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Abstract

In recent years, there has been significant interest in 3D point clouds from

academia and industry. Unlike 2D images, point clouds consist of 3D points with

Cartesian coordinates, offering an accurate, view-invariant representation of real-

world scenes. Understanding 3D point cloud scenes is crucial for applications

like autonomous driving, robotics, and AR/VR. However, comprehending these

scenes is challenging due to their complex spatial structures and objects at various

scales. Previous methods have often focused on learning representations that

capture only local details or a specific scale, leading to suboptimal results.

This thesis aims to advance learning composite representations for scene

understanding by integrating multiple clues. It explores composite learning

schemes from two angles: the data side and the model side. From the data

perspective, it suggests projecting 3D point clouds into various 2D views and

using multi-view feature fusion to learn composite representations. An end-to-

end trainable geometric flow network is introduced to achieve this, enabling

the learning and fusion of multi-view representations. The model side invest-

igates the design of local basic operators and a global framework. The thesis

introduces the collect-and-distribute block for local operators, which capture

short- and long-range contexts simultaneously, effectively learning composite

representations that incorporate sufficient contextual information. For the global

framework, it addresses the challenge of multi-scale objects by employing high-

resolution architectures that maintain high resolutions throughout the network

and facilitate communication of multiple resolution features, efficiently learning

multi-scale composite representations. Extensive experiments and analysis on

popular benchmarks demonstrate the effectiveness of these approaches.

x
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CHAPTER 1

Introduction

Scene understanding is a fundamental and widely studied topic in the field

of computer vision. Its primary objective is to comprehensively perceive and

comprehend a given scene, consequently providing essential groundwork for

downstream applications such as autonomous driving [2, 67] and virtual reality [3,

18]. The core task involved in scene understanding is semantic segmentation,

which aims to partition and analyze an input scene (e.g., the RGB image) into

distinct regions associated with specific semantic categories such as sky, road,

person, table, and bed. Depending on the type of input scene, whether it be

images or point clouds, semantic segmentation can be further categorized into

2D and 3D branches. The main distinction lies in the fact that 2D semantic

segmentation assigns a semantic label to each pixel in an image, while 3D

semantic segmentation predicts the semantic category for each individual point

in a point cloud.

Due to the emergence of Deep Learning [46, 99, 57] in recent years, significant

progress has been achieved in the field of 2D semantic segmentation [74, 98,

13, 152]. For instance, the Fully Convolutional Network (FCN) [74] is a pivotal

approach that eliminates fully connected layers, enabling the handling of inputs

with arbitrary sizes. FCN also introduces skip connections, combining deep,

coarse, semantic information with shallow, fine, appearance information to learn

multi-scale information effectively. Another noteworthy architecture is the U-

Net [98], which consists of a contracting path to capture context and a symmetric

expanding path for precise localization, resulting in a u-shaped structure. The

1



2 1 INTRODUCTION

inclusion of skip connections between these paths facilitates the propagation

of context information to higher resolution layers. Additionally, DeepLab [13]

proposes the use of atrous convolution to effectively enlarge the receptive field,

followed by atrous spatial pyramid pooling (ASPP) to capture objects and image

context at multiple scales. Moreover, PSPNet [152] introduces a pyramid pooling

module (PPM) to capture both global and sub-region context information for

handling various categories with different scales.

Compared to 2D images, such as RGB images, point clouds consist of a collec-

tion of 3D points represented by Cartesian coordinates (x, y, z). This representa-

tion provides an accurate geometry perspective aligned with the 3D real world.

Consequently, semantic segmentation of 3D point clouds plays a crucial role,

particularly in safety-critical applications like autonomous driving [67, 2] and

robotics [64, 136]. There are three primary challenges that need to be addressed

in 3D point cloud scene understanding:

• Complex space structure: The arrangement and structure of objects

in a 3D point cloud scene are typically intricate and mixed. For in-

stance, in a traffic scene, cars and pedestrians are intertwined, while the

surrounding buildings possess diverse shapes.

• Insufficient contextual information: When the model can only per-

ceive the local region and fail to catch sufficient contexts, it becomes

challenging to differentiate between two categories with partially similar

shapes. For example, distinguishing between the flat plane of a table

and the floor poses a difficulty in predicting the semantic label for each

point.

• Multi-scale objects: 3D scenes often encompass objects of varying

scales. For instance, an office room might feature a small cup on a large

table.
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This thesis aims to address the aforementioned challenges from the perspect-

ive of representation learning. Previous works, such as PointNet [83], have

made significant contributions by utilizing multi-layer perceptrons (MLPs) to

directly process point clouds. PointNet++ [84] further advances this approach

by introducing a hierarchical structure that captures contextual information. In

contrast, PointCNN [66] learns an x-transformation to align input points, fol-

lowed by typical convolution layers. Additionally, KPConv [108] introduces

a novel point convolution operator known as kernel point convolution, which

processes neighboring points using spatially located weights. Recently, trans-

former architectures have emerged for point cloud segmentation [58, 81, 151].

Point Transformer [151] proposes the use of a vector self-attention mechanism

to aggregate neighbor features and capture local dependencies. However, these

existing methods either focus solely on capturing local details or a specific scale

of objects, thus resulting in suboptimal results.

Therefore, this thesis proposes to learn a composite representation that combines

multiple clues to facilitate a comprehensive understanding of the target scene.

To achieve this goal, the thesis explores representation learning from both the

data transformation and model construction perspectives. Specifically, three

complementary works with different approaches are introduced: multi-view data

fusion, short-long range operator, and multi-scale framework. These works aim to

enhance the perception of space structure, capture sufficient short-long contextual

clues, and effectively capture multi-scale objects, respectively. Together, they

contribute to the advancement of learning effective representations for point

cloud scene understanding.

1.1 Problem Formulation

A 3D point cloud typically comprises a set of N points denoted as P ∈ RN×Craw ,

where Craw represents the feature dimension of each point. This dimension
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includes Cartesian coordinates (x, y, z) and other attributes like RGB values.

The objective of 3D point cloud semantic segmentation is to assign a semantic

category label (i.e., sky, table, chair) to each point (x, y, z) ∈ P . The final

predictions have the same spatial dimension as the raw points, denoted as Y ∈

NN , where each entry y ∈ {0, · · · , C − 1} and C represents the total number of

semantic categories. In some cases, for a comprehensive scene understanding, it

is necessary to classify 3D objects, where the goal shifts to predicting a single

semantic label for the entire point cloud P .

The general pipeline for processing point clouds involves several steps. Initially,

the raw point cloud P is transformed into an input tensor Finput. One common

transformation approach is to project the 3D point cloud onto a 2D image and

utilize well-established 2D networks [74, 152, 98] for further processing. Another

approach involves voxelizing the 3D point cloud into structural grids and applying

3D convolutions [103, 25, 22, 23]. Alternatively, a simple normalization step

can be applied, and the points can be directly used as input. Next, a model is

constructed and trained to map the input tensor Finput to an output representation

Foutput ∈ RN×Cfea , where Cfea represents the feature dimension. Finally, a

classifier is applied to obtain the semantic predictions for each point.

This thesis aims to learn the composite representation Foutput from both the data

and model aspects. Regarding the data side, it proposes to project the point cloud

into multiple 2D views and learn a multi-view composite representation across

these views to perceive the structure of the space from different angles. On the

model side, the thesis first investigates the basic processing block of the model

and introduces the short-long context operator to capture sufficient short-long

contextual information. Then, it explores the overall model framework and

designs a multi-scale architecture to learn a multi-scale composite representation,

enabling the capture of rich multi-scale objects. These three works complement

each other and collectively tackle the challenges related to 3D point cloud scene

understanding.
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1.2 Contributions

The contributions of this thesis can be summarized as follows:

• Comprehensive analysis of the characteristics of 3D point cloud and

proposal of learning different composite representations to address

three important challenges in 3D point cloud scene understand-

ing. These challenges include complex space structures, insufficient

contextual information, and multi-scale objects.

• Development of a novel multi-view fusion scheme to handle the

complex structure of 3D scenes. This scheme involves projecting point

clouds into multiple 2D views and introducing a new GFNet (Geometric

Flow Network) to simultaneously fuse features from these views. The

scheme includes a geometric flow module (GFM) that allows geometric

correspondence information to flow across different views, enabling

comprehensive observation and perception of the spatial structure.

• Introduction of an innovative block that integrates short-range

and long-range clues to capture contextual information effectively.

This block incorporates a novel collect-and-distribute mechanism to

learn composite representations that capture both short- and long-range

contexts. Additionally, it utilizes context-aware position encoding to

enhance position clues and facilitate communication between points.

• Exploration of an elaborate high-resolution framework to capture

multi-scale features. This framework aims to maintain multiple resol-

utions simultaneously, allowing for frequent communication between

different resolutions within each stage. This facilitates the learning of

composite representations that capture information at multiple scales.

The framework is designed with unified sequence and resampling op-

erators, enabling the use of off-the-shelf point cloud blocks and layers

without requiring additional efforts.
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1.3 Thesis Outline

The remainder of this thesis is organized into five chapters, with the main content

of each chapter summarized as follows:

Chapter 2: Background

This chapter presents an overview of the literature that is relevant to this thesis,

with a primary focus on 3D scene understanding. Additionally, it includes a

review of closely related 2D scene understanding approaches, encompassing

considerations such as multi-scale analysis and contextual information. It is

worth noting that previous approaches to 3D scene understanding are examined

from three main perspectives: projected representation learning, voxelized rep-

resentation learning, and vanilla representation learning.

Chapter 3: Multi-View Composite Representation Learning

This chapter explores the use of observations from multiple different views to

comprehensively perceive the complex space structure of 3D point clouds. A

novel Geometric Flow Network (GFNet) is introduced for multi-view composite

representation learning. GFNet incorporates a geometric flow module that en-

ables the flow of geometric correspondence information across different views.

The design of GFNet allows for training and testing in an end-to-end paradigm,

using grid sampling and KPConv to avoid time-consuming and non-differentiable

post-processing. Extensive experiments on SemanticKITTI and nuScenes, two

popular large-scale point cloud semantic segmentation benchmarks, demonstrate

the effectiveness of GFNet.

Chapter 4: Contextual Composite Representation Learning

This chapter focuses on capturing sufficient contextual information by integrat-

ing short-range and long-range clues. A novel collect-and-distribute mechanism

is proposed, which builds the CDFormer architecture to capture both short-
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and long-range contexts simultaneously. This mechanism effectively learns

local-global contextual composite representations of point clouds. Additionally,

context-aware position encoding enhances position clues dynamically and fa-

cilitates communication among point features. Comprehensive experiments on

segmentation and classification tasks using datasets such as S3DIS, ScanNetV2,

ShapeNetPart, ModelNet40, and ScanObjectNN demonstrate the superiority of

CDFormer and the benefits of each design choice.

Chapter 5: Multi-Scale Composite Representation Learning

This chapter investigates multi-scale composite representation learning to effect-

ively capture multi-scale objects. The PointHR framework, designed for point

cloud segmentation, maintains multiple resolutions simultaneously and facilitates

frequent communication between all resolutions within each stage. The proposed

framework formulates PointHR in a unified way using a sequence operator and

a resampling operator, allowing for the use of off-the-shelf point cloud blocks

and modules without additional efforts. Additionally, pre-computed indices

for knn collection and resampling operations are proposed to avoid on-the-fly

computations, resulting in efficient utilization of high-resolution architectures.

Comprehensive experiments on S3DIS and ScanNetV2 datasets demonstrate the

effectiveness of high-resolution architectures for 3D dense point cloud analysis

and establish new state-of-the-art performances.

Chapter 6: Conclusions

This chapter provides a summary of the contributions and implications of the

research conducted in the thesis. It also outlines future directions for further

exploration in the field.



CHAPTER 2

Background

This chapter begins by providing a brief overview of the literature on 2D scene

understanding that is relevant to this thesis. Specifically, it examines the literat-

ure from various angles such as multi-scale issues and contextual information.

Subsequently, the chapter delves into a comprehensive investigation of 3D scene

understanding methods, with a primary focus on the perspective of representation

learning.

2.1 2D Scene Understanding

In recent years, due to the significant advancement of Deep Learning, deep

convolutional neural networks (CNNs) become the dominant approach in various

computer vision tasks, such as image classification [57, 99, 46] and object

detection [37, 96]. Similarly, Long et al. [74] propose a milestone work in scene

parsing field, named Fully Convolutional Network (FCN), which discards the

fully connected layers to handle input of arbitrary size and to compute efficiently

for dense predictions. However, there are still three main challenges to be

tackled: 1) objects to be parsed are multi-scale; and 2) contextual information is

not sufficiently explored and utilized. In the following, I will categorize related

literature into two groups that address the above two concerns, and revisit them

in detail.
8
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2.1.1 Multi-Scale Learning

The objects to be parsed in the scene are always multi-scale, e.g., a small cup

is on the big table, which is not handled well by standard convolution. A

straightforward way to deal with this is to feed the DCNN with rescaled versions

of the same image and then aggregate the feature maps [15]. However, it is less

computationally efficient. FCN [74] proposes to combine deep, coarse, semantic

information with shallow, fine, appearance information with skip connections

to learn multi-scale information. Similarly, UNet [98] consists of a contracting

path to capture context and a symmetry expanding path for precise localization,

yielding a u-shaped architecture. The skip connections between two paths is to

fuse multi-scale information from different layers.

DeepLab [13] proposes atrous convolution to effectively enlarge the receptive

field and the following atrous spatial pyramid pooling (ASPP) to capture objects

as well as image context at multiple scales. Later, DeepLabV3 [14] augments

the atrous spatial pyramid pooling (ASPP) with image-level features which

encode global context to further boost the recognition accuracy for small objects.

DeepLabv3+ [16] proposes a novel encoder-decoder structure by extending

DeepLabV3 with a simple yet effective decoder module, which can capture multi-

scale information by gradually recovering the spatial information. PSPNet [152]

devises a pyramid pooling module (PPM) to capture the global and sub-region

context information to handle various categories with different scales. It also

adopts a deeply auxiliary loss to effectively train the network.

2.1.2 Contextual Information Learning

Except for accurately locating the objects, correctly classifying the object is also

the key part of scene parsing, which can be facilitated by utilizing contextual

information. However, the contextual information is not sufficiently explored

due to the local characteristic of convolution operations in DCNN. Hence, [74,
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98] propagate context information from lower to higher resolution layers to

facilitate the final dense predictions. DeepLab [13] introduces atrous convolution

to effectively enlarge the receptive field to incorporate larger context without

increasing the parameters or computations. PSPNet [152] proposes a pyramid

pooling module (PPM) to capture the global and sub-region context information.

However, those methods can either not generate dense contextual information, or

not satisfy the requirement that different pixels need different contextual depend-

encies. EncNet [146] introduces the Context Encoding Module to capture the

semantic context of scenes and selectively highlights class-dependent features. It

also proposes a Semantic Encoding Loss (SE-Loss) which predicts the presences

of object categories in the scene, to incorporate global context. Given that SE-

Loss considers big and small objects equally, resulting in the improvement of the

small objects in segmentation. APCNet [45] proposes Adaptive Context Modules

to utilize local and global representation to estimate affinity weights for local

regions, allowing to construct adaptive and multi-scale contextual representations

for segmentation task. DMNet [44] devises the Dynamic Convolutional Modules,

which exploit a set of context-aware filters (i.e., adaptive to image contents) to

estimate semantic representations for specific scales. PSANet [153] proposes

the point-wise spatial attention to aggregate long-range contextual information.

Each position in the feature map is connected with all other ones through self-

adaptively predicted attention maps. Furthermore, a bi-directional information

propagation path is designed for a comprehensive understanding of complex

scenes. DANet [34] designs a dual self-attention module, i.e., position attention

module and channel attention module, to capture the semantic interdependencies

in spatial and channel dimensions respectively.

Furthermore, NonLocal Net [117] presents non-local operations, which computes

the response at a position as a weighted sum of the features at all positions, to

capture long-range dependencies. Self-attention in [113] can be viewed as a

form of the non-local operation. Later, several work [63, 51, 156, 11, 140]
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modify the dot-product based attention from non-local block [117] to largely

reduce the computation and memory consumption. EMANet [63] reformulates

the self-attention mechanism into an expectation-maximization iteration manner,

which can learn a more compact basis set to largely reduce the computational

complexity. CCNet [51] proposes the criss-cross attention module which aggreg-

ates contextual information in horizontal and vertical directions (i.e., criss-cross

path). By taking a further recurrent operation, each pixel can finally capture the

full-image dependencies from all pixels. It is GPU memory friendly and compu-

tation efficient comparing to the non-local blocks [117]. ANN [156] embeds a

pyramid pooling module [152] into the non-local block [117] to largely reduce

the computation and memory consumption, which is called as APNB. Then the

AFNB adapts APNB to fuse the features of different stages of a deep network,

bringing a considerable improvement over the baseline model. GCNet [11]

observes the attention maps (from non-local network [117]) for different query

positions are almost the same, indicating only query-independent dependency

is learned. Thus, they simplify the non-local block by explicitly using a query-

independent attention map for all query positions, which is significantly less

computation but is observed with almost no decrease in accuracy. DNLNet [140]

disentangles the dot-product based attention from non-local block [117] into

two terms: a whitened pairwise term that accounts for the impact of one pixel

specifically on another pixel, and a unary term that represents the influence of

one pixel generally over all the pixels. After joint learning of them, the whitened

pairwise term captures within-region relationships while the unary term learns

salient boundaries.

2.2 3D Scene Understanding

Recently, there has been an increasing interest in 3D point cloud scene un-

derstanding because the deployment of all kinds of 3D sensors makes point
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clouds based 3D data easily accessible, and also due to its wide range of ap-

plications in 3D modeling, autonomous driving, robotics, building modeling,

etc. Given that the point cloud data has the irregular and unordered format, it is

non-trivial to utilize off-the-shelf deep learning technologies to learn the effective

point cloud representation for scene understanding. Recent methods usually

explore those representation learning from the perspectives of either voxelization,

single/multi-view projections, or vanilla point-based operations, which will be

fully investigated in the following.

2.2.1 Voxelized Representation Learning

They [19, 103, 132, 144, 155] first voxelize point clouds to regular grids and

process with 3D convolutions. FusionNet [144] first proposes to aggregate

neighborhood features by both Voxel and Point Feature Aggregation, and then

design the Inner-Voxel Aggregation for fine-grain point-level feature aggrega-

tions and label predictions to address the ambiguous/wrong predictions when

voxels consist of points from different classes. Cylinder3D [155] introduces

the cylindrical partition and asymmetrical 3D convolution networks to explore

the 3D geometric pattern and tackle these difficulties caused by sparsity and

varying density of point clouds. Moreover, a point-wise refinement module

is employed to alleviate the interference of lossy voxel-based label encoding.

SPVNAS [103] proposes Sparse Point-Voxel Convolution (SPVConv), which

is a lightweight 3D module consisting of the vanilla Sparse Convolution and

the high-resolution point-based branch. Furthermore, 3D Neural Architecture

Search (3D-NAS) is presented to obtain the efficient and effective architecture

for semantic segmentation. AF2S3Net [19] designs an AF2M to capture the

global context and local details and an AFSM to learn inter-relationships between

channels across multi-scale feature maps from AF2M. RPVNet [129] propose a

novel Range-Point-Voxel fusion network with multiple and mutual information

interactions among these three views, and design a gated fusion module (GFM)
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to adaptively merge the three features based on concurrent inputs. The proposed

fusion strategy uses points as middle hosts to bidirectional propagate features

between range-pixels, Voxel-cells and vanilla points. However, the distributions

of large-scale outdoor scenes (e.g., SemanticKITTI [7]) are extremely sparse,

and the computations grow cubically when increasing the voxel resolution.

