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Abstract

Low-latency wireless communications have attracted intense attention due to

emerging network applications such as online gaming, video conferencing, autonomous

driving, remote surgery, and virtual reality. A key challenge for achieving low-latency

communications is to design optimal resource allocation frameworks that can satisfy

multiple network and user requirements since storage, computing, and bandwidth

resources are severely limited in real-world wireless communications. An important

consideration for resource allocation is to satisfy diverse network and user security

requirements due to a wide range of attacks that can jeopardize data security and

service-provisioning of low-latency wireless communications. Furthermore, resource

allocation needs to be highly adaptable to the dynamics of users and wireless networks

in diverse network scenarios, including the Internet of Things (IoT), mobile edge com-

puting (MEC), and network slicing (NS). In this thesis, in light of above challenges,

we propose novel resource allocation frameworks that can effectively reduce latency

whilst resisting communications and data security attacks, as well as intelligently

adapting to the dynamics of users in a range of emerging wireless network scenarios.

First, we consider how to support low-latency communications in a hierarchical

IoT network in the presence of data tampering attacks. To guarantee data security,

we consider storing the IoT data in a novel decentralized blockchain structure that we

have designed with in-built tampering-proof properties. Specifically, to solve the high

computing complexities in conventional blockchains, we design a double blockchain

(DBC) architecture composing an information blockchain (IBC) and a reputation

blockchain (RBC). The IBC is a heavyweight blockchain that stores large amounts of

IoT data in the resource-rich cloud layer, whilst the RBC is a lightweight blockchain

that stores the reputation data of the IoT devices in the edge layer. To quickly

identify malicious tampering of the IoT data stored in IBC, we propose a mapping

protocol for the fast querying of their corresponding reputation data in RBC. To

reduce the latency for data processing in the edge layer, we develop a blockchain
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node classification algorithm that assigns base stations (BSs) with different blockchain

tasks according to their resource capacities. Stochastic network analysis is presented

to validate the effectiveness of our DBC in a hierarchical IoT network. Simulation

results demonstrate that the transmission and processing latencies are significantly

reduced in DBC compared with a conventional single blockchain architecture.

Next, we focus on reducing latency in an MEC network, where the MEC service

provider in the cloud layer supports multiple users by employing multiple BSs in the

edge layer. To prevent data tampering attacks, we consider securely storing MEC user

requests in a blockchain and designing a low-latency reputation-based proof-of-stake

(RPoS) consensus protocol to select highly reliable blockchain-enabled BSs. Both

time-varying user requests and a dynamic network requirement of maximum denial-

of-service (DoS) probability are considered in the latency minimization optimization

problem. We design a constrained deep reinforcement learning (DRL) algorithm

to efficiently optimize the computation resource allocation for both the blockchain

consensus protocol management and the MEC service-provisioning. To further reduce

the latency for training the DRL algorithm, we apply aggregation-enabled feature

engineering and transfer learning to handle the dynamics of users and the MEC

network. Simulation results confirm that the proposed constrained DRL can achieve

the minimum latency with a satisfactory DoS probability when the dynamics of both

the DoS probability constraint and time-varying user requests are considered.

Finally, we consider a generalized network model supporting diverse quality-of-

service (QoS) requirements for a dynamic number of users and non-stationary wire-

less channels. Our model is suitable for network slicing (NS) where low latency, high

data security, and high data rate QoS requirements need to be satisfied with the

same physical infrastructure. We design a graph neural network (GNN) that adapts

to the changing wireless network topology with dynamic user numbers, and unsu-

pervised learning is used to train the GNN. To handle policy mismatch caused by

non-stationary wireless channels during the training and testing stages of the GNN,

we propose a new hybrid-task meta-learning (HML) algorithm, which considers dif-

ferent channel distributions in the meta-training stage of the GNN. Compared with

the state-of-the-art model-agnostic meta-learning (MAML) algorithm, our HML al-

gorithm can significantly improve sampling efficiency by 73%. Numerical results show

that our combination of GNN and meta-learning can successfully generalize the low-

latency wireless network requirements, including high security, high data rate, and

low-latency QoS with dynamic number of users and non-stationary wireless channels.
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Chapter 1

Introduction

1.1 Low-Latency Wireless Communications

Low-latency communication is a critical requirement for current and future gen-

eration wireless systems aimed at transmitting, receiving, and processing data with

minimal end-to-end delays [Nasrallah et al., 2019; Parvez et al., 2018]. In re-

cent years, intense attention has been paid to realizing low-latency wireless commu-

nications due to the increasing demand for real-time or near real-time services in

newly-emerged applications, such as video conferencing, autonomous driving, remote

surgery, online gaming, and virtual reality [Dang et al., 2023; Shi et al., 2023; Wu

et al., 2023]. One major challenge in implementing these low-latency communication

services is to design efficient storage, computing, and bandwidth resource allocation

policies for different network scenarios such as the Internet of Things (IoT), mobile

edge computing (MEC), and network slicing (NS) [Deng et al., 2022; Ding et al.,

2022; Xiao et al., 2023; Zhou et al., 2022].

As shown in Fig. 1.1, we consider that low-latency wireless communication net-

works can suffer from security-related performance degradation due to attacks from

malicious base stations (BSs) or malicious users. For example, a malicious BS may

1
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Figure 1.1: Architectural diagram for secure low-latency wireless communication net-
works including: a) Hierarchical cloud-edge IoT architecture; b) Scalable cloud-edge
blockchains to prevent security attacks at edge layer; c) Network slicing supporting
different service requirements, such as MEC, URLLC, and security. In this figure,
the malicious BS is sending fake information to the user in the MEC slice, as well
as eavesdropping the information transmitted in the security and URLLC slices. Si-
multaneously, the malicious user is sending the BS in the MEC slice some random
feedback, which cannot truly reflect the MEC service-provisioning condition. Fur-
thermore, this same malicious user is eavesdropping on the confidential information
transmitted from the users to the BSs in the security and URLLC slices.

be transmitting interfering data to legitimate users in different network slices, whilst

a malicious user could be actively modifying data sent to a legitimate BS or eaves-

dropping secure links from legitimate users. To prevent such attacks, we will design

new hierarchical blockchain architectures to ensure a high level of data integrity both
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at the central cloud server as well as at the edge layer base stations. Our aim is to

achieve secure low-latency wireless communications with efficient storage, computing,

and bandwidth allocation based on highly dynamic requirements arising from both

the networks and users.

1.1.1 Internet of Things

The increasing global demand for wireless-enabled smart devices has led to a

significant expansion of the so-called Internet-of-Things (IoT) paradigm. As predicted

by Cisco, there will be 500 billion wireless devices connected to the Internet by the

year 2030 [Shafique et al., 2020]. To accommodate such a vast number of IoT

devices, cloud computing servers have been integrated into wireless communication

networks, such as Google Cloud IoT, Cisco IoT Cloud Connect, and Microsoft Azure

IoT Hub [Vaezi et al., 2022], to efficiently handle resource-intensive network traffic.

However, the number of the resource-rich cloud servers is limited and usually located

far from the edge users, thus using conventional cloud server architectures to serve

large numbers of wireless edge users can lead to lengthy delays in completing a single

message transmission. This delay, which is referred to as communication latency,

similar to the geographical distance between the satellites and end users [Dakic et al.,

2023; Homssi et al., 2023], is largely due to the significant geographical distance

between the cloud servers and edge users in wireless networks [Rodrigues et al.,

2020; Shakarami et al., 2020; Spinelli and Mancuso, 2021]. While significant

latency can be attributed to network congestion and queuing, exploring transmission

latency is worthwhile in the hierarchical IoT context considered in this thesis.

Hierarchical cloud-edge network architectures have been considered to reduce la-

tency by employing edge servers in addition to the powerful cloud servers [Garadi
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et al., 2020; Pan J. and J. McElhannon, 2018]. Within the cloud-edge archi-

tecture, the edge-layer servers can process numerous lightweight requests from the

wireless IoT edge users, thus reducing the latency associated with communications to

the cloud server. Fig. 1.1 illustrates our cloud-edge IoT network scenario that sup-

ports low-latency wireless communications. In this IoT network, raw data is trans-

mitted to the edge layer from user applications with low-latency requirements, such as

video conferencing, autonomous driving, remote surgery, online gaming, and virtual

reality. We will consider that the raw data can be classified into two types, namely

lightweight data that is processed or stored at the edge servers, whilst heavyweight

data is offloaded to the cloud layer for further processing and storage.

1.1.2 Mobile Edge Computing

The mobile edge computing (MEC) architecture is designed to provide highly re-

liable wireless links between the users and edge-layer MEC servers, which makes it

well-suited to supporting low-latency wireless communications [Rodrigues et al.,

2020]. As shown in Fig. 1.1, to reduce the latency between the users and the cloud

server, MEC-enabled BSs are employed to serve the edge users. A major challenge in

MEC service-provisioning that we will consider is the potential for malicious BSs or

malicious users to tamper with data stored at the MEC servers. Recent works have

suggested that blockchain, which is a secure distributed data structure, could be de-

ployed at MEC servers to prevent tampering attacks in MEC networks [Asheralieva

et al., 2020; Feng et al., 2020b; Xiao et al., 2020].

To enhance security, we consider in Fig. 1.1 that our proposed scalable blockchain

is integrated into both the cloud and edge networks. The decentralized nature of
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our blockchain-secured MEC network can effectively eliminate the single-point-of-

failure that commonly exists in conventional centralized communication systems, and

substantially increases the complexity for attackers to compromise the MEC data

services [Ranaweera et al., 2021]. Our scalable blockchain allows edge servers to

securely offload data to the cloud server to alleviate the resource consumption burden

associated with conventional blockchains whilst still ensuring satisfactory low-latency

MEC services [Rafique et al., 2020].

1.1.3 Network Slicing

A third consideration in this thesis is the emerging paradigm of network slicing

(NS) to address the significant demands placed on network operators to support

diverse wireless services using a shared physical infrastructure [Wijethilaka and

Liyanage, 2021]. NS is a key technology for future-generation wireless networks to

allocate services into separate logical networks based on their distinct requirements or

characteristics using software-defined networking rules. Each logical network, which

is referred to as a slice, can be supported by the same physical network resulting in

significant cost and efficiency savings for network operators [Afolabi et al., 2018].

The network slice is considered to be different from one category to another by dif-

ferent quality-of-service (QoS) requirements. For example, the Security slice focuses

on maximizing the secrecy rate, whilst the URLLC slice targets both latency and

decoding error probability. To satisfy the different QoS requirements, we optimize

the resource allocation in the network slices sharing unique physical infrastructure.

In Fig. 1.1, we consider that the wireless network can simultaneously support three

different types of slices: URLLC slice, MEC slice, and Security slice.
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1.2 Key Challenges and Existing Solutions

The open nature of wireless channels raises increasing security concerns about

data tampering and eavesdropping attacks. While allocating additional computing

and bandwidth resources for security management can help to resist these attacks,

the support of low-latency communications could be compromised due to reduced

allocations from the limited total resource pool. Machine learning has been recently

recognized as a powerful technology for improving resource allocation especially under

dynamic constraints. Indeed, the design of secure and intelligent resource allocation

algorithms to satisfy the dynamic requirements of users and networks in low-latency

wireless communications remains a key challenge due to the limitations of conven-

tional numerical optimization approaches such as dynamic programming and iterative

algorithms.

1.2.1 Data Security

Data security plays a pivotal role in protecting low-latency applications. For

example, in remote surgery, the tampered historical data can compromise the integrity

of treatment decisions, and the data leakage of personal information poses concerns

regarding privacy as well. There remain significant challenges in resisting potential

tampering and eavesdropping attacks launched by malicious BSs and users in wireless

networks.

Scalable Blockchains to Prevent Tampering Attacks

A tampering attack refers to unauthorized malicious actions that intentionally

manipulate data in transmission or storage. Successful tampering attacks in wireless
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communication systems can lead to undesirable consequences, including denial-of-

service (DoS), privacy violations, and financial loss. Conventional centralized com-

munication systems manage data through a centralized controller, which is vulnera-

ble to single-point-of-failure [Cao et al., 2023]. Blockchain, a distributed ledger, has

been proven to be an effective tool due to its tamper-proofing property [Liu et al.,

2023], which has been demonstrated by the success of Bitcoin as a secure digital

currency [Nakamoto, 2008].

In recent years, blockchain has been considered for identifying and resisting tam-

pering attacks in wireless communication networks. In [Yu et al., 2020], the au-

thors applied blockchain to resist tampering attacks on the reputation data in a

wireless crowdsourcing IoT network. In [Feng et al., 2020a], the authors proposed

using blockchain to ensure the irreversibility of the offloading data in MEC networks.

In [Zanzi et al., 2020], the authors secured an NS network by employing a blockchain

as a trusted broker between the infrastructure provider and network tenants. In [Liu

et al., 2020], the authors proposed using blockchain to secure the authentication pro-

cess in a vehicular network, which is typically a highly dynamic environment due to

traffic mobility.

Given the fact that latency can be significantly reduced by increasing communica-

tions and computing resources, a key challenge we will address in this thesis is how to

efficiently balance the allocation of resources between the low-latency communication

requirement and the blockchain consensus protocol design. This is particularly no-

table when integrating blockchain into low-latency wireless communications, such as

IoT networks with constraints on storage, communication, and computing resources.
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wiretaps
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A possible location of the eavesdropper

Figure 1.2: U legitimate users transmit confidential information to a BS, and a strong
eavesdropper intends to eavesdrop the transmitted information.

We will investigate scalable cloud-edge blockchain architectures as a promising solu-

tion to satisfy wireless applications with low-latency requirements in the edge layer,

whilst resisting data tampering attacks by storing different amounts of data in the

cloud and edge-layer blockchains. In addition, we focus on developing a scalable

blockchain consensus protocol to satisfy edge-layer low-latency requirements.

Machine Learning-Based Optimization to Prevent Eavesdropping Attacks

The eavesdropping attack is a well-known physical-layer security attack, which

jeopardizes data security by eavesdropping the transmitted information [Karas et al.,

2016]. To quantify the effectiveness of security measures against eavesdropping at-

tacks, the concept of secrecy rate comes into play [Gopala et al., 2008]. Fig. 1.2

shows a wireless network with U randomly located legitimate users transmitting con-

fidential information to the BS in the presence of a moving eavesdropper. In this

network, we denote the data rate of the u-th legitimate user and the eavesdropping
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channel by rDu = log2(1 + SNRD
u ) and r

e
u = log2(1 + SNRe

u), where SNRD
u and SNRe

u

are the signal-to-noise ratios (SNRs) of the u-th legitimate and the eavesdropping

channel, respectively. The secrecy rate of the u-th user is given by

rSu =
[
rDu − reu

]+
, (1.2.1)

where [x]+ = max{0, x}.

To resist eavesdropping attacks, significant efforts have been devoted to maximiz-

ing the secrecy rate in wireless networks. The authors of [Kang et al., 2019a; Li et al.,

2016; Zhou et al., 2018] developed different optimization approaches to accurately

evaluate and evaluate the secrecy rates. However, the high computational complex-

ity associated with conventional numerical optimization algorithms poses challenges

in real-world implementations. Compared with conventional numerical optimization

algorithms like dynamic programming and iterative algorithms, machine learning al-

gorithms have been applied to optimize the secrecy rate in wireless networks due to

the low computational complexity advantage. In [He et al., 2019], the authors showed

that learning-based algorithms could obtain near-optimal solutions achieved by ex-

haustive search and perform in real-time and with negligible latency impact. In [Gao

et al., 2020], a deep neural network (DNN) was used to maximize the secrecy rate of

a legitimate user and eavesdropper by jointly optimizing the power allocation, car-

rier frequency, transmit power, and waveform. In [Zhang et al., 2021b], the authors

applied a DNN to optimize the transmit power allocation aimed at maximizing the

secrecy rate of a single user subject to an interference leakage threshold constraint.

In [Sharma et al., 2011], the authors used deep reinforcement learning (DRL) to

maximize the average secrecy rate of multiple legitimate users by optimizing the

downlink transmit power. In [Li et al., 2022], the authors proposed an unsupervised
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learning algorithm to maximize the effective secrecy rate for the short packets with

an extremely low-latency requirement of 1 ms.

