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Abstract

Public health educational resources developed by health institutions aim for high accessibility

of information. The translation of these resources, which provide the public with a basic

understanding of health risks and diseases, is commonly conducted by professional translators

to cater to diverse linguistic and cultural backgrounds. In recent years, the global advancement

of information technology has broadened the use of Machine Translation (MT) in online

health education and promotion. MT tools such as Google Translate, DeepL, and ChatGPT

have significantly improved performance, yet they face challenges posed by the language

complexity, content complexity, and formality of professional medical resources.

In this study, we leverage Natural Language Processing (NLP) and Machine Learning

(ML) tools to harness the power of text classification, a vital task that assigns text to one

or more predefined categories. Our goal is to develop machine learning classifiers within

our newly proposed Multi-Dimensional Text Classification Pipeline (MD-TCP) framework.

Serving as a risk-prevention mechanism, this approach assists medical professionals with

limited knowledge of the patient’s language and helps patients who wish to self-navigate. Our

model, which operates within the MD-TCP framework, predicts the likelihood of clinically

significant mistakes or incomprehensible machine translation outputs based on the features of

English source information as input to the machine translation systems.

MD-TCP is a new, comprehensive pipeline for data mining and feature extraction that

we developed to achieve this goal. The pipeline has demonstrated significant improvements

in both of our datasets. Regarding Accuracy, AUC, Sensitivity, Precision, and Specificity,

our method improved by 24% - 33% compared to baseline methods. This underscores the

potential of machine learning, mainly when implemented through MD-TCP, in predicting

translation errors, thereby ensuring more accurate and understandable translations for health

resources across diverse populations.
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CHAPTER 1

Introduction

Public health discourse represents a multifaceted landscape encompassing clinical, research,

and educational domains [1]. Clinical resources, characterized by lexical and syntactic

nuances introduced by medical professionals into medical records, stand in contrast to

research materials known for their linguistic complexity, formal tone, and content intricacy

[2]. Both these genres pose formidable challenges for machine translation (MT) technologies,

which often struggle with linguistic intricacies and idiosyncrasies [3].

In sharp contrast to these specialized discourses, public health educational resources, curated

by health authorities, are meticulously crafted to ensure high information accessibility. These

resources serve the vital purpose of informing, guiding, and supporting the general public

in acquiring fundamental knowledge about health risks and diseases [2]. Recognizing their

crucial societal role, health authorities make extensive efforts to translate original English

health resources into multiple languages, benefiting not only English-speaking populations

but also diverse linguistic and cultural communities [4].

In recent years, educational resources in the public health sphere, especially those dissemin-

ated by the World Health Organization (WTO) and similar entities, exhibit fewer lexical and

syntactic irregularities when compared to clinical documents. Furthermore, they maintain a

controlled level of language complexity compared to research or policy materials.

Machine learning (ML) and data mining, recognized for their instrumental roles in various

systems and applications, from recommendation systems to medical diagnostics, are cel-

ebrated for their prowess in handling voluminous data and extracting valuable patterns [5].

1



2 1 INTRODUCTION

However, they present considerable hurdles when tasked with complex and irregular data,

such as text.

Specifically, text data, especially in machine translation, is notorious for its irregularities and

complexities [6]. Despite the substantial advancements in machine translation technologies,

they remain prone to errors, particularly when confronted with specialized or intricate texts.

This creates significant obstacles for non-native English speakers dependent on machine

translation for information access [7].

In response to these challenges, we crafted a comprehensive machine learning approach,

amalgamating several techniques and tools. We leveraged text analysis softwares and USAS

(University of Lancaster Semantic Annotation System)[8] for feature extraction from text

data and employed data augmentation techniques to bolster our models’ robustness. We then

transformed the text data into feature vectors combining TF-IDF features for a more practical

application of machine learning algorithms.

Centring our efforts around Natural Language Processing (NLP) and Machine Learning, our

objective was to harness the potential of text classification—a critical task of assigning text to

predefined categories—to develop machine learning classifiers for machine translation error

detection. This approach is a risk mitigation strategy for machine translation tool users, like

aiding medical professionals with limited patient language knowledge and patients desiring

self-navigation. Our proposed model estimates the chances of clinically significant errors or

incomprehensible machine translation outputs, using features of English source information

as input to machine translation systems.

We introduced a novel data mining and feature extraction pipeline - Multi-Dimensional Text

Classification Pipeline (MD-TCP) and applied it to two distinct datasets in the public health

discourse area - COVID-19 and Maori Cancer. This approach led to substantial improvements

in both datasets, with our methodology outperforming baseline methods by a remarkable

24% to 33% in critical metrics such as Accuracy, AUC, Sensitivity, Precision, and Specificity.

The significant enhancement in machine learning classifier accuracy we observed attests to

the effectiveness of our approach. Our study not only underscores the potential of machine
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learning in preempting translation errors, thereby ensuring more accurate and comprehensible

translations for health resources across diverse demographics, but it also aspires to enrich the

machine learning and data mining landscape by providing a comprehensive methodology to

handle complex text data and demonstrating its efficacy in machine translation.



CHAPTER 2

Literature review

2.0.1 Machine Translation

The rapid development of computer science and the internet has led to the widespread

popularity of machine translation software. However, the reliability of machine translation is

only sometimes guaranteed. Irvine et al. [6] emphasized the challenges of machine translation,

mainly when applied to new domains. While there have been substantial improvements in the

field, the authors note that complex linguistic phenomena still need to be solved, often leading

to mistranslations and misunderstandings. This is critical in domains such as healthcare and

legal affairs, where precise communication is of utmost importance.

Within the realm of healthcare, the implications of inaccuracies in machine translation can

be severe. Ji et al. [7] discussed the potential risks when using machine translation tools

in healthcare settings. They highlight that errors can cause significant misinterpretations of

clinical symptoms, potentially harming patients who depend on translated information for

healthcare decisions.

In response to these challenges, Natural Language Processing (NLP) advancements have been

leveraged. Prabhakar and Won introduced a novel approach to medical text classification by

employing deep learning models. The authors put forth two novel deep-learning architectures

for medical text classification, demonstrating promising results in terms of classification

accuracy.

Further advancements in machine translation have been seen by incorporating deep learning

technologies. Sun Y. [9], in his study titled "Analysis of Chinese Machine Translation Training
4
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Based on Deep Learning Technology", illustrated the efficacy of deep learning models in

Chinese-English translation tasks, emphasizing the critical role of large-scale parallel corpora

and attention mechanisms in enhancing translation quality.

An exploration of Simple Recurrent Neural Networks (SRNN) in English lexical analysis,

a vital part of machine translation, is presented in the "English Lexical Analysis System of

Machine Translation Based on Simple Recurrent Neural Network". by Zhu J. [10]. The

study demonstrates the significance of SRNN in capturing sequential information of English

sentences, thereby improving the accuracy of machine translation systems.

Furthermore, Ren B. [11] discussed the application of the SCN-LSTM (Skip Convolutional

Network and Long Short Term Memory) translation model in teaching translation. His study

found that this neural network outperforms the traditional N-tuple translation model in terms

of translation quality and teaching effect.

In summary, while machine translation software has seen significant improvements, it still

confronts challenges in terms of reliability, particularly in critical fields like healthcare.

Nonetheless, the rapid progression of NLP and the integration of machine learning and

deep learning methods provide promising solutions. The transformative potential of these

technologies in reshaping translation teaching methodologies also presents exciting prospects

for the future. As these technologies evolve, they are anticipated to play an increasingly

central role in developing more sophisticated and accurate machine translation systems.

