra-short EDA signal as input for the pain

intensity rating model. With these strategies, our solution can significantly reduce the reliance

on computational resources while still having accuracy assurance.

6.2 Data

Few publicly available datasets exist for pain research. Among the available ones, the

BioVid dataset (Walter et al., 2013) is the most popular one. Due to the experimental design,

the BioVid dataset contains physiological signals of only 5.5 seconds under a controlled

environment. The length of the signals is not good enough to reflect real-world scenarios. We

thus design and conduct new pain stimuli experiments to collect the physiological signals of

30 seconds to allow better reflection of the real-world scenarios. Our private dataset names

Apon. Please note that we only use the EDA data from these datasets in this work.

𝑻𝑻𝟎𝟎

𝑻𝑻𝟏𝟏
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(a) Biovid
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(b) Apon (c) Apon test

FIGURE 6.1: Exemplary temperature curve with alternating stimuli and
pauses for (a) BioVid dataset, (b) Apon dataset, and (c) the test environ-
ment for building Apon dataset.

Part A of the BioVid Database focuses on pain intensity recognition. It contains physiological

data (EDA, ECG, EMG) and videos from 87 participants. Data collection has two phases: heat

threshold calibration and pain stimulation. The heat-induced pain stimulation is given to the

participants at each phase. In the heat threshold calibration phase, each individual is requested

to determine two critical points, Ts and Tt. The first point denotes the participant starts to feel

pain when the pain stimulation device reaches the temperature of Ts, and the second point
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denotes the participant fails to tolerate pain when set to Tt. In the pain stimulation phase,

every participant experiences pain stimulation of 5 levels (20 times per level), resulting in a

total of 100 observations per participant. BioVid labels the 5 levels as T0 < Ts < T 1
m < T 2

m < Tt,

where T0 denotes no pain, T 1
m denotes pain intermediate 1, and T 2

m denotes pain intermediate

2. The time window for data collection is 5.5 seconds (as shown in Figure 6.1 (a)). The data

sampling rate is 512Hz.

We create the Apon dataset with the assistance of Apon medical company. The Apon dataset

includes data from 59 participants, of which 30 are male, and 29 are female. 47 out of 59

participants complete the experiment with three pain levels (mild, moderate, and severe). The

remaining 11 participants complete the mild and moderate levels only. These participants are

healthy and have no experience in pain assessment.

The pain induction is via thermal stimulation by placing an electrode pad under the forearm of

the participants. When heat stimulation begins, the electrode rises and conducts heat directly

to the body. The test environment is shown in Figure 6.1 (c). We conduct a pre-experiment

as the threshold calibration phase in BioVid to reduce participant’s subjectivity to thermal

stimuli. A round of pain stimulation lasts 30 seconds. Once completed, the participant rests

for 1.5 minutes before entering the next test round. The process is shown in Figure 6.1 (b).

The level of pain stimulation at each round is randomized. Every level is repeated 10 times

for each participant during the experiment. We record the start and the end timestamps for

every stimulation.

A eVu TPS (unk, 2021) wearable sensor is used for recording psychological data (EDA and

blood pressure pulse) with a sampling rate of 256Hz. We start recording the data 10 seconds

before the test and stop recording 30 seconds after the test. The Apon dataset has 1363

effective observations, where 519 observations are for mild pain, 517 for moderate pain, and

312 for severe pain.
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6.3 Method

The overall design of our low-latency automatic pain assessment framework is shown in

Figure 6.2. It has three sequential stages, signal pre-processing, pain identification, and pain

intensity recognition.

Downsampling Moving median

Signal preprocessing

Pain identification Pain intensity 
recognition

Feature extraction

PainNo Pain No pain Mild Moderate severe

Moderate

Time

Frequency

Wavelet

Catch22

Tsfresh

Output: Pain intensity

Input: EDA steaming

Set up pain treatment

Pain patient

FIGURE 6.2: Framework of pain identification and intensity rating.