However, existing machine learning algorithms for wireless communications rely

on the assumption that the training and testing channels follow the same distribution,

which usually does not hold due to the non-stationary nature of wireless channels.

The low-latency requirement for the newly emerged applications further amplifies the

challenges for eavesdropping attack-resistant. The problem of simultaneously achiev-

ing low latency and resisting the eavesdropping attack in non-stationary wireless

networks remains an open issue.

1.2.2 Dynamics of Users

Wireless communication networks typically serve a dynamic number of users, and

the user requests often change over time. These dynamics pose challenges in efficiently

managing the physical resources in low-latency wireless communication.

Dynamic Numbers of Users

Conventional numerical optimization approaches, such as the iterative algorithm,

are well-established solutions for identifying optimal resource allocation policies in

dynamic wireless communication networks [Dong et al., 2021]. However, low-latency

optimization with dynamic numbers of users poses an important challenge in achiev-

ing algorithm efficiency for optimal resource allocation policies [Shen et al., 2021].

Machine learning offers promising solutions for addressing this challenge with strate-

gies such as offline training and online adaptation. In the following, we will briefly

introduce novel machine learning concepts that we will apply in this thesis to address

the challenge of low-latency resource optimization with dynamic numbers of users.
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Time-Varying User Requests

The second critical challenge for user dynamics that we will address in this thesis

is how to efficiently serve users with time-varying requests [Spinelli and Mancuso,

2021]. Dynamic resource allocation is a powerful approach for allocating resources to

current user requests without negatively impacting future user requests [Chekired

et al., 2019; Wijethilaka and Liyanage, 2021]. A fundamental trade-off is that

allocating more resources in the current time slot results in a smaller processing

latency for these users, but a potential performance degradation due to insufficient

resources for future users [Zappone et al., 2019]. We will show that this trade-

off can be managed by formulating the optimal resource allocation as a sequential

decision-making problem [Chen et al., 2022; Tang et al., 2021].

Although deep reinforcement learning (DRL) is a promising tool for solving se-

quential decision-making problems, it can face challenges when dealing with contin-

uous state and action spaces, as observed in previous works that employed deep Q

networks (DQN) [Wang et al., 2022a]. To overcome this limitation, unconstrained

deep deterministic policy gradient (DDPG) has been applied to low-latency wireless

communications, incorporating optimization objectives and constraints into the re-

ward function [Wang et al., 2023]. However, in the current 5G and future 6G wireless

communication networks, time-varying network requirements, e.g., maximum denial-

of-service (DoS) probability, maximum transmit power, and minimum data rate, are

commonly included in addition to the low-latency requirement. Novel solutions are

expected to support sequential decision-making problems considering multiple per-

formance metrics.
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1.2.3 Dynamics of Wireless Networks

In our low-latency optimization frameworks, we will also consider the dynamic

requirements on network performance, particularly due to network slicing and the

impact of non-stationary wireless channels changing over time. These two factors

further increase the challenges in achieving an optimal resource allocation policy for

low-latency wireless communications.

Changing Requirements on Network Performance

In addition to the time-varying user requests, requirements on network perfor-

mance make it more challenging to achieve efficient storage, computing, and band-

width allocation algorithms for low-latency wireless communications. To solve this

issue, different technologies have been proposed in the existing literature. In the study

by Xiong et al., 2020, the authors used a conventional unconstrained DRL algorithm

to minimize an objective function that combines user computing processing time and

allocated computation resources in an MEC network. In [Alsenwi et al., 2021], the

authors maximized the data rate of enhanced mobile broadband (eMBB) users while

satisfying the latency constraint on URLLC users by an unconstrained DRL algo-

rithm. However, unconstrained DRL encounters difficulties in explicitly satisfying

both time-varying user and dynamic network performance constraints, which poses a

trade-off between the dynamic requirements of users and the network.

Recently, constrained DRL algorithms have been developed for dynamic resource

allocation in low-latency wireless communications. In [Li et al., 2021a], constrained

DDPG was applied in a virtual reality network to minimize the video loss ratio while

satisfying a constraint on processing latency. In [Xu et al., 2021b], a constrained
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DRL algorithm was used in a wireless network to maximize the data throughput

whilst satisfying QoS constraints of energy and queue length. Nevertheless, how to

resist tampering attacks in low-latency wireless networks with time-varying user and

network requirements remains an open problem for further investigation.

Non-Stationary Wireless Channels

Wireless communications also face the challenge of non-stationary wireless chan-

nels. It is especially challenging in communication networks with low-latency require-

ments. This is because machine learning algorithms encounter difficulties in timely

adjusting the resource allocation policies to the varying channel distributions in wire-

less networks in the training and testing stages. While scaling up neural networks

can boost performance, it comes at the cost of increased storage and computational

resources. Scalable GNNs offer a solution by adjusting their scale based on user

demands. However, developing innovative strategies is essential to enhance GNN

adaptability in low-latency communications with dynamic wireless channels.

In future-generation communication networks that need to address dynamic num-

bers of users and non-stationary wireless channels, there are typically multiple net-

work performance requirements. In [Wang et al., 2020], the achievable secrecy rate

was maximized by optimizing the blocklength. In [Li et al., 2022], the authors max-

imized the effective achievable secrecy rate by optimizing the power control policy.

In [Alsenwi et al., 2021], the authors maximized the Shannon capacity as well as

the reliability constraint on short packets by jointly optimizing the bandwidth, power,

and punctured time slots. In [Dong et al., 2021], three different QoS requirements,

long packets-based data rate, short packets-based data rate, and long packets-based
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latency, are simultaneously optimized in a cascaded neural network. To date, no gen-

eral bandwidth allocation approach has been proposed to simultaneously satisfy the

QoS requirements on data rate, latency, and security in both long and short coding

blocklength regimes.

In [Guo and Yang, 2023], optimizations of data rate in long coding blocklength

regimes are analyzed, and a deep neural network structure was proposed to reduce

the training complexity and guarantee spectral efficiency. In [Guo et al., 2019], the

authors explored maximizing the sum Shannon capacity by optimizing the power

and bandwidth for short blocklengths. To guarantee a QoS requirement, the authors

of [Wu et al., 2003] defined effective capacity, denoting the maximum constant arrival

rate that a given service process can support. In [Tang and Zhang, 2007], the au-

thors maximized the effective capacity subject to a given QoS requirement of latency.

Security is also an important QoS requirement in wireless systems, where optimizing

for secrecy rate is very challenging as related problems are often non-convex and not

in closed forms [Yu et al., 2016]. In [Yang et al., 2021], the authors formulated an

optimization problem maximizing the minimal secrecy rate of all the users, and solved

the problem by transforming the objective function to be the weighted sum of the

secrecy rate, secrecy rate violation probability, and Shannon capacity violation prob-

ability. In [Liu et al., 2019a], the authors optimized the secrecy outage probability in

the long blocklength regime. However, none of the previous works proposed a general

approach for simultaneously solving the data rate, latency, and security requirements

for long or short packets with the consideration of non-stationary wireless channels.
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1.3 Research Problems and Contributions

In this thesis, we focus on secure and intelligent resource allocation for low-latency

wireless communications. We propose three novel solutions, namely DBC, BC-DRL,

and HML, to reduce the latency for IoT, MEC, and NS networks with guaranteed

security levels. The research problems and the corresponding contributions are de-

scribed in this section.

1.3.1 IoT Blockchains

In Chapter 3, we propose a decentralized double blockchain (DBC) architecture for

scalable, lightweight, and secure IoT information and reputation management. The

results in this chapter have been published in the IEEE Internet of Things Journal

and in the 2021 IEEE WF-IoT conference.

The DBC is a private blockchain deployed on a cloud-fog communication network

which is composed of the information blockchain (IBC) storing large amounts of

IoT data in the cloud layer and a reputation blockchain (RBC) storing reputation

data of the IoT devices in the near-terminal fog layer. To improve the efficiency of

IBC and RBC generation and RBC storage in the fog layer, we propose a fog layer

node classification algorithm to assign different tasks for fog nodes holding different

amounts of resources. To improve security, we propose a mapping algorithm between

the lightweight RBC and heavyweight IBC to securely validate the reputation data

based on corresponding IoT device data, and quickly identify malicious tampering of

the DBC. The locations of the fog layer nodes are modeled according to a random

Poisson point process (PPP) over a given 2-D area to approximate the stochastic

property of real-world wireless node deployments. Furthermore, we assume that the
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number of IoT devices transmitting to the fog nodes also follows a random Poisson

distribution. Based on these models, we derive novel closed-form expressions for the

storage size, transmission latency, and tampering time of the IoT fog nodes in our

DBC architecture. The main contributions of this research problem are summarized

as follow:

• We propose a DBC architecture and analyze the performance of the private

DBC with an IBC storing large amounts of IoT device data in a cloud layer

due to limited storage space in the fog layer, whilst an RBC stores lightweight

IoT reputation data in the fog layer nodes to easily assess the trust levels of

the IoT devices. A blockchain mapping algorithm between the RBC and IBC is

proposed to prevent tampering attacks in the fog and cloud blockchain layers.

• We develop a DBC node classification algorithm to classify the fog nodes into

full, light, and basic nodes according to their storage space and computing

resource to improve the performance of the information and reputation blocks

generation and RBC storage compared to a single blockchain scheme where all

fog nodes compete to generate and store the blockchain.

• We consider a general wireless IoT communication network deployment, in

which the locations of fog nodes and the number of transmitting IoT devices are

randomly distributed according to stochastic Poisson distributions. Then, we

theoretically analyze the network performance by deriving closed-form expres-

sions for the IBC and RBC storage size, processing and transmission latency,

and tampering time-based on our extended model. These new analytical ex-

pressions provide a novel framework to examine the impact of varying fog nodes



Research Problems and Contributions 17

and IoT device densities in IoT blockchains.

• We analyze the performance of a DBC node classification algorithm and a

blockchain-based mapping algorithm between the RBC and IBC to minimize

the storage requirements and processing latency of our DBC compared to a

conventional single blockchain (SBC) scheme. The fog nodes are classified to

perform different tasks and each information and reputation block pair follows

a one-to-one mapping to improve the scalability, latency, and security perfor-

mances.

1.3.2 Secure Deep Reinforcement Learning

In Chapter 4, we propose a blockchain-secured deep reinforcement learning (BC-

DRL) optimization framework for data management and resource allocation in decen-

tralized wireless mobile edge computing (MEC) networks. The results in this chapter

have been accepted to appear in the IEEE Transactions on Communications and

submitted to the 2024 IEEE ICC conference.

In our framework, we design a low-latency reputation-based proof-of-stake (RPoS)

consensus protocol to select highly reliable blockchain-enabled BSs to securely store

MEC user requests and prevent data tampering attacks. We formulate the MEC re-

source allocation optimization as a constrained Markov decision process that balances

minimum processing latency and denial-of-service (DoS) probability. We use the MEC

aggregated features as the DRL input to significantly reduce the high-dimensionality

input of the remaining service processing time for individual MEC requests. Our

designed constrained DRL effectively attains the optimal resource allocations that
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are adapted to the dynamic DoS requirements. We provide extensive simulation re-

sults and analysis to validate that our BC-DRL framework achieves higher security,

reliability, and resource utilization efficiency than benchmark blockchain consensus

protocols and MEC resource allocation algorithms. The main contributions of this

research problem are summarized as follow:

• We propose a reputation-based proof-of-stake (RPoS) blockchain consensus pro-

tocol that significantly reduces block generation and validation time whilst

maintaining a high level of security by randomly selecting the miner BS node

from a subset of BSs with high reputations. Attacks from malicious BSs are

prevented by isolating the BSs with low reputations, whilst attacks from mali-

cious users are resisted by using Bayesian inference to evaluate all user feedback.

The secure storage of users’ MEC requests in blockchain-enabled BSs further

mitigates tampering attacks targeting MEC service provisioning.

• We solve the dynamic resource allocation by formulating it as an MDP that

minimizes processing latency while satisfying the constraint on DoS probabil-

ity. This formulation optimizes the allocation of computation resources for both

blockchain consensus and MEC service provisioning. We provide mathematical

proofs demonstrating the equivalence of the original problem and the refor-

mulated MDP problem. In addition, we establish that the reformulated MDP

satisfies the Markovian property.

• We design a constrained DRL algorithm that can accommodate dynamic re-

quirements on DoS probabilities. To improve the training efficiency, we propose
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an aggregating mechanism to reduce the dimension of the features as the remain-

ing processing time of all the requests. Transfer learning is utilized to update

pre-trained parameters when the requirement on DoS probability changes, and

empirical convergence analysis is provided.

1.3.3 Scalable and Transferable Graph Neural Network

In Chapter 5, we develop a deep learning-based bandwidth allocation policy that

is: 1) scalable with the number of users and 2) transferable to different communication

scenarios, such as non-stationary wireless channels, different quality-of-service (QoS)

requirements, and dynamically available resources. The results in this chapter have

been submitted to the IEEE Transactions on Wireless Communications and published

in the 2023 IEEE ICC Workshops.

To support scalability, the bandwidth allocation policy is represented by a graph

neural network (GNN), with which the number of training parameters does not change

with the number of users. To enable the generalization of the GNN, we develop a

hybrid-task meta-learning (HML) algorithm that trains the initial parameters of the

GNN with different communication scenarios during meta-training. Next, during

meta-testing, a few samples are used to fine-tune the GNN with unseen communica-

tion scenarios. Simulation results demonstrate that our HML approach can improve

the initial performance by 8.79%, and sampling efficiency by 73%, compared with ex-

isting benchmarks. After fine-tuning, our near-optimal GNN-based policy can achieve

close to the same reward with much lower inference complexity compared to the op-

timal policy obtained using iterative optimization. The main contributions of this

research problem are summarized as follow:
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• Our proposed GNN is designed to handle six diverse QoS requirements of data

rate, latency, and security in each of the long and short coding blocklength

regimes. This generalization is achieved by using feature engineering to trans-

late the channel state information (CSI) and customized QoS requirement of

individual users into the minimum required bandwidth.

• Based on the extracted feature of minimum required bandwidth, we design a

GNN-based bandwidth allocation policy that is scalable to the number of users.

To train the GNN, we apply an unsupervised learning method to maximize the

sum reward of the users with different QoS requirements in a network-slicing

architecture.

• The optimal bandwidth allocation policies are obtained based on an iterative

optimization algorithm to obtain the performance limit of the GNN-based policy

in terms of the sum reward. By analyzing the computational complexity, we

show that the GNN has a much lower inference complexity compared with the

iterative optimization algorithm that is optimal.

• Finally, we develop our generalized hybrid-task meta-learning (HML) algorithm

that is transferable to different communication scenarios by using meta-training

to train the initial parameters of the GNN. We note that only a few samples are

required to fine-tune the parameters of the GNN in meta-testing which validates

that our GNN-based policy initialized by HML can be efficiently transferred to

previously unseen communication scenarios. Simulation results show that our

GNN-based policy achieves near-optimal performance and HML significantly
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outperforms the three considered benchmarks of MAML, MTL transfer (multi-

task learning based transfer learning), and random initialization.
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Chapter 2

Preliminaries of Related
Technologies

2.1 Blockchain

Blockchain consensus protocol design is the key technology that enables the tamper-

proofing property of blockchain networks. The most well-known blockchain consensus

protocol is the proof-of-work (PoW), which is used in Bitcoin. However, it has been

shown in [Ling et al., 2021; Xiong et al., 2020] that a blockchain network with PoW

consensus suffers from lengthy delays due to the competition amongst all blockchain

nodes during the block generation process and the large amount of computations re-

quired for block validation by all nodes. To reduce the high computation overhead

and processing latency for block generation, the practical Byzantine fault tolerance

(PBFT) consensus was proposed to select one blockchain node for new block gen-

eration [Castro and Liskov, 1999]. However, PBFT consensus protocol still ex-

periences high computation resource requirements and latency for block validation,

because all the nodes need to validate the newly generated block. The proof-of-stake

(PoS) consensus protocol is a promising solution to significantly reduce the com-

putation overhead in blockchain networks by selecting a trusted subset of blockchain

23
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nodes to validate the newly generated block [Tschorsch and Scheuermann, 2016].

