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ABSTRACT 

The potential of GC-TOF MS for screening anthropogenic organic contaminants in human 

breast adipose tissues has been investigated. Initially a target screening was performed for a 

list of 125 compounds which included persistent halogen pollutants (OC pesticides, PCBs, 

PBDEs), PAHs, alkylphenols, and a notable number of pesticides from the different 

fungicide, herbicide and insecticide families. Searching for target pollutants was done by 

evaluating the presence of up to five representative ions for every analyte, all measured at 

accurate mass (20 mDa mass window). The experimental ion abundance ratios were then 

compared to those of reference standards for confirmation. Sample treatment consisted of an 

extraction with hexane and subsequent normal-phase HPLC or SPE clean-up. The fat-free LC 

fractions were then investigated by GC-TOF MS.  

Full-spectral acquisition and accurate mass data generated by GC-TOF MS also allowed the 

investigation of non-target compounds using appropriate processing software to manage MS 

data. Identification was initially based on library fit using commercial nominal mass libraries. 

This was followed by comparing the experimental accurate masses of the most relevant ions 

with the theoretical exact masses with calculations made using the elemental composition 

calculator included in the software. 

The application of both target and non-target approaches to around 40 real samples allowed 

the detection and confirmation of several target pollutants including p,p’- DDE, HCB, and 

some PCBs and PAHs. Several non-target compounds that could be considered anthropogenic 

pollutants were also detected. These included 3,5-di-tert-butyl-4-hydroxy-toluene (BHT) and 

its metabolite 3,5-di-tert-butyl-4-hydroxybenzaldehyde (BHT-CHO), dibenzylamine, n-butyl 

benzenesulfonamide, some naphthalene-related compounds and several PCBs isomers not 
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included in the target list. As some of the compounds detected are xenoestrogens the 

methodology developed in this paper could be useful in human breast cancer research. 
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INTRODUCTION 

Human exposure to environmental contaminants has been widely reported in the literature in 

the last few decades. Many of these contaminants, e.g. those known as persistent organic 

pollutants (POPs), are lypophilic in nature and their presence in the environment and fatty 

food is well documented. Contaminants like organochlorine (OC) pesticides, polychlorinated 

biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), polyaromatic hydrocarbons 

(PAHs) and alkylphenols, are frequently present in the environment and tend to 

bioaccumulate through the food chain. Consequently, these pollutants are commonly detected 

in human samples and, in some cases, their estrogenic potency has been reported [1, 2, 3, 4]. 

As a result, human exposure to these pollutants is a public concern for the general population 

and occupationally exposed people.  

Robust and advanced methodology becomes necessary to investigate and confirm the 

presence of these pollutants in biological samples. A wide number of analytical 

methodologies and instrumentations are available nowadays, in most cases making use of gas 

chromatography (GC) combined with mass spectrometry (MS). GC-MS, operating in selected 

ion monitoring (SIM) mode, has been the most widely used in the determination of organic 

micro pollutants in environmental, food and biological samples. However, the analysis of 

complex matrices is still problematic due to interferences from matrix components, and the 

low selectivity of single quadrupole may not be sufficient for a reliable quantification and 

confirmation of the analyte. The special features of tandem mass spectrometry (MS/MS), 

using ion trap detectors (ITD) or triple quadrupole (QqQ) analyzers, has allowed the reduction 

and even the elimination of many of these interferences, with a notable improvement of 

selectivity. Tandem MS also offers better sensitivity and lower limits of detection by means 

of achieving appropriate precursor and product ion selection, thanks to the lower chemical 

noise in the chromatograms and much better signal-to-noise ratios. In recent years both 
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analyzers (ITD and QqQ) have been applied to multiresidue determination of organic 

pollutants in biological samples [5, 6, 7, 8, 9]. 