The signal pre-processing stage has two steps, downsampling and moving median. The former

reduces time and memory complexity, while the latter smooths the data by removing body

gestures and movements. We downsample the EDA signal to 32Hz to reduce the data size for

analysis. Meanwhile, the signal still offers almost the same information (IMotions, 2017).

Then, we filter the signal using a sliding window median of 0.5 seconds. Compared with a

sliding window average, the median window can help reduce high intrinsic statistical noises

and undesired irregularities (Leiner et al., 2012). Once completed, we have the needed EDA

signal for further processing.

The pain identification stage aims to indicate if a patient is in pain. In our framework, the pain

identification model is a long-running process to determine whether the patient undergoes

pain and segment an ultra-short EDA signal from a long EDA sequence to represent the

pain. This segment will then be used as the input for the pain intensity rating task. These

requirements impose the constraint that our design has to be computationally lightweight to

provide real-time feedback.
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We thus choose seven features consisting of MEAN and STD across three domains (time,

frequency, wavelet) and the normalized SCL level (nSCL) for completing this task.

We apply Fourier and wavelet transforms to extract the features from the frequency and

wavelet domains. The features from the frequency domain can provide us with discriminative

and distinct phenotypes that are not found in the time domain. The wavelet features, on the

other hand, explore the instantaneous frequency at each time point while retaining the time

features of the signal. In addition, the normalized MEAN of EDA amplitude is a clinical

means to distinguish between no pain and pain. We compute nSCL for an ultra-short signal

using the following formula, which modifies the one proposed in (Treister et al., 2012)

by reducing both the time window in the pre-stimulus period (previously 60 seconds) and

the current average skin conductance (previously 10 seconds) to 4 seconds and 1 second

respectively:

nSCL = 100× current average SCL− pre-stimulus average SCL
pre-stimulus average SCL

.

With these enhanced features, we can thus employ those machine learning algorithms with

relatively simple structures rather than relying on complex neural networks to exact embedded

information from the signal on the fly. In this work, we use the random forest (RF) model to

determine whether the patient is in pain and segment the representative ultra-short EDA signal

because it has good resistance to noise and introduces randomness, making it less likely to

overfit the data (Aqajari et al., 2021; Kächele et al., 2015).

Pain intensity evaluation is the key to understanding the feeling of a patient. This stage aims

to use only the EDA signal to estimate pain intensity. We argue that the existing subjective

pain scales are short on clear boundaries between the defined levels. In practice, this issue

could easily lead to different estimated levels (such as a 1- or 2-point difference) from the

baseline ranked by various personnel. We thus propose a 4-level pain intensity rating to enable

clear definitions of each pain level and the details are shown below.
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At a time point t, a patient’s EDA signal is S = (S1, ..., Sm) – m = fs · T , where fs is

the sampling rate, and T is a pre-defined small constant less than 10 seconds. Our task is

to find a model F to estimate the probability of the patient’s experiencing a pain intensity

It ∈ {0, 1, 2, 3}. The pain intensity It represents no pain if It = 0, mild pain if It = 1,

moderate pain if It = 2, and severe pain if It = 3. The pain intensity rating stage contains a

sequence of three tasks: feature extraction, feature selection, and pain intensity modeling.

The following sections provide the details. In this step, we extract the feature representations

in two ways: statistical features and feature libraries (tsfresh (Christ et al., 2018) and catch22

(Lubba et al., 2019)).

Statistical features. For the EDA signal, morphology over a long period, including its increase

to the peak and decrease back to normal. The traditional processing method decomposes

the EDA signal into phasic and tonic components. However, we focus on the ultra-short

EDA signal, which is not likely to have a complete morphology. This need motivates us to

explore other views to extract features that represent the EDA signal more completely. We

thus explore the signal from time, frequency, and wavelet domains.