Nonetheless, the PoS consensus is more vulnerable to attacks compared with PoW

and PBFT, since the highest stake miner node that is selected for block generation

can be easily identified and targeted by attackers [Yang et al., 2019].

In the hierarchical IoT and the decentralized MEC, blockchain technology en-

hances data security and trust by providing a tamper-proof and transparent record

of transactions. It enables decentralized data exchanges among IoT devices and edge

servers, reducing reliance on centralized intermediaries and mitigating risks of unau-

thorized access. By integrating blockchain for consensus mechanisms, hierarchical IoT

and MEC systems ensure the integrity and confidentiality of data processing at the

network edge. This approach fosters innovation and autonomy in data interactions

while strengthening the resilience and reliability of wireless low-latency communica-

tions.

2.2 Unsupervised Learning

Supervised learning and unsupervised learning are the two most commonly used

machine learning categories. Specifically, supervised learning is trained on labeled

data of the optimal policy, whilst unsupervised learning focuses on finding patterns

in the dataset without explicit labels or target outputs. When solving complicated

problems, unsupervised learning has the following advantages compared with super-

vised learning [She et al., 2021]: 1) Saving the computing power for collecting the

labels; 2) Eliminating the system error caused by the non-linearity in labels; 3) Solving

non-deterministic polynomial-time hard (NP-hard) problems without labeled training

data.
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The target of unsupervised learning algorithms is to find the optimal policy by

finding a minimum loss value, and is given by

θ∗ = argmin f(θ), (2.2.1)

where θ∗ represents the parameters of the neural network’s optimal policy, and f(θ)

is the loss function. Stochastic gradient descent (SGD) is a commonly used method

to train in unsupervised learning algorithms, and is described as

θn+1 = θn + βθ∇f(θn), (2.2.2)

where θn is the parameters of the neural network in the n-th iteration, and ∇f(θn)

is called the policy gradient in the n-th iteration.

Unsupervised learning has been widely applied to low-latency wireless communi-

cations. In [Sun and Yang, 2019b], the authors applied unsupervised learning to

jointly optimize the transmit power and bandwidth for URLLC services. In [Filho

et al., 2021], the authors detected cyber-attacks on the cyber–physical systems with

strict latency requirements by a promising unsupervised approach, generative adver-

sarial networks. In [Jing et al., 2020], the authors minimized the weighted sum of all

the IoT users by the proposed joint unsupervised learning and DRL algorithm.

When applying unsupervised learning algorithms in wireless networks, it is essen-

tial to transform the variable optimization problem into a functional optimization

problem. This involves defining an optimization function, where the “variable” it-

self is a function [Sun et al., 2023]. For example, when we use the channel state

information (CSI) to maximize the data rate by optimizing the bandwidth allocation,

both the bandwidth allocation and the data rate are functions of the CSI. By trans-

forming the variable optimization problem into a functional problem, the dataset is
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Figure 2.1: Agent-environment interaction loop for RL algorithms.

pre-structured before being fed into the neural network, thus simplifying the training

process afterward.

The integration of unsupervised learning techniques presents a promising approach

for bandwidth allocation in the Network Slicing (NS) scenario. Unsupervised learning

algorithms offer the capability to extract valuable insights from unlabeled data with-

out the need for explicit guidance or supervision. This is particularly advantageous

in the NS context, where collecting labeled data can be challenging due to the diverse

QoS requirements across different slices.

2.3 Deep Reinforcement Learning

In addition to supervised and unsupervised learning algorithms, reinforcement

learning (RL) is designed for solving sequential decision-making problems, which takes

into account not only the immediate consequences of each decision but also their

long-term impact on achieving a specific goal. [Shakarami et al., 2020]. As shown in

Fig. 2.1, a classical RL contains two main characters, namely agent and environment.

The agent is a decision-maker, which learns to act by trial and error in the unknown

environment [Liang et al., 2018]. From Fig. 2.1, we can observe the interaction of
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the agent and the environment in the t-th time slot: the agent observes the state of

the environment, s(t), then takes the action, a(t), lastly perceives a reward, r(t). The

state, action, and reward are the three main elements in DRL, specifically,

1) State: is a representation of the current situation of the environment that the

agent operates in. The state provides essential information that the agent uses to

make decisions aimed at achieving a specific goal. In wireless communications, the

commonly seen DRL states include CSI, available radio resources, and the amount of

data traffic arrived.

2) Action: refers to the decision made by the agent, who observes the state to optimize

the goal of a long-term objective. In wireless communications, the commonly seen

DRL actions include communication and computing resource allocation policy, user

scheduling scheme, and size of transmitted packets.

3) Reward : is a numerical signal provided to the agent by the environment after

it takes a specific action in a given state. The target of DRL is to maximize the

long-term reward, R(t), given by

R(t) = E

[
∞∑
t=0

γtr(t)

]
, (2.3.1)

where γ ∈ (0, 1) is the discount factor. In wireless communications, the commonly

seen DRL rewards include latency, data rate, and security-related metrics.

If we aim to use RL to solve a problem, the problem has to be a Markov decision

process (MDP). This condition is met when the environment’s state and reward at

t + 1 depends only on the state and action representations at t, in which case the

environment’s dynamics can be defined by [Sutton and Barto, 2016],

p(s′, r|s, a) = Pr{s(t+ 1), r(t+ 1)|s(t) = s, a(t) = a}, (2.3.2)
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for all r, s′, s, and a. When applying DRL to solve the MDP problem, the long-term

reward, R(t) given in eq. (2.3.1) could be approximated by the state-action function

denoted by Q(s(t), a(t)) [Feriani and Hossain, 2021]. The optimal state-action

function, Q∗(s(t), a(t)), is computed by solving the Bellman equation given by

Q∗(s(t), a(t)) = y(t) = r(t) + γQ(s(t+ 1), a(t+ 1)). (2.3.3)

We note that since the focus is on optimizing the long-term reward, it is possible

that sometimes immediate action will not lead to an immediate increase in the in-

stantaneous reward. This can occur because there are situations where sacrificing

the instantaneous reward could potentially result in an enhancement of the long-term

reward.

Classical RL algorithms traditionally operate in environments with low-dimensional

state and action spaces. These algorithms rely on tabular representations of the envi-

ronment’s state-action space and are well-suited for solving problems with relatively

small state and action spaces. However, in real-world applications such as wireless

communications, the state and action spaces are often high-dimensional and contin-

uous [She et al., 2019], making traditional RL methods impractical.

Deep RL (DRL) addresses this limitation by leveraging deep neural networks

to approximate complex value functions or policies directly from high-dimensional

observations. Unlike classical RL, which relies on discrete state-action pairs, DRL

algorithms can operate directly on raw sensory inputs, enabling them to handle high-

dimensional state and action spaces efficiently [Dong et al., 2019]. Additionally, DRL

algorithms excel at learning hierarchical representations of the environment, allowing

them to discover intricate patterns and dependencies within the data [Meng et al.,

2023].
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DRL is suitable for the considered low-latency MEC scenario due to its inherent

adaptability to process the sequential decision-making problems and ability to handle

high-dimensional input spaces, which are essential for optimizing computing resource

allocation in MEC-enabled low-latency wireless networks. In addition, DRL’s capabil-

ity to learn hierarchical representations and extract insights from raw sensory inputs

further enhances its suitability for addressing the complex challenges associated with

MEC computing resource allocation.

2.4 Constrained Deep Reinforcement Learning

Constrained DRL has been developed to transform the optimization problem with

specific constraints to have an objective function with a weighted sum of the original

objective function and constraints, where weights are optimized Lagrange multipli-

ers [Liang et al., 2018]. Specifically, constrained DRL aims to select a policy, µ(·),

that maximizes the long-term reward, R(t), while satisfying the constraints on the

long-term cost, C(t). The optimization problem can be formulated as [Liang et al.,

2018]

µ∗ =argmax
µ(·)

Rµ(t)

s.t. Cµ(t) ≤ Cmax,

(2.4.1)

where µ∗ represents the optimal policy, and Cmax is the threshold of the long-term

cost. To solve problem (2.4.1), the Lagrangian relaxation procedure is employed in

constrained DRL, and the Lagrangian function is given by

Lt (µ(·), λL) = Rµ(t)− λL (Cµ(t)− Cmax) , (2.4.2)

where λL is the Lagrangian multiplier. We note that it is possible to extend the opti-

mization problem from having a single constraint to considering multiple constraints
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by introducing additional Lagrangian multipliers for each new constraint.

Constrained DRL ensures computing resource allocation policies adhere to specific

DoS probability constraints, offering flexibility for tailoring solutions to specific DoS

requirements. This approach is particularly valuable in real-world MEC deployments.

Therefore, constrained DRL enables the MEC system to strike a balance between

minimizing the latency and satisfying DoS constraints considered in this thesis.

2.5 Graph Neural Network

Selecting a suitable neural network structure for solving the target problem is

as important as choosing a proper machine learning algorithm, because the selec-

tion of the neural network structure greatly affects the training process of a machine

learning algorithm. The neural networks include different kinds of structures, such

as the fully-connected neural network (FNN), the convolutional neural network, the

recurrent neural network, and the graph neural network (GNN). The commonly seen

dynamic number of users leads to the dynamics of network connectivity. GNN demon-

strates high efficiency in processing data with dynamic connectivity by utilizing graph

representation of the data [Wu et al., 2021b].

To apply GNN for training, the data must be transformed into a dedicated graph

representation that adheres to the specified graph definitions. An example of a graph

is shown in Fig. 2.2. This graph G consists of a set of vertices VG and a set of

edges EG, where each edge connects a pair of vertices, representing the connections

or relationships between different elements. Mathematically, this can be expressed

as G = (VG, EG). We assume the graph has K vertices, where VG = {vk; k ∈ K} is

the set of vertices, and EG = {ek1,k2 ; k1, k2 ∈ K} is the set of edges. Vertex v2 is the
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Figure 2.2: An example of a graph.

neighbor of all the other vertices.

GNNs compose diverse classes, including the message passing neural network

(MPNN) [Gilmer et al., 2017], the random edge graph neural network [Eisen et al.,

2019], and the graph attention network [Veličković et al., 2018]. The effective

performance of the GNN depends on the suitable choice of the GNN class for graph

data representation. MPNN is particularly well-suited for wireless networks with a

dynamic number of users due to its permutation equivariance property, which indi-

cates MPNNs can update node representations based on changing interactions [Shen

et al., 2021]. MPNN has been widely applied to wireless communication networks,

where the commonly seen vertices are BSs, users, wireless links, and transceiver pairs.

In [Shen et al., 2021], the authors solved large-scale radio resource management prob-

lems, where high computational efficiency is achieved by processing the aggregated

and combined features of all the transceiver pairs instead of processing them one

by one. In [Hao et al., 2023], the authors achieved a scalable bandwidth allocation

policy for an uplink non-stationary wireless communication system with a dynamic
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number of users by MPNN. In [Gu et al., 2023], the authors optimized distributed

power allocation by MPNN, where the transmit power of pilots represents messages

from neighboring vertices and can be aggregated efficiently by evaluating the total

interference power.

The three main steps of MPNNs are message passing, aggregation, and readout.

These three steps are important for applying MPNN into wireless networks with a

dynamic number of users, specifically,

1) Message Passing : MPNNs employ a message-passing mechanism that allows ver-

tices to exchange information with their neighbors iteratively. Through passing the

messages of the vertices inside the graph, the vertices can explore the structure of

the wireless network. For example, in Fig. 2.2, the messages carried by vertex v2 are

passed to all the other vertices with one iteration of message passing. In wireless net-

works with a dynamic number of users, the message-passing mechanism is adaptable

to the dynamics of the user numbers.

2) Aggregation: Aggregating information from neighbor vertices accommodates the

dynamic changes in user number. The aggregated messages can be processed to-

gether, thus saving the energy of processing the diverse data.

3) Readout : The readout mechanism summarizes aggregated information to produce

the graph-level representation. This is particularly valuable in wireless networks with

dynamic user numbers as it facilitates informed decision-making by observing the

network state evolution.

In the considered NS scenario, GNNs are utilized to adapt to the dynamic number

of users efficiently. Unlike conventional FNNs, the GNN can offer scalability, enabling

them to handle fluctuations in the number of users effectively. This scalability ensures
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robust bandwidth allocation strategies, accommodating the varying demands of users

in low-latency wireless communication conditions.

2.6 Meta-Learning

Meta-learning, also known as learning to learn, can encourage the GNN to learn

transferable graph representations that generalize well across different channel distri-

butions. The authors of [Finn et al., 2017] proposed a classic meta-learning algorithm,

model-agnostic meta-learning (MAML), which can improve the adaptation ability of

a neural network to new scenarios. MAML contains two main stages: meta-training

and meta-testing, specifically,

1) Meta-Training : In this initial stage, a neural network learns from a range of

datasets to acquire generalizable knowledge, enabling it to quickly adapt to new

tasks during meta-testing.

2) Meta-Testing : In the meta-testing stage, the neural network’s performance is eval-

uated on unseen datasets not used in meta-training. Using the knowledge it gained

from meta-training, the neural network adjusts and performs well on new datasets,

demonstrating its capacity to handle unfamiliar tasks.

Meta-learning has been applied to achieve timely resource allocation in non-

stationary wireless networks. In [Huang et al., 2021a], the authors utilized meta-

learning to minimize the MEC latency by optimizing the computing resource alloca-

tion in a wireless network serving different combinations of wireless devices. In [Wang

et al., 2022b], the authors used meta-learning to quickly adapt to the user movement
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patterns in a VR network. In [Li et al., 2021b], the authors proposed a meta-learning-

based Wi-Fi impersonation detection algorithm, which learns knowledge from histor-

ical scenarios and quickly adapts to new scenarios with few-shot samples. In [Hu

et al., 2020], the authors designed a meta-learning algorithm that can help the drone

base station to quickly adjust its trajectory to adjust to dynamic user requests.

Meta-learning is utilized in the considered NS scenario to enable rapid adaptation

to changing network conditions and user requirements. By leveraging prior knowl-

edge from related tasks, meta-learning enhances the agility and efficiency of resource

allocation algorithms, allowing the system to effectively allocate bandwidth resources

and meet diverse QoS requirements in a timely manner.



Chapter 3

Double Blockchain Architecture
for IoT Communication Networks

In this chapter, we propose a DBC architecture for secure information and reputa-

tion data management in large-scale wireless IoT networks. Specifically, the DBC is a

private blockchain deployed on a cloud-fog communication network which is composed

of an information blockchain (IBC) storing large amounts of IoT data in the cloud

layer and a reputation blockchain (RBC) storing reputation data of the IoT devices in

the near-terminal fog layer. The locations of the fog layer nodes are modeled accord-

ing to a random Poisson point process (PPP) over a given two-dimensional area to

approximate the stochastic property of the considered stochastic wireless node deploy-

ment model. Furthermore, we assume that the number of IoT devices transmitting to

the fog nodes also follows a random Poisson distribution. Based on these models, we

derive novel closed-form expressions for the storage size, transmission latency, and

tampering time of the IoT fog nodes in our DBC architecture. Numerical simulations

highlight high storage scalability, low latency, and superior security of the DBC de-

sign, and provide insights into the performance gains for different fog node and IoT

device densities.

35
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3.1 Chapter Introduction

Blockchain technology has received significant attention in the last decade due to

its benefits of data transparency, robustness, and security [Hao et al., 2021]. More

recently, blockchains have been considered for Internet-of-things (IoT) applications

where huge amounts of data from IoT devices are securely hashed and stored in com-

munication networks [Li et al., 2020]. However, conventional blockchain architectures

face the challenges of enormous storage space, high computation complexity, and ex-

tended system latency required to manage the entire blockchain, which cannot be

reliably met by miniature IoT devices with inadequate storage resource, computing

capability, and transmit power [Liu et al., 2019b; Yao et al., 2019]. As such, novel

lightweight blockchain and communication architectures are required to improve the

scalability, latency performance, and security of future wireless communication IoT

blockchain applications.