An inherent limitation of MS/MS techniques is their inability to detect untargeted compounds 

for which no data is acquired unless additional analysis is performed. Thus, it is not feasible 

to perform a search of compounds in a “post-target” way, i.e. investigating the presence of 

analytes (different to those pre-targeted) after MS data acquisition
 
[10, 11]. Contrary to this, 

full spectrum techniques offer the advantage of performing retrospective analysis. That is a 

careful examination of old raw data sets looking for ions of other residues without the need to 

re-analyze the samples, provided a residue has passed the sample preparation, 

chromatographic separations and ionisation process with sufficient efficiency [12]. High-

resolution time of flight mass spectrometry (TOF MS) is becoming an attractive and 

alternative full-spectrum technique for this purpose against traditional instruments such as 

double-focusing magnetic sectors. This technique which is highly expensive and needs highly 

skilled operators, has been employed for many years and is still being used to identify non-

target compounds in samples using ion composition elucidation [13,14]. In addition, the 

investigation of non-target compounds using TOF MS is also possible using appropriate 

processing software making it feasible to manage the huge amount of data generated for 

samples. The unrivalled full spectrum sensitivity of this technique, together with its elevated 

mass resolution and excellent mass accuracy [15] make TOF MS very attractive for the rapid 

screening of target and non-target compounds and for their reliable accurate mass 

confirmation.  

Our own research group has recently shown that GC-TOF MS allows a rapid and automatic 

accurate mass screening of target analytes using eXtracted Ion Chromatograms with narrow 

mass window (micro-window-XICs (mw-XICs) or narrow-window-XICs (nw-XICs)) to 

remove the chemical background and highly improve selectivity in the analysis of complex 
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matrices [16, 17]. For non-target analysis, the possibility of discovering the presence of 

compounds that had not been included in the initial target list is undoubtedly an attractive and 

challenging application that becomes more and more necessary as the number and type of 

organic contaminants in the environment continually increases. The use of component 

detection algorithms (CODA) and deconvolution software is required to both identify the 

presence of multiple components, and to deconvolute mass spectra for each individual 

component to be subsequently searched for in a commercial or home-made library. Accurate 

mass measurements notably facilitate the elemental composition calculation for every 

component which reduces the list of candidates, and makes the elucidation process of non-

target compounds friendlier and helps solve ambiguous results in the library search. 

Until now very few papers have been published dealing with trace analysis by GC-high-

resolution TOF MS, and all have appeared within the last decade, which provides evidence of 

the novelty of this subject. GC-TOF MS applications have been described for the 

determination of PBDEs, pesticides, PAHs and PCBs in different environmental matrices [16, 

17, 18, 19]. Other works deal with the determination of PBDEs, xenoestrogens, or flavour 

research in biological samples [5, 20, 21], or pesticides in food [22]. Recently, Čajka and 

Hajšlova reviewed the application of GC-TOF MS in food analysis [23]. 

The aim of this work is to investigate the capabilities of GC-TOF MS for screening a list of 

125 target organic pollutants in human adipose breast tissues. Around 30 persistent halogen 

pollutants, for which the extraction and cleanup procedure had been optimized in a previous 

work [5], have been investigated as “pre-target” analytes and the results have been compared 

to previous data obtained by GC-(QqQ)MS/MS. Then, making use of the full spectral 

acquisition data acquired, and without re-analyzing the samples, around 100 more 

contaminants, including other PCBs, PBDEs, PAHs, alkylphenols, and a notable number of 

pesticides, like insecticides (organophosphates, carbamates and pyretroids), herbicides 
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(triazines and chloroacetanilides) and fungicides, have been selected to perform a “post-

target” screening of real-world samples. Finally, searching unknown compounds present in 

breast tissue (non-target analysis) was carried out using CODA, deconvolution potential and 

the valuable accurate mass information provided by TOF MS. 

 

EXPERIMENTAL 

Reagents 

In relation to the list of target analytes, reference standards of pesticides, octyl/nonyl phenols, 

PCBs (Mix 3, 100 µg/mL in cyclohexane) and PAHs (Mix 25, 100 µg/mL) were purchased 

from Dr. Ehrenstorfer (Augsburg, Germany). Acenaphthene and naphthalene (Fluka, Buchs, 

Switzerland) and fluoranthene (Riedel de Haen, Seelze, Germany) were also used. Standards 

of PBDEs (50 g/mL in nonane) were obtained from Wellington Laboratories (Guelph, 

Ontario, Canada). In the case of solid reference standards, stock solutions (around 500 g/mL) 

were prepared by dissolving reference standards in acetone and stored in a freezer at –20C. 

Working solutions for sample fortification and for injection in the chromatographic systems 

were prepared by diluting stock solutions in n-hexane. 

Ethyl acetate, acetone and n-hexane were ultra-trace quality and purchased from Scharlab 

(Barcelona, Spain). Anhydrous sodium sulfate of pesticide residue quality (Baker, Deventer, 

Holland) was dried for 18 hours at 300C before use. 