For the time domain, the features we used include MIN, MAX, RANGE, MEAN, MEDIAN,

MODE, STD, RMS, MS, K ORDER MOMENT (CENTER AND ORIGINAL), SKEW,

KURT, KURT FACTOR, WAVE FACTOR, PULSE FACTOR, MARGIN FACTOR and

WAVEFORM LENGTH. For the frequency domain, the features include MAX, SUM, MEAN,

KURT, SKEW, PEAK, and VARIANCE of the coefficients of the Fourier transformation on the

signal. For the wavelet domain, the features include MEAN and STD of the detail coefficient

in the wavelet decomposition to the signal using the Daubechies wavelet family of order 1–5

(db1 - db5). The wavelet transformation can extract both local spectral information and local

temporal information. It also contains information about the transient signal segments of our

interest.

Feature libraries. In addition to basic statistical features from multiple domains, we view

the EDA signal as time series and use feature libraries catch22 (Lubba et al., 2019) and

Tsfresh (Christ et al., 2018) to extract features. The employment of these feature libraries
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can produce more diverse features rather than hand-crafted statistical features to describe

the ultra-short signals. During the use, library catch22 produces 22 features from the Hctsa

(highly comparative time-series analysis) toolbox (Fulcher et al., 2013). These 22 features

fall into six categories: distribution, simple temporal statistics, linear autocorrelation, non-

linear autocorrelation, successive differences, and fluctuation. Similarly, library Tsfresh

generates quality features from the input time series by systematic feature engineering. The

extracted features fall into multiple categories: distribution (parametric and non-parametric),

autocorrelation, frequency, linearity, and information content.

It is not hard to envision the generated features overlapping between the two feature libraries

and statistic features in multiple ways. If these features are used directly as input for the

training model, they could incur a high computational cost and violate our design principle.

Hence, we conduct feature engineering on both databases to eliminate some features to build

the final feature representation for pain intensity rating.

Feature Selection. In this step, We propose our feature selection approach following the

competitive learning schema to select the key features from the raw ones generated above.

Figure 6.4 gives the feature selection workflow diagram.
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FIGURE 6.3: Competitive learning workflow in pain intensity rating task.

To observe the effectiveness of features in the pain intensity rating task, we build a random

forest classifier with 1000 trees and use 10-fold cross-validation to examine the feature sets

independently on BioVid and Apon datasets. Once completed, we can identify the feature
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sets with the lowest contribution to the prediction accuracy on each dataset. The feature

extraction methods for these identified feature sets will then be removed from the list. We call

the remaining ones the winning methods.

To have a lightweight and trustworthy model to predict pain intensity, we continue to remove

those features with a marginal contribution to the prediction accuracy in the feature sets.

By marginal contribution, we mean that the removal of the feature does not decrease the

prediction accuracy. We propose a greedy feature elimination algorithm to eliminate the

features with a marginal contribution in rounds. Algorithm 5 gives the pseudo-code of the

approach. In the pseudo-code, X denotes the dataset (a n×m matrix if there are n samples

each with m features), R denotes a feature set, and X(R) denotes X with just the columns

defined by a feature set R. A metric function J takes a dataset and a trained model as input

and returns the accuracy of the model. Finally, f is any predictive model that can learn the

function from the feature space to the labels. In our work, we use the random forest as f .

Algorithm 5 Greedy feature elimination
Input: Feature set R = {R1, ..., Rm}, sample features X , sample labels y, a metric function J , and a

model f with adjustable features.
Output: A subset of feature space: the features of high relevance with the pain intensity.

1: train f using data X(R) and labels y.
2: score← J(X(R), y, f)
3: while true do
4: found← false
5: for Ri ∈ R do
6: train f , from the scratch, using data X(R− {Ri}) and labels y.
7: score′ ← J(X(R− {Ri}), y, f)
8: if score′ = score then
9: found← true

10: R← R− {Ri}
11: break
12: end if
13: end for
14: if not found then
15: break
16: end if
17: end while
18: return R

With R initially set to the winning features, we run Algorithm 5 to eliminate the features with

marginal contributions. The left ones form the final learning representation. The final feature
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set are standardized by the personal data to have zero-mean and unit-variance. In essence,

this step removes the variations across subjects.