2.2.2 Projected Representation Learning

Point clouds are first projected to 2D images, e.g., range-view (RV) [5, 26, 79,

120, 121, 127] and bird’s-eye-view (BEV) [148], and then processed using 2D

convolutions. For example, MVCNN [101] first projects 3D point clouds into 2D

images from multiple perspectives, and then employ CNN to extract features for

each view, following a view pooling layer to aggregate features from multi-views,

resulting in a multi-view convolutional neural network. MVPNet [53] aggregates

2D multi-view RGB image features into 3D point clouds, and then uses a point

based network to fuse the features in 3D canonical space to predict 3D semantic

labels. RangeNet++ [79] adopts a DarkNet [95] as the backbone to process RV

images, and uses a KNN for post-processing. SqueezeSeg [120] takes range-

images as input, which are transformed from LiDAR point clouds by spherical

projection and directly outputs a point-wise label map, which is then refined by a

conditional random field (CRF) implemented as a recurrent layer. SalsaNext [26]

introduces a new context module that utilizes a residual dilated convolution

stack to merge receptive fields at different scales. 3D-MiniNet [5] proposes a

learning-based projection module for extracting local and global information

from 3D data, which is then inputted into a 2D FCNN with range images to

produce semantic segmentation predictions. In contrast, PolarNet [148] employs

a polar-based birds-eye-view (BEV) instead of the standard 2D Cartesian BEV

projections to more effectively capture the imbalanced spatial distribution of

point clouds.
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Among projection-based methods, applying multi-view projection can leverage

rich complementary information [4, 12, 36, 69], while previous works usually

process RV/BEV individually in sequence [12, 36] or perform a vanilla late

fusion [4, 69]. For example, MVLidarNet [12] first obtains predictions from the

RV image, which are then projected to BEV as initial features to learn repres-

entation by feature pyramid networks. Differently, TornadoNet [36] conducts in

reverse order by devising a pillar-projection-learning module (PPL) to extract

features from BEV, and then placing these features into RV, modeled by an

encoder-decoder CNN. On the other side, MPF [4] utilizes two different models

to separately process RV and BEV, and then combines the predicted softmax

probabilities from two branches as final predictions. AMVNet [69] takes a further

step, i.e., after obtaining the separate predictions from RV and BEV, it adopts

a point head [83] to refine the uncertain predictions, which are defined by the

disagreements of two branches.

2.2.3 Vanilla Representation Learning

Recent methods mainly devise novel point operations/architectures to directly

learn vanilla representations from raw points [48, 66, 83, 84, 108, 118, 105],

including mlp-based [48, 83, 84], cnn-based [66], graph-based methods [108,

118], and transformer-based [41, 58, 81, 151]. Specifically, PointNet [83] is a pi-

oneering network architecture that directly takes point clouds as input and outputs

either class labels for the entire input or per point segment/part labels for each

point of the input. To deal with the permutation invariance of point clouds, Point-

Net proposes to adopt multi-layer perceptron (MLP) to extract features followed

by a single symmetric function i.e., max pooling. For transformation invariance,

they introduce a data-dependent spatial transformer network that attempts to

canonicalize the data before the PointNet processes them. PointNet++ [84]

introduces a hierarchical neural network that applies PointNet recursively on
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a nested partitioning of the input point set. By exploiting metric space dis-

tances, PointNet++ learns local features with increasing contextual scales and

adaptively combines features from multiple scales. PointCNN [66] learns an X

-transformation from the input points to simultaneously re-weight and arrange the

associated features of each point. Element-wise product and sum operations of

the typical convolution operator are subsequently applied on the X -transformed

features to leverage neighbor correlations. SO-Net [60] handles the permuta-

tion invariance of orderless point clouds by building a Self-Organizing Map

(SOM) to fix the order of points. DGCNN [118] proposes a new neural network

module called EdgeConv, which can better capture local geometric features of

point clouds while still maintaining permutation invariance, and act on graphs

dynamically computed in each layer of the network. RandLA-Net [48] identities

random point sampling instead of more complex point selection approaches as

the most suitable component for efficient learning on large-scale point clouds.

Additional, it proposes an effective local feature aggregation module that pre-

serves complex local structures by progressively increasing the receptive field for

each point. KPConv [108] introduces a new point convolution operator named

Kernel Point Convolution (KPConv) to directly takes points in the neighborhood

as input and processes them with spatially located weights. KPConv favors radius

neighborhoods instead of k-nearest-neighbors (KNN), which is not robust in

non-uniform sampling settings as in [47]. Furthermore, a deformable version

of this convolution operator was also introduced that learns local shifts to make

them adapt to point cloud geometry.

Recently, the popular transformer architecture has been introduced to point cloud

tasks [58, 81, 124, 151]. PCT [41] presents the offset-attention mechanism,

which replaces the original self-attention. PTv1 [151] proposes vector atten-

tion to aggregate neighbor features. PTv2 [124] further introduces grouped

vector attention to more efficiently learn discriminative representations while

avoiding overfitting. Stratified Transformer [58] employs local window-based
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self-attention and captures long-range contexts by sampling nearby points densely

and distant points sparsely.



CHAPTER 3

Multi-View Composite Representation Learning

This chapter aims to gain a comprehensive understanding of the intricate spatial

structure of 3D point clouds through the lens of data transformation. In particular,

the approach involves transforming the point cloud data into multiple distinct

views and subsequently learning a composite representation that encompasses all

these views.

Different views capture different information of point clouds and thus are com-

plementary to each other. However, recent projection-based methods for point

cloud semantic segmentation usually utilize a vanilla late fusion strategy for the

predictions of different views, failing to explore the complementary informa-

tion from a geometric perspective during the representation learning. In this

chapter, we introduce a geometric flow network (GFNet) to explore the geo-

metric correspondence between different views in an align-before-fuse manner.

Specifically, we devise a novel geometric flow module (GFM) to bidirectionally

align and propagate the complementary information across different views ac-

cording to geometric relationships under the end-to-end learning scheme. We

perform extensive experiments on two widely used benchmark datasets, Se-

manticKITTI and nuScenes, to demonstrate the effectiveness of our GFNet for

project-based point cloud semantic segmentation. Concretely, GFNet not only

significantly boosts the performance of each individual view but also achieves

state-of-the-art results over all existing projection-based models. Code is avail-

able at https://github.com/haibo-qiu/GFNet.

17
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3.1 Introduction

3D point cloud analysis has drawn increasing attention from both academic and

industrial communities, since the wide deployments of lidar sensors have made it

possible to obtain abundant 3D point cloud data [7, 10]. Compared to 2D images

(e.g., RGB images), a point cloud can capture precise structures of objects,

thus providing a geometry-accurate perspective representation, intrinsically in

line with the 3D real world. Point cloud semantic segmentation, aiming to

assign a semantic label to each point, is fundamental to scene understanding,

which enables intelligent agents to precisely perceive not only the objects but

also the dynamically changing environment. Therefore, point cloud semantic

segmentation plays a crucial role, especially in safety-critical applications such

as autonomous driving [67, 2] and robotics [64, 136].

Unlike structural pixels in an image, a point cloud is a set of points represented

by (x, y, z) coordinates without a specific order, and extremely sparse for in-

the-wild scenes. Hence, it is non-trivial to utilize off-the-shelf deep learning

technologies on images for point cloud analysis. Recent point cloud segmentation

methods usually address the above-mentioned sparse distributed issue from

the perspectives of either voxelization, single/multi-view projections, or novel

point-based operations. However, voxel-based methods mainly suffer from

heavy computations while point-based operations struggle to efficiently capture

the neighbour information, especially when dealing with large-scale outdoor

scenes [7, 10]. With the great success of fully convolutional networks for image-

based semantic segmentation [13, 14, 74, 152], projection-based methods have

recently received increasing attention. Figure 3.1 illustrates two widely used

projected views, i.e., range-view (RV) [79] and bird’s-eye-view (BEV) [148].

Single view based methods can only learn view-specific representations [5, 26,

127], failing to handle those occluded points during projection. For example, the

RV in Figure 3.2 shows a occluded tail phenomenon (i.e., the distant occluded
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FIGURE 3.1. Geometric bidirectional transformation diagram
between range-view (RV) and bird’s-eye-view (BEV).

points are assigned with the labels of near displayed points) in the red rectangle

areas. To address this problem, recent methods resort to multi-view models

to incorporate complementary information over different views, which usually

deal with RV/BEV in sequence [12, 36] or perform a vanilla late fusion [4, 69].

However, existing methods fail to probe the intrinsically geometric connections

of RV/BEV during the representation learning.

As we can see from Figure 3.1, to find the geometric correspondence between

two views (the dash line), we can utilize the original point cloud as a bridge, e.g.,

the transformation RV to BEV can be obtained from two transformations (the

solid line): 1) from RV to point cloud; and 2) from point cloud to BEV. Inspired

by this, we introduce a novel geometric flow network (GFNet) to simultaneously

learn view-specific representations and explore the geometric correspondences

between RV and BEV in an end-to-end learnable manner. Specifically, we first

propose to adopt two branches to process RV and BEV inputs, where each branch

follows an encoder-decoder architecture using a ResNet [46] as the backbone. We
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then devise a geometric flow module (GFM), which is then applied at multiple

levels of feature representations, to bidirectionally align and propagate geometric

information across two projection views, aiming to learn more discriminative

representations. Figure 3.2 illustrates an example of propagating the information

from BEV to RV which benefits handling those occluded points by RV projection.

In addition, inspired by [55], we also use KPConv [108] at the top of GFNet to

replace a KNN post-processing, thus making it easy to train the overall multi-

view point cloud semantic segmentation pipeline in an end-to-end paradigm. The

main contributions of this chapter are summarized as follows:

• We introduce a novel GFNet to simultaneously learn and fuse multi-view

representations, where the proposed geometric flow module (GFM) en-

ables the geometric correspondence information to flow across different

views.

• We devise two branches for RV and BEV with KNN post-processing

replaced by KPConv, making the proposed GFNet end-to-end trainable.

• Extensive experiments are performed on two popular large-scale point

cloud semantic segmentation benchmarks, i.e., SemanticKITTI and

nuScenes, to demonstrate the effectiveness of GFNet, which achieves

state-of-the-art performance over all existing projection-based models.

3.2 Related Work

In this section, we review recent point cloud semantic segmentation literature

from the perspectives of point-based, voxel-based, and projection-based methods.

In addition, we discuss more recently hybrid methods which simultaneously use

multiple formats/modalities. Among all projection-based methods, we mainly

focus on the multi-view projection-based methods.
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FIGURE 3.2. The distant occluded points caused by RV projec-
tion are misclassified as the labels of near displayed points in the
red rectangle areas, while they are totally captured by BEV. By
propagating the information between BEV and RV, this issue can
be well addressed by our GFNet.

Point-based Methods. Recent methods mainly devise novel point operations

or architectures to directly learn representations from raw points [48, 66, 83,

84, 108, 118, 105], including mlp-based [48, 83, 84], cnn-based [66], and

graph-based methods [108, 118]. Specifically, PointNet [83] is a pioneer that

directly processes point cloud with multi-layer perceptron (MLP), which is

improved by PointNet++ [84] using a hierarchical neural network to learn local

features. PointCNN [66] learns a X-transformation from the input points for

alignment, followed by typical convolution layers. DGCNN [118] proposes a new

graph convolution module called EdgeConv to capture local geometric features.

RandLA-Net [48] employs random point sampling with an effective local feature

aggregation module to persevere the local information. KPConv [108] introduces

a new point convolution operator named Kernel Point Convolution to directly

take neighbouring points as input and processes with spatially located weights.

Nevertheless, the irregular and disordered characteristics of point clouds make it

inefficient to capture the neighbour information.

Voxel-based Methods. They [19, 103, 132, 144, 155] first voxelize point clouds

to regular grids and process with 3D convolutions. Cylinder3D [155] introduces

the cylindrical partition and asymmetrical 3D convolution networks to tackle
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the issues of sparsity and varying density of point clouds. SPVNAS [103] pro-

poses Sparse Point-Voxel Convolution (SPVConv), which is a lightweight 3D

module consisting of the vanilla Sparse Convolution and the high-resolution

point-based branch. Furthermore, 3D Neural Architecture Search (3D-NAS) is

presented to obtain the efficient and effective architecture for semantic segmenta-

tion. AF2S3Net [19] designs an AF2M to capture the global context and local

details and an AFSM to learn inter-relationships between channels across multi-

scale feature maps from AF2M. However, the distributions of large-scale outdoor

scenes (e.g., SemanticKITTI [7]) are extremely sparse, and the computations

grow cubically when increasing the voxel resolution.

Hybrid Methods. Recent methods [129, 138, 133] usually focus on simultan-

eously using multiple formats/modalities (e.g., voxel, points or natural images)

to learn discriminative representations. DRINet++ [138] proposes Sparse Feature

Encoder to extract local context information from voxelized grids, and Sparse

Geometry Feature Enhancement to enhance the geometric characteristics of

sparse points using multi-scale sparse projection and attentive multi-scale fusion.

RPVNet [129] explores multiple and mutual information interactions among

three views (i.e., projection, voxel and point), following by a gated fusion module

to adaptively merge the three features based on concurrent inputs. 2DPASS [133]

assists raw points with 2D natural images. It distills richer semantic and struc-

tural information from 2D images without strict paired data constraints to the

pure 3D point network, by leveraging an auxiliary modal fusion and multi-scale

fusion-to-single knowledge distillation (MSFSKD).

Projection-based Methods. Point clouds are first projected to 2D images, e.g.,

range-view (RV) [5, 26, 79, 120, 121, 127] and bird’s-eye-view (BEV) [148], and

then processed using 2D convolutions. For example, RangeNet++ [79] adopts

a DarkNet [95] as the backbone to process RV images, and uses a KNN for

post-processing. SqueezeSegV3 [127], standing on the shoulders of [120, 121],

employs a spatially-adaptive Convolution (SAC) to adopt different filters for
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different locations according to input RV images. SalsaNext [26] introduces a

new context module which consists of a residual dilated convolution stack to

fuse receptive fields at various scales. On the other hand, PolarNet [148] uses

a polar-based birds-eye-view (BEV) instead of the standard 2D Cartesian BEV

projections to better model the imbalanced spatial distribution of point clouds.

Among projection-based methods, applying multi-view projection can leverage

rich complementary information [4, 12, 36, 69], while previous works usually

process RV/BEV individually in sequence [12, 36] or perform a vanilla late

fusion [4, 69]. For example, MVLidarNet [12] first obtains predictions from the

RV image, which are then projected to BEV as initial features to learn repres-

entation by feature pyramid networks. Differently, TornadoNet [36] conducts in

reverse order by devising a pillar-projection-learning module (PPL) to extract

features from BEV, and then placing these features into RV, modeled by an

encoder-decoder CNN. On the other side, MPF [4] utilizes two different models

to separately process RV and BEV, and then combines the predicted softmax

probabilities from two branches as final predictions. AMVNet [69] takes a

further step, i.e., after obtaining the separate predictions from RV and BEV, it

adopts a point head [83] to refine the uncertain predictions, which are defined

by the disagreements of two branches. Whereas, our GFNet enables geometric

correspondence information to flow between RV/BEV at multi-levels during

end-to-end learning, leading to a more discriminative representation and better

performances.

3.3 Method

In this section, we first provide an overview of point cloud semantic segmentation

and the proposed geometric flow network (GFNet). We then introduce projection-

based point cloud segmentation using range-view (RV) and bird’s-eye-view

(BEV) in detail. After that, we describe the proposed geometric flow module
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FIGURE 3.3. The overview of geometric flow network (GFNet).
Point clouds are first projected to range-view (RV) and bird’s-eye-
view (BEV) using spherical and top-down projections, respect-
ively. Then two branches with the proposed geometric flow mod-
ule (GFM) handle RV/BEV to generate feature maps (H×W×C).
Finally, grid sampling based on corresponding projection rela-
tionships is utilized to get the probability (N × C) for each point,
and the fused prediction Ff is obtained by applying kpconv on
the concatenation of RV/BEV. Note that the subplot in bottom
right corner illustrates how grid sampling works with dimension
changing annotation, i.e., sampling F (Fr or Fb) with N × C
from M (Mr or Mb) with H ×W × C.

(GFM), including geometric alignment and attention fusion. Lastly, the end-to-

end optimization of GFNet is depicted.

3.3.1 Overview

Given a lidar point cloud with N 3D points P ∈ RN×4, we then have the format

of each point as (x, y, z, remission), where (x, y, z) is the cartesian coordinate

of the point relative to the lidar sensor and remission indicates the intensity of

returning laser beam. The goal of point cloud semantic segmentation is to assign

all points in P with accurate semantic labels, i.e., Q ∈ NN . For projection-based

point cloud semantic segmentation, we also need to transform the ground truth

labels Q to the projected views during training, i.e., Qr for RV and Qb for BEV.
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The overall pipeline of GFNet is illustrated in Figure 3.3. Specifically, a point

cloud P is first transformed to range-view (RV) as Ir and bird’s-eye-view (BEV)

as Ib using spherical and top-down projections, respectively. We then have

two sub-network branches with encoder-decoder architectures to take RV/BEV

images as inputs and generate dense predictions, which are referred to as the

probability maps for each semantic class. The proposed geometric flow module

(GFM) is incorporated into each layer of the decoder, bidirectionally propagating

feature information according to the geometric correspondences across two views.

After that, we obtain the classification probabilities of all points by applying a

grid sampling on the dense probability maps, which is based on the projection

relationship between a specific view and the original point cloud, as illustrated

in the bottom right corner of Figure 3.3. Inspired by [55], we also introduce

KPConv [108] on the top of the proposed GFNet to replace the KNN operation

and capture the accurate neighbour information in a learnable way. By doing

this, the overall multi-view point cloud semantic segmentation pipeline can be

trained in an end-to-end manner.

3.3.2 Multi-View Projection

For projection-based methods, a point cloud P ∈ RN×4 needs to be transformed

to an image I ∈ RHW×C first to leverage deep neural networks primarily de-

veloped for 2D visual recognition, where H and W indicate the spatial size of

projected images and C is the number of channels. Different projections are

corresponding to different transformations, i.e., P : RN×4 7→ RHW×C . In this

chapter, we adopt two widely-used projected views for point cloud analysis, i.e.,

range-view (RV) and bird’s-eye-view (BEV). As shown in Figure 3.3, we aim

to learn effective representations from two different views, RV and BEV, using

the proposed two-branch networks with an encoder-decoder architecture in each

branch. We describe the details of multi-view projection as follows.
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Range-View (RV). To learn effective representations from RV images, spherical

projection is required to first project a point cloud P to a 2D RV image [79].

Specifically, we first project a point (x, y, z) from the cartesian space to the

spherical space as follows:
ψ

ϕ

r

 =


arctan(y, x)

arcsin(z/
√
x2 + y2 + z2)√

x2 + y2 + z2

 , (3.1)

where ψ, ϕ, and r indicate azimuthal angle, polar angle, and radial distance (i.e.,

the range of each point), respectively. We then have the pixel coordinate of

(x, y, z) in the projected 2D range image as

ũ
ṽ

 =

(1− ψ/π)/2 ·W

(fup − ϕ)/f ·H

 , (3.2)

where (H,W ) represent the spatial size of range image, and f = fup − fdown

is the vertical field-of-view of the lidar sensor. For each projected pixel (u, v)

(discretized from (ũ, ṽ)), we take the (x, y, z, r, remission) as its feature, leading

to a range image with the size of (H,W, 5). In addition, an improved range-

projected method is proposed by [111], which further unfolds the point clouds

following the captured order by the lidar sensor, leading to smoother projected

images and a higher valid projection rate1. If not otherwise stated, we adopt this

improved range projection [111] in all our experiments.

Bird’s-Eye-View (BEV). To learn effective representations from BEV images,

top-down orthogonal projection is employed to transform a point cloud into a

BEV image [17]. Furthermore, the polar coordinate system is introduced to

1Please refer to Appendix. 3.6.1 for more details.
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replace the cartesian system by [148], which can be formulated as follows:ũ
ṽ

 =

√x2 + y2 cos(arctan(y, x))√
x2 + y2 sin(arctan(y, x))

 = polar(x, y), (3.3)

where polar(·) is the coordinate transformation from cartesian system to polar

system. Following [148], we use nine features to describe each pixel (u, v)

(by discretizing (ũ, ṽ) to [0, H − 1] and [0,W − 1]) in BEV image, including

three relative cylindrical distance, three cylindrical coordinates, two cartesian

coordinates and one remission, which can be constructed as follows:

[∆cylindrical(x, y, z), cylindrical(x, y, z), x, y, remission)], (3.4)

where cylindrical(x, y, z) = [polar(x, y), z] represents the cylindrical coordin-

ates, ∆cylindrical(x, y, z) are the relative distances to the center of the BEV

grid, and each BEV image thus has the shape of (H,W, 9).

3.3.3 Geometric Flow Module

Intuitively, RV and BEV contain different view information of the original point

cloud through different projections, leading to different information loss on

different classes. For example, RV is good at those tiny or vertically-extended

objects such as motorcycle and person, while BEV is sensitive to those objects

with large and discriminative spatial size on the x-y plane. To sufficiently

investigate the complementary information from RV/BEV, we explore them from

a geometric perspective. Specifically, we devise a geometric flow module (GFM),

which is based on the geometric correspondences between RV and BEV, to

bidirectionally propagate the complementary information across different views.