Three isotopically labeled surrogates were used: hexachlorobenzene (HCB)-
13

C6 (Cambridge 

Isotope Labs, Inc. Andover, MA, USA), p,p’-DDE-D8 and β-endosulfan-D4 (Dr. Ehrenstorfer). 

Working solutions of labeled standards (1µg/mL) were prepared by dilution of stock 

solution with hexane and stored at 4ºC. 
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Samples 

Human breast tissues were obtained from women with breast cancer. Samples were collected 

from volunteer women at the Cancer Foundation's Oncology Institute in Valencia (FIVO). 

Adipose tissues were obtained from biopsies taken during breast surgery. For this study 

informed, written consents were obtained from the women beforehand. Samples were 

collected in sterilized polyethylene recipients, identified (devoid of personal identifiers) and 

immediately frozen. Two different samples were collected from each woman: adipose breast 

tissue and tumor fragment; with a total of 42 samples being analyzed, corresponding to 21 

patients. 

 

Instrumentation 

The normal-phase (NP) HPLC system used for sample cleanup was based on our previous 

work [5]. For the GC instrumentation, an Agilent 6890N GC system (Paloalto, CA, USA) 

equipped with an Agilent 7683 autosampler was coupled to a time-of-flight mass 

spectrometer, GCT (Waters Corporation, Manchester, UK), operating in electron ionization 

(EI) mode. The GC separation was performed using a fused silica HP-5MS capillary column 

with a length of 30 m x 0.25 mm i.d. and a film thickness of 0.25 m (J&W Scientific, Folson, 

CA, USA). The oven temperature was programmed as follows: 90ºC (1 min); 5ºC/min to 

300ºC (2 min). Splitless injections of 1 L sample were carried out. Helium was used as 

carrier gas at 1 mL/min. 

The interface and source temperatures were both set to 250ºC and a solvent delay of 3 

minutes was selected. TOF MS was operated at 1 spectrum/s acquiring the mass range m/z 50-

650 and using a multi-channel plate voltage of 2700V. TOF-MS resolution was about 8500 

(FWHM) at m/z 612. Heptacosa, used for the daily mass calibration as well as lock mass, was 
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injected via syringe in the reference reservoir at 30ºC for this purpose. The m/z ion monitored 

was 218.9856. The application manager TargetLynx, a module of MassLynx software, was 

used to process the qualitative and quantitative data obtained from standards and samples for 

target compounds. The application manager ChromaLynx, also a module of MassLynx 

software, was used to investigate the presence of non-target compounds in samples. Library 

searching was performed using the commercial NIST library. 

Analytical procedure 

Sample preparation and extraction 

Between 0.1 and 0.5 g of tissue sample was spiked with 0.5 mL isotopically labeled surrogate 

solution (500 ng/mL), then homogenized with 5-10 g anhydrous sodium sulfate and extracted 

three times with 5 mL of n-hexane each time, shaking in vortex. After filtration, the extract 

was pre-concentrated under a gentle nitrogen stream at 40ºC, and the final residue was 

adjusted to 5 mL (normal-phase HPLC cleanup) or to 10 mL with hexane (SPE cleanup) 

depending on the subsequent cleanup applied. 

Cleanup Procedure 

Two cleanup methodologies were applied to the sample hexanic extracts, both based on our 

previous works [5, 8].  

28 samples (14 samples of adipose breast tissue and 14 of tumoral fragment from 14 patients) 

were submitted to HPLC cleanup with a silica column, using two complementary procedures, 

and injecting 1 mL of hexanic extract into the LC system in each case [5]. The mobile phase 

was n-hexane (procedure A) or n-hexane/ethyl acetate (95:5 v/v) (procedure B), at a flow rate 

of 1 mL/min. In both procedures, after 16 min of injecting the sample extract, a pulse of 4 mL 

of ethyl acetate was introduced. Fractions eluting between minutes 1 and 17 (procedure A), 

and between minutes 4 and 17 (procedure B), were collected and preconcentrated under a 



 10 

gentle nitrogen stream at 40ºC down to 1 mL. The two final cleaned-up extracts were injected 

separately into the GC-TOF MS instrument. 