Pain intensity modeling. Our pain intensity rating module operates on the final representation

with the rank-consistent ordinal regression neural network (CORN) (Shi et al., 2021). For

our datasets, we have modelled the pain intensities ranking into a discrete ordered order no

pain < mild pain < moderate pain < severe pain. Typical ordinal regression follows the

divide-and-conquer schema and converts the multi-class regression problem to a series of

binary classification problems. However, the rank inconsistency problem in ordinal regression

approaches may result in multiple non-adjunct ranks when their probabilities are above the

threshold. For example, the patient gets no pain and severe pain simultaneously. The work

(Cao et al., 2020) achieves rank consistency among its output layer tasks by imposing a

weight-sharing constraint. CORN takes one step further to solve the weight-sharing constraint

by using conditional training sets to obtain the unconditional rank probabilities by applying

the chain rule for conditional probability distributions. As mentioned, the pain intensity was

encoded and represented by discrete values. The CORN ordinal regression algorithm is thus

employed to fully explore the encoding to capture the ordinal relationship on pain intensity

rating.

Complexity Analysis. Given a L-length signal with frequency f , the input of our design is

an array of n = L · f numbers. In the signal pre-processing part, the downsampling step uses

Fast Fourier Transformation (FFT) filter to the array and its complexity is O(n log n). The

moving median also has O(n log n) complexity for maintaining a balanced binary search tree

of w elements, where w is the window size, as the algorithm scans the windows through the

array.

The pain identification algorithm first takes O(n log n) time to compute each of the D features.

The random forest then takes O(T ·H) time to infer the decision, where T denotes the decision

trees in the random forest, and H is the maximum height of a tree. The complexity of this

step is O(n log n) with pre-defined constants D = 7, T = 1000, and H ≤ D = 7.
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The pain intensity rating has O(D′ · n log n + D′ ·M1 + M1 ·M2 + M2 · K) complexity

for inference, where D′ is the feature number for pain intensity rating, M1 the first hidden

layer size, M2 the second hidden layer size, and K the intensity level number (our CORN

has 2 hidden layers). Computing all features requires O(D′ · n log n) time; with pre-defined

constants D′ = 40, M1 = M2 = 256, and K = 4 for Apon or 5 for BioVid, the overall

complexity is O(n log n).

To summarize, the overall computational complexity of our design, including signal pre-

processing, pain identification, and pain intensity rating, is O(n log n) +O(D · n log n+ T ·

H) + O(D′ · n log n+D′ ·M1 +M1 ·M2 +M2 ·K) in general. It can achieve O(n log n)

with pre-defined constants D,T,H,D′,M1,M2, and K.

6.4 Experimental settings and results

To verify our design, we evaluate our framework from individual modules, pain identification

and pain intensity rating, to a whole.

Experiments on the BioVid dataset. Pain intensity in the BioVid dataset is divided into five

levels. Like the previous work on BioVid database, we transformed the pain identification

problem into a series of binary classification problems: T0 vs T1, T0 vs T2, T0 vs T3, T0

vs T4. Representation learning and pain intensity rating have been converted to five-class

classification and regression tasks.

Experiments on the Apon dataset. There are 3-levels of pain intensity included in the Apon

database: mild, moderate, and severe. Each observation contains signals before the pain

stimulus’s onset and after the pain stimulus’s end. Two pointers, Ss and Se, represent the

start point and end point of a sliding window. We set the start of thermal stimulation as the

pain start point Ps and the end of thermal stimulation as the pain endpoint Pe. When Ss > Ps

and Se < Pe, we mark the current time segment as a pain segment, otherwise as a non-pain

segment. We set sliding windows at different sizes, 5s, 6s, 7s, 8s, and 9s, to extract pain and

non-pain segments from the signal stream. Using the extracted non-pain segments and pain
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segments under different pain levels, we have the following binary classification tasks for

pain identification: Non-pain vs. Mild pain, Non-pain vs. Moderate pain, and Non-pain vs.