However, their application in critical fields like healthcare must be cautiously approached.

The development of machine learning classifiers as a risk-prevention mechanism, as discussed

by Ji et al., is of paramount importance. [6]

2.0.2 Natural Language Processing and Artificial Intelligence

Natural Language Processing (NLP) [12, 13] has emerged as a central field in computational

linguistics, offering an array of techniques to understand, interpret, and coherently generate

human language. Its applications span diverse areas, such as machine translation, sentiment

analysis, and text summarization [14]. The effectiveness of NLP is closely linked with the
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advancements in Artificial Intelligence (AI) [15, 16], a broader field that strives to emulate

human intelligence in machines.

With its numerous subfields, AI has paved the way for a more nuanced understanding and

handling of human language. This is particularly evident with the advent of Machine Learning

(ML) [17], an AI methodology that has significantly transformed our approach to NLP tasks.

Machine Learning employs algorithms capable of learning patterns from data, leading to

systems that can adapt, learn, and improve over time [18]. This is especially important in

NLP, where ML methods have enabled tasks such as part-of-speech tagging, named entity

recognition, and text classification [19].

In NLP, ML techniques such as Naive Bayes, Support Vector Machines, and Decision Trees

have been traditionally used to classify text and make predictions [20]. More advanced

techniques like Random Forests and Gradient Boosting Decision Tree[21] have further

enhanced the capabilities of ML in NLP, enabling more accurate and efficient text analysis.

Deep Learning[22, 23], a subset of ML, takes the concept further by implementing neural

networks that mimic the human brain’s structure and function. These neural networks

can model complex patterns in large datasets, significantly improving NLP applications.

Convolutional Neural Networks (CNNs) [24], Recurrent Neural Networks (RNNs)[25], and,

more recently, Transformer-based models like BERT [26] and GPT [27] have taken centre

stage in the NLP field. These models have demonstrated superior performance in language

understanding tasks by leveraging attention and context prediction mechanisms.

The integration of AI, mainly through ML and DL, has revolutionized the field of NLP. We

can anticipate more sophisticated language processing capabilities as these AI-driven methods

evolve and improve. This progress holds immense potential for developing more effective

and contextually aware language-based AI systems, further pushing the boundaries of what

we can achieve in NLP.
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2.0.3 Text Classification

Text classification, as a fundamental task in Natural Language Processing (NLP), involves

categorising text into predefined classes[28]. It is the foundation for many applications, such

as spam filtering, sentiment analysis, and topic labelling, thus playing a critical role in deriving

meaningful insights from raw text[29].

A particularly significant subset of text classification is Binary Classification, where the

objective is categorising text into one of two classes [30]. This is commonly employed in

scenarios like email spam detection (spam or not spam) and sentiment analysis (positive

or negative). The simplicity of binary classification makes it a popular starting point for

many text classification endeavours. However, it poses unique challenges in dealing with

imbalanced datasets and distinguishing subtle differences in text.

Machine Learning (ML) has emerged as a powerful tool in text classification, offering a suite

of algorithms capable of learning patterns in text data and using these learned patterns to

categorise new, unseen text[28]. ML algorithms can be broadly divided into supervised and

unsupervised learning. In the context of text classification, supervised learning is often used

where a model is trained on a labelled dataset and then used to classify new, unlabeled data

[31].

Traditional ML algorithms such as Naive Bayes, Decision Trees, and Support Vector Machines

have been widely used for text classification tasks, including binary classification [32]. More

recently, ensemble methods such as Random Forests and Gradient Boosting have been

leveraged to improve prediction accuracy by combining multiple weaker models to form a

stronger one [21].

Further, unsupervised ML techniques, like clustering, are employed for text classification

when labelled data is scarce[33]. These methods discover natural groupings in data and can

be particularly useful for exploratory data analysis.

The application of ML in text classification has not only automated the process but also

increased the efficiency and accuracy of classification tasks. As ML continues to evolve
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and improve, we can anticipate more sophisticated text classification models capable of

understanding subtle language patterns and contexts, further pushing the boundaries of what

we can achieve in text classification.

2.0.4 Text and Feature Mining

Data mining, an interdisciplinary field focused on extracting useful information from large

datasets, has become a cornerstone in numerous disciplines and applications, ranging from

business intelligence to healthcare [34]. This powerful technology thrives on its ability to

manage substantial data and discover valuable patterns and insights. However, the complexity

and irregularity inherent in certain types of data, such as text, pose significant challenges to

traditional data mining techniques[5].

Text mining, a subset of data mining, specializes in extracting valuable information from

unstructured textual data [35]. This form of mining has seen a growing demand due to the vast

amounts of unstructured text data generated daily, such as social media posts, news articles,

and scientific literature. Despite its complexity, text mining provides an opportunity to extract

insights that can be pivotal for decision-making in various domains [36].

Text mining often involves using Natural Language Processing (NLP) techniques, which

help transform unstructured text into structured data that can be analyzed. Feature mining,

a crucial part of this process, involves identifying and extracting relevant characteristics or

’features’ from the text data. This aspect of text mining is also commonly referred to as

feature engineering [37].

In conventional NLP, feature mining involves various steps, including tokenization, stop

word removal, stemming, and applying techniques such as TF-IDF (Term Frequency-Inverse

Document Frequency) and bag-of-words for feature extraction [38]. More advanced methods

might incorporate part-of-speech tagging, named entity recognition, or semantic analysis

using word embeddings like Word2Vec [39] or GloVe [40]. The selection of features and the

techniques used for their extraction can significantly impact the performance of downstream

tasks, such as text classification, sentiment analysis, or information retrieval[30].
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In sum, the fields of data mining, text mining, and feature mining play an essential role in the

extraction of valuable insights from large amounts of unstructured text data. By leveraging

advanced NLP techniques for feature mining, it is possible to uncover more profound levels

of understanding from the text, paving the way for more sophisticated applications and more

informed decision-making processes.



CHAPTER 3

Methods

This chapter will mainly introduce how to construct and manually annotate our dataset.

Subsequently, we will elucidate how linguistic tools are employed for text data mining,

extracting latent features and information from the dataset. We then present using the

USAS (University of Lancaster Semantic Annotation System)[8, 41] to extract features

from the plain text data within the dataset, transforming it into a new dataset with multiple

dimensions. Despite the increase in the number of features, the majority are likely noise for

text classification tasks, necessitating the Recursive Feature Elimination (RFE) method to

optimize the number of features, thereby enhancing the performance of text classification

tasks. Ultimately, we discovered that the best performance is achieved by extracting features

from the original data using the TF-IDF tokenizer, then mixing these extracted features with

those extracted by USAS system. The mixed features are then vectorized using techniques

such as Principal Component Analysis (PCA) [42]for dimensionality reduction, followed by

further optimization using methods like RFE before being fed into the model for training.

This process yields the best results for text classification tasks.

3.1 Data Collection and Annotation

We compiled two distinct datasets through manual browsing and searching from the website

of the NCBI (Feb 2023) (https://www.ncbi.nlm.nih.gov/, accessed on 06 Feb 2023), the

COVID-19 and Maori Cancer datasets. These datasets comprise sentences pertinent to their

respective topics, sourced from various medical websites and translated into Chinese and
10
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Maori. The translations were conducted using various translation software, leading to some

translation errors.