14 samples (7 samples of adipose breast tissue and 7 of tumoral fragment from 7 patients) 

were submitted to SPE cleanup [8]. 10 mL of the sample hexanic extract was passed through 

the silica SPE cartridge previously conditioned by passing through 6 mL of hexane. The first 

3 mL was discarded and the rest, approximately 7 mL, was collected together with an 

additional fraction eluted with another 3 mL of hexane. The cleaned-up extract was 

preconcentrated to dryness under a gentle nitrogen stream at 40ºC and redissolved in 0.5 mL 

of hexane before GC-TOF MS analysis. This SPE procedure led to more concentrated extracts 

(0.2-1 g sample/mL) in comparison to the HPLC cleaned-up extracts (0.02-0.1 g sample/mL). 

 

RESULTS AND DISCUSSION 

In our previous work, a number of human breast tissue samples were extracted with hexane 

and purified by the two complementary NPLC cleanup procedures. Target analyses were 

performed by GC-(QqQ)MS/MS for around 30 organohalogen xenoestrogen compounds. The 

application of this methodology led to the detection and quantification of low levels of several 

analytes, mainly p,p’-DDE, HCB, β-HCH and some PCBs [5]. 

In the present work, we reanalyzed 28 of these samples by GC-TOF MS to confirm the 

presence of the analytes found by GC-(QqQ)MS/MS. Furthermore, taking advantage of the 

full spectrum acquisition in TOF MS, the presence of some other selected compounds was 

also investigated in a “post-target” way, without re-analyzing the samples [10, 24]. In 

addition, the elucidation of several unknown compounds (non-target analytes) was tested. The 

methodical approach previously developed for screening and confirmation of organic 

micropollutants in water [16, 17] was applied in this paper for searching target and non-target 

anthropogenic contaminants in human breast adipose tissues. 
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In addition another 14 sample extracts were cleaned-up by SPE and analyzed by GC-TOF MS 

applying both target and non-target approaches. Final extracts were more concentrated in 

these samples compared to those of HPLC clean-up, which facilitated the detection of non-

target contaminants as will be shown in the next sections. 

 

Target screening 

GC-TOF MS confirmation of target analytes in samples was carried out by obtaining up to 5 

micro window eXtracted Ion Chromatograms (mw-XIC), with a mass window of 0.02 Da, at 

selected m/z ions for every compound. The software application TargetLynx
TM

 was employed 

to automatically process data and to confirm the identity of target compounds detected in 

samples. Analyte confirmation was performed by comparing the experimental Q/q intensity 

ratios in samples with the theoretical ones, calculated from injection of standards in solvent. 

Q/q was the ratio between the most abundant ion (Q, quantitative) and every one of the other 

measured ions (q, confirmative). The presence of at least 2 ions measured at their accurate 

mass and the attainment of their Q/q intensity ratio within specified tolerances was required 

for the reliable confirmation of target analytes. Maximum deviations accepted were based on 

the European Commission Decision (2002/657/EC) [25], as it has been applied in previous 

works [5, 17, 26, 27, 28]. 

As stated in the introduction section, the sensitive full spectrum acquisition is feasible 

together with accurate mass measurements when working with TOF MS. This makes the 

application of two different approaches possible when facing target analysis [16, 17]: a) “pre-

target” analysis, where the compounds are selected before analysis, reference standards are 

normally injected, and the methods are fully validated making quantification feasible in most 

of cases; b) “post-target” analysis, where the compounds are selected and searched after MS 

data acquisition. In this way, there is almost no limitation to the number of compounds that 
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can be investigated, but obviously they have to achieve the GC and MS analysis requirements. 

Typically, a “post-target” analysis is focused on identification and/or confirmation of 

compounds detected, not on quantification, and reference standards are not necessarily 

injected as the abundant and rich information provided by the instrument is sufficient for the 

identification of the compound.  

In the present work, around 30 organic micropollutants (OC pesticides, PCBs and PBDEs), 

for which the extraction and cleanup procedures were previously validated using GC-

(QqQ)MS/MS for measurements, were selected as “pre-target” analytes. Once the samples 

were analyzed, a notable number (around 100 compounds) of organic contaminants (other 

PCBs and PBDEs, PAHs, alkylphenols and other pesticides) were also searched for after MS 

acquisition (“post-target” analysis). Supporting information (Table S-1 shows the list of 

target compounds selected in this work). 