Realistic wireless network models based on stochastic geometry have been pre-

viously considered to accurately characterize the massive randomly distributed ge-

ographic locations of fog nodes and the amount of IoT device data [Cui et al.,

2016; Haenggi, 2005; Haenggi, 2013]. The Poisson point process (PPP) is a flex-

ible stochastic model for general wireless node distributions in a two dimensional

plane. The PPP model is commonly used to characterize small shifts in the signal-to-

interference-plus-noise-ratio (SINR) at each node [Shojaeifard et al., 2015] and

derive the expected throughput by integrating the SINR over the total network

area [Guo and M. Haenggi, 2015; Gupta et al., 2015]. In real-world applications,

the amount of IoT data transmitted is also randomly determined by the IoT devices’

individual schedules which can be modeled according to a Poisson distribution [Sun
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et al., 2019a].

Given the large-scale nature of IoT networks, it is important to take scalability

into consideration. In [Li et al., 2017], the blockchain is divided into shorter seg-

ments known as shards to improve scalability, where a large amount of IoT data can

be processed in multiple parallel shards. In [Huang et al., 2021a], RepChain was

proposed as a sharding-based double blockchain scheme that is executed in a sin-

gle layer communication network. However, parallel processing with shards requires

all nodes to compete and participate in blockchain generation and storage, which is

challenging in IoT applications with varying number of nodes and communications

resource constraints. Furthermore, single-layer IoT network structures have limited

scalability in terms of storage space requirement compared to cloud-fog networks,

where blockchain data could be stored in different layers based on the dynamic size

and latency requirements of blockchain nodes.

Communications latency is a critical performance bottleneck for exchanging data

in IoT blockchains [Lei et al., 2020]. In a wireless IoT blockchain network, the time

cost to generate and propagate a block, namely processing and transmission latency,

are the key concerns because of the restricted computing resource and numerous nodes

required to handle the blockchain. In [Wu et al., 2021a], the processing latency is

reduced by offloading computing tasks to edge or cloud processing nodes in an edge-

cloud communications network. In [Yu et al., 2021], the transmission latency is

improved with a tree-based clustering algorithm, by which the blocks are propagated

through different node clusters with a compressed tree depth. We note that these

previous works assumed fixed distributions for the node locations. As such, the impact

of randomly located nodes on cloud-fog IoT blockchain processing and transmission
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latency has not been considered in the open literature.

One of the key concerns of implementing blockchains in IoT applications is to en-

sure strong data integrity and manage trust amongst the distributed storage and pro-

cessing nodes [Malik et al., 2019]. To this end, private blockchain mechanisms [Ding

et al., 2020; Massar et al., 2020] have been proposed for trusted IoT applications, in

which node authentication is strongly enforced and their activity is actively monitored

based on reputation evaluations. In [Li et al., 2019a], the authors proposed to eval-

uate the reputation of each router in an IoT network based on router reports stored

in an information blockchain to identify unreliable malicious nodes. The authors of

[Kang et al., 2019b] considered a reputation management scheme to ensure secure

miner selection and prevent blockchain tampering. The reputations were evaluated

based on past interactions with the miner candidates and recommendation data from

other nodes. We note that mapping the relationship between the reputations and the

information used for their evaluation could offer important benefits of traceability

and improved security in IoT blockchains for trust management.

In this paper, to address the above challenges, we present detailed stochastic

modeling and performance analysis of our double blockchain (DBC) architecture

from [Hao et al., 2021] which is composed of an information blockchain (IBC) and a

reputation blockchain (RBC) that are processed and stored in a cloud-fog communi-

cations network. Each reputation block (RB) contains reputation values of the IoT

devices that are evaluated based on their historical reputation stored in the previ-

ous RB and their current information stored in a corresponding mapped information

block (IB). Our former work in [Hao et al., 2021] proposed a DBC architecture as-

suming known fixed locations of fog nodes and a constant amount of IoT data. In
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this paper, to provide deeper insights into the scalability performance of the IoT

blockchain for different node densities, we consider a more general network model

with random fog node locations and random numbers of IoT devices uploading data,

and derive new closed-form expressions based on random Poisson distributions to

analyse the scalability, latency, and security performance of the IoT blockchain ar-

chitecture. Furthermore, we provide a comprehensive analysis of the IoT blockchain

system management in terms of the consensus protocol, smart contracts, potential

attacks, and influences of varying node densities.

Numerical simulations are provided to assess the storage efficiency, processing

latency, transmission latency, and blockchain tampering security of the extended DBC

architecture. We highlight that the DBC architecture is well-suited to advanced IoT

blockchain applications with large-scale network size and low-latency requirements.

3.2 System Model

This section describes the DBC model from [Hao et al., 2021], and presents the

communication model using a random node deployment for the fog blockchain layer

networks and the number of transmitting IoT devices. Finally, the DBC consensus

protocol is discussed.

3.2.1 DBC Architecture Model

The system model shown in Fig. 3.1 comprises the cloud blockchain layer, the

fog blockchain layer, and the IoT device layer. The DBC architecture consists of

two mapped blockchains, namely the IBC stored in the cloud blockchain layer and

the RBC stored in the fog blockchain layer. Raw data collected by the IoT devices is
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Figure 3.1: Scalable double blockchain architecture for IoT information and reputa-
tion management.

processed at the fog nodes to generate new IBs and RBs updated in the IBC and RBC,

respectively. We consider that the short RBs are broadcasted in the near-terminal

fog layer, while the long IBs are offloaded to the cloud layer.

The DBC node classification algorithm identifies suitable fog nodes that satisfy

different resource requirements for the RBC and IBC. Our fog layer node classification

algorithm identifies three classes for RBC and two classes for IBC. Specifically, we

define full nodes, light nodes, and basic nodes for the RB, and full nodes and basic

nodes for the IBC. For RBC, the full nodes are fog nodes with sufficient storage

space and computing capacity to store and generate new reputation blocks. The light

nodes have adequate storage space for storing the RBC but have limited computing

capabilities to generate new reputation blocks. The basic nodes have limited resources
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and cannot participate in RBC storage or generation but could transfer data collected

from IoT devices. For IBC, the full nodes are fog nodes with sufficient computing

capacity to generate new information blocks but have limited storage space, whilst

the basic nodes are the same as for the RBC. We do not classify any light nodes for

the IBC because all new IBs are offloaded to the cloud layer for storage.

A smart contract is a self-executed software in the blockchain system by user-

defined script, which can be used to ensure trusted information exchange in the

blockchain without the need of a central server [Debe et al., 2019]. The DBC ap-

proach [Hao et al., 2021] is composed of a private IBC and a private RBC, which

can be implemented using smart contracts for cloud blockchain storage management

in the cloud layer and trust management of the fog nodes and IoT devices [Wang

et al., 2019] in the fog layer. In the DBC approach [Hao et al., 2021], the fog nodes

authentication is strongly enforced by the smart contract because all the fog nodes in

the system are required to register via the smart contract. The behaviors of fog nodes

and IoT devices in the network will be monitored by the smart contract, which can

blacklist a malicious fog node or an IoT device if it tries to tamper the blockchain,

or flag as suspicious based on its communication behavior.

Querying the reputation value in the RBC can be performed quickly due to their

short block lengths. The one-to-one mapping algorithm [Hao et al., 2021] between the

RBC and IBC ensures that the smart contract can accurately verify the reputation

values in the RBC by querying their corresponding information in the IBC. Based

on the IBC and RBC values, the IoT devices can be carefully managed to prevent

data security attacks and ensure that a high-level of trust is maintained in the IoT

application.
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Figure 3.2: Signal and interference transmission in the target area. The receiver node
receives the desired signal from the nearest full or light node with distance dTR and
suffers interference from the other nodes with distance dIkR(k > 1) in the considered
area.

3.2.2 Stochastic Communications and Interference Model

In this section, we present the communication model used to transmit the RBs in

the fog blockchain layer. The full, light and basic nodes for RBC are assumed to be

independently geographically distributed according to a PPP, where the correspond-

ing node distribution intensities 1 per unit area are λfr, λℓr and λbr. Since these three

kinds of fog nodes are independent, we could conclude that the distribution of the

entire fog node set N is also a PPP with intensity λ = λfr + λℓr + λbr. When a new

block is propagated through the network, the intensity of the transmitting nodes is

λt = λfr+λℓr since only the full and light nodes participate in the block propagation

process. During this time, we consider that there exists interference from the other

1The deterministic counterpart of the random counting measure in a Poisson distribution is
defined as the intensity measure, which is the expected number of points in the target set [Haenggi,
2013]. In a communications network, the node intensity is also interchangeably referred to as the
node density [Gupta et al., 2015].
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nodes with intensity λfog.

As shown in Fig. 2, we assume that the nearest node from the transmitter is

the desired receiver, and the signals sent from other users are treated as interfer-

ence [Haenggi, 2013]. In the figure, the desired signal is transmitted with distance

dTR, while the interference signals from the other nodes in the considered area are

transmitted with distance dIkR > dTR. The distance between the fog nodes in a PPP

network is characterized by the node intensity and probability distribution function

(PDF) of the transmission distance. The corresponding PDF of the kth nearest

transmitter node to the receiver node can be expressed as [Ji et al., 2021]

fPDF(dk) =
2 (λπd2k)

k

dkΓ(k)
e−λπd

2
k , (3.2.1)

where, dk is the distance from the receiver node to the kth nearest transmitter node,

λfog is the intensity of the considered fog node set, and Γ(·) is the gamma function.

The number of fog nodes in the PPP network can be characterized according to

a probability mass function (PMF) given by

fPMF =
e−λλn

nΓ(n)
, (3.2.2)

where n is the number of fog nodes. We consider large-scale fading, where the sig-

nal power at the receiver of fog node ni is a random variable with the distribution

of [Andrews et al., 2011; Haenggi, 2013]

Ps,ni
= Pud

−α̂
TR,ni

, (3.2.3)

where Pu denotes the transmit power of the transmitter node, dTR,ni
is the distance

of the link from the transmitter to the receiver of node ni, and α̂ is the distance-

dependent path loss. We define the SINRni
as the signal-to-interference-plus-noise
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ratio of fog node ni, which is calculated as [Andrews et al., 2011]

SINRni
=

Ps,ni

Ini
+ σ2

=
Pud

−α̂
TR,ni∑

dIkR≥d1
Pud

−α̂
IkR,ni

+ σ2
, (3.2.4)

where Ps,ni
is the desired signal power of node ni, dTR,ni

is the distance from the

transmitter to the receiver node ni, which is the distance of the desired link. dIkR,ni

is the distance from the kth interference to the receiver node ni, as shown in Fig. 3.2.

The IoT devices collect data that is transmitted to the IBC full nodes. We assume

that different IoT devices collect and upload information according to their individual

schedules. As such, the number of IoT devices providing information at any given

time follow a Poisson distribution, which can be characterized by a PMF as

Piot(m) =
e−λiotλmiot
mΓ(m)

, (3.2.5)

where,m is the number of transmitting IoT devices, λiot is the intensity of IoT devices.

3.2.3 DBC Consensus Protocol

The Proof of Authority (PoA) [Alrubei et al., 2021] consensus protocol is often

considered for IoT networks with private blockchains [Alrubei et al., 2020] due to

its computationally-efficient approach for adding a new block to the blockchain, and

low-latency requirements as it does not require time-consuming confirmation rounds

and validation by authorized nodes. The private DBC is well-suited to adopt the PoA

consensus due to its lightweight and fast processing requirements, where the newly

generated blocks are authorized automatically by the smart contract. We assume

that the fog nodes are authenticated prior to joining the DBC network and the smart

contract assigns suitable nodes in the network to perform validation before a newly

generated block is added to the IBC or RBC.
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Figure 3.3: Block structure and mapping relationship.

3.3 DBC Architecture and Performance Analysis

In this section, we describe the DBC node classification, block structure, and

mapping algorithm. Then, we design the storage size, the processing and transmis-

sion latency, and tampering time of the DBC architecture based on the PPP node

deployment with the corresponding cost and performance tradeoff discussions. Since

different applications may have different constraints for storage, latency and security,

it is important to carefully consider the performance tradeoffs between the DBC and

SBC architecture.

3.3.1 DBC Node Classification

For the DBC node classification algorithm [Hao et al., 2021], let the set of fog

nodes be N = {n1, n2, ..., nNfog
}, where Nfog is the total number of fog nodes. We

denote Si as the storage space and Fi as the computing resource of the ith fog node

ni ∈ N . We design a node classification algorithm to determine the sets Nfr, Nℓr

and Nbr, which represents the set of full, light and basic node set related to the RBC,

while Nfi and Nbi represent the sets of full nodes and basic nodes related to the



DBC Architecture and Performance Analysis 46

Algorithm 1: Fog Layer DBC Node Classification

1 Initialize: Nfi = Nbi = Nbr = Nfr = Nℓr = ϕ, minimum space required for
storing RBC sminRBC

, minimum computation required for generating new IB
and RB cminIB and cminRB

;
2 for ni ∈ N do
3 if Fi > cminIB then
4 ni → Nfi;
5 else
6 ni → Nbi;
7 end
8 if Si < sminRBC

then
9 ni → Nbr;

10 else if Fi < cminRB
then

11 ni → Nℓr;
12 else
13 ni → Nfr;
14 end

15 end
16 Output Nfi,Nbi,Nbr,Nℓr,Nfr.

IB. Nfr, Nℓr, Nbr, Nfi, Nbi represent the corresponding node numbers, respectively.

The algorithm first explores whether the target node is qualified to be a full node for

generating an IB by comparing its computing resource with the designed threshold.

Then, the same node will be classified according to the requirements of RBC. If the

storage size of the target node is smaller than the threshold sminRBC
, it will be assigned

to the basic fog node set for RBC Nbr. In contrast, if it has enough storage space, the

subsequent step of the algorithm checks its computing resource to identify whether it

is a full or light node for RBC.

We note that the computing resources required to generate the short RBs will be

significantly lower than those for the long IBs, and we consider there are insufficient

storage resources for the IBC in the fog layer. As such, the number of full nodes
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required for the RBC and IBC will not be the same. Furthermore, the algorithm

classifies basic nodes, light nodes and full nodes for the RB, whilst only basic nodes

and full nodes are considered for the IBC.

The DBC node classification algorithm determines the intensities of each fog node

class and improves the scalability, latency, and security of the system by classifying

the fog nodes based on the requirements of the IoT blockchain network.

3.3.2 DBC Block Structure and Mapping

In our DBC architecture, we consider a one-to-one mapping between the newly

generated IB and RB to ensure that the reputation is constantly updated based on

new IoT data. This is because a higher reputation updating frequency will result

in faster identification of malicious behaviors by the IoT devices. Since we consider

different IoT devices collect and transmit data to the fog layer according to their

specific schedules, only the reputations of active devices will be updated. Thus, our

one-to-one block mapping will result in different IoT device reputations stored in

different RBs. The regular generation of new RBs will also result in a smaller block

size.

Fig. 3.3 shows the block structure of the IB and RB which are composed of a

header and a body. The header in both the ith IB and ith RB contains hash values

of the (i − 1)th and ith blocks, a nonce, a timestamp, a vector of ID values stored

in IDi representing the IoT devices that are transmitting information from the IoT

device layer to the fog layer to generate the ith block pair, and a vector of mapping

value stored in Mapi between the ith IB and ith RB. We note that the new RB is

generated after the generation of its corresponding IB, because the RBC full node

has to wait for the IBC full node to send the corresponding time stamp and device
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ID data via high-speed backhaul links to ensure the RB is correctly mapped. Each

block in the IBC stores information data from all the IoT devices whilst each block

in the RBC stores the reputation values corresponding to the current and historical

IoT data. The ith and (i − 1)th reputations are stored in the vectors ξi and ξi−1,

respectively.

The reputation values in the current reputation block are evaluated based on

the historical reputation data from the previous reputation block and the current

information data collected from the IoT devices. Therefore, the vector of reputation

values can be evaluated as

ξi = f(ξi−1, Ii,1, Ii,2, ...), (3.3.1)

where f(·) is the function to calculate reputations, and Ii,1, Ii,2, . . . are the informa-

tion data stored in IB i as shown in Fig. 3.3. Based on (3.3.1), the reputation values

can be used to quickly identify the trust levels of all the IoT devices.