As illustrated in Figure.3.1, these errors, such as incorrect translation of professional glossary,

unclear expressions, and disordered syntax, could potentially lead to misunderstandings

for non-native English speakers, encompassing doctors, nurses, and patients. We manually

annotated the datasets, marking translations with overt errors as positive and those without

errors as negative.

3.2 Text Analysis

Text analysis software encompasses many tools, leveraging natural language processing

(NLP), machine learning, and additional computational methods for text data examination.

These utilities can execute numerous operations, ranging from sentiment analysis, which

determines whether a text conveys positive, negative, or neutral sentiment, to topic modelling,

text classification, and named entity recognition, identifying entities such as people’s names,

locations, and organizations within a text.

Readability Studio (Oleander Software Ltd., Vandalia, OH, USA), meanwhile, is designed to

gauge the reading complexity of a text. This type of software employs a variety of algorithms,

assessing components such as sentence length, syllable count, and word familiarity to generate

a score indicative of the text’s readability. Some notable examples of these algorithms are the

Flesch-Kincaid Reading Ease [43], Gunning Fog Index [44], and SOMG Index[45]. Such

tools find extensive use in education and content creation, ensuring the created content aligns

with the intended audience’s reading proficiency.

Our study mainly deployed Readability Studio to discern differences between positive and

negative samples. For example, positive samples typically exhibited greater text complexity

than negative samples.

As evident from Table 3.1, a significant discrepancy exists between positive and negative

data. Several reading level tests, including Flesch-Kincaid, Gunning Fog, and SMOG,
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FIGURE 3.1. Translation errors for Covid-19 and Maori Cancer Datasets.
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Positive Negative

Flesch-Kincaid Post-graduate freshman, University senior,

first month of class seventh month of class completed

Flesch Reading Ease Text is very difficult to read Text is very difficult to read

Gunning Fog University senior, University senior,

sixth month of class completed first month of class

SMOG Post-graduate freshman, Post-graduate freshman,

seventh month of class completed third month of class completed

Average grade level 17.1 16.8

Average reading age 22.3 22.1

Number of difficult sentences 47.8% 44%

Average sentence length 23.6 21.6

Average number of characters 5.5 5.6

Average number of syllables 1.9 1.9

Number of numerals 3.5% 3.4%

Number of proper nouns 4.5% 4.8%

Number of monosyllabic words 50.9% 49.4%

Number of unique monosyllabic words 6.676% 2.496%

Number of complex words 25.2% 26.4%

Number of unique complex words 8.965% 4.015%

Number of long words 45.6% 47.3%

Number of unique long words 14.725% 6.500%

Number of unique SMOG hard words 10.290% 4.501%

Number of unique Fog hard words 7.813% 3.491%

TABLE 3.1. Readability Studio analysis for Covid-19 dataset.
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unambiguously demonstrate that positive data necessitates a higher level of English proficiency

from the readers. This discrepancy becomes more conspicuous at the sentence and word

levels. In positive data, the percentage of difficult sentences is 3.8% higher. At the same time,

indicators for unique monosyllabic words, unique complex words, unique SMOG hard words,

and unique long words exhibit even more significant differences of 4.18%, 4.95%, 5.789%,

and 8.225%, respectively. This implies that positive data comprises rare, complex, and long

words used only once, making it more susceptible to professional translation errors.

3.3 Feature Extraction

FIGURE 3.2. Extract different features from the original text input of Covid-
19 dataset.

USAS (University of Lancaster Semantic Annotation System)[8, 41]is a system for automatic

semantic tagging and semantic lexical resources. It assigns to words and phrases a tag from a

detailed set of semantic field categories, which provides a rich level of semantic information.

To extract features from the original text, we utilized USAS to analyze all the text in the

dataset and then extract the features. For instance, in the Covid-19 dataset, which consists of
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1265 samples (619 positives and 646 negatives), we extracted 491 distinct features. These

include 28 lexical features, 150 part-of-speech (POS) tag features, and 313 USAS tag features.

For the Maori Cancer dataset, which comprises 991 samples (668 positives and 323 negatives),

we extracted 458 features, including 30 lexical features, 143 POS tag features, and 285 USAS

tag features.

Part-of-speech (POS) tagging [46] is labelling the words in a text with their appropriate part

of speech (such as nouns, verbs, adjectives, etc.). It provides grammatical information about

the words in a text.

USAS tags [41], on the other hand, provide semantic information. They categorize words

into semantic fields or categories, providing a deeper level of understanding of the meaning

of words in their context.

Both POS and USAS tags provide valuable information about the words in a text; however,

they serve different purposes. For example, POS tags provide grammatical information, while

USAS tags provide semantic information. Both types of information can be crucial in tasks

such as text analysis and machine learning.

3.4 Machine Learning Algorithms

This section will introduce machine learning algorithms we applied during the experiments.

3.4.1 Naive Bayes

The Naive Bayes classifier is a probabilistic machine learning model used for classification

tasks. The classifier is based on the Bayes theorem, which describes the probability of an

event based on prior knowledge of conditions that might be related to the event[47].

In the context of text classification, our event is a particular class (or category) we want to

assign a given text, and the conditions are the features of the text, which are usually the words

it contains.
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Given a text t and a class c, the classifier calculates the posterior probability P (c|t) of the text

t belonging to the class c. According to the Bayes theorem, this can be computed as:

P (c|t) = P (t|c) · P (c)

P (t)
(3.1)

Where P (c|t) is the posterior probability of class c given a text t. P (t|c)is the likelihood

which is the probability of text t given class c. P (c) is the prior probability of class c. The

prior probability is the proportion of text of class c in the training set. P (t) is the prior

probability of text t.

In practice, since P (t) is constant for all classes, we only need to compute P (t|c) ∗ P (c) for

each class and choose the class with the highest value.

Assuming that the features in the document are independent (the ’naive’ assumption), P (t|c)

can be calculated as the product of the probabilities of each feature in the text given the class:

P (t|c) = P (f1|c) · P (f2|c) · . . . · P (fn|c) (3.2)

Where P (fi|c) is the probability of feature fi occurring in the text of class c. The frequency

of the features in the documents of the training set can estimate these probabilities.

In practice, to avoid numerical underflow from the multiplication of many probabilities, we

usually work in log space:

logP (t|c) = logP (f1|c) + logP (f2|c) + . . .+ logP (fn|c) (3.3)

Additionally, a smoothing parameter is usually introduced to handle features that did not

appear in the training set. A common technique is Laplace smoothing (or add-one smoothing),

where one is added to the numerator, and the size of the feature is set to the denominator [48].
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Naive Bayes is a simple yet powerful algorithm for text classification. Despite its simplicity

and the naive feature independence assumption, it works well in many real-world situations,

particularly in text classification tasks where the dataset is large and high-dimensional.

3.4.2 Support Vector Machines

Support Vector Machines (SVM) is a supervised learning model for classification and regres-

sion tasks. It is particularly effective in high-dimensional spaces, making it well-suited for

text classification, where the data often has a large number of features [49].

The basic idea behind SVM is to find a hyperplane that best divides the data into different

classes. In a binary classification problem, SVM tries to find the optimal hyperplane that

maximizes the margin between the two classes. Given a training dataset of instance-label

pairs (x, y), where x ∈ X is the feature vector (in our case, the text document represented as

a vector), and y ∈ Y is the class label (which in a binary classification problem can be -1 or

1), the goal of SVM is to find the function f(x) that can predict the class label y for any input

x.