Regarding “pre-target” analysis, all reference standards were available because the sample 

procedure had previously been validated. Calibration standards were injected into the GC-

TOF MS to evaluate the sensitivity of this technique and to estimate the lowest concentration 

for which the correct identification of the compound was experimentally feasible. This was 

done by measuring at least two ions with their Q/q ratio falling within specified tolerances 

[17]. In spite of the fact that TOF sensitivity in full acquisition is excellent, detection and 

confirmation of compounds was not feasible at concentrations as low as is possible using 

triple quadrupole working in SRM mode (see Table 1). As a consequence, the majority of the 

previous GC-(QqQ)MS/MS positive findings were confirmed by GC-TOF MS with the 

exception of those samples where analyte concentrations were below the detection 

capabilities of TOF MS. As Table 1 shows, all positives of p,p’-DDE and 95% of the 

positives of HCB, β-HCH and PCB 153 were confirmed by TOF MS, as their concentration 

levels were high enough to be confirmed by this technique (>10 ng/g for p,p’-DDE, HCB and 
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PCB 153; and >50 ng/g for β-HCH). Contrary to this, the presence of oxychlordane, PCB 

101, p,p’-DDD, p,p’-DDT and mirex could not be confirmed by TOF MS due to their low 

concentrations in samples (<10 ng/g for mirex and PCBs 101 and 153; <50 ng/g for 

oxychlordane and p,p’-DDD; and <250 ng/g for p,p’-DDT).  

Among the remaining 66 positives (trans-nonachlor, PCBs 28, 118, 138 and 180), up to 41 

were confirmed by TOF MS. In all cases where confirmation was not feasible, the reason was 

the lower sensitivity of this technique, as analyte concentrations were below 10 ng/g for PCBs 

28, 118, 138 and 180 and below 50 ng/g for trans-nonachlor. As an illustrative example, 

Figure 1 shows the extracted ion chromatograms (GC-TOF MS) and the SRM 

chromatograms (GC-(QqQ)MS/MS) for two positives of p,p’-DDE (445 ng/g) and HCB (428 

ng/g) that were detected in an adipose tissue sample and could be confirmed by the two 

techniques. In both cases, the presence of chromatographic peaks at expected retention time 

and the attainment of all Q/q ratios when comparing to the reference standard allowed the 

confirmation of these findings in the samples. Additionally, the corresponding EI accurate 

mass spectra generated by TOF MS are shown. Mass errors for five representative ions were 

typically below 1.5 mDa, which gave more confidence to the confirmation process. 

The complete spectral information acquired by GC-TOF MS allowed us to perform a “post-

target” analysis. Thus, a strategy previously applied at our laboratory [17] was used for the 

determination of almost 100 compounds in the 42 samples processed. Among all the 

compounds investigated, four PAHs (naphthalene, phenanthrene, fluoranthene and pyrene) 

and six PCB congeners were detected in several samples (Table 1). Figure 2 shows 

illustrative XICs for PCB 157, naphthalene and pyrene detected in adipose tissue samples. In 

addition to the accurate mass measurements, reliable confirmation was feasible as all Q/q 

ratios were within specified tolerances. Experimental EI accurate mass spectra generated by 

TOF MS led to mass errors for five representative ions always below 1.9 mDa. None of these 
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compounds were determined previously by GC-(QqQ)MS/MS, as their optimal SRM 

transitions had not been acquired when analyzing the samples. 

 

Non-target screening 

In this work, non-target screening in human breast tissue extracts was carried out by applying 

the ChromaLynx
TM 

Application Manager. This software automatically detected peaks with a 

response over user-defined parameters, displayed their deconvoluted mass spectra to be 

searched in the library, and produced a hit list with positive matches (library match >700 was 

used as criterium). The formulas from the library hit were submitted to the elemental 

composition calculator and the 5 most intense ions were scored by exact mass measurement 

for the confirmation/rejection of the finding [17]. 

All samples analyzed were processed using the described software. As shown in Table 1, 

several of the “pre-target” compounds were confirmed using this approach, in spite of the fact 

that no information or restriction was entered into the system, i.e. treating all compounds as 

actual unknowns. It is worth noting that the methodology employed was able to detect 

unknown components which were subsequently confirmed to be well known OC 

contaminants. Most of detections corresponded to HCB, p,p´-DDE and PCB 138, 153 and 180. 

The main limitation of this approach was its lower capability to discover the presence of 

components present at low concentrations in samples, only leading to satisfactory results in 

those cases where the components signal was significantly higher than background levels [17]. 