The mapping is evaluated by applying a hash function to the unique timestamp

and a vector of IoT device IDs in the header of each block. Only the corresponding

reputation block and information block will have the same mapping value. Taking

hash-256 function as an example, the mapping value Mapi of the ith block pair can

be evaluated as

Mapi = SHA256 (tsi | IDi) , (3.3.2)

where | is the concatenation of two sequences, and tsi is the timestamp of the ith

block as shown in Fig. 3.3.

3.3.3 DBC Average Storage Size
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The average IBC and RBC storage size for randomly distributed fog nodes and

transmitting IoT devices can be evaluated based on our block structure in Fig. 3 and

PPP-based node deployment described in eq. (3.2.5), which results in

E(SIBC) = Nblock(2(256 + Lh) + E(Niot)(2Lh +NILb))

= Nblock(2(256 + Lh) +
∞∑
m=0

mPiot(m)(2Lh +NILb))

= Nblock(2(256 + Lh) + λiot(2Lh +NILb)︸ ︷︷ ︸
E(LIB)

),

(3.3.3)

and

E(SRBC) = Nblock(2(256 + Lh) + E(Niot)(2Lh + 2Lb))

= Nblock(2(256 + Lh) +
∞∑
m=0

mPiot(m)(2Lh + 2Lb))

= Nblock(2(256 + Lh) + 2λiot(Lh + Lb)︸ ︷︷ ︸
E(LRB)

),

(3.3.4)

respectively, whereNblock is the number of blocks in each blockchain, and E(Niot) is the

expectation of the number of IoT devices transmitting to the target full node, where

λiot is the corresponding IoT device intensity. We denote NI as the number of entries

in each information block body, Lh is the size of the three non-hash entries in the

block header, Lb is the size of each entry in the block body, E(LIB) is the average size

of a single IB, and LRB is the average size of a single RB. We can observe from (3.3.3)

and (3.3.4) that the average storage sizes of IBC and RBC increase with intensities

of IoT devices uploading information. Furthermore, based on the PMF in (3.2.2) the

total storage size for the RBC in the fog blockchain layer can be evaluated as

E(FSRBC) = E(Nt)× SRBC =
∞∑
ni=0

ni
e−λtλni

t

(ni)!
SRBC = λtSRBC , (3.3.5)

where, E(Nt) is the average number of fog nodes used to store the RBC, and λt is

the corresponding intensity.
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From the above analysis, we can conclude that the DBC architecture dramatically

improves the scalability of the IoT network deployed in the fog layer. Since the storage

resources of fog layer infrastructures such as the base station, the roadside unit, or the

wireless access point are much more restricted and expensive than that of the cloud

layer storage resources, it is important to improve scalability by reducing the storage

requirement in the fog layer. Offloading the heavyweight IBC to the cloud layer can

efficiently lower the storage resource requirements at the fog layer IoT nodes. It is

worth noting that the IBC still needs high storage space requirements but with lower

cost and restriction in the cloud layer. In addition, the DBC architecture requires

total extra storage space cost of one more block header and mapping in each DB pair

compared to the single blockchain architecture.

3.3.4 DBC Latency

Next, we evaluate the DBC average latency from the perspective of PPP-based

deployments to determine the impact of the node density in real-world applications.

Average Processing Latency

The processing latency for our DBC block structure is the cumulative time re-

quired to generate a new block for the IBC and RBC and their corresponding mapping

relationship. First, the full node for the information block uses the collected raw data

from the IoT devices to generate a new information block. The information will then

be transmitted to the nearest RBC full node to generate the corresponding reputation

block together with the historical reputation values stored in the previous reputation

block. Lastly, the mapping algorithm between this newly generated information and

reputation block pair is executed. The processing time of IB is much higher than that
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of RB and mapping, because the IB data is much larger than the RB and mapping.

As such, the average DBC processing time is mainly affected by the processing time

of the IBC.

We can evaluate the times required to generate the ith IB, RB, and the mapping

relationship shown in Fig. 3.3 as

τprocIB(i) = Oτ (SHA256 (LIB(i))) , (3.3.6)

τprocRB
(i) = Oτ (SHA256 (LRB(i))) , (3.3.7)

and

τprocmap(i) = Oτ (SHA256 (tsi | IDi)) , (3.3.8)

respectively, where we assume that the SHA-256 hash function is used andOτ (SHA256)

is the time to execute the hash function based on the size of the raw input data. Based

on the size of the IB and RB defined in (3.3.3) and (3.3.4), respectively, we can observe

that the processing time of the IB increases with both the number of the information

entries NI and the intensity of active IoT devices λiot in (3.3.3), whilst the processing

time of the RB and mapping increase with λiot. Therefore, the processing time of the

ith DBC block pair can be expressed as

τproc(i) = τprocIB(i) + τprocRB
(i) + τprocmap(i). (3.3.9)

We note that these processing latencies are measured through program execution

time, which is determined by time flags embedded at the start and end of program

execution related to eqs. (3.3.6)-(3.3.8).
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Transmission Latency

In our DBC architecture, the transmission latency is the time required to transmit

a newly generated RB by the full and light fog nodes for the RBC. We consider

that the IBs are offloaded to the cloud layer by wired backhaul links, and therefore

incurs minimal transmission time compared to the RBC which are transmitted via

wireless links. The transmission latency is defined as the transmission time required

to transmit a new RB to its nearest neighbor, which can be evaluated as [Li et al.,

2019b]

τt =
E(LRB)
Cs

, (3.3.10)

where E(LRB) is the expectation of RB size given in (3.3.4), and Cs(ni, ni+1) is the

communication throughput which can be expressed as [Haenggi, 2013]

Cs ≜ ptransλtPsuc, (3.3.11)

where each transmitter in the Poisson network decides to transmit with probability

ptrans, λt is the intensity of the transmitting fog nodes, and Psuc is the transmission

success probability, which is the probability that the received SINR at the RBC fog

node is above a predefined threshold ϵSIR. Thus, the transmission success probability

in a Rayleigh fading wireless network can be expressed as [Haenggi, 2013]

Psuc ≜Psuc(Pu > θ(Ini
+ σ2))

=E(exp(−θdα̂(σ
2

Pu
+ I)) | d = d1)

=exp(−θ σ
2

Pu
dα̂1 )PIsuc

=exp(−ε1dα̂1 )EI(exp(−dα̂Iθ) | d = d1)

(a)
=exp

(
−ε1dα̂1 − πλε2d21

)
,

(3.3.12)
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where

ε1 = θ
σ2

Pu
, (3.3.13)

and

ε2 = θ
2
α̂Γ

(
1 +

2

α̂

)
Γ

(
1− 2

α̂

)
, (3.3.14)

where (a) follows from averaging over the exponential distribution of Ps,ni
, and λfog

is the intensity of the interference node set. Specifically, Psuc is the conditional

expectation of success probability when d = d1 in (3.3.12) since we consider the fog

nodes always transmit to their nearest neighbors.

Substituting (3.3.11), (3.3.12), (3.3.13), and (3.3.14) into (3.3.10), we can derive

the transmission latency as

τt =
E(LRB)exp

(
ε1d

α̂
1 + πλε2d

2
1

)
ptransλt

=
2(256 + Lh) + λiot(256 + Lh + 2Lb)

ptransλt

× exp

(
θ
σ2

Pu
dα̂1 + πλd21θ

2
α̂Γ

(
1 +

2

α̂

)
Γ

(
1− 2

α̂

))
.

(3.3.15)

From (3.3.15), we conclude that the transmission latency can be decreased by re-

ducing the intensity of the IoT device, λiot, and interference nodes, λfog, or increasing

the intensity of the transmitting fog nodes, λt. As such, compared to a conventional

single blockchain approach where the information and reputations are stored in all

the fog layer nodes, our DBC architecture is expected to achieve a remarkably smaller

transmission latency due to the small block size of the RBC. The expression in (3.3.15)

also indicates that the transmission latency can be reduced by setting a lower SINR

threshold ϵSIR, shorter deployment distance d1, larger path loss exponent α̂, or higher

transmit power Pu.
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We note that the low average processing and transmission latency of our DBC is

achieved at the cost of higher system complexity. This is because separately gener-

ating the IB, RB and mapping requires additional processing time compared with a

conventional single blockchain. Additional processing overheads are required to ex-

ecute the DBC node classification algorithm, while the transmission of RBC in the

fog layer will require wireless channel resources which are efficiently minimized due

to the small block size of the RB.

Impact Analysis of Processing and Transmission Latency

Eqs. (3.3.6)-(3.3.8) and eq. (3.3.15) highlight the pivotal role of processing and

transmission latency in our considered hierarchical low-latency IoT network. While

processing latency is significantly influenced by computing frequency, transmission

latency is primarily determined by factors such as SIR threshold, distance, fog node

intensity, and IoT device intensity. These dynamics underscore the complexity of

balancing processing and transmission delays to optimize network performance.

3.3.5 Practical Consideration of PPP-Based Modeling

While PPP serves as a useful theoretical model, it is important to acknowledge its

limitations in accurately representing the stochastic properties of real-world wireless

node deployments. While PPP provides valuable insights into the spatial distribution

of nodes in wireless networks, it may not fully capture the complexities and variations

present in actual deployment scenarios. For example, in [Hourani et al., 2019], the

authors highlighted this point and strengthened the need for caution when applying

PPP assumptions, particularly in practical contexts involving base stations (BS).

Therefore, while PPP remains a valuable theoretical tool for analysis, it is essential to
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exercise discretion and not overstate its practical applicability, especially in scenarios

involving BS deployment and network planning.

3.3.6 DBC Security

To evaluate the DBC security, we focus on the time required for a malicious fog

node to launch a tampering attack on the RBC and the time required to identify the

attack that has occurred. For instance, in the scenario where an attacker possesses

the capability to manipulate stored data within a minute, the implementation of

effective preventive measures becomes significantly challenging. Conversely, if the

perpetrator’s efforts necessitate an entire day to execute a successful tampering attack,

it affords us an additional day to undertake operational strategies aimed at thwarting

the assailant. We note that either a higher tampering time or a lower identification

time both correspond to a higher security level.

To analyze the time required for tampering, we adopt the method described in

ref [Yu et al., 2020]. We utilize a similar blockchain consensus protocol in our low-

latency IoT scenario, in which a malicious user needs to modify the copies of hash

values of the target reputation block in more than half of the total number of RBC

storage nodes and change the hash values in all the subsequent blocks [Yu et al.,

2020]. We assume that the malicious node attempts to attack any fog node since it

does not know which nodes are full or light nodes, thus significantly decreasing the

probability of a successful attack. We assume that the attacker lacks prior knowledge

of the blockchain network. Thus, we define the security level based on the minimum

time required for successful tampering. For instance, the attacker might expend

additional effort attempting to tamper with earlier blocks, although such attempts

would be futile in achieving a successful tampering attack. As such, the security level
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in terms of blockchain tampering time can be expressed as

τtampmin
=
λt
2

Nblock∑
i=Nblock−mt

E(τAttproc(i)), (3.3.16)

where mt is the index of the targeted block. From (3.3.16), we clearly see that

the DBC security level increases with the reputation block size, the position of the

target block in the RBC, and the intensity of full and light nodes for RBC. We note

that τAttproc(i) denotes the attacker’s processing time for a single block. Tampering by

the attacker necessitates extensive hash calculations, akin to the block generation

process described in eq. (3.3.9). However, this processing time varies depending on

the attacker’s computing frequency.

As illustrated in Fig. 3.3, any modification to the hash value stored in the IB,

RB, or mapping results in corresponding alterations in the other two. This suggests

that detecting a tampering attack requires monitoring the shortest time taken for

any change to manifest. Given that, for the same node, the processing latency of IB,

RB, or mapping is determined by their respective sizes, and the mapping size is the

smallest among these three. Hence, to identify the tampering attack, each fog node

simply needs time to search and verify the hash values in their RB, which can be

evaluated as

τiden =

Nblock∑
i=Nblock−mt

E(τprocmap(i)). (3.3.17)

Since this process can be carried out independently at each fog node, the time required

to identify the tampering attack is significantly smaller than the time required for the

malicious node to successfully launch the attack given in (3.3.16), which guarantees

a high system security.
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3.4 Security Analysis

In this section, we discuss the DBC security in terms of storage and computing

resources and three different attacks on the IoT devices and fog layer nodes. Finally,

we discuss the practical tradeoffs in terms of the performance and security of our

DBC architecture.

Our research aims to enhance IoT network security by strategically utilizing stor-

age and computing resources. These resources were chosen based on their critical role

in addressing the security challenge of tampering attacks faced by IoT networks, which

usually lack storage and computing resources. In our approach, storage resources are

leveraged for storing blockchain data on fog nodes, providing a tamper-proof and

distributed ledger for securing IoT transactions and data exchanges. In addition,

computing resources are utilized for fast and efficient processing of blockchain opera-

tions, including block generation and validation, at the network edge. By harnessing

the capabilities of storage and computing resources, our research seeks to strengthen

the security posture of IoT networks by ensuring data integrity, confidentiality, and

resilience against cyber threats and attacks. This strategic deployment of resources is

integral to our comprehensive approach towards enhancing IoT network security and

protecting IoT devices and systems from emerging security risks and vulnerabilities.

3.4.1 Attack Analysis

Malicious IoT Device

Malicious IoT devices may provide malicious raw data and deliberately change

the information stored in IBC. In our DBC architecture, the quality of the raw data

can be compared with previously stored information in the IBC to identify malicious
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data from IoT devices and assign them with low reputations. Based on these repu-

tations, the smart contract can quickly identify and isolate the malicious IoT devices

to prevent further harmful impacts from the malicious data.

Information Hiding

Information hiding is a common attack in trust management systems. With infor-

mation hiding, the malicious IoT device hides the information that have a negative

impact on its reputation and only shares the positive ones [Ferrag et al., 2019].

In our DBC, the current reputation value is calculated based on both the previous

reputation value and the new information values. Thus, the reputation value of the

information hiding IoT device can be decreased when it shares fewer information

values compared to previous uploads. In addition, the IB and RB pair is strongly

mapped. Therefore, if a specific IoT device uploads data less frequently compared to

the other related devices, it can be quickly identified by the smart contract through

mapping.

Eclipse Attack

A well-known blockchain attack aimed at the fog node is the eclipse attack [Heilman

et al., 2015]. In an eclipse attack, the attacker monopolizes all of the target node’s

incoming and outgoing connections, thus isolating the target node from the rest of

the fog nodes in the network. The attacker can then filter the target node’s view of

the DBC, force the target node to waste computing power on obsolete views of the

blockchain, or co-opt the target block’s computing power for its own purposes. Even

though the eclipse attack aims to tamper with only one fog node, it could potentially

disrupt the whole blockchain network, such as in a Sybil attack [Douceur, 2002].
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In the DBC, the eclipse attack can be prevented because DBC is a private blockchain

in which the fog nodes are strictly authenticated. Furthermore, the IoT devices can

upload their raw data to multiple fog nodes instead of a single node, which means the

reputation values of the IoT devices are calculated by a large number of fog nodes

in the network. Thus, even if one target node is successfully attacked by the eclipse

attack, its irregular data can be identified by comparing it with other nearby nodes.

3.4.2 Security-Performance Tradeoffs

We note that managing two blockchains instead of one will require more computing

resources due to the replicated processing of IBC, RBC, and the mapping algorithm

between IBC and RBC. Comparing (3.3.15) and (3.3.16), we see that whilst increas-

ing the reputation block size and number of RBC storage nodes improves security

will result in a more secure system in the fog layer compared to the conventional

SBC architecture, it also results in a higher transmission latency which means more

time is needed to propagate a new reputation block to all the storage nodes. This

highlights a fundamental trade-off between security and performance in designing our

IoT reputation management system.