The decision function of the SVM can be written as:

f(x) = ⟨w · x⟩+ b (3.4)

Where w is the weight vector. x is the feature vector. b is the bias term. ⟨w · x⟩ is the dot

product of w and x. The equation f(x) = 0 defines the hyperplane that separates the data.

The decision boundary is chosen to be the hyperplane that maximizes the margin, which is

the distance between the nearest points of the two classes.

In order to handle non-linearly separable data, SVM uses a technique known as the ’kernel

trick’ [50]. The kernel trick maps the input features into a higher-dimensional space where a

linear separation is possible. The decision function with the kernel trick becomes:
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f(x) =
∑
i

αiyiK(xi, x) + b (3.5)

Where: αi are the Lagrange multipliers obtained from the solution of the dual problem. yi are

the class labels. K(xi, x) is the kernel function. b is the bias term. There are several types of

kernel functions, such as linear, polynomial, and radial basis function (RBF) [50]. The choice

of the kernel function depends on the nature of the data.

The most common way to create feature vectors in text classification is using the bag of

words or TF-IDF methods [38]. These methods transform the text into a vector where each

dimension corresponds to a specific word or term in the text.

In conclusion, SVM is a robust algorithm for text classification. Thanks to the kernel trick,

its ability to handle high-dimensional data and find complex decision boundaries make it

particularly suitable for this task.

3.4.3 Logistic Regression

Logistic Regression is a statistical model that, in its basic form, uses a logistic function to

model a binary dependent variable. It is widely used for binary classification problems and

can be extended to multi-class classification problems [51].

In text classification, a document is represented as a vector of features, where each feature

could be the presence or absence of a word, the frequency of a word, or even more complex

features [31]. Given a text document represented as a feature vector x, the logistic regression

model computes the probability of the document belonging to the positive class (denoted as

y = 1) using the logistic function applied to a linear combination of the features:

P (y = 1|x; θ) = 1

1 + e−(θTx+θ0)
(3.6)

Where x is the feature vector. θ is the weight vector. θ0 is the bias term. θTx is the dot product

of θ and x.
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The goal of logistic regression is to find the parameters θ and θ0 that maximize the likelihood

of the observed data, which can be written as:

L(θ, θ0) =
N∏
i=1

P (yi|xi; θ) =
∏

i = 1N [P (y = 1|xi; θ)]
yi [1− P (y = 1|xi; θ)]

1−yi (3.7)

To make the computation easier, we usually take the log of the likelihood function, which

turns the product into a sum:

logL(θ, θ0) =
N∑
i=1

yi logP (y = 1|xi; θ) + (1− yi) log [1− P (y = 1|xi; θ)] (3.8)

These parameters are usually found using optimization algorithms such as gradient descent or

more advanced methods like L-BFGS or Newton’s [52].

Logistic regression is a powerful and flexible model for text classification. It can handle both

linear and non-linear classification problems depending on the features used. It also provides

interpretable parameters and can return calibrated probabilities, which can help rank instead

of just classification.

3.4.4 Gradient Boosting Decision Tree

Gradient Boosting Decision Trees (GBDT) is a powerful and widely-used machine learning

algorithm that produces a prediction model as an ensemble of decision trees. It builds the

model in a stage-wise fashion, and it generalizes them by allowing optimization of an arbitrary

differentiable loss function [21].

In text classification, documents are typically represented as vectors of features, where each

feature could correspond to a word or a set of words in the document. The goal is to predict a

target variable, which could be the category of the document [31].

Given a set of n training examples (x1, y1), (x2, y2), ..., (xn, yn), where xi represents the

feature vector of the i-th document and yi is the corresponding label, the GBDT algorithm
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starts by initializing the model with a constant value:

F0(x) = argmin
γ

n∑
i=1

L(yi, γ) (3.9)

Where L(yi, γ) is the loss function evaluated at the true label yi and the prediction γ.

Then, for each stage m = 1 to M , it performs the following steps:

(1) Compute the pseudo-residuals:

rim = −
[
∂L(yi, F (xi))

∂F (xi)

]
F (x) = Fm− 1(x) for i = 1, ..., n (3.10)

These residuals represent the direction to adjust the predictions to minimize the loss.

Fit a decision tree to the pseudo-residuals, resulting in terminal regions Rjm, for

j = 1, ..., Jm.

(2) For each terminal region, compute the output value that minimizes the loss:

γjm = argmin
γ

∑
xi∈Rjm

L(yi, Fm−1(xi) + γ) (3.11)

(3) Update the model:

Fm(x) = Fm−1(x) + ν

Jm∑
j=1

γjmI(x ∈ Rjm) (3.12)

Where: I(x ∈ Rjm) is an indicator function that is 1 if x is in the region Rjm and 0

otherwise. ν is the learning rate or shrinkage parameter.

(4) The final model is then given by:

FM(x) = F0(x) +
M∑

m=1

ν

Jm∑
j=1

γjmI(x ∈ Rjm) (3.13)

Gradient Boosting Decision Trees is a powerful algorithm for text classification. It has the

flexibility of defining an arbitrary differentiable loss function, making it suitable for various

problems. It also performs well with high-dimensional data and can handle numeric and

categorical data.
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3.4.5 Stacking Classifier

Stacking is an ensemble learning technique that combines multiple classification models via a

meta-classifier. The base-level models are trained based on a complete training set, and then

the meta-model is fitted based on the outputs, or the "meta-features", of the base-level models

[53].

For text classification, we often represent documents as vectors of features, where each feature

corresponds to a word or a group of words in the document. Given a training set of n text

documents represented by their feature vectors xi and their labels yi, i = 1, ..., n, we first

train our base level models. In our case, we have a Multinomial Naive Bayes classifier and an

SVM classifier.

The Multinomial Naive Bayes classifier computes the posterior probability of a document be-

longing to a class using Bayes’ theorem, assuming the features are conditionally independent

given the class. The probability of a document x belonging to class c can be computed as:

P (c|x) = P (c)
∏d

i=1 P (xi|c)
P (x)

(3.14)

The SVM classifier computes the class of a document using a hyperplane that separates the

documents of different classes in the feature space:

f(x) = ⟨w · x⟩+ b (3.15)

Once we have trained the base classifiers, we use them to predict the class of the documents

in the training set, which gives us a new set of features. If we denote the prediction of the

Naive Bayes classifier as NB(x) and the prediction of the SVM classifier as SVM(x), our

new feature vector for each document is (NB(x), SV M(x)).

We then train our meta-classifier, a Logistic Regression classifier in our case, on these new

features. The Logistic Regression model computes the probability of a document belonging
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to the positive class using the logistic function:

P (y = 1|x; θ) = 1

1 + e−(θTx+θ0)
(3.16)

Therefore, given a new document, we first compute the features in the final model using the

base classifiers. Then we use the Logistic Regression classifier to predict the class of the

document based on these features.

Stacking is a robust algorithm for text classification that can combine the strengths of different

classifiers to improve performance. The choice of the base classifiers and the meta-classifier

can be tailored to the specific problem and the available data.

3.5 Feature Optimization

Recursive Feature Elimination (RFE) is a feature selection method that fits a model and

removes the weakest features (those with the least importance) until the specified number of

features is reached [54]. It is a type of wrapper feature selection method, meaning it uses a

machine learning algorithm and performance metric to evaluate the importance of each feature.

This technique can be beneficial in improving the accuracy of machine learning models by

eliminating irrelevant features, reducing overfitting, and improving model interpretability

[55].