Obviously, this methodology is less powerful at low concentrations than target methods that 

have been purpose developed and validated, searching for the optimum analytical conditions 

for a limited number of target analytes. However, there are evident advantages for screening 

purposes because of much wider possibilities for detecting many other contaminants that 

would remain ignored in a target analysis.  
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The automated library search using extensive libraries (e.g. NIST) led to a large list of 

compounds identified using the non-target approach. Within this large list, only a few not 

included as target analytes were considered as potential contaminants (Table 1). Thus, 3,5-di-

tert-butyl-4-hydroxy-toluene (BHT) was identified in 31 out of 42 samples. BHT is a 

synthetic, highly lipid-soluble antioxidant added in rubber, petroleum products and plastics, 

which is commonly used for preservation of food, cosmetics and other lipid-containing 

products. This antioxidant has exhibited contradictory actions on cancer growth as it has been 

shown to inhibit growth in some studies, and increase it in others. Therefore its toxicological 

implications are in permanent revision [29]. Several studies have already proven the presence 

of this compound in the aquatic environment [30, 31], food [32, 33, 34] and in adipose tissue 

[35]. Some of its metabolites, such as 3,5-di-tert-butyl-4-hydroxybenzaldehyde (BHT-CHO) 

and the dimer of BHT, 1,2-bis-(3,5-di-tert-butyl-4-hydroxyphenyl)ethane (2-BHT) seem to 

cause a human health risk. In our work, the metabolite BHT-CHO was also identified in one 

adipose tissue sample. Figure 3 shows the positive finding of BHT-CHO in adipose tissue 

sample. In this case, two library spectra fitted with the experimental spectrum (forward match 

of 724 for BHT-CHO, and 705 for 2,6-bis(1,14-dimethylethyl)-4-ethyl-phenol). However, the 

accurate mass scoring, automatically performed by the software for four representative ions 

led to the confirmation of the identity of BHT-CHO with mass errors below 2 mD for three 

ions, and 3.2 m Da for the fourth. Mass errors were automatically calculated and they 

corresponded to the difference between the experimental accurate masses of the ions and the 

theoretical exact masses given by the elemental composition calculator.  

N-butyl benzenesulfonamide (N-BBSA) used in polyamide and copolyamide plastics and in 

the manufacturing of sulfonyl carbamate herbicides, was found in one adipose tissue sample. 

Several authors have reported the presence of this compound, considered as neurotoxic to 

laboratory mammals, in the aquatic environment [36, 37, 38]. Figure 4 shows the positive 
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finding of N-BBSA in an adipose tissue sample using the non-target approach. In this case, 

two library spectra fitted with the experimental one (forward match of 727 for N-BBSA, and 

695 for bensulide), with low mass errors ( 2.4 mDa) for the three most abundant ions for 

both possible candidates, making the selection of the right structure troublesome. However, 

using a software option based on an isotope prediction filtering (i-FIT) of the sulfur atom, it 

was possible to discard the wrong structure. The filtering was carried out for two fragments 

with different number of sulfur atoms in the candidates (m/z1 141.0033 and m/z2 170.0300). 

As shown in Figure 4, both selected fragments fitted better with the presence of only one 

sulfur atom in the molecule (the lower the i-FIT value the better the fit). Consequently, N-

BBSA was selected as the appropriate structure which was subsequently confirmed by the 

retention time match when injecting a reference standard in solvent. 

Two naphthalene-related compounds (2-methylnaphthalene and 1,2-dimethylnaphthalene) 

were also identified in a few samples (Table 1). The bioaccumulation of these PAHs in 

mussels has been investigated by other authors [39]. Additionally, positive findings of other 

PCB congeners, not included in the “pre-target” and “post-target” list, were detected in 

several samples. As no standards of these PCB congeners were available in the laboratory, the 

identification of each individual congener was not feasible using retention times, but the 

library fit and the accurate mass confirmation of up to five ions allowed confirmation of these 

congeners which contained 4, 5, 7 and 8 chlorine atoms.  

In addition, 10 of the samples were submitted to a second extraction with 5 mL ethyl acetate 

after extraction with hexane. After preconcentration to 1 mL, the ethyl acetate extracts were 

directly injected into the GC-TOF MS for both target and non-target analysis, with the 

objective of investigating the presence in the samples of more polar compounds. N-

(phenylmethyl)-benzenemethanamine, also called dibenzylamine, a thermal decomposition 

product of the vulcanization agent zinc dibenzyldithiocarbamate and a possible precursor to 
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the formation of N-nitrosodibenzylamine [40], was discovered in 4 out of 10 ethyl acetate 

extracts. Dibenzylamine has been also found by other authors in artificial saliva leachates 

from baby bottle teats [40]
 
and in human-plasma and urine samples [41]. Figure 5 shows a 

positive of dibenzylamine in an adipose tissue sample when using CODA and the 

deconvolution process. Accurate mass confirmation automatically performed by the software 

for four representative ions led to the confirmation of the identity of dibenzylamine with mass 

errors always below 3.4 mDa. For additional confirmation, a standard of this compound was 

acquired and injected in the system to check the retention time and spectrum and to 

unequivocally confirm the presence of this compound in the sample (see Figure 5). 