As illustrated in Figure 3.4, the first step is referred to as Geometric Alignment,

which aligns the feature of source view (RV or BEV) to the target view using their

geometric transformation; then the second step is called Attention Fusion, which

applies the self-attention and the residual connection to combine the aligned
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FIGURE 3.4. An overview of the proposed geometric flow mod-
ule (GFM). It contains two main steps, i.e., geometric align-
ment and attention fusion, which first aligns the feature from the
source view (RV or BEV) to the target view using their geomet-
ric correspondences, and then applies self-attention and residual
connections to combine view-specific features with the flowed
information. Note that µr and θr share the same architecture but
not weights with µb and θb, respectively.

feature representation with the original one. We describe the above-mentioned

key steps of the proposed GFM module in detail as follows.

Geometric Alignment. The key idea lies in the geometric transformation

matrices between two views, i.e., TR→B (from RV to BEV) and TB→R (from

BEV to RV). To obtain these transformation matrices, we propose to utilize the

original point cloud as an intermediary agent. Specifically, from Eq.(3.1) and

(3.2), we have the transformation from RV to the point cloud P as follows:

TR→P =


n0,0 · · · n0,Wr−1

...
...

...

nHr−1,0 · · · nHr−1,Wr−1

 , (3.5)

where TR→P ∈ ZHr×Wr , (Hr,Wr) are the spatial size of 2D RV image, and

{(ni,j)| 0 <= i <= Hr − 1, 0 <= j <= Wr − 1} is the (ni,j)th point which

projects on (i, j) coordinates. Note that if multiple points project to the same

pixel, the point with smaller range is kept; If a pixel is not projected by any

points, then its ni,j is assigned as −1. We then have the transformation from P



3.3 METHOD 29

to BEV image according to Eq.(3.3):

TP→B =
[
u0 · · · uN−1

]T
(3.6)

=

u0 · · · uN−1

v0 · · · vN−1

T

, (3.7)

where TP→B ∈ ZN×2, and {uk = (uk, vk)| 0 <= k <= N−1} are the projected

pixel coordinates of 2D BEV image, corresponding to the kth point.

Algorithm 1: Geometric Flow Module (BEV → RV)

Input: RV feature map Mr : [Hr,Wr, Cr], BEV feature map
Mb : [Hb,Wb, Cb], TR→B : [Hr,Wr, 2].
Output: Fused RV feature map M r

fused : [Hr,Wr, Cr].

Step 1: Geometric Alignment
• Zero-initializing aligned feature Mb→r with the shape of
[Hr,Wr, Cb];

• foreach (i, j) ∈ [1 : Wr]× [1 : Hr] do
u = TR→B[i, j]
u, v = u
Mb→r[i, j, :] =Mb[u, v, :]

Step 2: Attention Fusion
• Concatenating Mr and Mb→r along the channel dimension as
Mconcat : [Hr,Wr, Cr + Cb]

• Applying the self-attention module to get
Matten = µ(Mconcat) · θ(µ(Mconcat)) with the shape of [Hr,Wr, Cr]

• Employing residual connection M r
fused =Mr +Matten

Lastly, we calculate the transformed matrix TR→B via TR→P and TP→B. In

particular, for each pixel (i, j) in RV image, we first get its 3D point ni,j =

TR→P [i, j], then project ni,j to BEV image to obtain the corresponding pixel

TP→B[ni,j] = uni,j
. Now, we obtain TR→B ∈ ZHr×Wr×2 as:

TR→B =


un0,0 · · · un0,Wr−1

...
...

...

unHr−1,0
· · · unHr−1,Wr−1

 , (3.8)
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Once obtaining TR→B , we can then align BEV features to RV features as follows:

for each location (i, j) in RV image, the (u, v) coordinates in BEV image can

be fetched via TR→B[i, j], and then we fuse the feature in (u, v) to (i, j) to get

aligned feature Fb→r. To align features from RV to BEV, we can operate in a

similar way with TB→R ∈ ZHb×Wb×2.

Attention Fusion. After the geometric feature alignment, we employ an attention

fusion module to obtain the fused feature by concatenating the aligned feature

and the target feature, which is followed by two convolution operations µ(·) and

θ(·). They have simple architectures “Conv-BN-RELU” and “Conv-BN-Softmax”

respectively, where the softmax function in θ is to map values to [0, 1] as attention

weights. The attention feature is finally combined with the target feature using a

residual connection. We demonstrate the overall process of fusing BEV to RV,

including geometric alignment and attention fusion modules, in Algorithm 1.

The geometric flow from RV to BEV can be calculated similarly.

3.3.4 Optimization

Given Qr as the labels for RV image Ir and Qb for BEV image Ib, which are

projected from the original point cloud label Q, we then have the 2D predictions

Mr for RV and Mb for BEV, respectively. After that, we obtain the 3D pre-

dictions via grid sampling and KPConv, i.e., Fr for RV and Fb for BEV. After

fusion, we get the final 3D predictions Ff . For simplicity and better illustration,

we also highlight all predictions, i.e., Mr,Mb and Fr,Fb,Ff , in Figure 3.3. To

train the proposed GFNet, we first use the loss functions L2D and L3D for 2D

and 3D predictions, respectively, as follows:

L2D = ρ · LCL(Mr,Qr) + σ · LCL(Mb,Qb), (3.9)

and

L3D = β · LCE(Fr,Q) + γ · LCE(Fb,Q), (3.10)
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where LCE indicates the typical cross entropy loss function while LCL is the

combination of the cross entropy loss and the Lovasz-Softmax loss [8] with

weights 1 : 1. We then apply the cross entropy loss on the final 3D predictions

Ff , that is, the overall loss function Ltotal can be evaluated as:

Ltotal = α · LCE(Ff ,Q) + L3D + L2D, (3.11)

where λ .
= [α, β, γ, ρ, σ] indicates the weight coefficient of different losses, and

we investigate the influences of different loss terms in Sec. 3.4.4.

3.4 Experiments

In the section, we first introduce the adopted SemanticKITTI [7] and nuS-

cenes [10] datasets and the mean IoU and accuracy metric for point cloud

segmentation. We then provide the implementation details of GFNet, including

the network architectures and training settings. After that, we perform extensive

experiments to demonstrate the effectiveness of GFM and analyze the influ-

ences of different hyper-parameters in GFNet. Lastly, we compare the proposed

GFNet with recent state-of-the-art point/projection-based methods to show our

superiority.

3.4.1 Datasets and Evaluation Metrics

SemanticKITTI [7], derived from the KITTI Vision Benchmark [35], provides

dense point-wise annotations for semantic segmentation task. The dataset

presents 19 challenging classes and contains 43551 lidar scans from 22 se-

quences collected with a Velodyne HDL-64E lidar, where each scan contains

approximately 130k points. Following [7, 79], these 22 sequences are divided

into 3 sets, i.e., training set (00 to 10 except 08 with 19130 scans), validation set

(08 with 4071 scans) and testing set (11 to 21 with 20351 scans). We perform

extensive experiments on the validation set to analyze the proposed method, and
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also report performance on the test set by submitting the result to the official test

server.

nuScenes [10] is a large-scale autonomous driving dataset, containing 1000

driving scenes of 20 second length in Boston and Singapore. Specifically, all

driving scenes are officially divided into training (850 scenes) and validation

set (150 scenes). By merging similar classes and removing rare classes, point

cloud semantic segmentation task uses 16 classes, including 10 foreground and 6

background classes. We use the official test server to report the final performance

on test set.

Evaluation Metrics. Following [7], we use mean intersection-over-union (mIoU)

over all classes as the evaluation metric. Mathematically, the mIoU can be defined

as:

mIoU =
1

C

C∑
c=1

TPc

TPc + FPc + FNc

, (3.12)

where TPc, FPc, and FNc represent the numbers of true positive, false positive,

and false negative predictions for the given class c, respectively, and C is the

number of classes. For a comprehensive comparison, we also report the accuracy

among all samples, which can be formulated as:

Accuracy =
TP + TN

TP + FP + FN + TN
. (3.13)

3.4.2 Implementation Details

For SemanticKITTI, we use two branches to learn representations from RV/BEV

in an end-to-end trainable way, where each branch follows an encoder-decoder

architecture with a ResNet-34 [46] as the backbone. The ASPP module [14]

is also used between the encoder and the decoder. The proposed geometric

flow module (GFM) is incorporated into each upsampling layer. Note that the

elements of TR→B,TB→R fed into GFM are scaled linearly according to the

current flowing feature resolution. For RV branch, point clouds are first projected
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to a range image with the resolution [64, 2048], which is sequentially upsampled

bilinearly to [64 × 2S, 2048 × S] where S is a scale factor. During training,

a horizontal 1/4 random crop of RV image, i.e., [128S, 512S], is used as data

augmentation. On the other hand, we adopt polar partition [148] for BEV, and

use a polar grid size of [480, 360, 32] to cover a space of [radius : (3m, 50m), z :

(−3m, 1.5m)] relative to the lidar sensor. The grid first goes through a mini

PointNet [83] to obtain the maximum feature activations along the z axis, leading

to a reduced resolution [480, 360] for BEV branch. We employ a SGD optimizer

with momentum 0.9 and the weight decay 1e−4. We use the cosine learning rate

schedule [76] with warmup at the first epoch to 0.1. The backbone network is

initialized using the pretrained weights from ImageNet [28]. By default, we use

λ = [2.0, 2.0, 2.0, 1.0, 1.0] as the loss weight for Eq.3.11. We train the proposed

GFNet for 150 epochs using the batch size 16 on four NVIDIA A100-SXM4-

40GB GPUs with AMD EPYC 7742 64-Core Processor.

For nuScenes, we adopt [79] to project point clouds to a RV image with the

resolution [32, 1024] which is then upsampled bilinearly to [32× 3S, 1024× S]

where S = 4 in our experiments. Besides, a polar grid size of [480, 360, 32]

is used to cover a relative space of [radius : (0m, 50m), z : (−5m, 3m)] for

BEV branch. We train the model for total 400 epoch with batch size 56 using 8

NVIDIA A100-SXM4-40GB GPUs under AMD EPYC 7742 64-Core Processor.

We adopt cosine learning rate schedule [76] with warmup at the first 10 epoch to

0.2. Other settings are kept the same with SemanticKITTI.

3.4.3 Evaluation on GFM

In this part, we show the effectiveness of the proposed geometric flow module

(GFM) as well as its influences on each single branch. As shown in Figure 3.3,

we denote the results from Fr and Fb as RV-Flow and BEV-Flow, respectively,

in regard to the information flow between RV and BEV brought by GFM. The

predictions from Ff (obtained by applying KPConv on the concatenation of Fr
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TABLE 3.1. Quantitative comparisons in terms of mIoU to
demonstrate the effectiveness of GFM on the validation set of
SemanticKITTI.

Method ca
r

bi
cy

cl
e

m
ot

or
cy

cl
e

tru
ck

ot
he

r-v
eh

ic
le

pe
rs

on

bi
cy

cl
ist

m
ot

or
cy

cl
ist

ro
ad

pa
rk

in
g

RV-Single 93.7 48.7 57.7 32.4 40.5 69.2 79.9 0.0 95.9 53.4
RV-Flow 93.8 45.0 58.8 69.9 31.6 63.6 73.8 0.0 95.6 52.9
BEV-Single 93.6 29.9 42.4 64.8 26.8 48.1 74.0 0.0 94.0 45.9
BEV-Flow 93.7 43.7 61.2 74.0 31.0 61.6 80.6 0.0 95.3 53.1
GFNet 94.2 49.7 63.2 74.9 32.1 69.3 83.2 0.0 95.7 53.8
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RV-Single 83.9 0.1 89.2 59.0 87.8 66.1 75.3 64.0 45.2 60.1
RV-Flow 83.6 0.3 90.3 62.1 88.0 64.3 75.8 63.2 47.4 61.1
BEV-Single 80.7 1.4 89.2 46.5 86.9 61.4 74.9 56.8 41.6 55.7
BEV-Flow 82.8 0.2 90.8 61.4 88.0 63.1 75.6 58.9 43.1 61.0
GFNet 83.8 0.2 91.2 62.9 88.5 66.1 76.2 64.1 48.3 63.0

and Fb) are actually our final results, termed as GFNet. Note that the above

results are evaluated using λ = [2, 2, 2, 1, 1] for Eq.3.11. In addition, we train also

each single branch separately without GFM modules, i.e., using λ = [0, 2, 0, 1, 0]

and λ = [0, 0, 2, 0, 1] for RV-Single and BEV-Single, respectively.

We compare the performances of RV/BEV-Single and BEV/BEV-Flow in Table 3.1.

Specifically, we find that both RV and BEV branches have been improved

by a clear margin when incorporating with the proposed GFM module, e.g.,

55.7% → 61.0% for BEV. Intuitively, RV is good at those vertically-extended

objects like motorcycle and person, while BEV is sensitive to the classes with

large and discriminative spatial size on the x-y plane. For example, RV-Single

only achieves 32.4% on truck while BEV-Single obtains 64.8%, which is also

illustrated by the first row of Figure 3.5 where RV predicts truck as a mixture

of truck, car and other-vehicle, but BEV acts much well. This is partially

because truck is more discriminative on x-y plane (captured by BEV) than vertical

direction (captured by RV) compared to car, other-vehicle. With the information

flow from BEV to RV using GFM, RV-Flow significantly boosts the performance
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RV BEVGT GFNet

car truck other-vehicle bicyclist road parking sidewalk other-ground building fence vegetation trunk terrain pole traffic-sign

FIGURE 3.5. Visualization of RV and BEV. The view with the
cyan contour helps the one with red. By incorporating both RV
and BEV, our GFNet makes more accurate predictions.

from 32.4% to 69.9%. A similar phenomenon can be observed in the second

row of Figure 3.5, where BEV misclassifies bicyclist as trunk, since both of

them are vertically-extended and also very close to each other, while RV predicts

precisely. With the help of RV, BEV-Flow dramatically improves the performance

from 55.7% to 61.0%. When further applying KPConv on the concatenation

of RV/BEV-Flow, the proposed GFNet achieves the best performance 63.0%.

These results demonstrate that the proposed GFM can effectively propagate

complementary information between RV and BEV to boost the performance of

each other, as well as the final performance.

3.4.4 Ablation Studies

TABLE 3.2. Ablation studies of attention in GFM on the Se-
manticKITTI val set.

attention mIoUsigmoid softmax
62.0

✓ 62.9
✓ 63.0
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TABLE 3.3. Ablation studies of attention in GFM, loss weight
coefficient λ and scale factor S under △ = 1,▽ = 2 on the
SemanticKITTI val set.

cfg α β γ ρ σ S mIoU
a △ 3 61.7
b △ △ △ 3 61.8
c △ △ △ △ △ 3 62.4
d ▽ ▽ ▽ △ △ 3 63.0
e ▽ ▽ ▽ △ △ 2 61.7
f ▽ ▽ ▽ △ △ 4 63.2

In this subsection, we first explore the impacts of attention mechanism in

GFM, the loss weights λ defined in Eq.3.11; and the scale factor S intro-

duced in Sec. 3.4.2. In the default setting, we use the softmax attention with

λ = [2, 2, 2, 1, 1] and S = 3.

As shown in Table 3.2, without attention mechanism (i.e., no θ(·) and ⊗ in

Figure 3.4), the performance 62.0% is obviously inferior to the counterparts

62.9% and 63.0%, indicating that the attention operation helps to focus on the

strengths instead of weaknesses of source view when fusing it into target view.

If not otherwise stated, we use the softmax attention in our experiments. We

evaluate the influences of λ .
= [α, β, γ, ρ, σ] in Table 3.3, where △ = 1,▽ = 2,

e.g., we have λ .
= [α, β, γ, ρ, σ] = [2.0, 2.0, 2.0, 1.0, 1.0] the configuration d.

Specifically, when comparing the configurations a to b and c, we see that that

additional supervisions on dense 2D and each branch RV/BEV 3D predictions

further improve model performance. When comparing c and d, a large weight

on 3D prediction brings a better result. Therefore, if not otherwise stated, we

adopt λ = [2.0, 2.0, 2.0, 1.0, 1.0] for remaining experiments. The scale factor

S in Sec. 3.4.2 indicates the resolution of RV image, e.g., when S = 3, we

have [128S, 512S] = [384, 1536] and [128S, 2048S] = [383, 6144] for training

and testing, respectively. When comparing d and e in Table 3.3, we find that

a higher resolution significantly improves model performance, from 61.7% to
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TABLE 3.4. Comparisons under mIoU, Accuracy and Frame Per
Second (FPS) on SemanticKITTI test set. Note that the results of
methods with ∗ are obtained from RangeNet++ [79]. From top to
down (light green → blue → gray), the methods are grouped into
point-based, projection-based and multi-view fusion models.
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PointNet∗ [83] 46.3 1.3 0.3 0.1 0.8 0.2 0.2 0.0 61.6 15.8 35.7
PointNet++∗ [84] 53.7 1.9 0.2 0.9 0.2 0.9 1.0 0.0 72.0 18.7 41.8
TangentConv∗ [106] 86.8 1.3 12.7 11.6 10.2 17.1 20.2 0.5 82.9 15.2 61.7
PointASNL [134] 87.9 0 25.1 39.0 29.2 34.2 57.6 0 87.4 24.3 74.3
RandLa-Net [48] 94.2 26.0 25.8 40.1 38.9 49.2 48.2 7.2 90.7 60.3 73.7
KPConv [108] 96.0 30.2 42.5 33.4 44.3 61.5 61.6 11.8 88.8 61.3 72.7
SqueezeSeg∗ [120] 68.3 18.1 5.1 4.1 4.8 16.5 17.3 1.2 84.9 28.4 54.7
SqueezeSegV2∗ [121] 81.8 18.5 17.9 13.4 14.0 20.1 25.1 3.9 88.6 45.8 67.6
SalsaNet [2] 87.5 26.2 24.6 24.0 17.5 33.2 31.1 8.4 89.7 51.7 70.7
RangeNet++ [79] 91.4 25.7 34.4 25.7 23.0 38.3 38.8 4.8 91.8 65.0 75.2
PolarNet [148] 93.8 40.3 30.1 22.9 28.5 43.2 40.2 5.6 90.8 61.7 74.4
3D-MiniNet-KNN [5] 90.5 42.3 42.1 28.5 29.4 47.8 44.1 14.5 91.6 64.2 74.5
SqueezeSegV3 [127] 92.5 38.7 36.5 29.6 33.0 45.6 46.2 20.1 91.7 63.4 74.8
SalsaNext [26] 91.9 48.3 38.6 38.9 31.9 60.2 59.0 19.4 91.7 63.7 75.8
MVLidarNet [12] 87.1 34.9 32.9 23.7 24.9 44.5 44.3 23.1 90.3 56.7 73.0
MPF [4] 93.4 30.2 38.3 26.1 28.5 48.1 46.1 18.1 90.6 62.3 74.5
TORNADONet [36] 94.2 55.7 48.1 40.0 38.2 63.6 60.1 34.9 89.7 66.3 74.5
AMVNet [69] 96.2 59.9 54.2 48.8 45.7 71.0 65.7 11.0 90.1 71.0 75.8
GFNet (ours) 96.0 53.2 48.3 31.7 47.3 62.8 57.3 44.7 93.6 72.5 80.8
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PointNet∗ [83] 1.4 41.4 12.9 31.0 4.6 17.6 2.4 3.7 14.6 - 2
PointNet++∗ [84] 5.6 62.3 16.9 46.5 13.8 30.0 6.0 8.9 20.1 - 0.1
TangentConv∗ [106] 9.0 82.8 44.2 75.5 42.5 55.5 30.2 22.2 35.9 - 0.3
PointASNL [134] 1.8 83.1 43.9 84.1 52.2 70.6 57.8 36.9 46.8 - -
RandLa-Net [48] 20.4 86.9 56.3 81.4 61.3 66.8 49.2 47.7 53.9 88.8 22
KPConv [108] 31.6 90.5 64.2 84.8 69.2 69.1 56.4 47.4 58.8 90.3 -
SqueezeSeg∗ [120] 4.6 61.5 29.2 59.6 25.5 54.7 11.2 36.3 30.8 - 55
SqueezeSegV2∗ [121] 17.7 73.7 41.1 71.8 35.8 60.2 20.2 36.3 39.7 - 50
SalsaNet [2] 19.7 82.8 48.0 73.0 40.0 61.7 31.3 41.9 45.4 - -
RangeNet++ [79] 27.8 87.4 58.6 80.5 55.1 64.6 47.9 55.9 52.2 89.0 12
PolarNet [148] 21.7 90.0 61.3 84.0 65.5 67.8 51.8 57.5 54.3 90.0 16
3D-MiniNet-KNN [5] 25.4 89.4 60.8 82.8 60.8 66.7 48.0 56.6 55.8 89.7 28
SqueezeSegV3 [127] 26.4 89.0 59.4 82.0 58.7 65.4 49.6 58.9 55.9 89.5 6
SalsaNext [26] 29.1 90.2 64.2 81.8 63.6 66.5 54.3 62.1 59.5 90.0 24
MVLidarNet [12] 19.1 85.6 53.0 80.9 59.4 63.9 49.9 51.1 52.5 88.0 92
MPF [4] 30.6 88.5 59.7 83.5 59.7 69.2 49.7 58.1 55.5 - 21
TORNADONet [36] 28.7 91.3 65.6 85.6 67.0 71.5 58.0 65.9 63.1 90.7 4
AMVNet [69] 32.4 92.4 69.1 85.6 71.7 69.6 62.7 67.2 65.3 91.3 -
GFNet (ours) 31.2 94.0 73.9 85.2 71.1 69.3 61.8 68.0 65.4 92.4 10

63.0%, further enlarging S from 3 to 4 only brings a slightly better performance.