3.6 Multi-Dimensional Text Classification Pipeline

We present the "Multi-Dimensional Text Classification Pipeline (MD-TCP)", a novel and

comprehensive multi-stage processing pipeline designed to significantly enhance our model’s

performance based on the characteristics of the features we have extracted. Emphasizing the

pipeline’s multi-dimensional and multi-step nature, MD-TCP integrates various strategies,

which span from text preprocessing to sample balancing. Each stage of the pipeline has been

carefully engineered to improve text classification’s quality and performance, offering an

advanced solution to complex data processing and machine learning challenges.
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Algorithm 1: Multi-Dimensional Text Classification Pipeline (MD-TCP)
Data: Text datasets D

1 Text Preprocessing: Tokenizing using the NLTK library and filtering out stop words.;
2 for Each text T ∈ D do
3 Feature Extraction: Converting text data to TF-IDF and USAS features;

4 Dimensionality Reduction:Performing PCA dimensionality reduction on the feature
matrix;

5 Feature Scaling: Encoding categorical features with One-Hot encoding and
combining it with continuous features;

6 Feature Scaling: Scaling the combined features using MinMaxScaler;
7 Feature Selection:Using RFE for feature selection;
8 Dataset Splitting: Splitting the dataset into training and testing sets;
9 Sample Balancing:Using SMOTE to oversample the training set.

Here are the whole process of MD-TCP:

(1) Text Preprocessing: Tokenizing using the NLTK [56] library and filtering out stop

words. NLTK is an efficient English tokenization library that can help reduce noise.

(2) Feature Extraction & Fusion: Converting text data into a TF-IDF matrix. TF-IDF

is a common and effective method to transform text into numerical features. It can

capture the importance of words in the text. Then TF-IDF features are combined

with features that extracted by the USAS system.

(3) Dimensionality Reduction: Performing Principal Component Analysis (PCA) di-

mensionality reduction on the feature matrix. PCA is a method of dimensionality

reduction that can help reduce the number of features, alleviate the curse of dimen-

sionality, and speed up model training.

(4) Feature Encoding: Encoding categorical features with One-Hot encoding and

combining it with continuous features. One-Hot encoding is a standard method to

handle categorical features. Combining categorical and continuous features can help

the model leverage both features simultaneously.

(5) Feature Scaling: Scaling the combined features using MinMaxScaler. Feature scal-

ing can ensure all features are on the same scale, which is crucial to the performance

of many machine learning models (such as Support Vector Machines, k-Nearest

Neighbors, etc.).



(6) Feature Selection: Using Recursive Feature Elimination (RFE) for feature selection.

Feature selection can help remove useless or redundant features, alleviate overfitting,

and enhance the performance and interpretability of the model. RFE is a commonly

used feature selection method.

(7) Dataset Splitting: Splitting the dataset into training and testing sets: This is a

fundamental step in any machine learning project that can help us evaluate the

model’s performance on unseen data.

(8) Sample Balancing: Using the Synthetic Minority Over-sampling Technique (SMOTE)

[57] to oversample the training set: Using SMOTE oversampling is a standard solu-

tion for imbalanced class issues.

The optimal strategies for data preprocessing and feature engineering may vary due to the

dataset’s characteristics, the task’s requirements, and the models in use, among other factors.

Therefore, the best strategies are often progressively optimized through experimentation and

adjustment.

24



CHAPTER 4

Results

4.1 Binary Text Classification

In Natural Language Processing (NLP) and Machine Learning (MT), the task of text classific-

ation plays a crucial role. This task aims to assign pieces of text to one or more predefined

categories. For instance, it may involve classifying news articles into predefined topics such

as politics, sports, or entertainment [30]. Binary classification, a subtype of text classification,

is a scenario with only two potential categories. Being the most straightforward classification

task, each instance in binary classification can only fall into one category. An example of this

would be sentiment analysis, where a review is classified as either positive or negative [29].

In the context of this paper, we delve into a particular binary classification task: determining

whether a segment of English text from the public health field could lead to errors in machine

translation.

4.1.1 Baseline Experiments

We executed fundamental baseline experiments on the COVID-19 and Maori Cancer datasets.

In this context, we avoided using any feature engineering and directly inputted the datasets’

text. This input was then subjected to One Hot and TF-IDF encoding before being incorporated

into models for text classification. This experiment offers us a clear insight into the datasets’

overall performance. We ran tests using three distinct machine learning models: Multinomial

Naive Bayes (MNB), Support Vector Machine (SVM), and Decision Tree. The results of

their 5-Fold cross-validation experiments can be found in Table 4.1 and 4.2, where we have

included the Standard Deviation (SD) for each performance indicator.
25
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The experimental indicators are relatively low on both datasets, averaging around 60%.

Unusual indicators appeared in both datasets during the experiments. For instance, the

sensitivity in the Covid-19 dataset has remained steady at 55.4%, which is at least 5% lower

than other indicators on average. On the other hand, the sensitivity in the Maori Cancer dataset

is much higher than other indicators, reaching up to 98.5% at its peak. Correspondingly, its

specificity is unusually low, hovering around 30%, with the lowest even being 0.22%. These

experimental results suggest that there is a data imbalance in both datasets.

MNB SVM Decision Tree

Encoding One Hot TF-IDF One Hot TF-IDF One Hot TF-IDF

Accuracy 0.6011 0.6192 0.6192 0.6339 0.6271 0.6282

(SD) (0.0376) (0.0407) (0.0248) (0.0451) (0.0262) (0.0386)

AUC 0.6329 0.6372 0.6549 0.6648 0.6254 0.6299

(SD) (0.036) (0.0422) (0.0262) (0.0401) (0.026) (0.0339)

Sensitivity 0.554 0.5541 0.5541 0.6306 0.554 0.5812

(SD) (0.0923) (0.0796) (0.0626) (0.0964) (0.0486) (0.0453)

Precision 0.613 0.6396 0.6397 0.6364 0.635 0.6485

(SD) (0.0317) (0.0436) (0.027) (0.0421) (0.0268) (0.0231)

Specificity 0.6484 0.6846 0.6848 0.6371 0.6825 0.6394

(SD) (0.0558) (0.0607) (0.0525) (0.0646) (0.042) (0.0874)

TABLE 4.1. Five fold cross-validation results of different machine learning
algorithms with two encodings for Covid-19 dataset.
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MNB SVM Decision Tree

Encoding One Hot TF-IDF One Hot TF-IDF One Hot TF-IDF

Accuracy 0.6566 0.6768 0.6753 0.6739 0.6191 0.5858

(SD) (0.026) (0.005) (0.0079) (0.0177) (0.0362) (0.0331)

AUC 0.6579 0.6428 0.5894 0.6315 0.527 0.5143

(SD) (0.0295) (0.0231) (0.0468) (0.0544) (0.0467) (0.0179)

Sensitivity 0.8277 0.9915 0.9851 0.9723 0.7489 0.6766

(SD) (0.0435) (0.0089) (0.0121) (0.0161) (0.0409) (0.0381)

Precision 0.7125 0.6793 0.6799 0.6822 0.7042 0.6906

(SD) (0.0142) (0.0032) (0.0052) (0.0117) (0.0108) (0.0131)

Specificity 0.2963 0.0134 0.0225 0.0452 0.3183 0.777

(SD) (0.454) (0.123) (0.161) (0.396) (0.687) (0.777)