Severe pain. Representation learning and pain intensity recognition have been converted to

four-class classification and regression tasks.

Evaluation metric. To evaluate the regression performance of different models, we used the

metrics MAE and RMSE. Their definitions are shown below.

MAE =
n∑

i=1

|xi − yi| (6.1)

RMSE =

√√√√ 1

n

n∑
i=1

(xi − yi)2 (6.2)

where xi is the true value, yi is the prediction, and n is the number of samples.

To analyze the classification results, we calculate the confusion matrix. The element of

this matrix includes true positives (TP), true negatives (TN), false positives (FP), and false

negatives (FN), which need to be calculated beforehand. Further, we calculate estimators:

accuracy (ACC), precision (PREC), recall (SENS), and F1-score based on these elements.

Given below the definitions of the performance metrics

Accuracy =
TP + TN

TP + TN + FP + FN
(6.3)

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(6.4)

F1score =
2 · Precision ·Recall

Precision+Recall
=

2 · TP
2 · TP + FP + FN

(6.5)

We apply the leave-one-subject-out (LOSO) cross-validation method, which is the most robust

way to test a model that contains data on a participant level. The BioVid database and Apon
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TABLE 6.1: Pair-wise binary classification with LOSO validation.

BioVid
Method T0 vs T1 T0 vs T2 T0 vs T3 T0 vs T4

EDA:7 features (ours) 58.1 64.7 71.3 80.4

All video + bio (Werner et al., 2014) 49.6 60.5 72.0 80.6

DDCVAE (Thiam et al., 2021) N/A N/A N/A 84.2

SVM with EDA (Pouromran et al., 2021) N/A N/A N/A 83.3

Video + biomedical (Kächele et al., 2015) N/A N/A N/A 83.1

database have 87 and 59 subjects, respectively. Hence, there are 87 and 59 rounds for each

dataset where each subject has been used as the testing subject once.

6.4.1 Performance of Pain Identification

The first set of experiments aims to evaluate the effects of the computational feature set for

pain identification. Classification experiments for both BioVid and Apon databases were

performed. We used the random forest with parameters of 1000 trees.

We compared our result to four recent studies (Thiam et al., 2021; Pouromran et al., 2021;

Werner et al., 2014; Kächele et al., 2015) on the BioVid dataset. Table 6.1 presents the mean

accuracy across all subjects on each prediction task mentioned above. As shown in the results,

our model is sensitive to catching slight pain feelings. It outperformed the benchmarks in T0

vs T1 and T0 vs T2 tasks. In the rest tests, our model still shows comparable performance to

the benchmarks but only requires a small number of features to support the decision-making.

This element implies that our model is simple and lightweight in resource consumption, thus

having better hardware adaptation.

The results of the same test on the Apon dataset are given in Table 6.2, which compares the

pain identification performance on the binary classification tasks using the different window

sizes to segment the signal. It is not hard to see that the window size of 5.0 seconds has the

best performance in pain identification compared with other sizes. This result states that the

ultra-short signal choice used in our design is practical in real-world scenarios.
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TABLE 6.2: Pair-wise binary classification with LOSO validation.

Apon
window size T0 vs T1 T0 vs T2 T0 vs T3

5s 58.16 62.75 58.69

6s 57.74 62.78 57.87

7s 56.80 61.45 57.87

8s 55.14 60.63 57.85

9s 55.83 59.36 57.62

6.4.2 Performance of Pain Intensity Rating

The second set of experiments were evaluated from three aspects: feature extraction, feature

selection, and modeling. We transformed the pain intensity rating task into a classification

and a regression problem to validate our design on both BioVid and Apon datasets.