We also observe that due to the large size of the IB and its storage in the cloud

layer, it will be extremely challenging to tamper the IBC. The higher security resulting

from storing multiple copies of the RBC in large numbers of full and light nodes will

result in higher storage resource consumption in the fog layer. This additional storage

cost is minimized by ensuring that each new RB stores only the most recent reputation

data for low-latency access by the smart contract. Furthermore, even if the RBC is

successfully tampered, our mapping algorithm can be applied to quickly identify the

tampering and re-evaluate the reputation values based on the information stored in
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Table 3.1: Chapter 3 Simulation Parameters

Parameter Value

Number of blocks in one blockchain Nblock 1, 000
Number of information entries in each IB NI 128
Size of non-hash entries in the block header Lh 8 Bytes
Size of each entry in the block bodyLb 8 Bytes
Minimum space required for storing RBC sminRBC

6 GB
Minimum computation required to generate IB cminIB 9 GHz
Minimum computation required to generate RB cminRB

6 GHz
Intensity of the entire fog node set λfog 1× 103 [Sun et al., 2019a]
Intensity of the transmitting IoT devices λiot 1× 106 [Sun et al., 2019a]
Transmission probability ptrans 0.5
Transmit power of fog node Pu 20 dBm [Sun et al., 2019a]
Noise power to fog node σ2 −104 dBm
SIR threshold ϵSIR 0 dB
Path loss exponent α̂ 2.5 [Sun et al., 2019a]
Distance of the desired link d1 10 m

the corresponding information blocks to isolate or blacklist the detected malicious

nodes.

3.5 Performance Evaluation

In this section, we present numerical simulations to evaluate the storage efficiency,

processing and transmission latency, and security of the DBC architecture using a

Matlab simulation environment based on randomly located fog nodes and the number

of transmitting IoT devices. The simulation scenario is set as shown in Section 3.2,

where the cloud server and the fog nodes are located in the cloud and fog layers,

respectively. In the fog layer, we assume that the locations of the fog nodes are

modeled according to a random PPP over a given two-dimensional area, and their
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Figure 3.4: Blockchain storage size of SBC and DBC versus fog node density (per
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Figure 3.5: Average processing latency versus IoT device density (per km2).

storage space and computing resources follow uniform distributions of Si ∼ U [2, 10]

GB and Fi ∼ U [2, 10] GHz, respectively. Unless otherwise mentioned, the simulation

parameters are summarized in Table 3.1.

Fig. 3.4 plots the blockchain storage size derived in (3.3.5) versus the fog node

intensity of the SBC and DBC. We consider different transmission node intensities,
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Figure 3.6: Transmission latency for different key design parameters.

and different block entry size Lb. This figure shows that the storage space of both

the single and double blockchains increases with the intensity of fog nodes, and the

storage size of double blockchain RBC is always smaller than that of the SBC with

the same λt and Lb. We also observe that the storage size of DBC increases slower

than SBC as Lb increases. This is because the DBC node classification algorithm

only stores the lightweight RB in the transmission fog nodes compared to the SBC
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that stores both information and reputation values in all fog nodes. As expected, a

smaller λt corresponds to a smaller storage size for the RBC, since fewer transmission

nodes will be selected amongst the fog nodes. For example, when λ = 103 with 8

Bytes Lb, the SBC requires a total storage size of approximately 2GB whilst the DBC

only requires 92MB and 46MB when λt is 500 and 250, respectively.

In Fig. 3.5, we plot the average processing time to generate a new block from (3.3.9)

versus the IoT device density for different cminIB and cminRB
. The processing time is

measured by the being and end flags of block generation program. We observe from

this figure that both higher cminIB and cminRB
lead to a higher average processing

time, because a higher computation threshold means a smaller number of nodes will

participate in the IB and RB generation process. This figure also indicates that cminRB

influence the processing latency more significantly with a lower IoT device intensity.

This is because a lower IoT device intensity corresponds to a smaller IB size, which

leads to less contribution to the entire DBC process latency as noted in (3.3.9). This

figure further shows that SBC can outperform DBC at low IoT device intensities of

around 1× 106. This is because the additional time to process the RB and mapping

in DBC causes comparable latency as IB when the IB block size is very small, which

indicates that the DBC processing latency is more suitable for large-scale IoT net-

works. As expected, when the IoT device intensity is large, the DBC is primarily

determined by the IB threshold cminIB . For example, increasing the RB and IB com-

putation thresholds from 6GHz to 8GHz when λiot is 1 × 107, results in decreasing

the processing latency by approximately 7% and 50%, respectively.

Fig. 3.6 plots the transmission latency for five key design parameters character-

ized in eq. (3.3.15). Fig. 3.6(a) shows that the transmission latency increases with
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increasing SIR threshold ϵSIR because increasing the SIR threshold corresponds to

decreasing the transmission success probability shown in (3.3.12). Fig. 3.6(b) demon-

strates the transmission latency increases with the growing distance of the desired

link d1 because a longer desired link distance will result in more severe fading, path

loss, and interference experienced by the desired link. Fig. 3.6(d) indicates that the

transmission latency increases with higher IoT device intensity λiot since a higher IoT

device intensity corresponds a larger RB size to be transmitted by each node. In-

terestingly, Fig. 3.6(c) shows that the transmission latency decreases with increasing

path loss exponent α̂. This is because a higher path loss exponent can effectively

reduce the transmission latency by decreasing the interference at each receiver due to

the interference-limited nature of the fog network.

Another interesting observation in Fig. 3.6(c) is that the transmission latency

first decreases as λfog increases since deploying more nodes corresponds to a higher

communication throughput as shown in (3.3.11). As the intensity keeps increasing,

the transmission latency starts to increase. This is because the interference is more

severe as the network gets denser. This figure further shows that a higher path loss

exponent leads to higher tolerance of interference intensity since the total interference

decreases with increasing α̂. Similar to Fig. 3.5, we see in Fig. 3.6(d) that when the

intensity of IoT devices is very low, SBC can outperform DBC. This is because a

low IoT device intensity corresponds to less raw data and comparable block sizes in

the SBC and DBC. However, as IoT device intensity increases, the SBC block sizes

stored in the fog nodes will be larger than the DBC resulting in a lower transmission

latency for the DBC.

Fig. 3.7 plots the minimum time required to tamper the DBC from (3.3.16) for
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Figure 3.7: Minimum time to tamper the DBC versus the targeted block sequence
number with different RBC transmission node intensities (λt).

different targeted block sequence numbers and different intensity of the RBC trans-

mitting nodes. We consider a dense IoT network scenario in which the intensity of

the IoT device at λiot = 5 × 109 nodes per square kilometer. The figure highlights

that our DBC architecture is highly secure against tampering attacks. For example,

we see that the time required for the tampering attack can be up to 11.6 hours when

λt = 1× 103, which is much higher than the time for single blockchain solutions such

as in [Yu et al., 2020], which indicated a tampering time of approximately 6 hours.

This shows that a large number of storage nodes in the fog layer makes it difficult for

a malicious node to successfully tamper more than half of all blockchain copies, which

highlights the effectiveness of our DBC architecture to prevent tampering attacks.

In Fig. 3.8, we highlight a fundamental trade-off between the transmission latency

and the ability to resist a tamper of the DBC architecture. A lower transmission

latency and a higher ability to resist the tampering attack is desirable. However, as

shown in Fig. 3.8, when the transmission latency increases, the tampering attack time
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Figure 3.8: Trade-off between DBC transmission latency and tampering time.

also increases. This figure further shows that deploying more transmitting nodes is

an effective solution to decrease the transmission latency and improve the security

level. Of course, deploying more nodes is expensive and may not always be feasible.

The figure shows that the network deployment should be carefully planned to ensure

that a minimum transmission latency and maximum ability to resist tampering can

be achieved for the given network density scenario.

3.6 Chapter Summary

We presented detailed analysis and stochastic modeling of our scalable DBC ar-

chitecture [Hao et al., 2021] for IoT information and reputation management. We

consider a communication network in which the fog node locations and transmitting

IoT device numbers are randomly distributed to reflect real-world networks. The

DBC was composed of a lightweight RBC containing IoT reputation values which are

stored in a selected number of fog layer nodes and a heavyweight IBC containing large

amounts of IoT data stored in the cloud layer. We apply a DBC node classification



Chapter Summary 67

algorithm to identify suitable fog layer nodes to generate the IBC and RBC, and store

the RBC based on their resource constraints. A mapping relationship between RBC

and IBC is embedded in the DBC architecture, which helps to quickly prevent and

identify malicious tampering attacks on the blockchain. Numerical analysis and simu-

lation results show that our stochastic DBC architecture can provide a highly scalable,

low-latency and secure blockchain performance for IoT information and reputation

management in large-scale heterogeneous communication networks with realistic fog

node deployments and random numbers of transmitting IoT devices.



Chapter 4

Secure DRL for Dynamic Resource
Allocation in Wireless MEC
Networks

This chapter proposes a blockchain-secured DRL (BC-DRL) optimization frame-

work for data management and computing resource allocation in decentralized wireless

MEC networks. In our framework, we design a low-latency reputation-based proof-

of-stake (RPoS) consensus protocol to select highly reliable blockchain-enabled BSs to

securely store MEC user requests and prevent data tampering attacks. We formulate

the MEC computing resource allocation optimization as a constrained MDP balanc-

ing processing latency and DoS probability. We use the MEC aggregated features as

the DRL input to significantly reduce the high-dimensionality input of the remaining

service processing time for individual MEC requests. Our designed constrained DRL

effectively attains the optimal computing resource allocations that are adapted to the

dynamic DoS requirements. We provide extensive simulation results and analysis to

validate that our BC-DRL framework achieves higher security, reliability, and re-

source utilization efficiency than benchmark blockchain consensus protocols and MEC

computing resource allocation algorithms.

68
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4.1 Chapter Introduction

Security is a major concern in mobile edge computing (MEC) service provision-

ing given the prevalence of data tampering attacks leading to disruptive denial-of-

service (DoS) in decentralized wireless networks [Lin et al., 2023; Liu et al., 2020].

Blockchain-based data management has been recently considered to prevent data

tampering attacks and ensure the integrity of MEC user requests in wireless net-

works [Zhang et al., 2021a]. In blockchain-secured MEC networks, the base stations

(BSs) are also blockchain nodes which store critical data at all nodes in the blockchain

network according to a given consensus protocol. The most well-known blockchain

consensus protocol is proof-of-work (PoW) [Nakamoto, 2008], which is not suitable

for wireless MEC networks with limited BS computing resources and strict latency

requirements [Pokhrel et al., 2020]. In [Ling et al., 2021; Xiong et al., 2020], it

was shown that the PoW consensus incurred lengthy delays due to high computations

for block validation and requiring all nodes to compete in the block generation.

Significant research efforts have focused on reducing the high computation over-

head and processing latency for blockchain consensus [Asheralieva et al., 2020;

Castro and Liskov, 1999; Hao et al., 2020; Kang et al., 2019b; Tschorsch and

Scheuermann, 2016; Xiao et al., 2020; Yang et al., 2019]. Among them, a popular

approach is the practical Byzantine fault tolerance (PBFT) consensus protocol, which

reduces the block generation time by selecting one blockchain node to generate a new

block [Castro and Liskov, 1999]. PBFT consensus still has high computation and

latency for block validation, because all nodes need to validate the generated block.

Proof-of-stake (PoS) consensus is another protocol that can reduce computation and

latency overheads by selecting a trusted subset of blockchain nodes to validate the
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generated block [Tschorsch and Scheuermann, 2016]. However, PoS consensus

is vulnerable to attacks since the highest stake miner node that is selected for block

generation can be easily targeted by attackers [Yang et al., 2019]. Clearly, there is

a pressing need to design a novel blockchain consensus that can significantly reduce

the high computation overheads without jeopardizing the security level.

Apart from security, a further challenge in dynamic MEC networks is to effi-

ciently allocate the computing resources in each time slot [Zappone et al., 2019],

since allocating more computing resources in the current time slot results in a smaller

processing latency for these users, but a potentially higher DoS probability due to

insufficient resources for future users. This fundamental trade-off between processing

latency and DoS probability in MEC networks can be managed by formulating the

optimal resource allocation as a sequential decision-making problem [Chen et al.,

2022; Tang et al., 2021]. Dynamic programming is a traditional model-based ap-

proach used for resource allocation in sequential decision-making problems [Busoniu

et al., 2010]. However, it is challenging to apply in large-scale problems due to

the exponential growth of state and action spaces [Taylor, 1994]. To overcome this

challenge, deep reinforcement learning (DRL) algorithms have been employed [Wang

et al., 2022a; Wang et al., 2023], and constrained DRL is an effective solution to ad-

dress the explicit requirements on constraints by reformulating the original optimiza-

tion as a constrained Markov decision process (MDP) [She et al., 2021]. Recently,

there is an urgent need to consider security constraints in DRL with the emergence

of blockchain-secured MEC networks [Xu et al., 2023a].

Numerical examples are provided to demonstrate the high-security, high-reliability,

resource-saving, and low-latency advantages of our BC-DRL solution. We present
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detailed analysis and performance comparisons with existing PoS consensus proto-

col and DRL-based resource allocation algorithms, giving insights for implementing

future secure blockchain and DRL-empowered dynamic resource allocations.

4.2 Related Works

Most MEC blockchain research has focused on enhancing the security of resource-

efficient PoS-based consensus protocols. The authors of [Yang et al., 2019] proposed a

secure network management scheme by designing a PoS-based consensus with random

node selection in each block generation. To prevent data tampering attacks by the

edge node, the authors of [Xiao et al., 2020] employed a joint PoW and PoS consensus

protocol storing the reputations of edge devices in the blockchain. In [Asheralieva

et al., 2020; Hao et al., 2020; Kang et al., 2019b], it was shown that carefully eval-

uating the reputation values to select highly reliable blockchain nodes for blockchain

management can effectively reduce the computation overhead and resist potential

blockchain attacks. Since reputation is a long-term evaluation metric, the authors

in [Hao et al., 2020] identified malicious users by evaluating their reputations based

on current user data and historical reputations stored in a blockchain. To ensure

secure miner selection, the authors in [Kang et al., 2019b] used a multiweight model

considering past interactions with other vehicles to evaluate trusted reputations of

blockchain nodes. In [Asheralieva et al., 2020], the reputations of MEC BSs acting

as blockchain nodes are evaluated based on feedback from both their users and other

MEC BSs.

Some recent research efforts have focused on optimizing resource allocation in

blockchain-secured MEC networks [Feng et al., 2020b; Guo et al., 2018; Zuo et al.,
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2021]. In [Feng et al., 2020b], an iterative optimization approach was used to min-

imize the weighted sum of MEC energy consumption and blockchain latency in an

MEC system. In [Zuo et al., 2021], the authors analyzed a PoW-based consensus

protocol and used a game-theoretic optimization framework to solve the target non-

cooperative resource allocation. Reinforcement learning offers a promising approach

to address the challenge of sequential decision-making, thereby presenting potential

applications in the realm of computing resource allocation within MEC networks. To

further improve the efficiency of resource allocation, more recent research has pro-

posed to apply secure DRL, capable of handling high dimensional input of the neural

network, in MEC service provisioning. In [Guo et al., 2018], the authors used an

unconstrained DRL approach to maximize the weighted sum of blockchain through-

put and the reciprocal of MEC delay. However, unconstrained DRL may encounter

difficulties in explicitly satisfying dynamic constraints, which can be addressed by

transforming the problem into the dual domain to optimize the weights between the

objective and constraints [Liang et al., 2018]. In [Li et al., 2021a], constrained DRL

was applied in a virtual reality network, where the weight between the video loss

ratio and processing latency is optimized. To further improve the training efficiency

of DRL, researchers have explored methods to improve training efficiency, such as

choosing low dimension features to reduce the complexity of the optimization prob-

lem [Dong et al., 2019], and applying transfer learning of pre-trained parameters

when new MEC devices join the network [Shuai et al., 2023]. How to improve secu-

rity and training efficiency for DRL in dynamic MEC networks still remains an open

problem for further investigation.
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Figure 4.1: Our RPoS blockchain consensus selects trusted BSs for MEC service
provisioning and blockchain management using feedback from all users to prevent BS
denial-of-service (DoS) attacks from both malicious BSs and users.