 

CONCLUSIONS 

GC-TOF MS has been proven to be a rapid and efficient technique for the screening and 

confirmation of anthropogenic contaminants in human breast adipose tissues. The evaluation 

of up to 5 micro window-extracted ion chromatograms (0.02 Da) at selected m/z ions and the 

attainment of their Q/q intensity ratios allowed the detection of several target compounds 

(HCB, -HCH, p,p’-DDE, trans-nonachlor, and some PCBs). These were within a group of 

30 selected analytes for which the extraction and cleanup procedures had been previously 

validated. Additionally, after MS data acquisition, the presence of around 100 additional 

compounds was investigated in a “post-target” way, without the need to reanalyze the samples. 

In this way, several PAHs (naphthalene, phenanthrene, fluoranthene, pyrene) and some PCB 

congeners (114, 123, 156, 157, 167 and 189) were found in several samples. In both cases, 

searching for the presence of the ions, measured at accurate mass, was performed in an 

automated and simple way using potent software. From the list of 30 “pre-target” analytes, a 

total number of 187 positives found in previous analyses performed in human breast tissues 

by GC-(QqQ)MS/MS with triple quadrupole were investigated by GC-TOF MS. 134 of these 
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positives were confirmed by GC-TOF MS, the difference being due to the lower sensitivity of 

this technique compared to GC-(QqQ)MS/MS in SRM mode, which hampered some 

detections at low analyte concentrations. However, the possibility of performing a “post-

target” screening as a consequence of the full spectrum acquisition in TOF MS allowed the 

identification of other selected contaminants, like some PAHs and other PCB congeners, 

which had not been included in the initial list of target analytes and consequently could not be 

investigated by GC-MS/MS, in this way illustrating the potential of GC-TOF MS for 

screening purposes.  

The application of a component detection algorithm (CODA) and subsequent deconvolution 

software has been found to be an attractive way to perform non-target screening. This has 

allowed the discovery of several compounds that were not included in any of the lists of target 

analytes, like BHT, BHT-CHO, dibenzylamine, N-BBSA, 1,2-dimethylnaphthalene, 2-

methylnapththalene and other PCB congeners. The methodology applied in non-target 

analyses also allowed the detection and confirmation of a notable number of positives found 

in previous target analyses, i.e. the system was able to detect and confirm several compounds 

present in samples in spite of the fact that they were treated as unknowns. These findings 

were only feasible when analyte concentration was relatively high. Thus, the screening of 

anthropogenic contaminants in biological samples, where samples and analytes are treated as 

unknowns using component detection algorithm and deconvolution software, may not be 

completely satisfactory at the moment as the success of this approach gets notably worse at 

low concentrations. Both target analysis, focused on priority contaminants, and non-target 

analysis, is complementary and both are required to obtain the maximum sample composition 

information possible. 

The use of non-specific libraries (e.g. NIST) leads to a large list of possible components in the 

samples, the majority of them irrelevant for the screening purposes. This fact makes the 
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selection of “relevant” compounds arduous for the analyst, as lists of many potential 

candidates have to be reviewed before the presence of anthropogenic contaminants can finally 

be reported. The availability of specific libraries purpose made for the type of research 

performed would make the work more user-friendly and would facilitate the discovery of 

contaminants in samples. 
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FIGURE CAPTIONS 

Figure 1. (A) GC-TOF MS extracted ion chromatograms at different m/z (mass window 0.02 

Da) for “pre-target” p,p’-DDE and HCB detected in adipose breast tissue. (B) GC-

(QqQ)MS/MS chromatograms for p,p’-DDE and HCB in the same sample as in (A). (C) 

Experimental EI accurate mass spectra.  

Q, quantitative ion/transition; q, confirmative ion/transition; St, reference standard; S, sample; 

, Q/q ratio within tolerance limits. 