For a better speed-accuracy tradeoff, we use S = 3 in the default setting.
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3.4.5 Benchmark

SemanticKITTI. For fair comparison with recent methods, we follow the same

setting in [7, 55], i.e., both training and validation splits are used for training

when evaluating on the test server. As shown in Table 3.4, GFNet achieves the

new state-of-the-art performance 65.4% mIoU, significantly surpassing point-

based methods (e.g., 58.8% for KPConv [108]) and single view models (e.g.,

59.5% for SalsaNext [26]). For multi-view approaches [4, 12, 36, 69], GFNet

outperforms recent methods [4, 12, 36] by a large margin. Comparing with

AMVNet [69], GFNet clearly outperforms it on the point-wise accuracy, i.e.,

92.4% vs. 91.3%. The superior performance of GFNet shows the effectiveness of

bidirectionally aligning and propagating geometric information between RV/BEV.

Notably, AMVNet requires to train models for RV/BEV branch as well as their

post-processing point head separately, while GFNet is end-to-end trainable.

Additionally, since the acquisition frequency of the Velodyne HDL-64E LiDAR

sensor (used by SemanticKITTI) is 10 Hz, GFNet can thus run in real-time, i.e.,

10 FPS.

nuScenes. To evaluate the generalizability of GFNet, we also report the perform-

ance on the testset in Table 3.5 by submitting results to the test server. Similarly,

GFNet achieves superior mIoU performance 76.1%, which remarkably outper-

forms PolarNet [148] and tights AMVNet [69]. However, our result 90.4% under

Frequency Weighted IoU (FW IoU) beats 89.5% from AMVNet [69], which

is consistent with the accuracy comparison on SemanticKITTI. It also reveals

that GFNet performs much better on frequent classes while somewhat struggles

on those rare/small classes. Despite the good performance of GFNet, it is also

interesting to further improve GFNet by addressing rare/small classes from the

perspectives of data sampling/augmentation and loss function.
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TABLE 3.5. Comparisons on nuScenes (the test set) under mIoU
and Frequency Weighted IoU (or FW IoU).
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PolarNet [148] 72.2 16.8 77.0 86.5 51.1 69.7 64.8 54.1 69.7
AMVNet [69] 79.8 32.4 82.2 86.4 62.5 81.9 75.3 72.3 83.5
GFNet (ours) 81.1 31.6 76.0 90.5 60.2 80.7 75.3 71.8 82.5
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PolarNet [148] 63.4 96.6 67.1 77.7 72.1 87.1 84.4 69.4 87.4
AMVNet [69] 65.1 97.4 67.0 78.8 74.6 90.8 87.9 76.1 89.5
GFNet (ours) 65.1 97.8 67.0 80.4 76.2 91.8 88.9 76.1 90.4

3.5 Summary

In this chapter, we propose a novel geometric flow network (GFNet) to learn

effective view representations from RV and BEV. To enable propagating the

complementary information across different views, we devise a geometric flow

module (GFM) to bidirectionally align and fuse different view representations

via geometric correspondences. Additionally, by incorporating grid sampling

and KPConv to avoid time-consuming and non-differentiable post-processing,

GFNet can be trained in an end-to-end paradigm. Extensive experiments on

SemanticKITTI and nuScenes confirm the effectiveness of GFM and demonstrate

the new state-of-the-art performance on projection-based point cloud semantic

segmentation.

There are some limitations of the proposed method, since it builds upon two

specific point cloud projection methods. Specifically, both RV and BEV may not

be applicable to indoor datasets such as S3DIS [6]. For example, in a indoor scene

of the bookcase, common objects such as table and chair are distinguishable and

meaningful in the vertical direction, while the height information is missing for

BEV. Also, RV image requires a scan cycle by the lidar sensor, which typically

appears in outdoor scenarios such as autonomous driving (Please also refer
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to Appendix. 3.6.2 for more details and figures). Additionally, we apply the

proposed geometric flow module in each decoder layer (i.e., the upsampling

layers), while popular point cloud object detection frameworks don’t have such a

decoder structure. Therefore, it is also non-trivial to directly apply the proposed

method for object detection, which will be the subject of future studies.

3.6 Appendix

3.6.1 RV Projection

(a) Original RV

(b) Improved RV

FIGURE 3.6. Range images from original RV [79] and improved
RV [111]. As we can see, [111] obtains smoother projected image
than [79].

TABLE 3.6. Valid projection rate (%) when using two different
RV projections [79, 111] to generate images of 64× 2048 size.

Method Train Val
Original RV [79] 72.47 72.12
Improved RV [111] 83.69 83.51

We project 3D point cloud P to a 2D RV image with the size of (H,W ): due

to the 2D-to-3D ambiguity, there are pixels that are not projected by any points,

while multiple points might be projected to the same pixel. We define the valid

projection rate as the ratio of valid pixels (i.e., projected by as least one point)

comparing to total pixels HW . Specifically, more valid pixels usually result in a

smoother projected image, i.e., the higher valid projection rate, the better. We

compare two different projection methods [79, 111] in terms of valid projection

rate in 3.6. As we can observe, [111] significantly outperforms [79] by over 11%

in both train and val set. In addition, we visualize the RV images obtained by [79,
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111] separately in Figure 3.6. Obviously, the RV image generated by [111] is

clearly smoother than [79]. Therefore, we use [111] in all experiments if not

states otherwise.

3.6.2 RV under Indoor and Outdoor Scenes

𝜙
𝜓

p

FIGURE 3.7. Range-view projection (i.e., spherical projection).
p is a 3D point, ψ, ϕ are the azimuthal angle, polar angle of p.

In this section, we first described the RV projection (i.e., spherical projection)

in detail. We then show the difference between the point clouds collected in

outdoor and indoor scenes. Lastly, we discuss why RV projection is not suitable

for indoor scenes.

As shown in Figure 3.7, given a 3D point p, we first obtain the corresponding

ψ, ϕ for spherical projection. We then normalize ϕ, ψ to [0, 1] and map them to

2D RV image with size [H,W ] according to Eq. 3.2. However, point clouds in

outdoor and indoor scenes are usually collected in different ways. For example,

SemanticKITTI is collected via a Velodyne HDL-64E lidar on the top of the

driving car, which launches lasers to all-around (360◦) horizontal directions and

a certain degree [fdown, fup] vertical directions. When applied RV projection,

a meaningful projected cylindrical image can be obtained (please refer to Fig-

ure 3.1). But for indoor dataset like S3DIS [6], it scans the entire room in any

directions with a Matterport [52] scanner to generate point clouds. In addition,

those indoor objects are much more dense than outdoor objects. If we still want to
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FIGURE 3.8. A simple diagram of the working mechanism when
the lidar sensor collects point clouds. The lidar launches lasers
to all-around (360◦) horizontal directions and a certain degree
[fdown, fup] vertical directions. Note that the vertical field of view
f = fup − fdown where fdown is negative.

FIGURE 3.9. Three visualizations of samples from S3DIS [6]
using RV projection.

use RV projection, it will lead to a severe distort image. We have also made some

attempts using RV projection for S3DIS, but obtained meaningless images as in

Figure 3.9. That is also the reason why existing projection-based methods [79,

120, 26] only employ RV projection in outdoor lidar-collected point clouds. As

for indoor datasets like S3DIS, the mainstream methods [83, 84, 108] usually
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take raw points as input directly given that their size is much smaller than outdoor

scenes.

3.6.3 Visualization

Figure 3.10 illustrates comparisons between GFNet and ground truth on complex

scenes, revealing the excellent performance of GFNet. We also provide a GIF im-

age, i.e., figs/vis.gif, at https://github.com/haibo-qiu/GFNet

for more visualizations.

https://github.com/haibo-qiu/GFNet
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(a) Preds (b) GT
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FIGURE 3.10. Visualization of the predictions from our GFNet
comparing to GT.



CHAPTER 4

Contextual Composite Representation Learning

This chapter primarily concentrates on capturing adequate contextual informa-

tion by integrating short-range and long-range clues derived from the model’s

basic block angle. To achieve this, a novel collect-and-distribute mechanism is

proposed, which effectively learns composite representations of point clouds that

incorporate both local and global contextual information.

Specifically, in this chapter, we propose a new transformer network equipped

with a collect-and-distribute mechanism to communicate short- and long-range

contexts of point clouds, which we refer to as CDFormer. In particular, we first

employ self-attention to capture short-range interactions within each local patch,

and the updated local features are then collected into a set of proxy reference

points from which we can extract long-range contexts. Afterward, we distrib-

ute the learned long-range contexts back to local points via cross-attention. To

address the position clues for short- and long-range contexts, we additionally

introduce the context-aware position encoding to facilitate position-aware com-

munications between points. We perform experiments on five popular point

cloud datasets, namely ModelNet40, ScanObjectNN, ShapeNetPart, S3DIS and

ScanNetV2, for classification and segmentation. Results show the effectiveness

of the proposed CDFormer, delivering several new state-of-the-art performances

on point cloud classification and segmentation tasks. The source code is available

at https://github.com/haibo-qiu/CDFormer.

45

https://github.com/haibo-qiu/CDFormer
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4.1 Introduction

Point clouds have been extensively investigated in recent years, mainly due to

their numerous promising real-world applications, such as autonomous driving [2,

67] and robotics [64, 136]. Unlike 2D images, a point cloud is a set of 3D

points distributed in an irregular and disordered manner, where each point is

usually characterized by its Cartesian coordinates (x, y, z). These fundamental

differences make it non-trivial to utilize off-the-shelf 2D deep architectures for

point cloud analysis. Therefore, many recent methods have developed different

deep architectures to handle the special characteristics of point clouds, including

mlp-based [78, 83, 84], cnn-based [66], and graph-based models [108, 118].

These architectures aim to address the challenges posed by the irregularity and

unordered nature of point clouds and enable effective point cloud analysis.

One of the main challenges in point cloud analysis is efficiently exploring local

and global features while considering the irregular and disordered characteristics

of point clouds. Recently, transformer architectures, which enable effective

local/global-range learning via the attention mechanism, have become popular in

both natural language processing [9, 29, 113] and computer vision [30, 71, 116,

115]. Inspired by this, transformer architectures have been further introduced

for point cloud analysis [41, 58, 81, 151]. However, the vanilla self-attention

module in transformer has a time complexity of O(N2) when operating on a

sequence of tokens with length N . When taking each point as a token, the O(N2)

complexity becomes unaffordable, as there are tens of thousands of points for

each point cloud in real-world applications [6]. To address this challenge, [151]

introduces vector self-attention in a local way, avoiding O(N2) complexity by

only interacting features with K neighbors (e.g., K = 16), while failing to

capture long-range contexts. On the other hand, [58] employs local window-

based self-attention with a shifted window strategy similar to [71] and proposes

to capture long-range contexts by sampling nearby points densely and distant
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Distribute

Collect

FIGURE 4.1. An illustration of the proposed collect-and-
distribute mechanism.

points sparsely. Nevertheless, due to the heterogeneous density distribution

of point clouds, the fixed-size window partition employed in [58] leads to a

diverse number of points in each local window, thus requiring complicated and

sophisticated designs during implementation.

In this chapter, we propose a new collect-and-distribute transformer, CDFormer,

to learn both short- and long-range contexts for 3D point cloud analysis. Specific-

ally, we first divide the point cloud into a set of local patches using K nearest

neighbor points, instead of a fixed window partition [58]. Each local patch

contains the same number of points, enabling direct modeling by popular deep

learning packages [1, 82] without custom operations and avoids the prohibitive

O(N2) time complexity. Besides local self-attention for short-range interactions

within each local patch, we introduce a collect-and-distribute mechanism. This

mechanism first collects local patch information to a set of proxy reference points,

explores long-range contexts among these reference points, and distributes the col-

lected long-range contexts back to local points through cross-attention between

reference points and local points. An illustration of the proposed collect-and-

distribute mechanism is shown in Figure 4.1. To enhance local-global structure

learning, the positional information is critical for transformers employed in point

clouds [58, 151]. Therefore, we introduce context-aware position encoding
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for CDFormer, where the relative position information interacts with the input

features to dynamically enhance the positional clues.

Our main contributions can be summarized as follows:

• We propose CDFormer to capture short- and long-range contexts sim-

ultaneously with a novel collect-and-distribute mechanism, effectively

learning local-global structures.

• We introduce context-aware position encoding to enhance position clues

and facilitate communications within points.

• We perform extensive experiments on five well-known point cloud

datasets: ModelNet40 [125] and ScanObjectNN [112] for classification,

along with ShapeNetPart [139], S3DIS [6], and ScanNetV2 [27] for

segmentation. The experimental results and analysis demonstrate the

effectiveness of CDFormer and achieve state-of-the-art performances in

point cloud processing.

4.2 Related Work

Transformer Architectures. Transformer architectures have emerged as a dom-

inant framework for natural language processing in recent years [29, 113]. In

addition, they have seen widespread exploration in the realm of vision tasks, with

ViT [30] being a groundbreaking work that divides images into local patches and

treats each patch as a token. Building upon the success of ViT, numerous sub-

sequent works have been proposed that either explore hierarchical architectures

with multi-scale resolutions [32, 40, 65, 71, 116, 115] or incorporate local-global

information [24, 62, 135]. For instance, PVT [116] devises a progressive shrink-

ing pyramid to effectively explore multi-resolution features while HRViT [40]

integrates high-resolution multi-branch architectures to learn multiplicative scale

representations. Twins-SVT [24] incorporates locally-grouped self-attention
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and global sub-sampled attention to capture local-global contexts. Swin Trans-

former [71] introduces a hierarchical transformer architecture equipped with the

shifted window strategy to enable cross-window communications. SepViT [62]

proposes a self-attention mechanism that is depthwise separable to facilitate

efficient local and global information exchange within a single attention block.

Point Cloud Analysis. The mainstream point cloud analysis methods can be

roughly divided into three directories: point-based [41, 58, 66, 78, 81, 86, 83,

84, 87, 104, 108, 118, 128, 151], voxel-based [19, 103, 155], and projection-

based [26, 89, 79, 148]. For a better trade-off between complexity and efficiency,

we focus primarily on point-based approaches, where existing methods usually

devise novel operations/architectures for raw points, including mlp-based [78,

86, 83, 84], cnn-based [66], graph-based [108, 118], and transformer-based [41,

58, 81, 151]. A pioneering work in this field is PointNet [83], which directly

processes point clouds using multi-layer perceptrons (MLPs). This approach

was further improved upon by PointNet++[84], which introduced a hierarch-

ical structure for processing point clouds. PointNext[86] proposes even more

improved training strategies that significantly improve upon PointNet++[84].

PointCNN[66] learns an x-transformation from the input points for alignment,

which is followed by typical convolution layers. In contrast, KPConv [108]

introduces kernel point convolution, a new point convolution operator, that takes

neighboring points as input and processes them with spatially located weights.

Recently, transformer architectures have been introduced for point cloud ana-

lysis [41, 58, 81, 151]. PCT [41] presents the offset-attention mechanism, which

replaces the original self-attention. Point Transformer [151] proposes to intro-

duce a vector self-attention mechanism to aggregate neighbor features but fails

to capture long-range dependencies. Stratified Transformer [58] captures long-

range contexts by sampling nearby points densely and distant points sparsely

with the shifted window strategy, as used in Swin Transformer [71]. However,

due to the varying density distribution of point clouds, partitioning windows in
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a fixed size leads to varying point counts in different local windows, requiring

sophisticated designs to address this issue.

4.3 Method

In this section, we first provide an overview of the proposed CDFormer for 3D

point cloud analysis. We then introduce the patch division and the collect-and-

distribute mechanism in detail. Lastly, we discuss the proposed context-aware

position encoding.

4.3.1 Overview

A 3D point cloud usually consists of a set of N points P ∈ RN×3, where each

point is featured by the Cartesian coordinate (x, y, z). The objective of typical

point cloud analysis tasks is to assign semantic labels to the point cloud. For

example, for point cloud classification, the goal is to predict a single semantic

label Q ∈ {0, · · · , U − 1} for the whole point cloud P , where U is the total

number of semantic categories. For point cloud segmentation, the goal is to

assign a semantic label for each point in the point cloud P .

The main CDFormer framework for 3D point cloud analysis is illustrated by

Figure 4.2. Since a point cloud may also contain extra features such as color,

we consider the input feature of a general point cloud as X ∈ RN×C , where

C indicates the number of feature channels. Specifically, we first utilize a

KPConv [108] layer as the embedding layer to aggregate local information for

raw point embeddings to obtain the embedded features with the size of N × C1.

After that, the main backbone network is a stack of multiple the proposed collect-

and-distribute blocks or CD Blocks, where each block first divides all points

into local patches and then explores short- and long-range contexts in a collect-

and-distribute manner as follows: 1) a local self-attention is first used to learn
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FIGURE 4.2. The main collect-and-distribute transformer frame-
work. Note that PD refers to patch division and LSA indicates
the local self-attention defined by Equation 4.1 and 4.2.

short-range relations in each patch of points; 2) the learned local features are

then collected to a set of proxy reference points which then communicate with

each other to capture long-range contexts; and 3) the learned long-range contexts

are finally distributed back to the original local patch points such that the learned

point embeddings are equipped with both short- and long-range information.

CDFormer is built by stacking multiple downsampling layers and CD Blocks.

4.3.2 Patch Division

For a typical point cloud with tens of thousands of points [6], it is computationally

prohibitive to consider each point as a token: given a sequence of tokens with

the length N , the time complexity of the self-attention in transformer is O(N2).

Therefore, following [30, 80, 141], we divide a point cloud into multiple local

patches, e.g., M patches with K points in each patch, and then employ self-

attention within each local patch instead of all points. Therefore, with a proper

patch division, it becomes acceptable with a linear time complexity O(MK2).
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We describe the patch division process used in our method as follows. Given a

scale factor S, the furthest point sampling algorithm (FPS) [31, 84] is applied

on the point features X ∈ RN×C to obtain patch centers X̄ ∈ RM×C where

M = N/S. For each local patch, we group the K nearest neighbors around each

patch center and reformulate M patches as X̂ ∈ RM×K×C , and then apply the

local self-attention (LSA) to extract local features. Specifically, for the ith patch

where i ∈ [0, · · · ,M − 1], let x̂ ∈ RK×C denote its representation, which is

then fed into MLPs to generate the query token Qlsa = W q
lsax̂, the key token

Klsa = W k
lsax̂, and the value token Vlsa = W v

lsax̂, respectively. The output

z̄ ∈ RK×C can thus be calculated as follows:

z̄ = W attn
lsa Vlsa, (4.1)

W attn
lsa = Softmax((QlsaK

⊤
lsa)/

√
C). (4.2)

All M patches features can be similarly obtained as Z̄ ∈ RM×K×C . Notably, we

do not discuss the position encoding here and leave it in Sec 4.3.4. Lastly, we

have the complexity as follows: the local self-attention in each patch only has the

time complexity O(K2), and the overall time complexity of M patches become

affordable O(MK2) = O(NK2/S). Through LSA, all points in each local

patch can communicate with each other to capture short-range dependencies.

4.3.3 Collect-and-Distribute Mechanism

As the aforementioned local self attention only models the short-range informa-

tion in each local patch, we then introduce how to explore long-range contexts

with the proposed collect-and-distribute mechanism. Specifically, we first collect

those communicated local feature as a set of proxy reference points such that

each local patch directly corresponds to a specific proxy point. To capture the

long-range dependencies, a neighbor self-attention (NSA) is then applied on

those proxy references to allow feature propagation among neighbors. By doing

this, we can extract long-range contexts with a reduced linear time complexity
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since each proxy represents a patch of points. Lastly, those enhanced proxies

distribute back to the local points via cross-attention to achieve short- and long-

range contexts communications. An illustration of the proposed block is shown

in Figure 4.3, and we depict each step in detail as follows.