TABLE 4.2. Five fold cross-validation results of different machine learning
algorithms with two encodings for Maori Cancer dataset

4.1.2 Full Feature Experiments

We applied the methods described in Chapter 3.3 to extract 491 and 460 distinct features

from the COVID-19 and Maori Cancer dataset using the USAS system. These features were

then fed into five different models, namely the Stacking Classifier (with MNB and SVM as

the base and Logistic Regression as the final estimator), Logistic Regression, Multinomial

Naive Bayes (MNB), Support Vector Machine (SVM), and Gradient Boosting Decision Tree

(GBDT). Additionally, we explored the impact of different normalization methods on the

same model. The results are presented in Table 4.3 and Table 4.4, where we also included the

standard deviation (SD) for each performance indicator.
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The results show that the performance did not significantly improve after feature engineering

yielded features compared to the baseline experiment. We can attribute this to four possible

reasons:

Model Stacking Classifier Logistic Regression SVM MNB MNB GBDT

Features ALL 491 ALL 491 ALL 491 ALL 491 ALL 491 ALL 491

Normalization MinMaxScaler MaxAbsScaler MaxAbsScaler L2 Normalization MinMaxScaler None

Accuracy 0.6067 0.6106 0.5938 0.6067 0.5998 0.6116

(SD) (0.0327) (0.0379) (0.0427) (0.0286) (0.0322) (0.0403)

AUC 0.6388 0.6489 0.6477 0.6416 0.6389 0.6547

(SD) (0.0512) (0.0439) (0.0395) (0.0284) (0.0271) (0.0368)

Sensitivity 0.5428 0.5626 0.5249 0.5327 0.5307 0.5665

(SD) (0.0652) (0.0582) (0.0649) (0.0592) (0.0652) (0.0604)

Precision 0.6181 0.6187 0.604 0.6212 0.6127 0.6204

(SD) (0.0357) (0.0367) (0.0438) (0.0301) (0.0386) (0.0444)

Specificity 0.664 0.658 0.5345 0.6798 0.668 0.6562

(SD) (0.003) (0.0035) (0.00511) (0.00319) (0.00516) (0.0059)

TABLE 4.3. Five fold cross-validation results of different machine learning
algorithms for Covid-19 dataset with all 491 features.

• Feature Redundancy: Among these 491 and 460 features, some might be highly

correlated or duplicated. These redundant features might not enhance the model’s

performance but could make the model overly complex and increase the risk of

overfitting.

• Feature Noise: Some features might contain noise rather than information that is

truly helpful to the target variable. These features might mislead the model and

cause a decrease in performance.

• Curse of Dimensionality: In high-dimensional data, data points might be sparsely

distributed in space, making it difficult for the model to learn effective decision
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Model Stacking Classifier Logistic Regression SVM MNB MNB GBDT

Features ALL 460 ALL 460 ALL 460 ALL 460 ALL 460 ALL 460

Normalization MinMaxScaler MaxAbsScaler MaxAbsScaler L2 Normalization MinMaxScaler None

Accuracy 0.6793 0.6414 0.6248 0.6107 0.6003 0.6755

(SD) (0.0307) (0.0279) (0.0257) (0.0387) (0.0352) (0.0304)

AUC 0.6072 0.6008 0.5877 0.5432 0.5491 0.5689

(SD) (0.0311) (0.0449) (0.0335) (0.0254) (0.0271) (0.0368)

Sensitivity 0.9702 0.8382 0.8292 0.811 0.8107 0.974

(SD) (0.0452) (0.0381) (0.0345) (0.0402) (0.0662) (0.0504)

Precision 0.6878 0.696 0.654 0.6433 0.6498 0.6832

(SD) (0.0457) (0.0367) (0.0438) (0.0301) (0.0356) (0.0433)

Specificity 0.0667 0.2244 0.2399 0.273 0.232 0.0432

(SD) (0.034) (0.045) (0.0521) (0.0419) (0.0412) (0.0369)

TABLE 4.4. Five fold cross-validation results of different machine learning
algorithms for Maori Cancer dataset with all 460 features.

boundaries. This is the so-called "curse of dimensionality". Reducing the number of

features might alleviate this problem and improve the model’s performance.

• Overfitting: If the number of features significantly exceeds the number of data points,

the model might overfit the training data, learning noise instead of the actual patterns.

This could cause the model’s performance to decrease on the test data.

Our subsequent experimental results also support the conclusions we have drawn.

4.1.3 Feature Optimization Experiments

Due to the excessive noise in the features, the uncertainty of the model can increase, leading

to decreased performance. Therefore, we used the Recursive Feature Elimination (RFE)

algorithm to optimize the high-dimensional dataset of 491 and 460 features, thus selecting
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Model Stacking Classifier Logistic Regression SVM MNB MNB GBDT

Optimised Features 200 150 200 200 50 100

Normalization MinMaxScaler MaxAbsScaler MaxAbsScaler L2 Normalization MinMaxScaler None

Accuracy 0.7134 0.6887 0.7213 0.6462 0.6818 0.663

(SD) (0.0422) (0.0398) (0.0325) (0.0175) (0.0196) (0.037)

AUC 0.7648 0.7499 0.7662 0.6697 0.7106 0.6637

(SD) (0.0329) (0.0216) (0.034) (0.0598) (0.0524) (0.0531)

Sensitivity 0.6779 0.6422 0.652 0.5686 0.5764 0.5449

(SD) (0.035) (0.0372) (0.032) (0.0433) (0.062) (0.0375)

Precision 0.7288 0.7104 0.7491 0.6452 0.6839 0.6585

(SD) (0.0346) (0.0427) (0.0613) (0.0637) (0.05) (0.0586)

Specificity 0.7621 0.7248 0.7877 0.7033 0.7525 0.7387

(SD) (0.0498) (0.0516) (0.0323) (0.0418) (0.0366) (0.0199)

TABLE 4.5. Five fold cross-validation results of different machine learning
algorithms for Covid-19 dataset with optimised features.

the most optimal feature set combination. We still chose five different models, namely the

Stacking Classifier (with MultinomialNB and SVM as the base and Logistic Regression

as the final estimator), Logistic Regression, Multinomial Naive Bayes (MNB), Support

Vector Machine (SVM), and Gradient Boosting Decision Tree (GBDT), each with different

Normalizations. As shown in Table 4.5 and Table 4.6, we list the best performance of

different models after feature selection through RFE, and the standard deviation (SD) for each

performance indicator is also included.

From the results, we can see that after the features were selected through RFE, all indices

significantly increased, on average, by more than 10%. We can also observe that for both two

datasets, each model’s optimal number of features is around 150 - 200. Next, we will further

observe the best-performing Stacking Classifier. As shown in Table 4.7 and Figure 4.1, we use

experiments of the Covid-19 dataset for analysing, we can see that all indices continue to rise

as the number of optimized features decreases. Finally, it peaks at around 200 and decreases
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Model Stacking Classifier Logistic Regression SVM MNB MNB GBDT

Optimised Features 150 150 150 200 150 100

Normalization MinMaxScaler MaxAbsScaler MaxAbsScaler L2 Normalization MinMaxScaler None

Accuracy 0.7374 0.7261 0.7114 0.7054 0.6974 0.6742

(SD) (0.0336) (0.0291) (0.0413) (0.0345) (0.0326) (0.0053)

AUC 0.7665 0.7444 0.7234 0.7133 0.7231 0.5843

(SD) (0.0338) (0.0278) (0.0241) (0.0287) (0.0214) (0.0487)

Sensitivity 0.935 0.9387 0.9301 0.9113 0.9254 0.9814

(SD) (0.0196) (0.0167) (0.0143) (0.0177) (0.0142) (0.0065)

Precision 0.7384 0.7335 0.7288 0.7165 0.7265 0.6804

(SD) (0.0224) (0.0217) (0.0315) (0.0299) (0.0301) (0.0033)

Specificity 0.3145 0.2754 0.2683 0.2533 0.232 0.0236

(SD) (0.083) (0.0836) (0.0773) (0.072) (0.0666) (0.0087)

TABLE 4.6. Five fold cross-validation results of different machine learning
algorithms for Maori Cancer dataset with optimised features.

as the number of features decreases, showing a significant decline after 50. One thing worth

noting is that when the feature optimization reaches 10, Specificity counterintuitively increases

while the corresponding Sensitivity significantly decreases. This indicates that the reduction

in the number of features in the dataset has already caused overfitting.