4.3 System Model

In our model, an MEC service provider employs NB BSs with overlapping coverage

to satisfy the time-varying requests for computing resources from multiple users with

DoS probability constraints for the BSs. In each time slot, we assume each user either

stays silent or sends a request with a random workload to the service provider. The

workload is defined as the required CPU cycles to complete a user’s task. Thus,

the number of user requests and the CPU cycles required can be modeled as two

independent arrival processes. In each time slot, one BS is selected by the MEC

service provider to process the received MEC requests from the users. Depending

on the available resources, the BS applies the DRL algorithm to allocate or deny

resources to these requests in the current time slot. The RPoS consensus is used to

securely store the user requests and select BSs to serve the users.
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4.3.1 Attack Model

Fig. 4.1 depicts the considered decentralized wireless MEC network in a specific

time slot. The green and black BSs are trusted BSs that participate in blockchain

management and MEC service provisioning in the current time slot, while the red BSs

are untrusted. The green and black users are non-malicious users sending truthful

feedback of the BS service provisioning, while the red users are malicious users. We

assume that the majority of BSs and users are non-malicious, and user feedback is used

to evaluate the BS reputation and DoS probability. Our user feedback-based approach

helps the service provider to independently identify malicious BSs and is different

from previous wireless blockchain consensus designs, where the BS is responsible for

evaluating the reputations of the blockchain nodes.

While conventional networks commonly utilize diverse techniques, such as certifi-

cate exchange and authentication, to deter unauthorized access and mitigate intrusion

attacks, the assurance of consistently successful prevention remains elusive. It is not

guaranteed that the intrusion attack could always be successfully prevented. For ex-

ample, the attacker could be an existing BS or user who has already got authorization

in the blockchain network. Consequently, our analysis of attack models, specifically

tampering attacks from malicious BSs and users, is oriented towards mitigating sub-

sequent ramifications, particularly those stemming from tampering attacks. These

models are detailed as follows.

Miner BS Attacks

We consider an attacker aims to launch a blockchain attack on the miner BS node

by monopolizing all the incoming and outgoing connections from the miner BS to
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Table 4.1: Possible Feedback From Individual User

Case 1 2 3 4 5

Active user with request Yes Yes Yes Yes No
Service provided Yes No No Yes Yes/No
Feedback from user 1 0 1 0 0/1
The user feedback is malicious No No Yes Yes Yes

the surrounding BSs [Heilman et al., 2015]. In existing PoS protocols, an attacker

can identify the miner BS once it has successfully deciphered the stake evaluation

mechanism since the highest stake miner is always selected [Yang et al., 2019]. Our

proposed RPoS mitigates this attack by randomly selecting the miner BS from a

subset of high reputation BSs to provide services to the requesting users.

Malicious User Feedback Attacks

We consider that each user sends feedback indicating whether their requests in

the current time slot were served or not. The green users send feedback indicating

whether their requests were served in the previous time slot, whilst the black users

had no requests and do not send any feedback. The red users are malicious users

with or without requests, which are aiming to disrupt the BS reputation evaluation

by sending untruthful feedback. Table 4.1 summarizes all possible user feedback in

different cases.
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Figure 4.2: Blockchain-secured deep reinforcement learning (BC-DRL) framework for
efficient and secure computing resource allocation.

4.3.2 BC-DRL Solution

Fig. 4.2 shows the decentralized architecture of our BC-DRL solution, which in-

cludes three entities: 1) Users, 2) MEC service provider managing the RPoS con-

sensus, and 3) BSs implementing the DRL-based computing resource allocation algo-

rithm. Their respective actions are detailed as follows.

Users

In each time slot, a random number of users send computing service requests to

the MEC service provider. The users may also send feedback to the service provider
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indicating if their requests in the previous time slot were satisfied.

MEC Service Provider

First, the feedback received from the users is utilized to evaluate the BSs’ rep-

utations by Bayesian inference. Then, to improve the resource utilization efficiency

without jeopardizing the system security level, trusted committee BSs with high rep-

utations are selected to manage the blockchain network. Furthermore, an optimal

BS is selected as the miner BS providing computing services to the users in each

time slot. Lastly, all the user requests are packaged in a new block and stored in the

blockchain to prevent data tampering attacks from changing the user requests and

enhance the reliability of the DRL-based resource allocation.

BS

Implements the DRL algorithm optimizing computation resource allocation for

the selected miner BS to mine the new block and serve user requests.

4.4 RPoS-Based Blockchain Management

In this section, we introduce the BS reputation evaluation to select trusted BSs.

Next, we outline the RPoS consensus protocol and derive the CPU cycles for block

generation and commitment which is used to evaluate the blockchain processing la-

tency. Lastly, we analyze the tampering attack-resistant ability and discuss the trade-

off between security and resource consumption.
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Figure 4.3: RPoS consensus for generating, validating, and committing a new block
where the green BS is the miner BS, the blue BSs are the validator BSs, and the
black BSs are the remaining BSs in the network.

4.4.1 BS Reputation Evaluation for Blockchain Consensus

The BS reputation evaluation of our RPoS consensus is based on Bayesian infer-

ence of the aggregated user feedback. We denote ei(t) as the event that the requests

in the t-th time slot are served by the i-th BS, and Pr{ei(t)} as the prior probability

of event ei(t). Similarly, we denote ei(t) as the complementary event of ei(t) that re-

quests are denied by the i-th BS. Hence, we can obtain that Pr{ei(t)} = 1−Pr{ei(t)}.

User Feedback Mechanism

We define K(t) as the set of users sending feedback in the t-th time slot, and

denote di,k(t) as the feedback from the k-th user. Specifically, di,k(t) = 0 indicates

that the k-th user is served by the i-th BS, and di,k(t) = 1 indicates that the service

is denied.
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Bayesian-Based DoS Inference Evaluation

Since malicious users may send feedback without previously making any requests,

it is necessary to evaluate the probability that the BS has successfully served the user

requests, which is also known as the DoS inference. The received feedback from the

users in the t-th time slot is denoted by Di,K(t) = {di,1(t), di,2(t), · · · , di,K(t)}. Given

the observation of Di,K(t), we obtain the DoS inference as the probability that the

user requests are served by the i-th BS in the t-th time slot by Bayesian inference

as [Raya et al., 2008; Yang et al., 2019]

Ii(t) ≜ Pr{ei(t)|Di,K(t)} =
Pr{ei(t)}Pr{Di,K(t)|ei(t)}

Pr{Di,K(t)}
, (4.4.1)

where Pr{Di,K(t)} = Pr{ei(t)}Pr{Di,K(t)|ei(t)} + Pr{ei(t)}Pr{Di,K(t)|ei(t)} is the

prior probability of Di,K(t). We have Pr{Di,K(t)|ei(t)} =
∏

k∈K(t) Pr{di,k(t)|ei(t)} and

Pr{Di,K(t)|ei(t)} =
∏

k∈K(t) Pr{di,k(t)|ei(t)} because different users generate feedback

independently. We denote Pr{di,k(t)|ei(t)} and Pr{di,k(t)|ei(t)} as conditional proba-

bilities that the requests are served under the conditions of ei(t) and ei(t), respectively.

BS Reputation Evaluation

The reputation in the t-th time slot is updated according to

ξi(t) =

ξi(t− 1), if Di,K(t) = ∅

ξai (t), if Di,K(t) ̸= ∅
(4.4.2)

where ξai (t) represents the updated reputation when user feedback exists. We note

that eq. (4.4.2) indicates the i-th BS in the t-th time slot keeps the same value as

that in the (t − 1)-th time slot if there is no feedback received in the t-th time slot,

otherwise evolves to an updated value, ξai (t), which is a weighted sum of the current
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Bayesian inference and the historical reputations, i.e.,

ξai (t) = ϑIIi(t) + (1− ϑI)ξ
h
i (t), (4.4.3)

where ϑI is defined as the weight coefficient of reputation inference indicating the

weight of the Bayesian inference, and ξhi (t) =
1
τξ

∑t−τξ
t′=t−1 βξ(t−t′)ξi (t′) is the expected

influence of historical reputations in the past τξ time slots [Hao et al., 2021], where

βξ(t− t′) is the discount factor of the historical reputations in the (t− t′)-th time slot

(e.g. βξ(t) = e−t [Malik et al., 2019], βξ(t) = (1/2)t, βξ(t) = t−1).

4.4.2 Proposed RPoS Consensus Protocol

Fig. 4.3 shows the three main steps of the RPoS consensus protocol for generating,

validating, and committing a new block to the blockchain. Specifically, in the pre-

prepare step, the MEC service provider assigns one BS from the committee as the

miner BS to generate a new block by computing a unique hash signature based on

the data prepared for packaging in the block. Next, in the prepare step, the newly

generated block is validated by all the other BSs in the committee, known as validator

BSs. To do so, each validator BS computes their signatures for comparison with the

hash signatures generated by all the other committee BSs. Lastly, in the commit step,

the new block is stored in all the BSs in the network. We define NM(t) and NV(t) as

the sets of the committee miner BS and validator BSs in the t-th time slot.

Next, we detail the proposed RPoS consensus protocol, which involves the trusted

committee BS and miner BS selection process using our BS reputations evaluated in

eq. (4.4.3).
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Committee BSs Selection

In our BC-DRL framework, we select a subset of BSs with reputations higher than

a threshold to participate in the proposed RPoS consensus protocol. We denote ξη(t)

as the threshold reputation value, which can be evaluated as

ξη(t) = ηξ̄(t) =
η

NB

∑
i∈NB

ξi(t), (4.4.4)

where ξ(t) is defined as the average reputation of the overall BSs in the network in

the t-th time slot, and η is defined as the weight coefficient of the reputation thresh-

old. We note that η is a configurable parameter that directly impacts the reputation

requirement. Specifically, a larger value of η corresponds to a higher reputation re-

quirement for the committee BSs. Consequently, a higher reputation requirement

implies a higher security level, as the committee members are expected to possess a

correspondingly higher reputation value than the required threshold. However, it’s

essential to acknowledge that setting a higher reputation requirement may result in

fewer BSs joining the committee. This reduction in the number of participating BSs

could have adverse effects, such as reduced redundancy in the decentralized MEC

blockchain network. Therefore, the selection of η should be carefully considered to

strike a balance between security requirements and network performance. In prac-

tice, the optimal value of η would depend on various factors, including the specific

application scenarios, network topology, available computing resources, and desired

security objectives in the low-latency MEC network.

Based on (4.4.4), the number of BSs elected to the blockchain committee in the

t-th time slot be calculated by

NC(t) =
∑

i∈NB

1{ξi(t) ≥ ξη(t)}, (4.4.5)
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where 1{·} is the indicator function, which equals to one if ξi(t) ≥ ξη(t), and equals

to zero otherwise. The subset of BSs with reputations higher than ξη(t) is referred to

as the blockchain committee in BC-DRL.

Miner BS Selection

In RPoS, we consider that the miner BS is randomly selected from the subset of

trusted committee BSs in each time slot to mitigate against miner BS attacks. As

such, the probability of an attacker identifying the miner BS is

pM(t) ≜ Pr{NA(t) = NM(t)} =
NM(t)

E[NC(t)]
, (4.4.6)

where NA(t) indicates the set of BSs under attack, and E[·] denotes the expectation

operation. We observe that the probability of successful attacks on the miner BS

decreases with increasing size of the blockchain mining committee, NC(t).

4.4.3 CPU Cycles Requirement and Latency

CPU Cycles Requirement Required by Miner BS

We can observe from Fig. 4.3, the miner BS performs computations in the pre-

prepare and commit steps. If the i-th BS is assigned as a miner in the t-th time slot,

the required CPU cycles for block generation and validation is given by

fbc,i(t) = f g
bc,i(t) + f c

bc,i(t)

= 1{i ∈ NM(t)}κbcLblock(t)(1 +NV(t)), (CPU cycles)
(4.4.7)

where f g
bc,i(t) and f

c
bc,i(t) are the CPU cycles required by the pre-prepare and commit

steps, respectively. The miner BS needs to calculate the hash value for its unique
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signature to be added to the new block in the pre-prepare step, and also calculates

all the signatures of committee validator BSs in the block in the commit step.

We note that the CPU cycles required by the miner BS are proportional to the

real-time block size, which is defined by

Lblock(t) = Lhead + Lbody(t), (bytes) (4.4.8)

where Lhead is the size of the block header, which has a fixed size. The t-th block

header stores the hash value of the (t−1)-th block. The blockchain structure ensures

the data in each block is resistant to tampering attacks. The size of the block body

is given by Lbody(t) = Lcλ(t) (bytes), which is proportional to the number of user

requests in the t-th time slot. The coefficient Lc is a constant, and λ(t) is the number

of requests generated by all the users in the t-th time slot.

Blockchain Processing Latency

Based on eqs. (4.4.7) and (4.4.8), the blockchain processing latency for the RPoS

consensus is given by

τbc,i(t) = τ gbc,i(t) + τvbc,i(t) + τ cbc,i(t), (slots) (4.4.9)

where τ gbc,i(t), τ
v
bc,i(t) and τ cbc,i(t) are the processing latency introduced by the pre-

prepare, prepare, and commit steps, respectively. The detailed derivation of τbc,i(t) in

(4.4.9) which includes the block computing and wireless transmission time amongst

all the BSs is given in Appendix A.1.

4.4.4 Security Analysis

The ability of BC-DRL to resist tampering attacks is a crucial aspect of secure

MEC service provisioning. To analyze the security performance, we evaluate the
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minimum time required to tamper the blockchain, which is defined as [Hao et al.,

2020]

τtam(t) =
NB

2
Ei[τbc,i(t)], i ∈ NC(t), (4.4.10)

where the expectation is taken over the selected committee members in the t-th time

slot. This equation reveals that the MEC service provisioning with blockchain has a

very high tampering attack-resistant ability, as an attacker would need to compromise

at least half of the BSs in the network to succeed in tampering with the data. This

robust security feature ensures the integrity and reliability of BC-DRL for MEC

services.

Based on our analysis, integrating blockchain into MEC introduces additional

latency and computing resources. However, these trade-offs are justified by the ben-

efits, such as tamper attack resistance and steady service provisioning. For exam-

ple, the RPoS consensus protocol is resource-efficient, distinguishing it from existing

blockchain consensus protocols. The dynamic DoS probability constraint ensures

security and stability, effectively mitigating potential attacks.

4.5 Constrained DRL Resource Optimization

In this section, we present our MEC computation resource allocation optimiza-

tion to minimize the overall processing latency for the blockchain and MEC service

provisioning subject to constraints on the BS DoS probability. We formulate the op-

timization problem as a constrained MDP, which is solved using a constrained DRL

algorithm. To improve the training efficiency, we reduce the dimension of the neural

network’s inputs and apply transfer learning to handle changes in the constraints on

DoS probability. Lastly, we give the complexity analysis of our proposed constrained
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time slot

~ ~
Figure 4.4: Example of allocated service rates, ai(t), and the overall processing la-
tency, τi(t) = τbc,i(t)+ τsp,i(t), where F is the total computation capacity of each BS,
Ts is the duration of one time slot, and fr(t) is the total number of requested CPU
cycles in the t-th time slot.

DRL algorithm.

4.5.1 BC-DRL Optimization

We aim to minimize the overall processing latency for our BC-DRL framework

whilst guaranteeing a given BS DoS probability constraint. The optimization problem

is formulated as

min
ai(t)

E[τi(t)]

s.t. E[ci(t)]≤ ϵDoS,

(4.5.1)

where τi(t) is expressed in (4.5.4) indicating the overall processing latency for the i-th

BS, and ci(t) expressed in (4.5.5) is the BS DoS probability for the i-th BS indicating

that the assigned miner BS does not allocate any resources in the t-th time slot.

To analyze the affecting factors of this optimization problem, we can observe from
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eq. (4.5.1) and Fig. 4.4 that, for any of the miner BS, the overall processing latency

depends on the number of requested CPU cycles fr(t) in each time slot with duration

Ts and the allocated service rate ai(t) (CPU cycles/slot). Given the fixed maximum

computation capacity of a BS, there is a trade-off between τi(t) and ci(t). Based

on the time-varying fr(t), we optimize the allocated service rate, ai(t), to minimize

the average processing latency subject to the average DoS probability constraint. In

addition, when examining the decentralized blockchain-secured MEC network as a

whole, the processing latency and DoS probability of a particular BS vary depending

on its frequency of being selected as the miner BS. This relationship is reflected in

eq. (4.4.6). As discussed in Section 4.4.2, a larger value of η corresponds to a smaller

committee size and a higher frequency of MEC service-provisioning by each committee

member meeting the reputation requirement.