Collect. Given local patches Z̄ ∈ RM×K×C , we collect local patch information

from all K local points to a proxy reference point via a max-pooling operation,

R = maxpool(Z̄) ∈ RM×C . Next, we consider the K nearest neighbors for

each proxy R̂ ∈ RM×K×C to capture the long-range contexts by employing a

neighboring self-attention between R and R̂, i.e., a self-attention between each
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proxy and its K neighbors followed by a sum operation to generate the output

Ẑ ∈ RM×C . We first generate the feature embeddings with MLPs for query,

key, and value by Qnsa = W q
nsaR, Knsa = W k

nsaR̂, and Vnsa = W v
nsaR̂,

respectively. Then we can formulate the process as follows:

Ẑ = Sum(W attn
nsa Vnsa) (4.3)

W attn
nsa = Softmax((QnsaK

⊤
nsa)/

√
C). (4.4)

Notably, the time complexity O(NK2/S) is linear to N because the NSA is only

applied on K neighbors instead of all proxies.

Distribute. We distribute the long-range information in Ẑ ∈ RM×C back to local

patch points for joint short- and long-range contexts via a neighbor cross-attention

(NCA). In particular, given vanilla point features X ∈ RN×C and enhanced

proxies Ẑ ∈ RM×C , we first group theK nearest neighbor proxies E ∈ RN×K×C

for each point. After that, we employ the neighbor cross-attention by regarding

X as the query, E as the key and value, which is fed into a successive sum

operation to obtain the final output Z ∈ RN×C . We first get the embeddings with

MLPs by Qnca = W q
ncaX , Knca = W k

ncaE, and Vnca = W v
ncaE, respectively.

After that, we can calculate Z as follows:

Z = Sum(W attn
nca Vnca) (4.5)

W attn
nca = Softmax((QncaK

⊤
nca)/

√
C). (4.6)

In this way, each point communicates with K enhanced proxies, i.e., approx-

imate K2 original proxies, and K3 original points. Therefore, the long-range

dependencies can be effectively distributed back to local points, i.e., both short-

and long-range contexts are fused into the learned representations.
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4.3.4 Context-Aware Position Encoding

The position information of input tokens is necessary for transformer architec-

tures [30, 113], while 3D point cloud naturally contains the (x, y, z) coordinates

as position. Therefore, it might be straightforward to remove position encoding in

the transformer-based architecture for point clouds. However, when the network

goes deeper, the coordinates information can not keep precisely intact [58, 151].

Inspired by [122], we propose to further enhance the position clues in point cloud

transformer via a context-aware position encoding (CAPE). Specifically, CAPE

is calculated by interacting relative position differences with the current features,

thus can simultaneously handle the unordered characteristic of the point cloud

and adaptively enhance the position information. An illustration of the proposed

context-aware position encoding is shown in Figure 4.4.

Given the input X ∈ RN×C and the relative position differences ∆P ∈ RN×N×3,

we first obtain the Q,K,V and their position embeddings P∆q,P∆k,P∆v via

MLPs. We then calculate the CAPE by:

P∆qk = P∆qQ
⊤ + P∆kK

⊤, (4.7)

such that it is aware of the input features and can dynamically magnify the

position information to effectively facilitate the communication of points. Lastly,

we obtain the output Z ∈ RN×C as follows:

Z = Wattn · (V + P∆v) (4.8)

Wattn = Softmax((QK⊤ + P∆qk)/
√
C). (4.9)

Notably, if not otherwise stated, we use CAPE in all attention layers, including

LSA, NSA, and NCA, to better capture short- and long-range contexts.
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4.4 Experiments

In this section, we first introduce the implementation details. We then evaluate

the proposed CDFormer on ModelNet40 [125] and ScanObjectNN [112] for

point cloud classification, ShapeNetPart [139] for point cloud part segmentation,

as well as S3DIS [6] and ScanNetV2 [27] for point cloud scene segmentation.

Lastly, we perform comprehensive ablation studies on each component.

4.4.1 Implementation Details.

For ModelNet40 [125], following [86], we use fewer blocks in each stage

[1, 1, 3, 1] with larger feature dimensions C = [64, 128, 256, 512] and larger

number of heads H = [4, 8, 16, 32]. We simply use K = 16 neighbours in all

blocks. Cosine annealing schedule with learning rate 0.001 is adopted for training

600 epochs with batch size 32. We use AdamW optimizer [75] with the weight

decay 0.05. For each data sample, only 1,024 points with (x, y, z) are used for

training and testing, and common data augmentations, including shift, scale and

cutmix [147], are employed. The downsampling scale S of each stage is set to

4. For ScanObjectNN [112], we follow [86] to use point resampling to adapt

1,024 points for training, and only the hardest perturbed variant (PB_T50_RS) is

considered in our experiment. We keep other training configurations the same as

those in ModelNet40.

For S3DIS [6], following the practice in [58, 151], we first apply the grid sampling

on the raw input points with the grid size 0.04m. We adopt the encoder with four

stages with [2, 2, 6, 2] blocks, the number of channels C = [C1, C2, C3, C4] =

[48, 96, 192, 384] and the number of heads H = [H1, H2, H3, H4] = [3, 6, 12, 24].

For simplicity, we set neighbours K = 16 in all blocks. During the training

process, the maximum number of input points is set to 80,000. Meanwhile, we set

the downsampling scale S of each stage to 8. We use AdamW optimizer [75] with

the weight decay 0.01. All models are trained for 100 epochs, and the learning
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rate starts from 0.01 and drops by 1/10 at 60 and 80 epochs. We use four V100

GPUs with the batch size of 8. Following [86], we use the cross-entropy loss with

label smoothing, and popular data augmentations including jitter, scale, rotate,

and color drop. For ScanNetV2 [27], we use grid sampling with a size of 0.02m

on the raw point clouds, following [124]. We employ the OneCycleLR [100]

scheduler, which increases the learning rate from 0.0005 to 0.005 in the first 5

epochs and then uses cosine annealing to decrease it to 0 over the remaining

95 epochs. Additionally, we repeat the training set (1,201 scenes) 9 times to

obtain 10,809 samples during the training process. For ShapeNetPart [139], we

follow [86] to use 2,048 points for training and testing. Considering that each

point cloud has fewer points than it in S3DIS [6], we reduce the downsampling

scale S to 4 and use the batch size 80. The model is trained for 300 epochs, and

the learning rate starts from 0.01 and drops by 1/10 at 210 and 270 epochs. Other

settings are same as those in S3DIS.

4.4.2 Point Cloud Classification

Dataset and Metrics. ModelNet40 [125] is a canonical dataset for object shape

classification, which consists of 9,843 training and 2,468 testing CAD models

belonging to 40 categories. We report the results of overall accuracy (OA).

ScanObjectNN [112] is a more challenging real-world benchmark in terms of

background, noise, and occlusions. It contains totally 15,000 objects from 15

classes. We report the results of the mean of class-wise accuracy (mAcc) and

overall accuracy (OA) on hardest perturbed variant, i.e., PB_T50_RS.

Results. Table 4.1 shows the results on ModelNet40, where the proposed CD-

Former achieves comparable performance 94.0% with other state-of-the-arts by

only taking 1,024 points as input. In Table 4.2, we also evaluate the proposed

method on the most challenging variant (PB_T50_RS) of ScanObjectNN, where

CDFomer achieves 87.2± 0.3 and 88.4± 0.2 on mAcc and OA, outperforming
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TABLE 4.1. Results on ModelNet40.

Method #Points OA (%)

PointNet [83] 1024 89.2
PointNet++ [84] 1024 90.7
PointNet++ [84] 5000 91.9
PointCNN [66] 1024 92.5
PointConv [123] 1024 92.5
A-CNN [56] 1024 92.6
KPConv [108] 7000 92.9
DGCNN [118] 1024 92.9
PointASNL [134] 1024 92.9
PointNext [86] 1024 93.2
PosPool [70] 5000 93.2
PCT [41] 1024 93.2
SO-Net [60] 5000 93.4
PT [151] 1024 93.7
GBNet [91] 1024 93.8
PA-DGC [130] 1024 93.9
PointMLP [78] 1024 94.1

CDFormer (ours) 1024 94.0

all previous methods in terms of both performance and stability. Specifically,

PointMLP [78] obtains 94.1% on ModelNet40, slightly higher than 94.0% by

CDFormer. I believe that this small difference of 0.1% may be due to the data-

set’s simplicity and randomness; most recent methods saturate around 94.0%.

Additionally, we surpass PointMLP by over 3% in ScanObjectNN and also

show more stable performance as indicated by the smaller standard derivation.

PointNeXt [86] is the current state-of-the-art method, but we still outperform

it by a clear margin, especially on mAcc (87.2% vs. 85.8%). Also, the smallest

gap between mean of class-wise accuracy (mAcc) and overall accuracy (OA)

achieved by CDFormer implies that our approach shows excellent robust per-

formance on each class instead of biasing to a specific category. We owe it to the

proposed collect-and-distribute mechanism for effectively capturing both short-

and long-range contexts, which can handle different categories with different

scales and shapes.
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TABLE 4.2. Results on ScanObjectNN.

Method mAcc (%) OA (%)

PointNet [83] 63.4 68.2
SpiderCNN [131] 69.8 73.7
PointNet++ [84] 75.4 77.9
DGCNN [118] 73.6 78.1
PointCNN [66] 75.1 78.5
BGA-DGCNN [112] 75.7 79.7
BGA-PN++ [112] 77.5 80.2
DRNet [90] 78.0 80.3
GBNet [91] 77.8 80.5
SimpleView [38] - 80.5±0.3
PRANet [20] 79.1 82.1
MVTN [42] - 82.8
PointBERT [142] - 83.1
DeltaConv [119] - 84.7
PointMAE [80] - 85.2
PointMLP [78] 83.9±0.5 85.4±0.3
RepSurf [94] 83.1 86.0
PointNext [86] 85.8±0.6 87.7±0.4

CDFormer (ours) 87.2±0.3 88.4±0.2

4.4.3 Point Cloud Part Segmentation

Dataset and Metrics. ShapeNetPart [139] is a popular dataset for object part

segmentation, which is composed of 16,880 3D models from 16 different shape

categories (e.g., “airplane” and “chair”), where 14,006 models for training and

2,874 for testing. For each category, its number of parts is between 2 and 6, and

there are total 50 different parts. For evaluation metrics, we report the instance

mIoU along with the throughput speed (instance/second).

Results. Table 4.3 demonstrates the results of CDFormer compared to previous

approaches. Our CDFormer outperforms congeneric transformer-based methods,

e.g., Point Transformer [151] and Stratified Transformer [58], and other repres-

entative approaches like KPConv [108], while it is comparable to the best results

of PointNext [86] (87.0% vs. 87.0%). As we will see from Table 4.4 that the
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TABLE 4.3. Results on ShapeNetPart.

Method Ins. mIoU Throughput

PointNet [83] 83.7 1184
PointNet++ [84] 85.1 708
DGCNN [118] 85.2 147
ASSANet-L [85] 86.1 640
PointMLP [78] 86.1 270
PVCNN [73] 86.2 -
PCT [41] 86.4 -
KPConv [108] 86.4 44
Point Transformer [151] 86.6 297
Stratified Transformer [58] 86.6 398
CurveNet [126] 86.8 97
PointNeXt [86] 87.0 76

CDFormer (ours) 87.0 84

CDFormer defeats PointNext on S3DIS (76.0% vs. 74.9%), we thus conjecture

that the collect-and-distribute mechanism in CDFormer can not fully exploit the

advantage of capturing long-range dependencies on the small size of point cloud

considering the huge difference on the size of samples in ShapeNetPart (2,048)

and S3DIS (up to 80,000 during training). The part segmentation results of

multiple objects are visualized in Figure 4.5. As observed, the predictions from

CDFormer are semantically reasonable and close to the ground truth, further

validating its effectiveness.

4.4.4 Point Cloud Scene Segmentation

Dataset and Metrics. S3DIS [6] is a widely used benchmark for point cloud

scene segmentation, containing 271 rooms in 6 areas collected from three build-

ings. The point is annotated with 13 semantic categories such as “ceiling” and

“bookcase”. Following [84, 151], we evaluate the proposed method on the Area 5

and also perform the standard 6-fold cross-validation. ScanNetV2 [27] is another

challenging dataset that consists of 1,513 room scenes. Among these scenes,

1,201 are used for training and 312 for validation purposes. Each sampled point
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FIGURE 4.5. Visualizations of object part segmentation on mul-
tiple different categories from the ShapeNetPart dataset. The top
row represents ground truth and the predictions from the proposed
CDFormer are in the second row.

is assigned a semantic label from one of the available 20 categories, including

“floor" and “table". Similar to previous methods [43, 72, 124, 137], we make

evaluations on the validation and testing sets. Regarding the metrics, we report

performance using mean class-wise intersection over union (mIoU), mean of

class-wise accuracy (mAcc), and overall point-wise accuracy (OA) as in [86,

124].

Results. In Table 4.4 and 4.5, the proposed CDFormer achieves new state-of-the-

art performances on both Area 5 and standard 6-fold cross-validation. Notably,

the recent approach PointNext [86] has 41.6M parameters for its best results,

while our CDFormer with 25.7M parameters achieves a clear improvement of

1.7% and 1.1% mIoU under Area 5 and 6-fold cross-validation. Additionally,

with and without using 2D images, DeepViewAgg [97] obtains 69.5% and 74.7%

respectively, which nevertheless is also inferior to CDFormer (76.0%). Addition-

ally, we provide visualizations in Figure 4.6. The proposed CDFormer exhibit

exceptional ability in capturing short- and long-range contexts, and accurately
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TABLE 4.4. Results on S3DIS using 6-fold cross-validation. The
bold and underline denote the first and second best performances.
Note that ∗ indicates additional 2D images are used and † repres-
ents the reproduced results.

Method mIoU mACC OA ceiling floor wall beam column

PointNet [83] 47.6 66.2 78.6 88.0 88.7 69.3 42.4 23.1
RSNet [50] 56.5 66.5 - 92.5 92.8 78.6 32.8 34.4
SPG [59] 62.1 73.0 86.4 89.9 95.1 76.4 62.8 47.1
PointCNN [66] 65.4 75.6 88.1 94.8 97.3 75.8 63.3 51.7
PointWeb [150] 66.7 76.2 87.3 93.5 94.2 80.8 52.4 41.3
ShellNet [149] 66.8 - 87.1 90.2 93.6 79.9 60.4 44.1
RandLA-Net [48] 70.0 82.0 88.0 93.1 96.1 80.6 62.4 48.0
KPConv [108] 70.6 79.1 - 93.6 92.4 83.1 63.9 54.3
SCF-Net [33] 71.6 82.7 88.4 93.3 96.4 80.9 64.9 47.4
BAAF [92] 72.2 83.1 88.9 93.3 96.8 81.6 61.9 49.5
CBL [105] 73.1 79.4 89.6 94.1 94.2 85.5 50.4 58.8
PT [151] 73.5 81.9 90.2 - - - - -
DeepViewAgg [97]∗ 74.7 - - 90.0 96.1 85.1 66.9 56.3
PointNext-XL [86] 74.9 83.0 90.3 - - - - -
PointNext-XL [86]† 74.9 83.0 90.3 94.1 96.8 85.0 61.4 64.2
CDFormer (ours) 76.0 84.6 90.7 94.4 97.8 86.7 70.8 66.7

Method window door table chair sofa bookcase board clutter

PointNet [83] 47.5 51.6 54.1 42.0 9.6 38.2 29.4 35.2
RSNet [50] 51.6 68.1 59.7 60.1 16.4 50.2 44.9 52.0
SPG [59] 55.3 68.4 73.5 69.2 63.2 45.9 8.7 52.9
PointCNN [66] 58.4 57.2 71.6 69.1 39.1 61.2 52.2 58.6
PointWeb [150] 64.9 68.1 71.4 67.1 50.3 62.7 62.2 58.5
ShellNet [149] 64.9 52.9 71.6 84.7 53.8 64.6 48.6 59.4
RandLA-Net [48] 64.4 69.4 69.4 76.4 60.0 64.2 65.9 60.1
KPConv [108] 66.1 76.6 57.8 64.0 69.3 74.9 61.3 60.3
SCF-Net [33] 64.5 70.1 71.4 81.6 67.2 64.4 67.5 60.9
BAAF [92] 65.4 73.3 72.0 83.7 67.5 64.3 67.0 62.4
CBL [105] 70.3 78.3 75.7 75.0 71.8 74.0 60.0 62.4
PT [151] - - - - - - - -
DeepViewAgg [97]∗ 71.9 78.9 79.7 73.9 69.4 61.1 75.0 65.9
PointNext-XL [86] - - - - - - - -
PointNext-XL [86]† 68.5 78.7 76.9 70.2 74.3 70.7 69.9 63.2
CDFormer (ours) 69.1 78.9 77.8 64.9 75.3 71.4 71.1 63.6

segmenting complicated scenes. We also present the results on ScanNetV2 in

Table 4.6. As observed, our CDFormer achieves the best performance of 76.2%

on the validation set and 76.6% on the testing set, further demonstrating its

superiority.
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FIGURE 4.6. Visualizations of semantic predictions on Area 5 of
S3DIS by comparing CDFormer with the ground truth.

4.4.5 Ablation Studies

We perform all the ablation studies on Area 5 of S3DIS.
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TABLE 4.5. Results of the proposed CDFormer and recent state-
of-the-arts on Area 5 of S3DIS. The bold and underline denote
the first and second best performances.

Method mIoU mACC OA ceiling floor wall beam column

PointNet [83] 41.1 49.0 - 88.8 97.3 69.8 0.1 3.9
SegCloud [107] 48.9 57.4 - 90.1 96.1 69.9 0.0 18.4
PointCNN [66] 57.3 63.9 85.9 92.3 98.2 79.4 0.0 17.6
SPG [59] 58.0 66.5 86.4 89.4 96.9 78.1 0.0 42.8
PCT[41] 61.3 67.7 - 92.5 98.4 80.6 0.0 19.4
HPEIN [54] 61.9 68.3 87.2 91.5 98.2 81.4 0.0 23.3
MinkowskiNet [22] 65.4 71.7 - 91.8 98.7 86.2 0.0 34.1
KPConv [108] 67.1 72.8 - 92.8 97.3 82.4 0.0 23.9
CGA-Net[77] 68.6 - - 94.5 98.3 83.0 0.0 25.3
CBL [105] 69.4 75.2 90.6 93.9 98.4 84.2 0.0 37.0
PT [151] 70.4 76.5 90.8 94.0 98.5 86.3 0.0 38.0
PointNext-XL [86] 70.5 76.8 90.6 94.2 98.5 84.4 0.0 37.7
StratifiedFormer [58] 72.0 78.1 91.5 96.2 98.7 85.6 0.0 46.1
CDFormer (ours) 72.2 78.5 91.2 95.1 98.8 86.3 0.0 49.3

Method window door table chair sofa bookcase board clutter

PointNet [83] 46.3 10.8 59.0 52.6 5.9 40.3 26.4 33.2
SegCloud [107] 38.4 23.1 70.4 75.9 40.9 58.4 13.0 41.6
PointCNN [66] 22.8 62.1 74.4 80.6 31.7 66.7 62.1 56.7
SPG [59] 48.9 61.6 84.7 75.4 69.8 52.6 2.1 52.2
PCT[41] 61.6 48.0 76.6 85.2 46.2 67.7 67.9 52.3
HPEIN [54] 65.3 40.0 75.5 87.7 58.5 67.8 65.6 49.4
MinkowskiNet [22] 48.9 62.4 81.6 89.8 47.2 74.9 74.4 58.6
KPConv [108] 58.0 69.0 81.5 91.0 75.4 75.3 66.7 58.9
CGA-Net[77] 59.6 71.0 92.2 82.6 76.4 77.7 69.5 61.5
CBL [105] 57.7 71.9 91.7 81.8 77.8 75.6 69.1 62.9
PT [151] 63.4 74.3 89.1 82.4 74.3 80.2 76.0 59.3
PointNext-XL [86] 59.3 74.0 83.1 91.6 77.4 77.2 78.8 60.6
StratifiedFormer [58] 60.0 76.8 92.6 84.5 77.8 75.2 78.1 64.0
CDFormer (ours) 62.4 72.1 83.5 92.3 83.9 76.1 75.9 62.7

Collect-and-Distribute Mechanism. To explore the effectiveness of the pro-

posed collect-and-distribute (CD) mechanism, we use the counterpart vanilla

parameter-free (or tiny) operations as baselines. Specifically, we only keep the

max operation to aggregate local features while discarding neighbor self-attention

when no collect. Also, we adopt an interpolation layer followed by a simple MLP

to add back to local points if no distribute. In Table 4.7, we find that without

the collect-and-distribute mechanism, it achieves a relatively low mIoU 67.6%,

which is then improved by collect for catching the long-range dependencies to

70.1%. Furthermore, when further distributing the long-range contexts back to
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TABLE 4.6. Results of mIoU (%) on both validation and testing
set (including per-category IoU) of ScanNetV2.