4.1.4 Multi-Dimensional Text Classification Pipeline

In Section 3.6, we introduced a novel framework MD-TCP that merges the previously extrac-

ted USAS with new TF-IDF features. This framework undergoes several crucial procedures,

including data preprocessing, feature extraction, dimensionality reduction, feature selection,

and addressing the class imbalance, all of which contribute to a significant enhancement in the

model’s performance. As depicted in Table 4.8 and Table 4.9, we chose the Stacking Classifier

and Logistic Regression, the two top-performing models from earlier experiments, to test
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Optimised Features 300 200 150 100 50 25 10

Accuracy 0.6927 0.7134 0.7065 0.7085 0.6878 0.6423 0.6057

(SD) (0.0338) (0.0422) (0.0196) (0.0215) (0.0245) (0.0209) (0.0255)

AUC 0.731 0.7648 0.7682 0.7584 0.7328 0.7019 0.6463

(SD) (0.0423) (0.0329) (0.0287) (0.0452) (0.0606) (0.0673) (0.0485)

Sensitivity 0.6461 0.6779 0.6798 0.664 0.6401 0.5647 0.4651

(SD) (0.0457) (0.035) (0.0426) (0.0193) (0.0534) (0.0395) (0.0705)

Precision 0.6972 0.7288 0.7282 0.7259 0.6975 0.6809 0.6388

(SD) (0.0499) (0.0346) (0.0373) (0.0488) (0.0562) (0.0606) (0.0816)

Specificity 0.7329 0.7621 0.7544 0.7564 0.7212 0.7152 0.7231

(SD) (0.0283) (0.0498) (0.0372) (0.0104) (0.0465) (0.0437) (0.0733)

TABLE 4.7. Five fold cross-validation results of Stacking Classifier for Covid-
19 dataset with different optimised features number.

MD-TCP. The results reveal that the methods within MD-TCP have substantially improved

performance across all metrics, even in the absence of feature selection and with all features

incorporated. Notably, the Stacking Classifier surpasses the old framework that underwent

feature selection in nearly all aspects.

In the experiment, we proceeded to utilize feature selection (RFE) with the Stacking Classifier

of the new framework. The experiment results of Covid-19 dataset, presented in Table 4.10,

indicate that the model’s performance reached its peak when optimized to 400 features, with

all metrics nearing 90%. A more intuitive understanding of the improvement achieved by our

latest framework can be gleaned from Figure 4.2 and 4.3.

It shows that our new approach MD-TCP surpasses initial baseline experiments by over 30%

in the overall performance of both Covid-19 and Maori Cancer datasets. Additionally, our
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Model Stacking Classifier Logistic Regression

Features All All

Normalization MinMaxScaler MaxAbsScaler

Accuracy 0.7211 0.6511

(SD) (0.0308) (0.0398)

AUC 0.7726 0.6941

(SD) (0.0154) (0.0216)

Sensitivity 0.7798 0.6031

(SD) (0.0209) (0.0372)

Precision 0.6893 0.6707

(SD) (0.0189) (0.0427)

Specificity 0.6548 0.6997

(SD) (0.0334) (0.0516)

TABLE 4.8. Five fold cross-validation results of Stacking Classifier and Lo-
gistic Regression for Covid-19 dataset with all features using MD-TCP.

MD-TCP effectively addresses the class imbalance problem present in both the Covid-19

and Maori Cancer datasets. We previously noted that this issue resulted in consistently low

Sensitivity in the experiments of Covid-19 dataset, while feature extraction and selection

partially mitigated this problem, Sensitivity remained lower than other metrics. However, the

MD-TCP successfully elevated Sensitivity to the same level as other metrics, reaching a high

of 88.53%, which represents a significant 33.13% increase compared to the baseline. In the

Maori Cancer dataset experiment, the Specificity indicator exhibited a consistent issue. Under

the old framework, both in the Baseline and All Features experiments, Specificity fluctuated

between 20% and 30%, even dropping to a low of 2.25%. This suggests a significant imbalance

in the dataset. However, with the implementation of the MD-TCP method, Specificity surged

to over 70%. Furthermore, after the application of RFE screening, Specificity reached a peak
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Model Stacking Classifier Logistic Regression

Features All All

Normalization MinMaxScaler MaxAbsScaler

Accuracy 0.8114 0.7006

(SD) (0.0296) (0.0249)

AUC 0.8614 0.7699

(SD) (0.0165) (0.0272)

Sensitivity 0.8698 0.6946

(SD) (0.0413) (0.0295)

Precision 0.7942 0.7005

(SD) (0.0182) (0.0301)

Specificity 0.7473 0.7066

(SD) (0.0398) (0.0386)

TABLE 4.9. Five fold cross-validation results of Stacking Classifier and Lo-
gistic Regression for Maori Cancer dataset with all features using MD-TCP.

of 90.19%. These results strongly attest to the effectiveness of MD-TCP in addressing issues

of sample imbalance.

From Figure 4.4, we can extract some fresh insights: MD-TCP retains the traits of the old

pipeline, where the model’s performance initially increases with the reduction of features via

RFE optimization, then starts to decline. Interestingly for both Covid-19 and Maori Cancer

datasets, when the Stacking Classifier model’s performance reached its peak, the number of

optimized features was 400 and 330, double that in the old pipeline. We can analyze this

phenomenon as follows:

• Addition of new information: The TF-IDF features introduce a new kind of informa-

tion distinct from the original features, namely, the significance of words in the text.
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FIGURE 4.1. Evaluation of Stacking Classifier with different Optimised Fea-
tures for Covid-19 dataset.

This new information might allow the model to better comprehend and classify the

text.

• Impact of feature processing: Procedures such as PCA, One-Hot encoding, Min-

MaxScaler scaling, RFE feature selection, and SMOTE oversampling might have

modified the distribution and structure of the features, turning more features into

valuable information sources.

• Model complexity: After adding new features and processing them, the model

might need to be more complex (i.e., have more features) to achieve the best results.

This could be because the new features and processing have added to the data’s

complexity.
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FIGURE 4.2. Performance of Stacking Classifiers using different methods for
Covid-19 dataset.