6.4.2.1 Comparison of Feature Extraction

The comparison of feature extraction approaches were performed in two rounds. In the

first round, the goal is to evaluate each approach individually. In the second round, the

combinations of winning feature sets are evaluated. Here, we use the RF classifier trained

with 1000 trees.

1) Feature elimination. Tables 6.3 and 6.4 show the prediction performance of different

feature extraction methods on the BioVid and Apon datasets. By comparing the performance

of the feature extraction methods on the two datasets, we see that the results are inconsistent.

As shown in Table 6.3, the features extracted from the Tsfresh library showed the best

prediction results in the evaluated parameters, followed by Catch22, time, and wavelet features.

The frequency features performed the worst. Conversely, from the Apon results shown in

Table 6.4, we find that Tsfresh had the worst performance. We believe such inconsistency is

due to the difference between the experimental settings of the two datasets. We removed the

worst-performing feature set from each test. The remaining feature extraction methods are the

Catch22 feature, time domain features, and wavelet features using wavelet transformation.
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TABLE 6.3: Evaluation of feature extraction on BioVid dataset.

BioVid
Features ACC PREC SENS F1-SCORE
Time (14) 28.2 28.8 28.2 26.8

Frequency (7) 26.0 25.9 26.1 25.1

Wavelet (10) 31.2 30.9 31.2 29.3

Catch22 (22) 31.7 31.1 31.7 30.1

Tsfresh (93) 33.3 32.7 33.3 31.2

TABLE 6.4: Evaluation of feature extraction on Apon dataset.

Apon
Features ACC PREC SENS F-SCORE
Time (14) 44.5 44.9 44.5 44.0

Frequency (7) 37.5 37.5 37.5 37.2

Wavelet (10) 36.5 36.5 36.5 34.7

Catch22 (22) 34.1 33.6 34.1 31.6

Tsfresh (93) 29.7 29.1 26.5 25.5

TABLE 6.5: The winning features on BioVid and Apon datasets.

BioVid chance score: 20% Apon chance score: 25%

ACC PREC SENS F1-SCORE ACC PREC SENS F1-SCORE

catch22 + wavelet + time 35.8 33.6 35.8 34.0 58.2 59.1 58.2 57.8

catch22 + wavelet 35.3 33.3 35.3 33.6 50.5 51.6 50.5 49.6

catch22 + time 35.1 33.3 35.1 33.5 55.2 55 55.2 54

time + wavelet 34.8 32.6 34.8 32.7 47.6 48 47.6 47.2

2) Combination of winning feature sets. The winning feature sets from the first round

experiments were Catch22 and the statistic features in time and wavelet domains. We then

explored all the combinations of these winning features set to study their performance. The

combination cases were defined as Catch22 + time domain, Catch22 + wavelet domain, time

domain + wavelet domain, and Catch22 + time domain + wavelet domain. Table 6.5 shows

the test results for the pain intensity rating with different feature combinations. The feature

combination of Catch22, time, and wavelet features achieved the best performance on all

evaluation metrics on both BioVid and Apon databases.
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6.4.2.2 Evaluation of Greedy Feature Selection

We executed the greedy feature elimination algorithm on two datasets separately. We present

the percentage improvement in accuracy over the chance score of corresponding multi-

classification tasks. The definition is given below:

accuracy improvement (%) = 100%× accuracy− chance score
chance score

As shown in Figure 6.4, the algorithm was run for 14 iterations on the BioVid dataset. When

the algorithm iteratively eliminated 14 features, the model’s prediction performance kept

increasing until the algorithm traversed all the remaining features. Accuracy improved from

74% to 76.3% compared to the chance score for five pain-level classifications.

Similarly, the algorithm iterated nine times on the Apon dataset, and the result is shown in

Figure 6.5. As shown, the prediction accuracy improved as the features that do not contribute

to the decision-making were continuously eliminated. Accuracy improved from 111.6% to

114.1% compared to the chance score for four pain-level classifications.