Method Val Test bathtub bed bookshelf cabinet chair counter curtain desk door

PointNet++ [84] 53.5 55.7 73.5 66.1 68.6 49.1 74.4 39.2 53.9 45.1 37.5
RandLA-Net [48] - 64.5 77.8 73.1 69.9 57.7 82.9 44.6 73.6 47.7 52.3
PointConv [123] 61.0 66.6 78.1 75.9 69.9 64.4 82.2 47.5 77.9 56.4 50.4
PointASNL [134] 63.5 66.6 70.3 78.1 75.1 65.5 83.0 47.1 76.9 47.4 53.7
KPConv [108] 69.2 68.4 84.7 75.8 78.4 64.7 81.4 47.3 77.2 60.5 59.4
CBL [105] - 70.5 76.9 77.5 80.9 68.7 82.0 43.9 81.2 66.1 59.1
PointNext [86] 71.5 71.2 - - - - - - - - -
PointMeta [68] 71.4 83.5 78.5 82.1 68.4 84.6 53.1 86.5 61.4 59.6
SparseCNN [39] 72.8 72.5 64.7 82.1 84.6 72.1 86.9 53.3 75.4 60.3 61.4
MinkUNet [22] 72.2 73.6 85.9 81.8 83.2 70.9 84.0 52.1 85.3 66.0 64.3
StratifiedFormer [58] 74.3 74.7 90.1 80.3 84.5 75.7 84.6 51.2 82.5 69.6 64.5
BPNet [49] 73.9 74.9 90.9 81.8 81.1 75.2 83.9 48.5 84.2 67.3 64.4
PTv2 [124] 75.4 75.2 74.2 80.9 87.2 75.8 86.0 55.2 89.1 61.0 68.7
CDFormer (ours) 76.2 76.6 77.9 79.2 86.1 75.3 88.4 59.1 88.7 62.6 71.3

Method floor other. picture refrig. shower. sink sofa table toilet wall window

PointNet++ [84] 94.6 37.6 20.5 40.3 35.6 55.3 64.3 49.7 82.4 75.6 51.5
RandLA-Net [48] 94.5 45.4 26.9 48.4 74.9 61.8 73.8 59.9 82.7 79.2 62.1
PointConv [123] 95.3 42.8 20.3 58.6 75.4 66.1 75.3 58.8 90.2 81.3 64.2
PointASNL [134] 95.1 47.5 27.9 63.5 69.8 67.5 75.1 55.3 81.6 80.6 70.3
KPConv [108] 93.5 45.0 18.1 58.7 80.5 69.0 78.5 61.4 88.2 81.9 63.2
CBL [105] 94.5 51.5 17.1 63.3 85.6 72.0 79.6 66.8 88.9 84.7 68.9
PointNext [86] - - - - - - - - - - -
PointMeta [68] 95.3 50.0 24.6 67.4 88.8 69.2 76.4 62.4 84.9 84.4 67.5
SparseCNN [39] 95.5 57.2 32.5 71.0 87.0 72.4 82.3 62.8 93.4 86.5 68.3
MinkUNet [22] 95.1 54.4 28.6 73.1 89.3 67.5 77.2 68.3 87.4 85.2 72.7
StratifiedFormer [58] 95.6 57.6 26.2 74.4 86.1 74.2 77.0 70.5 89.9 86.0 73.4
BPNet [49] 95.7 52.8 30.5 77.3 85.9 78.8 81.8 69.3 91.6 85.6 72.3
PTv2 [124] 96.0 55.9 30.4 76.6 92.6 76.7 79.7 64.4 94.2 87.6 72.2
CDFormer (ours) 97.6 57.7 33.4 69.8 95.1 82.0 82.8 68.3 95.4 89.3 72.2

TABLE 4.7. Ablation study on the CD mechanism.

Configuration LSA Collect Distribute mIoU (%) mAcc (%) OA (%)

i ✓ 67.6 74.1 89.7
ii ✓ ✓ 70.1 76.6 90.7
iii ✓ ✓ 70.3 77.0 90.7
iv ✓ ✓ ✓ 72.2 78.5 91.2

the local points, we achieve the best performances on all metrics, i.e., 72.2%

mIoU, 78.5% mAcc, and 91.2% OA. Besides, if without collect to explicitly

and broadly explore long-range dependencies, using the max aggregation with

Distribute (ses iii) significantly drops the performance from 72.2% to 70.3% on

mIoU.

Context-Aware Position Encoding. To evaluate the influence of position en-

coding, we compare the proposed method with and without using the position
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TABLE 4.8. Ablation study on CAPE.

Configuration QKV CA Plain mIoU (%) mAcc (%) OA (%)

i 68.9 76.6 89.7
ii ✓ 69.7 76.3 91.0
iii ✓ ✓ 72.2 78.5 91.2
iv ✓ ✓ 70.8 77.5 90.9

encoding in the query, key, and value (QKV), respectively. We also compare

the context-aware (CA) format of position encoding with a vanilla one (i.e.,

Plain) as in [30]. As shown in Table 4.8, without the position encoding, we have

dissatisfied results that are consistent with the observations in [58, 151]. Next,

we employ a normal encoding without context-aware format (see ii) on QKV,

i.e., no interaction with the contexts Q, K. This time, it does work but with only

marginal improvement. Lastly, when using the proposed CAPE (see iii), it can

achieve the state-of-the-art performance 72.2%. Through the dynamic adaptation

based on input contexts, the position clues are further enhanced in the proposed

CDFormer to effectively learn local-global relations. Additionally, we also show

the results of using a vanilla version of position encoding [30] (see iv) for a fair

comparison.

Visualization Comparisons. To further demonstrate the improvement of CD-

Former against its baselines, we provide visualizations in Figure 4.7 by compar-

ing to w/o CD (see i in Table 4.7) and w/o CAPE (see ii in Table 4.8). Taking

the first row as an example, without the collect-and-distribute mechanism, the

model fails to utilize the semantic-correct long-range contexts and thus can not

precisely segment local points; without CAPE, it loses the enhanced position

clues for better communication within points and thus obtains dissatisfied results;

the CDFormer achieves the convincing predictions as expected.

Model Scalability. We evaluate the model scalability under four stages with

[2, 2, 6, 2] blocks via the following three configurations:
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Input Ground Truth w/o CD w/o CAPE CDFormer 

floor wall beam column window door table chair sofa ceiling bookcase board clutter 

FIGURE 4.7. Visualizations of scene semantic segmentation on
Area 5 of S3DIS by comparing CDFormer with its baselines and
ground truth. The improved areas against baselines are high-
lighted by the orange circles.

• CDFormer-S: C = [16, 32, 64, 128],H = [1, 2, 4, 8]

• CDFormer-B: C = [32, 64, 128, 256],H = [2, 4, 8, 16]

• CDFormer-L: C = [48, 96, 192, 384],H = [3, 6, 12, 24]

As shown in Table 4.9, there are clear performance improvements when using

a larger model.For example, the improvements are very impressive in terms of

both mIoU and mAcc, i.e., mIoU: 67.6% → 69.7% → 72.2%; mAcc: 74.9% →

77.1% → 78.5%. Notably, the consistent improvements by increasing the model
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TABLE 4.9. Ablation study on model scalability.

Model #Params mIoU (%) mAcc (%) OA (%)

CDFormer-S 3.1M 67.6 74.9 89.8
CDFormer-B 11.7M 69.7 77.1 90.4
CDFormer-L 25.7M 72.2 78.5 91.2

TABLE 4.10. Ablation study on number of neighbors.

Configuration K mIoU (%) mAcc (%) OA (%)

i [4, 4, 4]× 4 69.2 75.7 90.3
ii [8, 8, 8]× 4 71.1 77.9 91.4
iii [16, 16, 16]× 4 72.2 78.5 91.2
iv [24, 24, 24]× 4 70.6 77.5 91.0

v [8, 16, 16]× 4 71.0 77.4 91.1
vi [16, 8, 16]× 4 70.7 77.6 90.9
vii [16, 16, 8]× 4 70.2 76.8 91.1
viii [8, 8, 8]× 2 + [16, 16, 16]× 2 71.3 78.4 91.4
ix [16, 16, 16]× 2 + [8, 8, 8]× 2 71.1 77.5 91.2

size illustrate the extraordinary scalability of the proposed CDFormer for point

cloud analysis.

Number of Neighbors. We show the influences for using the different number

of neighbors in CD Blocks for patch division, NSA, and NCA. For simplicity,

we use the same K for all modules and stages. As show in Table 4.10, when

increasing the number of neighbors from K = 4 to K = 8, the improvement

(69.2% → 71.1%) is significant. This is possibly because a relatively large

number of neighbors can bring better long-range contexts, which help the pro-

posed CDFormer learn the local-global structures. Notably, we also find that

the advancement from K = 8 to K = 16 is modest. This kind of saturated phe-

nomenon is expected since too much contexts may introduce different categories

of semantics that degrade the local features. Similar observations have also been

reported in [151]. Therefore, we use K = 16 as default.

Point Coverage. In Section 4.3.2, we employ the patch division on the point

cloud to generate M patches with K points in each patch. Specifically, we first
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TABLE 4.11. Point coverage on different stages.

Stage Uncovered Ratio Maximum Times Covered

1 0.28% 6.00
2 0.28% 5.26
3 0.38% 4.62
4 0.24% 4.18

Stage1 Stage2 Stage3 Stage4

FIGURE 4.8. Visualization of activation maps where region of
interest are highlighted by orange circles at different stages of
CDFormer given the feature of interest (marked as red star).

utilize the FPS [31, 84] to downsampling the point features X ∈ RN×C to local

patch centers X̄ ∈ RM×C where M = N/S and S is the scale factor. After that,

we group the K nearest neighbors around each patch center and reformulate M

patches as X̂ ∈ RM×K×C . However, this process may result in some points

being left uncovered while others are covered multiple times. Here we present a

quantitative analysis. We show the statistics of points covered multiple times or

uncovered at different stages of CDFormer on the S3DIS dataset in Table 4.11.

As we can see, no more than 0.4% of all points are uncovered across all stages.

In addition, each point is covered by two times on average due to M = N/8

and MK = 2N , and maximally covered by six times. As a result, their impact

should be negligible.
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Activation Maps. We illustrate the activation maps of different stages of CD-

Former to show the effectiveness of collect-and-distribute mechanism in Fig-

ure 4.8. Specifically, we backtrack the feature of interest from each stage and

calculate the gradients for each input point. A larger gradient indicates that the

current point contributes more to the feature of interest. In rows one to three, we

select points of interest from classes “table”, “chair”, and “bookcase” respect-

ively. As observed, the number of perceptive points increases inside the same

category as the stage progresses due to the collect-and-distribute mechanism. For

example, in the case of a point on the edge of a table, it can first interact with more

points along that edge before reaching points inside the table itself. Similarly, for

a point on a chair, it gradually captures all relevant points distributed across its

surface while avoiding irrelevant or nearby points from other categories.

4.5 Summary

In this chapter, we introduce the innovative CDFormer for 3D point cloud ana-

lysis. With our proposed collect-and-distribute mechanism, it can capture both

short- and long-range contexts simultaneously, effectively learning local-global

representations of point clouds. Furthermore, we enhance position clues dynam-

ically via context-aware position encoding to facilitate communication among

point features. We conducted comprehensive experiments on S3DIS, ScanNetV2,

ShapeNetPart, ModelNet40, and ScanObjectNN for segmentation and classific-

ation tasks to demonstrate the superiority of CDFormer and the advantages of

each design choice.



CHAPTER 5

Multi-Scale Composite Representation Learning

This chapter delves into the investigation of multi-scale composite representation

learning, aiming to effectively capture objects at different scales from the per-

spective of the model’s overall framework. The proposed PointHR framework

maintains multiple resolutions concurrently and enables frequent communica-

tion between these resolutions within each stage, thus enabling the capture of

multi-scale objects.

Previous point cloud segmentation methods usually utilize an encoder-decoder

framework, which initially encodes point clouds into low-resolution repres-

entations and subsequently decodes high-resolution predictions. Inspired by

the success of high-resolution architectures in image dense prediction, in this

chapter, we explore high-resolution architectures for 3D point cloud segment-

ation. Specifically, we generalize high-resolution architectures using a unified

pipeline named PointHR, which includes a knn-based sequence operator for fea-

ture extraction and a differential resampling operator to efficiently communicate

different resolutions. Additionally, we propose to avoid numerous on-the-fly com-

putations of high-resolution architectures by pre-computing the indices for both

sequence and resampling operators. By doing so, we deliver highly competitive

high-resolution architectures while capitalizing on the benefits of well-designed

point cloud blocks without additional effort. To evaluate these architectures for

dense point cloud analysis, we conduct thorough experiments using S3DIS and

71
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ScanNetV2 datasets, where the proposed PointHR outperforms recent state-of-

the-art methods without any bells and whistles. The source code is available at

https://github.com/haibo-qiu/PointHR.

5.1 Introduction

In recent years, 3D point clouds have gained extensive attention due to their

crucial role in many real-world applications, such as autonomous driving [2,

67], robotics [64, 136], and AR/VR [3, 18]. Unlike 2D images, each point

cloud consists of a set of 3D points characterized by their Cartesian coordinates

(x, y, z), providing a view-invariant and geometry-accurate representation of the

real-world 3D scene. 3D point cloud segmentation aims to predict semantic

labels for all points of the point cloud, which requires a learned representation

that is both spatially accurate (for individual points) and semantically rich (for

category prediction). However, developing effective deep architectures for 3D

point cloud representation learning is non-trivial.

3D scenes represented by point clouds often contain objects of different scales,

such as a small cup on a large table in an office room, which requires the deep

model to capture multi-scale contexts within point clouds. In typical deep neural

networks [13, 46, 74], we tend to believe that shallow features (high resolution)

contain more accurate spatial information while deep features (low resolution)

include more semantic clues. Therefore, previous point cloud segmentation

methods [86, 151] mainly explore multi-scale information by downsampling

and upsampling features in series using an encoder-decoder paradigm: they first

encode the input point clouds by progressively downsampling the point features

and then decode back to the original scale using upsampling on lower scale

features to generate dense predictions. Specifically, feature interactions only

occur in adjacent scale representations, limiting the learning of rich multi-scale

semantics. Additionally, the final largest resolution representation is recovered

https://github.com/haibo-qiu/PointHR
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step-by-step from low resolution, which compromises spatial accuracy. These

designs make such a vanilla encoder-decoder framework insufficient to capture

rich multi-scale contexts. Inspired by high-resolution architectures for 2D visual

recognition [114], we introduce PointHR, which explicitly maintains high-low

resolution features in parallel during the entire network for point cloud segmenta-

tion. Unlike previous hierarchical methods [86, 151] that use only one resolution

feature in each stage, PointHR keeps multiple resolutions (from high to low)

simultaneously and facilitates frequent communication between all resolutions

within each stage.

Different from structurally-located pixels in 2D images, point clouds consist of

a set of irregular and unordered points, making it non-trivial to employ high-

resolution architectures. Therefore, we approach point clouds for high-resolution

architectures as follows. Firstly, the input point clouds are considered as a se-

quence of (x, y, z) points, allowing for a general sequence operator to be used

for feature extraction. For example, a popular sequence operator could be self-

attention [113], which was originally designed to model relationships between

a sequence of text tokens. However, since the self-attention operator has quad-

ratic time complexity O(N2) for a sequence of length N , it is computationally

infeasible to directly apply this operator to a point cloud with tens of thousands

of points. One solution is to constrain the self-attention operator to perform only

on each point and its K nearest neighboring points, thus reducing the complexity

to be linear with respect to length N as demonstrated in Wu et al. [124] and

Zhao et al. [151]. Another sequence operator could be pure MLPs, which can

process unordered sequences when feeding permuted training data. To aggregate

local information, K nearest neighbor features are retrieved, followed by MLPs

to fuse and update the current point feature as shown in Lin et al. [68]. Thus,

we formulate the basic block as a knn-based sequence operator, allowing for

the use of well-designed point cloud blocks [68, 124, 151] in high-resolution

architectures without additional effort.



74 5 MULTI-SCALE COMPOSITE REPRESENTATION LEARNING

In addition to the sequence operator, another important aspect of high-resolution

architectures is the resampling operator, which can efficiently communicate dif-

ferent scale features in high frequency with upsampling and downsampling. A

common resampling strategy in point clouds is a combination of farthest point

sampling [31, 84] with knn features aggregation/interpolation. Recently, an effi-

cient grid-based pooling and unpooling strategy [124] has been introduced, which

first splits a point cloud into non-overlapping grids and then maps each grid of

points to a new one and vice versa. With the unified aforementioned formulation

for sequence operators, these resampling methods can be easily adopted in Poin-

tHR. However, all of them require calculating the indices for knn collection and

resampling in each operation. This incurs a significant computational cost, partic-

ularly when considering the numerous resampling operations in high-resolution

architectures. Fortunately, we have found that the calculations of these indices

only depend on scale, specifically the corresponding point coordinates. These

coordinates remain unchanged throughout the entire network. Therefore, we

propose to pre-compute the indices for knn collection and resampling operation,

which are saved to the cache so that indices retrieval is only needed instead of

on-the-fly re-computation.

Our main contributions are summarized as follows:

• We present a new framework for point cloud segmentation, PointHR,

which aims to maintain high resolutions for learning both semantically-

rich and spatially-precise point cloud representations.

• We explore high-resolution architectures using unified sequence and

resampling operators, allowing off-the-shelf point cloud blocks and

layers to be employed in PointHR without additional efforts. Besides,

we pre-compute the indices for knn collection and resampling operation

to avoid on-the-fly re-computation.

• We conduct comprehensive experiments on two popular point cloud

segmentation datasets, namely S3DIS [6] and ScanNetV2 [27], where
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the proposed PointHR demonstrates new state-of-the-art performance,

suggesting the effectiveness of exploring high-resolution architectures

for point cloud segmentation.

5.2 Related Work

High-Resolution Architectures. High-Resolution Network (HRNet), originally

proposed by Sun et al. [102] for human pose estimation, maintains multiple

branches for multi-scale features, particularly high-resolution representations,

which facilitate learning spatially more precise heatmaps for pose estimation.

With its repeated cross-scale feature interactions in deep layers, HRNet also

learns rich semantic features. Consequently, Wang et al. [114] extended HRNet

to general dense prediction tasks such as semantic segmentation and object de-

tection, achieving impressive performances. HRFormer [143] employs emerging

attention blocks [113] to replace vanilla convolution layers in the high-resolution

framework, thereby expanding its modeling capacity. Additionally, Zhang et al.

[145] adopts HRNet for person re-identification to address the issue of multiple

resolutions of input images. The aforementioned studies have all focused on 2D

images, and we further explore high-resolution architectures for 3D point clouds.

Point Cloud Segmentation. Here we mainly introduce methods that directly

take raw points as input without extra transformations (e.g., voxelization and

projection). These point-based methods usually develop novel modules or frame-

works, such as MLPs [78, 86, 83, 84], point convolutions [108, 123], and

attentions [41, 58, 81, 88, 151], to directly learn from raw points. Particularly,

PointNet [83] was the first to process point clouds using multi-layer perceptrons

(MLPs). PointNet++ [84] improved upon this by introducing a hierarchical

neural network that learns local features. PointNext [86], on the other hand,

proposes advanced training strategies to significantly improve the performance

of PointNet++. Additionally, it introduces InvResMLP blocks and formulates
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the PointNext architecture for further improvement. Meanwhile, KPConv [108]

presents kernel point convolution as a new point convolution operator that takes

neighboring points as input and processes them with spatially located weights.

Recently, the popular transformer architecture has been introduced to point cloud

tasks [58, 81, 124, 151]. PTv1 [151] proposes vector attention to aggregate

neighbor features. PTv2 [124] further introduces grouped vector attention to

more efficiently learn discriminative representations while avoiding overfitting.

Stratified Transformer [58] employs local window-based self-attention and cap-

tures long-range contexts by sampling nearby points densely and distant points

sparsely. Differently, in this chapter, we mainly explore how to form an effective

backbone framework, and the block designs of the above methods can be trivially

integrated in our framework.

5.3 Method

First, we present an overview of high-resolution architectures for 3D point

clouds. Next, we delve into the unified format of sequence operator with various

instantiations. Finally, we investigate efficient multi-scale fusion in conjunction

with the resampling operator using the pre-compute strategy.

5.3.1 High-Resolution Architectures

A point cloud can be represented as a sequence of N points P ∈ RN×Craw ,

where Craw is the feature dimension of each point that typically includes xyz

coordinates as well as other attributes such as its normal vector. The goal of

point cloud segmentation is to predict a semantic category label for each point

(x, y, z) ∈ P . Specifically, the final predictions share the same spatial dimension

with the raw points, i.e., Y ∈ RN,cls, where cls is the total number of semantic

categories.