4.1 BINARY TEXT CLASSIFICATION 37

Base
lin

e

All F
ea

tur
es

Opti
mise

d Fea
tur

es

All F
ea

tur
es

M
D-T

CP

Opti
mise

d Fea
tur

es

M
D-T

CP

0

0.2

0.4

0.6

0.8

1

0.66 0.68
0.74

0.81
0.9

A
cc

ur
ac

y

Base
lin

e

All F
ea

tur
es

Opti
mise

d Fea
tur

es

All F
ea

tur
es

M
D-T

CP

Opti
mise

d Fea
tur

es

M
D-T

CP

0

0.2

0.4

0.6

0.8

1

0.66
0.61

0.77
0.86

0.96

A
U

C

Base
lin

e

All F
ea

tur
es

Opti
mise

d Fea
tur

es

All F
ea

tur
es

M
D-T

CP

Opti
mise

d Fea
tur

es

M
D-T

CP

0

0.2

0.4

0.6

0.8

1

0.83

0.97 0.94
0.87 0.9

Se
ns

iti
vi

ty

Base
lin

e

All F
ea

tur
es

Opti
mise

d Fea
tur

es

All F
ea

tur
es

M
D-T

CP

Opti
mise

d Fea
tur

es

M
D-T

CP

0

0.2

0.4

0.6

0.8

1

0.71 0.69
0.74

0.79

0.91
Pr

ec
is

io
n

Base
lin

e

All F
ea

tur
es

Opti
mise

d Fea
tur

es

All F
ea

tur
es

M
D-T

CP

Opti
mise

d Fea
tur

es

M
D-T

CP

0

0.2

0.4

0.6

0.8

1

0.3

6.7 · 10−2

0.31

0.75

0.9

Sp
ec

ifi
ci

ty

FIGURE 4.3. Performance of Stacking Classifiers using different methods for
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Optimised Features 420 400 350 300 200 100 50

Accuracy 0.8753 0.8884 0.8637 0.8334 0.8063 0.7679 0.7417

(SD) (0.0139) (0.0116) (0.0121) (0.0249) (0.0067) (0.0336) (0.0338)

AUC 0.9374 0.941 0.9289 0.9084 0.879 0.8451 0.8099

(SD) (0.0077) (0.0104) (0.0068) (0.0193) (0.0071) (0.027) (0.0366)

Sensitivity 0.876 0.8853 0.8698 0.8248 0.8153 0.7649 0.7786

(SD) (0.0164) (0.0369) (0.0201) (0.0374) (0.0368) (0.0481) (0.0223)

Precision 0.8774 0.8925 0.8692 0.8306 0.8098 0.766 0.7375

(SD) (0.0298) (0.0126) (0.0217) (0.0236) (0.0183) (0.0491) (0.0467)

Specificity 0.8699 0.8886 0.8669 0.8436 0.8003 0.7585 0.712

(SD) (0.0375) (0.0208) (0.0233) (0.03) (0.0343) (0.0494) (0.0623)

TABLE 4.10. Five fold cross-validation results of Stacking Classifier for
Covid-19 dataset with different optimised features number using MD-TCP.

In conclusion, MD-TCP has altered the data’s characteristics to a certain extent and augmented

the information that the model can leverage.

Another noteworthy point is that we observe the performance of AUC to be approximately 5%

superior to other metrics for both datasets. AUC, or Area Under the Curve, typically refers to

the area under the Receiver Operating Characteristic Curve (ROC curve). The ROC curve

is plotted with the false positive rate (1-Specificity) on the x-axis and the true positive rate

(Sensitivity) on the y-axis. A larger AUC value indicates better model performance.

The reasons why AUC might outperform other metrics in certain scenarios:

• Threshold independence: Metrics such as Accuracy, Precision, Sensitivity, and

Specificity all depend on the chosen threshold. Different thresholds can yield vastly
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Optimised Features 430 380 330 300 200 100 50

Accuracy 0.8802 0.8849 0.9 0.881 0.854 0.8087 0.796

(SD) (0.0203) (0.0164) (0.0216) (0.0143) (0.0033 (0.0162) (0.0217)

AUC 0.948 0.9465 0.9586 0.9448 0.9175 0.8818 0.8553

(SD) (0.0233) (0.0089) (0.0071) (0.0155) (0.0068) (0.0138) (0.0255)

Sensitivity 0.8787 0.8981 0.9027 0.8847 0.8547 0.8473 0.8308

(SD) (0.0435) (0.0276) (0.0217) (0.0387) (0.0409) (0.0305) (0.041)

Precision 0.8886 0.8815 0.9108 0.8875 0.8619 0.8093 0.7725

(SD) (0.0239) (0.0312) (0.0403) (0.0139) (0.0184) (0.0087) (0.026)

Specificity 0.8818 0.8563 0.9019 0.8716 0.8496 0.7854 0.7264

(SD) (0.0287) (0.0343) (0.0471) (0.0195) (0.0424) (0.0183) (0.0116)

TABLE 4.11. Five fold cross-validation results of Stacking Classifier for
Maori Cancer dataset with different optimised features number using MD-
TCP.

different results. AUC, however, measures the model’s overall performance across

all possible thresholds, making it independent of threshold selection.

• Immunity to class imbalance: In situations of class imbalance, a model might

achieve high Accuracy by merely predicting the majority class. However, such

models often perform poorly when predicting minority classes. AUC considers

the model’s predictive performance across all classes, making it immune to class

imbalance.

• Consideration of both false positives and false negatives: AUC takes into account

both the false positive rate and the true positive rate, meaning it considers the

quantities of both false positives and false negatives. Other metrics might focus on
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FIGURE 4.4. Evaluation of Stacking Classifier with different Optimised Fea-
tures for Covid-19 dataset.

only one aspect, for instance, Precision focuses on false positives, while Sensitivity

focuses on false negatives.
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In summary, AUC is a comprehensive metric. It considers the model’s performance across

all possible thresholds, is unaffected by class imbalance and threshold selection, and takes

into account both false positives and false negatives. These factors might contribute to AUC

outperforming other metrics in certain cases.



CHAPTER 5

Conclusions

5.1 Conclusion

The primary objectives of our study were twofold: firstly, to develop machine learning clas-

sifiers under the umbrella of our proposed Multi-Dimensional Text Classification Pipeline

(MD-TCP), to assist non-native English speakers, including medical professionals and pa-

tients, in understanding the risks associated with using machine translation tools for health

information. Secondly, within the MD-TCP framework, we aimed to create machine learning

classifiers as a risk-prevention mechanism, predicting the likelihood of translation errors

based on the features of the original English source texts.

A significant contribution of our study was the development of interpretable machine learning

models within the MD-TCP to assess and predict the risks associated with translating health-

related content using machine learning tools. Applying these classifiers, including models

such as the Multinomial Naive Bayes (MNB) classifier, in clinical or health research settings

requires understanding their functionality. These classifiers use linguistic cues to predict

whether a specific English health text is likely to be mistranslated, thereby contributing to the

risk mitigation aspect of our MD-TCP.

The best-performing classifier within the MD-TCP succeeded in classifying translation-error-

prone and non-error-prone English texts using a small number of optimized features. This led

to significant accuracy, sensitivity, precision, and specificity improvements compared to the

baseline.
42
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Our study challenges the traditional view that translation errors are primarily due to the

presence of complex medical jargon. Instead, we found that with the rapid development

in computer science and the application of our MD-TCP, the accuracy of machine transla-

tion tools is improving significantly, and the translation of medical terminology no longer

represents the top challenge. Instead, linguistic phenomena such as polysemy or the context-

dependent nature of common words in specialized health and medical domains are causing

subtle yet significant errors and confusion in machine translation outputs. This further under-

scores the importance and effectiveness of our Multi-Dimensional Text Classification Pipeline

in tackling these complexities.
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