From the results of the two databases, we filtered out the six features that overlapped and

removed them from the final feature representation. The eliminated features were: (1) mode

of z-scored distribution (5-bin histogram), (2) first 1/e crossing of autocorrelation function,

(3) first minimum of autocorrelation function, (4) time-reversibility statistic, (xt+1 − xt)
3, (5)

proportion of successive differences exceeding 0.04σ, and (6) first minimum of the automutual

information function.

6.4.2.3 Performance of Pain Intensity Rating (Regression Problem)

To verify the pain intensity evaluation module, we transferred the final pain assessment

problem into a regression problem because its results are closer to the pain scores from

self-reporting. We employed SVM (support vector machine) and RF (random forest) as the

performance benchmarks since they have been used in pain intensity rating studies (Chu et

al., 2017), (Susam et al., 2021), (Vijayakumar et al., 2017) and achieved noticeable results.

The parameters of the benchmarks were as follows: an RF with 100 trees and entropy as split
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FIGURE 6.4: Accuracy improvement of the greedy feature elimination on
BioVid dataset.

FIGURE 6.5: Accuracy improvement of the greedy feature elimination on
Apon dataset.

criteria, an SVM with Radial basis kernel and cost = 1, and CORN with two hidden layers,

256 hidden units, leaky ReLU as the activate function, Adam optimizer, 0.001 learning rate,

and 20 epochs in training. As shown in Table 6.6, CORN achieved the lowest MAE of 0.90

and 1.11 on BioVid and Apon datasets, respectively. The highest MAE of 0.93 and 1.19 were

obtained by using RF.
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TABLE 6.6: Performance of pain intensity rating regression models with
personal feature representation (mean ± standard deviation).

BioVid Apon
Model MAE RMSE MAE RMSE
RF Regressor 0.93 ± 0.19 1.11 ± 0.21 1.19 ± 0.21 1.48 ± 0.19

SVM Regressor 0.91 ± 0.21 1.11 ± 0.23 1.14 ± 0.11 1.31 ± 0.10

CORN 0.90 ± 0.23 1.22 ± 0.24 1.11 ± 0.08 1.55 ± 0.08

TABLE 6.7: Running time and regression error of the overall system on Apon dataset.

Apon
Method Running time Regression error

Direct pain evaluation 0.0030 1.13
Pain detection + evaluation 0.0020 1.23

TABLE 6.8: Pain prediction performance on BioVid dataset.

Study Method Sensor Performance
MAE RMSE

Thiam et al. (Thiam et al., 2021) DDCAE EDA, ECG, EMG 0.97 1.16

Pouromran et al. (Pouromran et al., 2021) SVR EDA 0.93 1.16

Our study CORN EDA 0.90 1.22

6.4.3 Overall System Performance

To verify the overall performance of the system, we conducted a comparison study. We first

set a sliding window of about 5 seconds. We performed the automated pain assessment in two

different ways. The first one is under each sliding window, a comprehensive feature library

was extracted for pain level assessment. The second one is we first identified pain under each

sliding window, then intercepted the signal segmentation as input for the pain intensity rating

module if identified. We analyzed the results from two perspectives: time efficiency and

prediction. Table 6.7 shows that, compared with continuously evaluating pain intensity, our

proposed system achieved a (0.0030 − 0.0020)/0.0030 = 33.3% improvement in running

time with a loss of only (1.23− 1.13)/1.13 = 8.8% on regression error. Table 6.8 shows that,

our study, using just an EDA signal, outperforms the state-of-the-art in MAE, with negligible

higher cost in RMSE.
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6.5 Conclusion and Future Work

This work presents an automatic pain assessment framework for pain identification and

intensity classification. Our framework uses the EDA signal only. Our system aims to provide

timely pain identification and accurate intensity classification with low computational needs.