5.3 METHOD 77

The overall PointHR pipeline for point cloud segmentation is illustrated in

Figure 5.1, where the raw input point clouds N × Craw is first embedded to

N × C0, and then downsampled to N/S × C1. Next, it starts with a high-

resolution branch as the first stage by taking the point feature N/S × C1 as

input. Subsequently, additional high-to-low resolution branches calculated by

spatially dividing the factor S and doubling the channel of feature dimension are

incrementally integrated into the architecture as new stages. For i = 1, 2, 3, 4,

the ith stage consisting of i branches outputs i different scales point features, and

each branch has Mi blocks that is building by stacking Bi sequence operators.

After each stage, the learned multi-resolution features are fused as the input of

the next stage in a per-branch manner. Notably, the resolution corresponds to the

number of points when applying high-resolution architectures for point clouds.

The entire framework can be formulated as follows:

F11 → F21 → F31 → F41

↘ F22 → F32 → F42

↘ F33 → F43

↘ F44,

(5.1)

where point feature Fij ∈ R
N

Si×2j−1Ci where i ∈ {1, 2, 3, 4} and j ∈ {1, · · · , i}.

It should be also noted that previous hierarchical methods [86, 124] only contain

F11 → F22 → F33 → F44, which is corresponding to the red-arrow flow in

Figure 5.1.

These outputs from the final stage of PointHR join forces with the original

resolution feature in the decoder, enabling the propagation of information from

low-resolution to high-resolution. Finally, a segmentation head that consists of

linear layers generates the final prediction of N × Ccls, where Ccls represents

the number of semantic categories. We summarize the typical configurations of

PointHR via the number of modulesMi, the number of blocksBi, and the number

of channels Ci, e.g., (M1,M2,M3,M4) = (1, 1, 2, 1) and (B1, B2, B3, B4) =
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FIGURE 5.1. The overall PointHR pipeline for point cloud seg-
mentation.

(2, 2, 2, 2) corresponding to Figure 5.1. A detailed formulation of PointHR

configurations is shown in Appendix 5.6.8.

5.3.2 Sequence Operator

For 2D images, high-resolution architectures [114] usually adopt convolutional

layers as the basic blocks to extract local information, while it is not straight-

forward to employ such an operation on point clouds due to the irregular and

unordered characteristics. Therefore, to explore high-resolution architectures

for point clouds, we first formulate the aforementioned basic block via a uni-

fied sequence operator, i.e., regarding point clouds as a sequence of points and

treating it as a sequence processing task. By doing this, we hope that most

existing point cloud blocks can be directly used in high-resolution architectures.

Specifically, when taking the point clouds P ∈ RN×C as input, the sequence

operator Θ will first embed each point pi where i ∈ {1, · · · , N} into new feature

space p̄i, then K nearest neighbors (KNN) for each point are fetched as p̄j

where j ∈ {1, · · · , K} to collect local clues. After that, the sequence operator

aggregates those local information to the current point p̂i. Lastly, the final repres-

entation p̃i is obtained by incorporating original features with updated current

features. The whole process is illustrated in the left part of Figure 5.2 and can be
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FIGURE 5.2. An illustration of the general sequence operator Θ
along with its instantialization where the “Ins.” represents the
instantialization. Note that (a) vector attention [151], (b) grouped
vector attention [124], and (c) pure MLPs [68] are three instan-
tializations of the Local Extractor defined by Equation 5.4, 5.5,
and 5.6 respectively.

mathematically formulated as follows:

p̄i = Θse(pi) ⇒ p̄j = Θnf (p̄i) (5.2)

p̂i = Θna(p̄j) ⇒ p̃i = Θsu(p̂i) + pi. (5.3)

where Θse,Θnf ,Θna, and Θsu indicate Sequence Embed, Neighbors Fetch, Neigh-

bors Aggregation, and Sequence Update, respectively, in Figure 5.2.

To show the effectiveness of the aforementioned sequence operator formulation,

we discuss several popular point cloud blocks as the possible instantialization in

the following. For example, self-attention [113] proposed for handling a sequence

of words is capable of capturing the relationships of all elements in the sequence.

Previous approaches [124, 151] employ the attention only on each point with

its K neighboring points to reduce time complexity from O(N2) to O(NK2),

rather than utilizing a global attention on all sequence elements. In particular,

PTv1 [151] has shown that vector attention is more effective in handling point

clouds than the original scalar attention [113]. It employs attention weights

that are vectors calculated based on the relation operation between query and

key, which can effectively modulate individual feature channels. Specifically,
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given a point pi and its neighbors N (pi) = {pj|pj ∈ KNN(pi)}, Multilayer

perceptrons (MLPs) are employed to map the point feature to query qi, key ki,

and value vi, and then the vector attention can be formulated as follows:

wij = φ(σ(qi,ki)), pattn
i =

∑
pj∈N (pi)

Softmax(Wi)j ⊙ vj, (5.4)

where ⊙ represents the Hadamard product. σ denotes a relation operation

such as subtraction. φ : Rc → Rc is the MLPs which calculates attention

vectors to re-weight vj by channels before performing aggregation. PTv2 [124]

further introduces a grouped vector attention to improve the model efficiency.

Specifically, it is achieved by dividing channels of the value vi ∈ Rc evenly into

g groups (1 ≤ g ≤ c). Then MLPs φ : Rc → Rg outputs a grouped attention

vector with g channels instead of c. Channels within the same group share the

same scalar attention weight from the grouped attention vector. As a result,

Equation 5.4 is modified as follows:

wij = φ(σ(qi,ki)), pattn
i =

∑
pj∈N (pi)

g∑
l=1

c/g∑
m=1

Softmax(Wi)jl · vlc/g+m
j .

(5.5)

The sequence operator can be pure MLPs as well, which can handle unordered

sequences when augmenting the training data by all kinds of permutations.

Specifically, in Lin et al. [68], the features of K nearest neighbours are used to

collect local clues, which is followed by maxpooling and MLPs to fuse current

point features, which can be formulated as follows:

paggre
i = MaxPool(ϕ(pj)), pj ∈ N (pi), (5.6)

where ϕ is the MLPs that embeds the input point feature pi, and N (pi) rep-

resents the neighbors of pi. From an united perspective, we can consider the

instantialization of Equation 5.2 and 5.3 as follows:

Θse = MLP, Θnf = KNN, Θsu = MLP. (5.7)
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Notably, the only difference lies in Θna, which acts as the local extractor to

capture neighbor information as shown in the right part of Figure 5.2, defined by

Equation 5.4, 5.5, and 5.6.

5.3.3 Resampling Operator and Multi-Scale Fusion

Besides the sequence operator, a resampling operator is required to perform cross-

resolution interactions between different branches. Specifically, for jth branch

where j ∈ {1, · · · , i} in the ith stage, there are three possible fusion situations:

1) when fusing features from the same branch, a simple identity connection is

applied; 2) when features come from the above ath branch, i.e., higher resolution

than current one, jth − ath number of successive downsampling modules are

employed; 3) if features from the below bth branch, i.e., lower resolution than

current one, an upsampling module is adopted. Finally, those processed features

are summed as the updated features for jth branch. For example, we can calculate

the fused features of 2nd branch in the 3rd stage as follows:

F̄32 = F32 + downsampling(F31) + upsampling(F33). (5.8)

To effectively communicate different scales, the above fusion process are fre-

quently made between and inside stages. However, those resampling operations,

including both downsampling and upsampling, are extremely time-consuming in

point clouds due to the unordered characteristics. For example, when provided

with an input point cloud containing N points, the classical farthest point

sampling (FPS) [31, 84] requires the calculation of downsampling and up-

sampling neighboring indices. This process has a time complexity of O(N2) as

mentioned in Hu et al. [48]. Another option could be the simpler grid pooling

and unpooling method proposed in Wu et al. [124], which divides a point cloud

into non-overlapping grids. The pooling is to sample each grid of points as a
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new points, and the unpooling is simply back-projecting the point to the original

higher resolution grid of points.

However, both of them require calculating the indices for knn collection and res-

ampling in each operation. This leads to a high computational cost, particularly

because of the numerous resampling operations in PointHR. Fortunately, we

identify those indices only depend on current point scale, which stays unchanged

throughout the entire network. Specifically, we find that those knn indices solely

rely on point coordinates so that each branch with the same resolution shares

the same knn indices across all stages. As for resampling indices, they can be

also shared when operating two specific resolution branches across different

stages. Hence, we propose to pre-compute the indices for knn collection and

resampling operation, which are saved to the cache to avoid on-the-fly computa-

tions, thus making it possible to efficiently employ high-resolution architectures

for 3D dense point cloud analysis. The detailed description can be found in

Appendix 5.6.5.

5.4 Experiments

5.4.1 Datasets and Metrics

We evaluate the proposed PointHR on two widely-used benchmarks, i.e., S3DIS [6]

and ScanNetV2 [27], for point cloud semantic segmentation. S3DIS contains

271 rooms in 6 areas collected from three different buildings. Each point in

the room is annotated with one of 13 semantic categories such as “ceiling" and

“bookcase". Following previous methods [124, 151], we keep Area 5 as the testing

set and use remains for training PointHR. ScanNetV2 is another larger dataset,

which consists of 1,513 room scenes, where 1,201 scenes for training and 312

for validation. Point clouds are created by sampling vertices from meshes that

are reconstructed from RGB-D frames. Each sampled point is then assigned
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a semantic label from one of 20 categories, such as “floor" and “table". Re-

garding the evaluation metrics, similar to Qian et al. [86], Wu et al. [124] and

Zhao et al. [151], we adopt the mean class-wise intersection over union (mIoU),

mean of class-wise accuracy (mAcc), and overall point-wise accuracy (OA). We

further present evaluations on ShapeNetPart [139] and ModelNet40 [125] in

Appendix 5.6.1 and 5.6.2.

5.4.2 Implementation Details

For the default configurations of PointHR, we employ (M1,M2,M3,M4) =

(1, 1, 5, 4) and (C1, C2, C3, C4) = (64, 32, 32, 32), Bi = 2 and Ki = 16 for

all i ∈ {0, 1, 2, 3}, the grouped vector attention defined by Equation 5.5 as

the sequence operator, as well as the grid pooling and unpooling discussed in

Section 5.3.3 as the sampling strategy.

For S3DIS [6], following the practice in Wu et al. [124] and Zhao et al. [151], the

grid sampling with size 0.04m is first employed on the raw input points. During

the training process, we apply popular data augmentations such flip, scale, jitter,

random drop, and we also use the sphere crop on the entire scene and constrain

the maximum number of input points to 100,000. Considering the training set of

S3DIS is relatively small (i.e., only 204 samples), we follow Qian et al. [86], Wu

et al. [124] and Zhao et al. [151] to enlarge the size by repeating 30× to obtain

6,120 samples. We train PointHR using four V100 GPUs for 100 epochs with

batch size 12, and set the learning rate to 0.006 and drop it by 1/10 at 60 and 80

epochs. AdamW optimizer [75] with the weight decay 0.05 and cross-entropy

loss are applied. The pooling size are set to (0.1, 0.2, 0.4, 0.8) for gird pooling to

achieve approximately 6× downsampling scale. For ScanNetV2 [27], we follow

Wu et al. [124] to employ grid sampling with size 0.02m on the raw point clouds.

We also repeat the its training set (1,201 scenes) by 9× to get 10,809 samples.

Considering its larger scale than S3DIS, AdamW optimizer [75] with a smaller

weight decay 0.02 are applied. OneCycleLR [100] scheduler is employed, where
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TABLE 5.1. Quantitative results under mIoU (%), mAcc (%),
and OA (%) metrics including per-category IoU are reported on
Area 5 of S3DIS [6]. The bold denotes the best performance.

Method mIoU mAcc OA ceiling floor wall beam column

PointNet [83] 41.1 49.0 - 88.8 97.3 69.8 0.1 3.9
SegCloud [107] 48.9 57.4 - 90.1 96.1 69.9 0.0 18.4
PointCNN [66] 57.3 63.9 85.9 92.3 98.2 79.4 0.0 17.6
SPGraph [59] 58.0 66.5 86.4 89.4 96.9 78.1 0.0 42.8
PCT [41] 61.3 67.7 - 92.5 98.4 80.6 0.0 19.4
HPEIN [54] 61.9 68.3 87.2 91.5 98.2 81.4 0.0 23.3
MinkUNet [22] 65.4 71.7 - 91.8 98.7 86.2 0.0 34.1
KPConv [108] 67.1 72.8 - 92.8 97.3 82.4 0.0 23.9
CGA-Net [77] 68.6 - - 94.5 98.3 83.0 0.0 25.3
CBL [105] 69.4 75.2 90.6 93.9 98.4 84.2 0.0 37.0
PTv1 [151] 70.4 76.5 90.8 94.0 98.5 86.3 0.0 38.0
PointNext [86] 70.5 76.8 90.6 94.2 98.5 84.4 0.0 37.7
PointMeta [68] 71.3 - 90.8 - - - - -
PointMixer [21] 71.4 77.4 - 94.2 98.2 86.0 0.0 43.8
PTv2 [124] 71.6 77.9 91.1 - - - - -
StraFormer [58] 72.0 78.1 91.5 96.2 98.7 85.6 0.0 46.1
PointHR (ours) 73.2 78.7 91.8 94.0 98.5 87.5 0.0 53.7

Method window door table chair sofa bookcase board clutter

PointNet [83] 46.3 10.8 59.0 52.6 5.9 40.3 26.4 33.2
SegCloud [107] 38.4 23.1 70.4 75.9 40.9 58.4 13.0 41.6
PointCNN [66] 22.8 62.1 74.4 80.6 31.7 66.7 62.1 56.7
SPGraph [59] 48.9 61.6 84.7 75.4 69.8 52.6 2.1 52.2
PCT [41] 61.6 48.0 76.6 85.2 46.2 67.7 67.9 52.3
HPEIN [54] 65.3 40.0 75.5 87.7 58.5 67.8 65.6 49.4
MinkUNet [22] 48.9 62.4 81.6 89.8 47.2 74.9 74.4 58.6
KPConv [108] 58.0 69.0 81.5 91.0 75.4 75.3 66.7 58.9
CGA-Net [77] 59.6 71.0 92.2 82.6 76.4 77.7 69.5 61.5
CBL [105] 57.7 71.9 91.7 81.8 77.8 75.6 69.1 62.9
PTv1 [151] 63.4 74.3 89.1 82.4 74.3 80.2 76.0 59.3
PointNext [86] 59.3 74.0 83.1 91.6 77.4 77.2 78.8 60.6
PointMeta [68] - - - - - - - -
PointMixer [21] 62.1 78.5 90.6 82.2 73.9 79.8 78.5 59.4
PTv2 [124] - - - - - - - -
StraFormer [58] 60.0 76.8 92.6 84.5 77.8 75.2 78.1 64.0
PointHR (ours) 62.9 80.2 84.2 92.5 75.4 76.5 84.8 61.8

the learning raises from 0.0005 to 0.005 in the first 5 epochs and cosine annealing

to 0 in the remaining 95 epochs. We use (0.06, 0.15, 0.375, 0.9375) for gird

pooling to approximate 6× downsampling scale. Other settings are kept the same

as in S3DIS.
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FIGURE 5.3. Visualization of point cloud segmentation results
on the Area 5 of S3DIS. Note that yellow circles highlight the
improvements made by PointHR over PTv2.

5.4.3 Results on S3DIS

Quantitative Results: Table 5.1 demonstrates the results of recent state-of-the-

art methods and the proposed PointHR on the Area 5 of S3DIS. Apparently,

our PointHR achieves best performances on all three metrics, i.e., mIoU (%),

mAcc (%), and OA (%). It surpasses different kinds of methods including

transformer-based [58, 124, 151], mlp-based [86, 68, 21], and graph-based [108,

66] approaches. For example, PointHR outperforms the current state-of-the-art

model, StraFormer [58], with a clear margin in terms of mIoU, 73.2% vs. 72.0%.

It is also worthy noting that PointHR uses the same block (grouped vector

attention) as in PTv2 [124], but PointHR takes the lead on all three metrics, i.e.,

73.2% vs. 71.6%, 78.7% vs. 77.9%, and 91.8% vs. 91.1%. We believe that this is

partially because of the high-resolution architectures, which explicitly maintain

multi-scale features in parallel and allow for interactions across scales. Besides,

as for per-category IoU, we find that PointHR achieves better performances

on those large flat objects such as “column", “door", and “board". We thus

conjecture that PointHR has a very good ability to efficiently capture information

at different scales to accurately segment both boundary and inner points.
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TABLE 5.2. Quantitative results on ScanNetV2.

Method #Params FLOPs Val (%) Test (%)

PointNet++ [84] 1.0M 7.2G 53.5 55.7
RandLA-Net [48] 1.3M 5.8G - 64.5
PointConv [123] - - 61.0 66.6
PointASNL [134] - - 63.5 66.6
KPConv [108] 15M - 69.2 68.6
CBL [105] 18.6M - - 70.5
PTv1 [151] 7.8M 5.7G 70.6 -
PointNext [86] 41.6M 84.8G 71.5 71.2
PointMeta [68] 19.7M 11.0 72.8 71.4
SparseCNN [39] - - 69.3 72.5
MinkUNet [22] - - 72.2 73.6
StraFormer [58] 8.02M 12.4G 74.3 74.7
BPNet [49] - - 73.9 74.9
PTv2 [124] 11.3M 14.3G 75.4 75.2

PointHR (ours) 7.1M 10.3G 75.4 76.6

Qualitative Results: We visually compare the predictions made by PTv2 [124]

and PointHR, as well as ground truths on Area 5 of S3DIS in Figure 5.3. As we

see that the “column" area is challenging since it usually looks very similar to the

“wall” area, but different only in shape. However, while both the “column” and

“wall” have a flat shape in short-range views, they exhibit distinct characteristics

in long-range perspectives. Specifically, the “column” takes on a cube-like shape,

which serves as a key feature for differentiation from the “wall”. Our PointHR

can effectively maintain high-resolution features and incorporate cross-scale

fusion within the network architecture. This enables better capture long-long

range contexts, which are crucial for accurate recognition on both internal and

boundary points of “columns”. Similar situations are observed on the “board”.

5.4.4 Results on ScanNetV2

Quantitative Results: Next we evaluate PointHR on the more challenging bench-

mark ScanNetV2. Similar to Han et al. [43], Liu et al. [72], Wu et al. [124] and
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Yang et al. [137], except for the results on validation set, we have further submited

our predictions on testing set to the official testing server. All the performances

using mIoU metric are reported in Table 5.2. Not surprisingly, PointHR delivers

another state-of-the-art performance 76.6%, which surpasses the current best

method, i.e., 75.2% from PTv2 [124] even with about 40% fewer parameters and

FLOPs (7.1M vs. 11.3M and 10.3G vs. 14.3G). In addition, PointHR directly

taking points as input also outperforms those voxel-input methods [49, 22] that

can conveniently use 3D convolutions. Note that BPNet [49] achieves 74.9%

using both point clouds and corresponding 2D images as input, which is still

inferior to PointHR that only works on points.

Qualitative Results: Figure 5.4 demonstrates the semantic segmentation results

obtained by PointHR on ScanNetV2. Our PointHR performs well on different

kinds of scenes such as office, bathroom, and bedroom. It is also worth noting

that PointHR can handle numerous objects in a scene well, as observed with the

many chairs surrounding the table being precisely segmented.

5.4.5 Ablation Studies

All ablation studies are conducted on the validation set of ScanNetV2.

Model Scalability: We investigate the scalability of PointHR by fixing Bi = 2,

Ki = 16 for all i ∈ {0, 1, 2, 3} and increasing modules M = (M1,M2,M3,M4)

and channels C = (C1, C2, C3, C4). Four different scales of PointHR are ob-

tained as demonstrated in Table 5.3. As we can observe, the overall trend is that

the metric mIoU increase as the model size grows. PointHR-S only marginally

outperforms PointHR-T with deeper depth, which we suspect is because only 16

channels for {Ci|i ∈ {1, 2, 3}} significantly limit the capacity of model. When

doubling the channels to 32 as PointHR-B, the performance is remarkably boos-

ted from 73.0% to 74.9%. We further increase the depth to get PointHR-L with

the best performance 75.4%.
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FIGURE 5.4. Visualization of point cloud segmentation by the
proposed PointHR on ScanNetV2. More illustrations are available
in Appendix 5.6.9.

TABLE 5.3. Ablation studies on model scalability.