 

Figure 2. GC-TOF MS extracted ion chromatograms at different m/z (mass window 0.02 Da) 

for “post- target” PCB 157, naphthalene and pyrene detected in adipose breast tissue (top). 

Experimental EI accurate mass spectra (bottom).  

Q, quantitative ion; q, confirmative ion; St, reference standard; S, sample; , Q/q ratio within 

tolerance limits. 

 

Figure 3. Identification of non-target 3,5-di-tert-butyl-4-hydroxybenzaldehyde (BHT-CHO) 

in an adipose tissue sample: (A) extracted-ion chromatograms for four BHT-CHO ions used 

for deconvolution. (B) Library mass spectrum of the candidate BHT-CHO at nominal mass. 

(C) Library mass spectrum of the candidate 2,6-bis(1,1-dimethylethyl)-4-ethyl-phenol at 

nominal mass. (D) Deconvoluted accurate mass spectrum of BHT-CHO in adipose tissue 

sample. (E) Library forward fit and accurate mass confirmation of 4 fragments; experimental 

accurate masses compared to theoretical exact masses (in brackets, mass errors in mDa) for 

the two possible candidates. 
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Figure 4. Identification of non-target N-butyl benzenesulfonamide (N-BBSA) in an adipose 

tissue sample: (A) extracted-ion chromatograms for four N-BBSA ions used for 

deconvolution; (B) Library mass spectrum N-BBSA at nominal masses; (C) Library mass 

spectrum of bensulide; (D) Deconvoluted accurate mass spectrum of N-BBSA from the 

adipose tissue sample; (E) Library forward fit and accurate mass confirmation of 4 fragments 

for experimental accurate masses compared to the theoretical exact masses (in brackets, mass 

errors in mDa) for two possible candidates. 

 

Figure 5. Identification of non-target N-(phenylmethyl)-benzenemethanamine, 

(dibenzylamine) in an adipose tissue sample by GC-TOF MS: (A) extracted-ion 

chromatograms for four dibenzylamine ions used for deconvolution. (B) Commercial library 

mass spectrum of dibenzylamine at nominal mass. (C) Deconvoluted accurate mass spectrum 

of dibenzylamine from the adipose tissue sample. (D) Library forward fit and accurate mass 

confirmation of 4 fragments; experimental accurate masses compared to theoretical exact 

masses (in brackets, mass errors in mDa). (E) Extracted ion chromatogram at m/z 196.1126 

for a solvent standard of dibenzylamine (100µg/L) and its corresponding experimental EI 

TOF spectrum. 
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Table 1. Compounds detected in the GC-MS analysis of adipose human breast tissue samples  

 

Pre-Target compounds 

(28 samples analyzed) 

nº of positives by  

GC-(QqQ)MS/MS 

nº of positives by GC-TOF MS 

(target screening) 

nº of positives by GC-TOF 

MS (non-target screening)
1
 

HCB 25 24 6 

β-HCH 19 18 1 

p,p’-DDE 27 27 12 

p,p’-DDD 12 0 0 

p,p’-DDT 5 0 0 

oxychlordane 1 0 0 

trans-nonachlor 4 1 0 

mirex 2 0 0 

PCB 28 3 2 0 

PCB 101 5 0 0 

PCB 118 10 4 0 

PCB 153 25 24 4 

PCB 138 23 17 8 

PCB 180 26 17 2 

Post-Target compounds 
2 

(42 samples analyzed) 

   

naphthalene - 10 4 

phenanthrene - 8 0 

fluoranthene - 8 0 

Pyrene - 19 0 

PCB 114 - 9 0 

PCB 123 - 12 0 

PCB 156 - 8 0 

PCB 157 - 16 0 

PCB 167 - 6 0 

PCB 189 - 3 1 

Non-target compounds 
2 

(42 samples analyzed) 

   

BHT - - 31 

BHT-CHO 
3 

- - 1 

PCB 4Cl - - 2 

PCB 5Cl - - 1 

PCB 7Cl (isomer 1) - - 11 

PCB 7Cl (isomer 2) - - 2 

PCB 7Cl (isomer 3) - - 7 

PCB 8Cl - - 3 

1,2-dimethylnaphthalene - - 1 

2-methyl naphthalene - - 2 

N-BBSA 
3 

- - 1 
 

1 Found when treating all compounds as unknown., i.e. applying the software for components detection and peak deconvolution 
2 Not included in GC-QqQ analysis 
3 Detected in the most polar HPLC-fraction (clean-up procedure B). 

 