To do so, we use downsampling, ultra-short signal, small feature sets, and lightweight models

to achieve the goal while still delivering high-accuracy results. We evaluate our framework on

two EDA datasets, Bovid and Apon, built by heat-induced pain experiments. The experimental

results show that the ordinal neural network performed the best on both BioVid and Apon

databases. Our system outperforms the state-of-the-art performance. Additionally, the result

of an ablation study shows that our proposed system can effectively improve the efficiency of

the automatic pain assessment algorithm.

Despite the promising results, our work needs further study to be well understood. The

datasets used in this work include just the pain induced by thermal stimulation, where such

data do not adequately represent everyday pain but experimental pain. Studying how to use

ultra-short EDA signals in managing everyday pain is our future work. We are also keen on

adjusting our model to real-world scenarios and making it more robust in practice.



CHAPTER 7

Conclusion

In this thesis, we propose a framework called "Personalized, Uncertainty-Aware, Trustworthy

Algorithm" to address the difficulties of traditional patient self-report-based pain assessment.

Our framework uses only two physiological signals as input data, EDA and ECG, as they

provide more objective metrics than facial expressions. ECG is used as an input to the

framework only to assess the uncertainty of the patient’s data and is not involved in the

reasoning process. We present the collection of pain data in detail, which includes an

experimental pain dataset induced by thermal stimulation and real pain patient data, mainly

from post-surgical patients and women in labor. We also present two key issues unique to

pain assessment algorithms: uncertainty and subjectivity. We design separate modules to

address these two issues. First, we introduce a method for assessing uncertainty in individual

data using HRV features as a reference and bringing uncertainty as a scale factor into the

training of pain inference models, which can effectively allow models to focus on data with

high confidence and reduce the impact of "dirty" data on model training under the premise

of ensuring the amount of data. Considering that pain, as a specific human emotion, is

highly subjective, we introduce a test-time adaptive approach to make the trained model

predictive even on new patient data. We show how the model can be updated in real-time to

adapt to the data distribution of a new subject when a patient who has never appeared in the

training set arrives. The framework not only takes into account the algorithmic level design

but also the application of the algorithms to improve the efficient solution. Considering the

trade-off between the algorithmic effectiveness and computational complexity, we give a

hierarchical prediction process with the premise of guaranteeing the algorithmic prediction

of the effectiveness of the algorithm in the low computational requirements of the normal

101
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operation of the algorithm. The algorithms in the whole framework show how to advance

valid information in objective physiological signal metrics while being aware of unperfect

data and labels, as well as patient-to-patient inconsistencies. Together, they provide new

solutions for the application of automatic pain assessment.

7.1 Future outlook

There is still a lot of experimental and theoretical work to be done in the future.

7.1.1 Pain database

The first step is the creation of a pain dataset, which is essential for the development of

pain algorithms, and pain itself has a certain complexity and diversity. The first step in the

collection of pain data is to design the data collection protocol and get it approved by the

ethics committee, followed by finding the target participants and signing the informed consent

form. The data collection process need to be standardized so that the pain data collected

can be reused and compared across studies, algorithm development, and clinical practice.

The selection of participants also took into account the diversity of demographics, including

different ages, genders, ethnicities, and cultural backgrounds, to increase the generalizability

and fairness of the algorithm.

7.1.2 Multi-modal learning

For pain, there is no biomarker for pain in medical science, and the EDA signal responds

to the change of skin conductivity, which has been found to have good predictive effect on

emotion prediction, pain assessment, and stress assessment from previous studies, and is

better than other modalities, such as ECG, EEG, EMG, or facial expression. Multimodal

learning must be the ultimate form of pain assessment algorithms in the future, because

pain is a multidimensional experience, including not only physiological sensations, but also

psychological states, emotional changes, and social environment effects. Second, relying
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on a single data source may overlook other important aspects of the pain experience or lead

to inaccurate conclusions due to data quality issues. Multimodal schools can improve the

reliability of their algorithms by using multiple data sources to compensate for the limitations

of their respective data sources.
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