Model (M1, · · · ,M4) (C1, · · ·C4) #Params FLOPs mIoU (%)

PointHR-T (1, 1, 2, 1) (64, 16, 16, 16) 0.6M 2.5G 72.7
PointHR-S (1, 1, 3, 2) (64, 16, 16, 16) 1.0M 2.8G 73.0
PointHR-B (1, 1, 3, 2) (64, 32, 32, 32) 3.9M 6.8G 74.9
PointHR-L (1, 1, 5, 4) (64, 32, 32, 32) 7.1M 10.3G 75.4

Sequence Operator: We explore three different sequence operators discussed

in Section 5.3.2, i.e., pure MLPs [68], vector attention [151], and grouped vector

attention [124] defined by Equation 5.6, 5.4, and 5.5 respectively. The results are

presented in Table 5.4 by comparing PointHR with the specific sequence operator
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TABLE 5.4. Ablation studies on different sequence operators
(SO). mlps: pure MLPs [68], va: vector attention [151], gva:
grouped vector attention [124]. HR denotes the high-resolution
architecture.

Method SO HR #Params FLOPs Val (%) Test (%)

PointMeta [68] mlps ✗ 19.7M 11.0G 72.8 71.4
PointHR-B mlps ✓ 2.3M 1.8G 74.2 -

PTv1 [151] va ✗ 7.8M 5.7G 70.6 -
PointHR-B va ✓ 3.4M 3.0G 74.6 -

PTv2 [124] gva ✗ 11.3M 14.3G 75.4 75.2
PointHR-B gva ✓ 3.9M 6.8G 74.9 -
PointHR-L gva ✓ 7.1M 10.3G 75.4 76.6

with its original method. As we can see from the first group, PointHR-B integ-

rated with mlps surpasses PointMeta [68] by 1.4% mIoU but with significantly

smaller parameters and FLOPs (2.3M vs.19.7M and 1.8G vs.11.0G) . Meanwhile,

PointHR-B with va improves the performance of PTv1 [151] by a large margin

4% with approximately half parameters and FLOPs. The above observations

confirm the effectiveness and generalization ability of PointHR.

Resampling Strategy: We compare the furthest point sampling plus KNN to

grid pooling under the model configuration PointHR-B. The FPS version named

as PointHR-B-FPS is also pre-computing the downsampling and upsampling

index for later fetching to make a fair comparison. It achieves 73.9% mIoU,

which is clearly inferior to 74.9% made by PointHR-B. Besides, the speed of

PointHR is about 40% faster than PointHR-B-FPS as it requires 244 V100 GPU

hours while PointHR-B-FPS needs 412 GPU hours. If the model becomes deeper

and increases the frequency of cross scale interactions, the gap on speed will

further grow.
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5.5 Summary

In this chapter, we explore high-resolution architectures for 3D point cloud seg-

mentation. To achieve this, we formulate the proposed PointHR in a unified

way using a sequence operator and a resampling operator, enabling use of those

off-the-shelf point cloud blocks and modules without additional efforts. Besides,

we propose to pre-compute the indices for knn collection and resampling opera-

tion to avoid on-the-fly computations, thus efficiently employing high-resolution

architectures. Comprehensive experiments on popular point cloud segmentaion

datasets, S3DIS [6] and ScanNetV2 [27], demonstrate the effectiveness of high-

resolution architectures for 3D dense point cloud analysis and also yield new

state-of-the-art performances.

5.6 Appendix

In this appendix, we begin by evaluating the proposed PointHR on ShapeN-

etPart [139] and ModelNet40 [125], respectively. Then we conduct ablation

studies on the decoder design. Next, the detailed per-category IoUs on the testing

split of ScanNetV2 are provided. Subsequently, we perform a memory analysis

on PointHR. After that, we demonstrate the details of pre-compute indices as

outlined in Section 5.3.3. Finally, we presenting the typical configurations table

of PointHR and deliver more additional visualizations.

5.6.1 Evaluation on ShapeNetPart

We have further evaluated the proposed PointHR on ShapeNetPart [139], which

stands as a widely recognized dataset employed for the task of point cloud part

segmentation. This dataset comprises 16,880 3D models, categorized into 16

distinct shape categories, such as “car" and “table". In the context of data

splitting, 14,006 models are designated for the training set, while the remaining
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TABLE 5.5. Results on ShapeNetPart.

Method #Params mIoU (%)

PointNet [83] 3.6M 83.7
PointNet++ [84] 1.5M 85.1
DGCNN [118] 1.3M 85.2
PointConv [123] - 85.7
ASSANet-L [85] - 86.1
PointMLP [78] 13.2M 86.1
PVCNN [73] - 86.2
PCT [41] - 86.4
KPConv [108] 14.3M 86.4
PTv1 [151] 7.8M 86.6
StraFormer [58] 8.0M 86.6
CurveNet [126] - 86.8
PointNeXt [86] 22.5M 87.0

PointHR (ours) 7.4M 87.2

2,874 models are reserved for the testing set. Notably, each category exhibits

a varying number of constituent parts, ranging from 2 to 6, yielding a total of

50 distinct parts across all categories. The reported evaluation metric is the

instance mean Intersection over Union (mIoU). Table 5.5 presents the results of

PointHR compared to previous methods. As observed, our PointHR achieves

state-of-the-art performance 87.2% with reasonable parameters 7.4M.

5.6.2 Evaluation on ModelNet40

Although PointHR is specifically designed for point cloud segmentation, it can

also be used for classification tasks with slight modifications. Specifically, we

modify the feature propagation direction in the decoder by changing it from

low-to-high to high-to-low, and then applying a global maxpooling. We evaluate

PointHR on ModelNet40 dataset [125], which serves as a canonical dataset

widely utilized for point cloud classification. This dataset comprises a total

of 9,843 CAD models allocated to the training set, with an additional 2,468
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TABLE 5.6. Results on ModelNet40.

Method Inputs #Points OA(%)

PointNet [83] xyz 1024 89.2
PointNet++ [84] xyz 1024 90.7
PointNet++ [84] xyz+norm 5000 91.9
PointCNN [66] xyz 1024 92.5
PointConv [123] xyz+norm 1024 92.5
KPConv [108] xyz 7000 92.9
DGCNN [118] xyz 1024 92.9
PointASNL [134] xyz 1024 92.9
PointNext [86] xyz 1024 93.2
PosPool [70] xyz 5000 93.2
PCT [41] xyz 1024 93.2
SO-Net [60] xyz 5000 93.4
PTv1 [151] xyz 1024 93.7
PointMLP [78] xyz 1024 94.1

PointHR (ours) xyz 1024 93.9

CAD models designated for the testing set. These models span across 40 dis-

tinct object categories. The primary evaluation metric employed for assessing

model performance is the overall accuracy (OA). We report the performance of

PointHR and other previous approaches in Table 5.6. Finally, PointHR achieves

comparable accuracy to previous state-of-the-art methods.

5.6.3 Decoder Design

TABLE 5.7. Strategies.

PointHR-T

Sum 71.6%

PG 71.9%

PGR 72.7%

For the decoder design, we conduct ablation studies

including 1) directly sum of different resolution fea-

tures; 2) progressively fusion of adjacent features; and

3) progressively fusion of adjacent features with the se-

quence operator for refinement, which are correspond-

ing to the Sum, PG and PGR of Table 5.7, respectively.

We choose PointHR-T as the baseline and perform corresponding experiments

on ScanNet under mIoU (%). As shown in Table 5.7, we find that progressively
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TABLE 5.8. Results of per-category IoU (%) on the testing set
from ScanNetV2 corresponding to Table 5.2.

Method mIoU bathtub bed bookshelf cabinet chair counter curtain desk door floor

PointNet++ [84] 55.7 73.5 66.1 68.6 49.1 74.4 39.2 53.9 45.1 37.5 94.6
RandLA-Net [48] 64.5 77.8 73.1 69.9 57.7 82.9 44.6 73.6 47.7 52.3 94.5
PointConv [123] 66.6 78.1 75.9 69.9 64.4 82.2 47.5 77.9 56.4 50.4 95.3
PointASNL [134] 66.6 70.3 78.1 75.1 65.5 83.0 47.1 76.9 47.4 53.7 95.1
KPConv [108] 68.4 84.7 75.8 78.4 64.7 81.4 47.3 77.2 60.5 59.4 93.5
CBL [105] 70.5 76.9 77.5 80.9 68.7 82.0 43.9 81.2 66.1 59.1 94.5
PointNext [86] 71.2 - - - - - - - - - -
PointMeta [68] 71.4 83.5 78.5 82.1 68.4 84.6 53.1 86.5 61.4 59.6 95.3
SparseCNN [39] 72.5 64.7 82.1 84.6 72.1 86.9 53.3 75.4 60.3 61.4 95.5
MinkUNet [22] 73.6 85.9 81.8 83.2 70.9 84.0 52.1 85.3 66.0 64.3 95.1
StraFormer [58] 74.7 90.1 80.3 84.5 75.7 84.6 51.2 82.5 69.6 64.5 95.6
BPNet [49] 74.9 90.9 81.8 81.1 75.2 83.9 48.5 84.2 67.3 64.4 95.7
PTv2 [124] 75.2 74.2 80.9 87.2 75.8 86.0 55.2 89.1 61.0 68.7 96.0
PointHR (ours) 76.6 79.0 82.3 88.1 74.9 87.1 58.7 91.8 65.5 68.5 97.3

Method other. picture refrig. shower. sink sofa table toilet wall window

PointNet++ [84] 37.6 20.5 40.3 35.6 55.3 64.3 49.7 82.4 75.6 51.5
RandLA-Net [48] 45.4 26.9 48.4 74.9 61.8 73.8 59.9 82.7 79.2 62.1
PointConv [123] 42.8 20.3 58.6 75.4 66.1 75.3 58.8 90.2 81.3 64.2
PointASNL [134] 47.5 27.9 63.5 69.8 67.5 75.1 55.3 81.6 80.6 70.3
KPConv [108] 45.0 18.1 58.7 80.5 69.0 78.5 61.4 88.2 81.9 63.2
CBL [105] 51.5 17.1 63.3 85.6 72.0 79.6 66.8 88.9 84.7 68.9
PointNext [86] - - - - - - - - - -
PointMeta [68] 50.0 24.6 67.4 88.8 69.2 76.4 62.4 84.9 84.4 67.5
SparseCNN [39] 57.2 32.5 71.0 87.0 72.4 82.3 62.8 93.4 86.5 68.3
MinkUNet [22] 54.4 28.6 73.1 89.3 67.5 77.2 68.3 87.4 85.2 72.7
StraFormer [58] 57.6 26.2 74.4 86.1 74.2 77.0 70.5 89.9 86.0 73.4
BPNet [49] 52.8 30.5 77.3 85.9 78.8 81.8 69.3 91.6 85.6 72.3
PTv2 [124] 55.9 30.4 76.6 92.6 76.7 79.7 64.4 94.2 87.6 72.2
PointHR (ours) 56.0 36.3 58.2 93.3 81.6 82.7 69.8 97.4 89.7 73.9

fusing adjacent features brings high performance, which can be further enhanced

by a following sequence operator for refinement. Hence, we opt for the final

decoder design as the default.

5.6.4 Detailed Results on ScanNetV2

We additionally provide the results of per-category IoU (%) on the testing split

of ScanNetV2 to complement the previous Table 5.2. All the results are obtained

from the official testing leaderboard1 and demonstrated in Table 5.8.

1https://kaldir.vc.in.tum.de/scannet_benchmark/semantic_
label_3d

https://kaldir.vc.in.tum.de/scannet_benchmark/semantic_label_3d
https://kaldir.vc.in.tum.de/scannet_benchmark/semantic_label_3d
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5.6.5 Pre-Computation

As discussed in Section 5.3.3, we propose to pre-compute the indices for knn

collection and resampling operation, which are saved to the cache to avoid on-the-

fly computations. Here, we provide an example to illustrate how to pre-compute

the resampling indices.

Taking the FPS with KNN resampling strategy as an example, we need to

compute the index mapping high-resolution to low-resolution for downsampling

and the index of K neighbors that interpolate low-resolution to high-resolution

for upsampling. Recall that these down- and upsampling operations are abundant

in PointHR. However, we found that the resampling operations in the later stages

includes those in the previous stages. For example, the index for downsampling

from the 2nd to the 3rd branch in stage 3 is the same as the 2nd to 3rd branch

in stage 4 because they share the same resolutions. As such, we can compute

all the mapping index, including both downsampling and upsampling index, in

stage 4, which covers resampling relationships of all the stages. Specifically,

in each iteration, we first downsample the input point clouds into four different

resolutions and calculate all the downsampling and upsampling indices between

these four resolutions. Thereafter, we feed the point cloud features, along with

the index, to the network. This enables resampling operations to fetch the

corresponding index to obtain down- and up-scale features, thereby speeding up

the whole process. We compared the training latency of one iteration with 3 batch

size in one V100 GPU for PointHR model with and without the precomputed

neighbor index. The results showed a latency of 1.86s and 2.18s, respectively.

Note that 100 epochs consist of approximately 360,000 iterations, indicating that

the precomputed neighbor index can save about 32 GPU hours for one training

process. A similar situation arises for employing grid pooling and unpooling.
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TABLE 5.9. Results of throughput

Method #Params (M) FLOPS (G) Val (%) Test (%) Thp. (ins./sec.)
PointMeta 19.7 11.0 72.8 71.4 71
PTv1 [151] 7.8 5.7 70.6 - 38
PTv2 [124] 11.3 14.3 75.4 75.2 39
StraFormer [58] 8.03 12.4 74.3 74.7 22
PointHR-T 0.6 2.5 72.7 - 32
PointHR-S 1.0 2.8 73.0 - 25
PointHR-B 3.9 6.8 74.9 - 21
PointHR-L 7.1 10.3 75.4 76.6 17

5.6.6 Speed Analysis

We have also compared the inference speed of PointHR with recent SOTA

methods in terms of Throughput (instance / second) in Table 5.9. The results

are shown in the following table, where we follow the same strategy as in

PointNext [86] using a V100 32GB GPU for all methods. As we can see, our

PointHR have a comparable Throughput with Stratified Transformer [58], which

is slower than PTv1/PTv2. As discussed in the original HRNet paper, different

branches in the same stage are currently evaluated in a sequential way (actually

a for-loop), since current deep learning packages usually lack the support of

multi-branch parallel computation. This can be a possible solution to further

improve the computational efficiency of high-resolution architectures.

5.6.7 Memory Analysis

TABLE 5.10. Comparisons on memory usage (G).

Method Memory(G) Method Memory(G)
PointNext [86] 43.14 PointHR-T 9.40
PointMeta [68] 20.38 PointHR-S 10.84
PTv1 [151] 15.13 PointHR-B 17.53
PTv2 [124] 21.50 PointHR-L 23.58

Since our PointHR maintains high-resolution branch throughout all the stage,

the memory usage would be a concern. However, two designs of PointHR
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significantly reduce the heavy memory cost. The first one is that the highest

resolution branch across all stage is N/S instead of N as illustrated in Figure 5.1,

where S = 6 in our experiments. The second strategy is that we employ a small

beginning feature dimension, e.g., the channel of the highest resolution is only 32

for PointHR-L as shown in Table 5.3. Here we provide a quantitative comparison

on memory usage between PointHR and recent state-of-the-art methods [86, 68,

151, 124] using 300K points as an example for input on a single GPU (because

both PTv2 [124] and PointHR use a batch of three point clouds with 100K points

per GPU). As shown in the Table 5.10, all the different configurations of PointHR

achieve the reasonable memory usage, e.g., the largest variant PointHR-L can be

trained on the 24GB GPU.

5.6.8 Configurations

The typical configurations of PointHR are defined by the number of modules

Mi, blocks Bi, neighbors Ki, and channels Ci as shown in Table 5.11. These

correspond to the pipeline illustrated in Figure 5.1 and Equation 5.1.

TABLE 5.11. The typical PointHR configuration. SO: sequence
operator; S: scale factor; Mi: the number of modules; Bi: the
number of blocks; Ki: the number of neighbors; Ci: the number
of channels.

Res. Stage 1 Stage 2 Stage 3 Stage 4

S×
[

SO,K1,C1

]
×B1×M1

[
SO,K2,C2

]
×B2×M2

[
SO,K3,C3

]
×B3×M3

[
SO,K4,C4

]
×B4×M4

S2×
[

SO,K2,2C2

]
×B2×M2

[
SO,K3,2C3

]
×B3×M3

[
SO,K4,2C4

]
×B4×M4

S3×
[

SO,K3,4C3

]
×B3×M3

[
SO,K4,4C4

]
×B4×M4

S4×
[

SO,K4,8C4

]
×B4×M4

5.6.9 Visualizations

More visualizations on S3DIS and ScanNetV2 are illustrated in Figure 5.5

and 5.6. Thanks to its multi-scale characteristic, the proposed PointHR is capable
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of predicting accurate semantic categories for point clouds even on challenging

scenes. For example, PointHR segments the difficult boundaries such as legs of

chairs and tables precisely, and also makes smooth predictions on the inner area

of large objects like board.

Input Ground Truth PointHR

floor wall beam column window door

table chair sofa

ceiling

bookcase board clutter

FIGURE 5.5. Visualizations of point cloud segmentation by Poin-
tHR on S3DIS. From left to right: input, ground truth, and predic-
tions made by PointHR.
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Input Ground Truth PointHR

sink

toilet

bathtub

wall

cabinet 

bed

chair
sofa

table

door
window 

bookshelf 

floor

picture

counter
desk

curtain
refrigerator 

shower curtain 

other furniture  

FIGURE 5.6. Visualizations of point cloud segmentation by Poin-
tHR on ScanNetV2



CHAPTER 6

Conclusions

This chapter presents a comprehensive summary of the contributions discussed

in the preceding chapters, while also proposing promising directions for future

research.

6.1 Contributions

This thesis centers on the research of effective representation learning for com-

prehensive point cloud scene understanding. It addresses three key challenges:

interpreting the complex space structure, capturing sufficient contextual informa-

tion, and perceiving multi-scale objects. Previous methods have either focused on

learning plain representations that only emphasize local details or a certain scale

of the scene [83, 151], or have not adequately explored fused representations for

learning [84, 58]. Consequently, these limitations have resulted in suboptimal

solutions for scene understanding. To tackle these issues, the thesis introduces

three complementary approaches that involve learning composite representations

using different schemes, namely multi-view fusion, short-long range integration,

and multi-scale communication.

A novel Geometric Flow Network (GFNet) has been developed for multi-view

composite representation learning, enabling a comprehensive interpretation of the

complex space structure of 3D point clouds. To facilitate the flow of geometric

correspondence information across different views, the GFNet incorporates a

geometric flow module. Additionally, grid sampling and KPConv have been
99
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integrated into the network to eliminate time-consuming and non-differentiable

post-processing. This enables end-to-end training and testing of the GFNet,

enhancing both efficiency and effectiveness.

To capture sufficient contextual information, a collect-and-distribute mechanism

has been proposed, integrating short-range and long-range clues. This mechanism

builds the CD Block module, which enables the simultaneous capture of both

short-range and long-range contexts. Consequently, it allows for the learning of

comprehensive local-global contextual composite representations of point clouds.

Moreover, the thesis enhances position clues dynamically through context-aware

position encoding, improving the communication among point features.

In order to fully perceive multi-scale objects, a new high-resolution framework

named PointHR has been introduced. PointHR maintains multiple resolutions

simultaneously and facilitates frequent communication between all resolutions

within each stage. This enables the learning of multiple scales of information.

The proposed PointHR framework is formulated in a unified manner, utilizing a

sequence operator and a resampling operator. This formulation allows for the

utilization of off-the-shelf point cloud blocks and modules without additional

effort. Furthermore, the thesis proposes the pre-computation of indices for

knn collection and resampling operations to efficiently employ high-resolution

architectures, avoiding on-the-fly computations.

In summary, the research works described address the challenges of interpret-

ing complex space structures, capturing sufficient contextual information, and

perceiving multi-scale objects in point cloud scene understanding. These con-

tributions collectively advance the field of learning effective representations for

comprehensive point cloud scene understanding.
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6.2 Future Research

The current research on composite representation learning for 3D scene under-

standing primarily focuses on point clouds as a single modality. However, there

is potential to further enrich the fused representations by incorporating other

modalities such as images and texts.

In terms of the image modality, 2D and 3D data offer complementary information.

2D images provide detailed texture and color information, while 3D point clouds

provide valuable shape and geometry knowledge. To effectively learn composite

representations involving both images and point clouds, it is necessary to establish

geometric correspondences and alignments to learn effective representations.

With regard to the text modality, text descriptions can provide additional semantic

clues to facilitate comprehensive scene understanding of 3D point cloud scenes.

Inspired by the achievements of large language models (LLMs) [9, 109, 110] and

large multimodal models (LMMs) [61, 93, 154], pretrained text representations

exhibit excellent robustness and generalization abilities. Therefore, incorporating

text modality can enhance the capability of vanilla point cloud representations to

handle unseen scenarios.
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