Overall Processing Latency

We consider the service arrival process of each user request follows an independent

and identically distributed (i.i.d) Bernoulli process. As such, the total number of user

requests in each time slot follows a Poisson distribution,and the total number of CPU

cycles required to satisfy all user requests in the t-th time slot can be evaluated as

fr(t) = κsp · λ(t)
λ(t)∑
ur=1

Lu(t), (CPU cycles) (4.5.2)

where κ1 (CPU cycles/byte) is the coefficient of CPU cycles required for service pro-

visioning, λ(t) is the Poisson distribution parameter representing the average number

of user requests, and Lu(t) (bytes/request) is the package size of the u-th requesting

user. Since the miner BS is designed to provide services to the users, the total CPU
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cycles required for the service provision BS can be expressed as

fsp,i(t) = 1{i ∈ NM(t)} · fr(t). (CPU cycles) (4.5.3)

The overall processing latency corresponds to the summation latency of the pro-

cessing the blockchain and the MEC service by the miner BS indexed by i, and is

given by

τi(t) = τbc,i(t) + τsp,i(t), (slots) (4.5.4)

where τbc,i(t) is blockchain processing latency given in eq. (4.4.9) and τsp,i(t) =

fsp,i(t)/ai(t) is the processing latency of the MEC service provision, where ai(t) (CPU

cycles/slot) is the service rates allocated in the t-th time slot by the miner BS, referred

to the i-th BS.

BS DoS Probability

The instantaneous BS DoS indicator of the i-th BS in the t-th time slot is defined

as

ci(t) = 1{ai(t) = 0}, (4.5.5)

where 1{·} is the indicator function, which equals one when no resources are allocated

in the t-th time slot by the i-th BS (i.e., ai(t) = 0), and equals zero otherwise .

4.5.2 Design of Constrained MDP

As shown in Fig. 4.4, the processing latency can be larger than one time slot, the

service rates allocated in the current time slot affect the available service rates and

the DoS probability in the future time slots, which makes problem (4.5.1) a sequential

decision-making problem. Since DRL is well-suited for solving Markovian problems,

we resort to reformulating problem (4.5.1) as a constrained MDP.
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We first define the action, state, instantaneous reward and cost, and long-term

reward and cost.

Action

The action to be taken in the t-th time slot is the service rate of the i-th BS, ai(t)

(CPU cycles/slot), shown in problem (4.5.1). We denote ∆f and F as the minimum

and maximum service rates that can be allocated. If the requests are denied, ai(t) = 0.

Otherwise, ai(t) could be any value between ∆f and F . Thus, the action space can

be described as A = {0} ∪ F (CPU cycles/slot), where F = [∆f, F ].

State

The required CPU cycles of the requests within each time slot are bounded by

fr,max = max{fr(t)}. Given the minimum service rate, ∆f , the maximum processing

latency can be expressed as

Tmax =
fr,max

∆f
. (4.5.6)

We design the state of the i-th BS includes the states of all the service rates allocated

in the past Tmax time slots and can be described as

si(t) = {ŝi(t, t′), t′ ∈ [t− Tmax, t]}

= {ŝi(t, t− Tmax), · · · , ŝi(t− 1, t), ŝi(t, t)},
(4.5.7)

where ŝi(t, t
′) = [τ̂i(t, t

′), âi(t, t
′)] is the state of the service rates allocated in the t′-th

time slot, which is composed of the remaining processing latency and the service rates

allocated in the t′-th time slot (See Appendix A.2). We denote t as the current time

slot, and t′ as the time slot that the service rate allocated, respectively. We note that

both t and t′ are integers, and 0 ≤ t′ ≤ t. Therefore, the state space can be described

as S = {si(t), t ∈ [0, Tmax]}.
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Instantaneous Reward and Cost

The instantaneous reward is defined as

ri(t) =

0, if ai(t) = 0

−rai (t), if ai(t) ̸= 0
(4.5.8)

where rai (t) = τi(t)/τmax is the normalized processing latency when service rate is

allocated, and τmax is the maximum value of τi(t) in (4.5.4). We denote Lb = Lhead+

Lcλ̄req as the average size of the blocks, λ̄req as the average number of arrived requests,

and Lur as the average size of the requests in each time slot.

The instantaneous cost function is the BS DoS indicator function in the t-th time

slot which is defined in (4.5.5).

Long-Term Reward and Cost

Given a policy µ(ŝi(t)), the long-term discounted reward, representing the nor-

malized processing latency when computing resources are allocated, is defined as

Ri,µ(t) = Eµ

[
∞∑
t̂=t

γ t̂−tr ri(t)

]
, (4.5.9)

where γr is the reward discount factor. The long-term discounted cost, representing

the long-term DoS probability, is defined as

Ci,µ(t) = Eµ

[
∞∑
t̂=t

γ t̂−tc ci(t)

]
=

Eµ[ci(t)]
1− γc

, (4.5.10)

where γc is the cost discount factor. To guarantee the requirement on the DoS prob-

ability, the long-term cost should satisfy the following constraint

Ci,µ(t) ≤ Emax, (4.5.11)

where Emax = ϵDoS/(1 − γc) is the maximum long-term DoS probability, and ϵDoS

denotes the required threshold of the instantaneous DoS probability.
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4.5.3 Reformulated Constrained MDP Problem

Based on the above constrained MDP design parameters, we can reformulate

problem (4.5.1) (See Appendix A.3 for the proof of equivalence of problems (4.5.1)

and (4.5.12).) as a constrained MDP given by

max
µ(·)

Ri,µ(t)

s.t. Ci,µ(t) ≤ Emax.

(4.5.12)

To solve problem (4.5.12), we utilize a constrained DRL algorithm in which the

policy, µ(·), and the dual variable, λL, are updated iteratively. The Lagrangian

function of problem (4.5.12) is given by

Li,t (µ(·), λL) = Ri,µ(t)− λL (Ci,µ(t)− Emax) , (4.5.13)

where λL is the Lagrangian dual variable. Problem (4.5.12) can be converted to the

following unconstrained problem

(µ∗(·), λ∗L) = arg min
λL≥0

max
µ(·)
Li,t(µ(·), λL), (4.5.14)

where µ∗(·) and λ∗L indicate the optimal policy and the optimal Lagrangian dual

variable, respectively. To apply the constrained DRL algorithm, we further verify

that the formulated problem in eq. (4.5.12) satisfies the Markov property [Sutton

and Barto, 2016] (See proof in Appendix A.4).

4.5.4 Service Rate Allocation

To solve the coupled MDP problem formulated in eq. (4.5.12), we decouple this

problem by utilizing the PD-DDPG algorithm to find the optimal primal-dual so-

lution [Liang et al., 2018]. We define the reward critic Q-network as QR(s̃, a|θR),
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the cost critic Q-network as QC(s̃, a|θC), the actor network as µ(s̃|θµ), respectively.

The corresponding target critic networks are Q′
R(s̃, a|θ′R), Q′

C(s̃, a|θ′C), and µ′(s̃|θ′µ).

The experience replay memory buffer as B. The specific algorithm is detailed in

Algorithm 21.

Algorithm 2: Dynamic Resource Allocation Algorithm

1 Randomly initialize QR(s̃, a|θR), QC(s̃, a|θC), and µ(s̃|θµ). Initialize
θ′R ← θR, θ

′
C ← θC , and θ

′
µ ← θµ, λL, ϵDoS, B, γr, and γc.

2 Select action based on the current policy θµ and the exploration noise Na(t)
as: a(t) = µ(s̃(t)|θµ) +Na(t).

3 Execute action ai(t) then observe reward r(t), cost c(t), and new state
s̃(t+ 1).

4 Store transition ⟨s̃(t), a(t), r(t), c(t), s̃(t+ 1)⟩ into B.
5 Randomly sample a mini-batch of M transition from B:
{⟨s̃m, am, rm, cm, s̃m+1⟩, m = 1, 2, · · · ,M }.

6 Set Q-targets for reward and cost temporal difference (TD):

yRm = rm + γrQ
′
R

(
s̃m+1, µ

′(s̃m+1|θ′µ)|θ′R
)
,

yCm = cm + γcQ
′
C

(
s̃m+1, µ

′(s̃m+1|θ′µ)|θ′C
)
.

7 Update reward and cost critic Q-networks by minimizing the losses denoted
by mean squared TD errors:

∆R =
1

M

∑
m

(
yRm −QR(s̃m, am|θR)

)2
, ∆C =

1

M

∑
m

(
yCm −QC(s̃m, am|θC)

)2
.

8 Update the actor policy θµ, in the primal domain, with sampled policy
gradient descent:

∇θµL =
1

M

∑
m

∇θµ(QR (s̃m, µ(s̃m|θµ)|θR)− λLQC(s̃m, µ(s̃m|θµ)|θC)).

9 Calculate the gradient of dual variable λL:

∇λLL =
1

M

∑
m

(QC(s̃m, µ(s̃m|θµ)|θC)− Emax) .

10 Update the dual variable, λL, in the dual domain, with sampled dual
gradient ascent: λL ← max{0, λL + βλL∇λLL(θµ, λL)}.

11 Update target networks with φ:
θ′R ← φθR + (1− φ)θ′R, θ′C ← φθC + (1− φ)θ′C , θ′µ ← φθµ + (1− φ)θ′µ.

We consider that the agent follows a deterministic policy denoted by µ : a(t) =

1Since the steps always refer to the i-th BS, we do not explicitly denote “i” in this algorithm.
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µ(s(t)|θµ). It is a neural network that determines the service rates allocation based on

the state in each time slot, where θµ represents the parameter of the neural network.

To improve the training efficiency of the constrained DRL algorithm, we propose to

reduce the dimension of the state space of the constrained MDP defined in eq. (4.5.7)

by extracting key features to achieve a lower dimension state for training. Specifically,

we extract remaining processing latency, τ̂i(t, t
′), of all the allocated service rates in

the i-th BS to be a normalized sum, i.e.,

ρi(t) =
τi,min(t)

τmax

=

1

F

(
t∑

t′=t−Tmax

τ̂i(t, t
′)

)
τmax

,
(4.5.15)

where τi,min(t) is the remaining processing latency of all the allocated service rates

if they are processed with the maximum service rate, F . Based on eq. (4.5.15), the

lower dimension state is re-designed as

s̃i(t) =

{
fi,a(t)

F
, ρi(t)

}
, (4.5.16)

where fi,a(t) is the available service rates of the i-th BS in the t-th time slot.

We further apply transfer learning to reduce the training time due to changes in

the DoS probability constraints. To do so, we reuse the parameters of well-trained

neural networks as the initial parameters for the target neural network.

4.5.5 Computational Complexity Analysis

The computational complexity of the proposed constrained DDPG composes the

inference complexity of three neural networks denoted by QR(s̃, a|θR), QC(s̃, a|θC),

and µ(s̃|θµ), respectively. Thus, the computational complexity of the proposed con-

strained DDPG algorithm is

OPRO = O(NR +NC +Nµ), (4.5.17)
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where NR, NC, and Nµ are the number of multiplications required to process the three

neural networks, and are given by NR =
∑LR

LR=1 nLR
nLR+1, NC =

∑LC

LC=1 nLC
nLC+1,

and Nµ =
∑Lµ

Lµ=1 nLµnLµ+1 + ΩSig, respectively, where LR, LC, and Lµ denote the

number of layers in the neural networks; nLR
, nLC

, and nLµ are the number of neurons

in the LR-th, LC-th, and Lµ-th layer, and ΩSig represents the number of multiplications

required to compute the Sigmoid function. We note that the computation complexity

of ReLU function is ignored since it’s very low compared with the other operations.

Another commonly used method for solving sequential decision-making problems

is dynamic programming, whose computational complexity is given by

ODP = O(|A| × |S| ×Niter), (4.5.18)

where |A| and |S| represent the size of the action and state spaces given in Sec-

tion 4.5.2, and Niter is the number of iterations required for the dynamic programming

algorithm to converge. Since our problem involves continuous action space, where the

action can take any value ranging from f to F or equal 0, |A| approaches infinity,

resulting in ODP also approaching infinity. Consequently, conventional dynamic pro-

gramming is not a feasible option for solving our problem shown in eq. (4.5.18).

4.6 Simulations and Empirical Convergence Anal-

ysis

4.6.1 Simulation Setup

We present numerical simulations to evaluate the performance and analyze the

empirical convergence of our proposed BC-DRL solution using Google TensorFlow

embedded in a Python platform. We consider a total of 10 BSs that are initialized
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Table 4.2: Chapter 4 Key Simulation Parameters

Simulation parameters Values

Number of overall BSs in the network NB 10
Computation capacity of the BSs F 1.6 G CPU cycles/slot
Minimum service rate can be allocated ∆f 0.01 G CPU cycles/slot
Request arrival rate λ̄req Poisson(103)
Size of request by the u-th user Lu(t) Uniform(1, 10) KB
Coefficient size of user requests Lc 8 bytes
Prior probability of event ei(t) 0.8
Weight coefficient of reputation threshold η 1
Coefficient of reputation ϑI 0.2
Coefficient of CPU cycles for blockchain κbc 0.001 G [Guo et al., 2018]
Coefficient of CPU cycles for services κsp 330 [Dong et al., 2019]
Threshold of DoS probability ϵDoS 2 %

as non-malicious and have the maximum reputations equal to one. The transmis-

sion rates among all the BSs are assumed to be W=10Gbps [Sun et al., 2021]. The

action exploration noise in our DRL simulations follows an Ornstein-Uhlenbeck pro-

cess [Lillicrap et al., 2016]. We note that the service rates of the committee BSs

are all considered equal to ai(t) in the t-th time slot, since the serving BS is ran-

domly assigned from the committee in each time slot. Unless otherwise mentioned,

the simulation parameters are summarized in Table 4.22.

4.6.2 Simulation Results

RPoS-Based Blockchain Management

We present simulations of the reputation evaluation and performance of our RPoS

consensus protocol.

2For simulation simplicity, we set η = 1 in our simulations. However, exploring the effects of
scalable η configurations could provide valuable insights.
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Figure 4.5: Evaluated BS reputations under malicious user feedback attacks.

Fig. 4.5 explores the impact brought by malicious user feedback attacks discussed

in Section 4.3.1 by evaluating the reputations evaluated based on Bayesian inference

when the percentage of feedback from malicious users increases. We see in Figs. 4.5

(a) and (b) that the evaluated reputations decrease with increasing malicious user
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feedback. Fig. 4.5(a) shows that our Bayesian-based reputation evaluation with a

larger user request rate, λ̄req, can accurately maintain the BS reputations to be equal

to 1 even with a high percentage of malicious user feedback that is close to 50%. In

Fig. 4.5(b), we see that a higher prior probability of requests being served by the

BSs, Pr{ei(t)}, corresponds to a higher resistance ability to malicious user feedback

attacks due to a higher confidence in the reputation evaluation of the BSs.

Fig. 4.6 shows the computation resource consumption and tampering resistant

ability of different consensus when there are three malicious BSs. We can observe

from Fig. 4.6(a) that the proposed RPoS requires significantly lower CPU cycles

compared to other benchmark consensus protocols. Fig. 4.6(b) shows the required

time to tamper the blockchain. This observation, combined with the findings pre-

sented in Fig. 4.6(a), confirms that PoS is vulnerable to tampering attacks despite

its resource efficiency. In contrast, the proposed RPoS consensus exhibits robust re-

sistance to tampering attacks, comparable to the security levels achieved by PoW,

while significantly reducing computation resource requirements. We can also observe

from Fig. 4.6 that both the CPU cycles for blockchain miner BS and tampering

time increase linearly with the increasing average size of the block body. This linear

relationship is attributed to the proportionality of these metrics to the block size,

primarily determined by the block body size.

DRL-Based Resource Allocation

We compare the performance of our proposed algorithm with other benchmark

dynamic resource allocation algorithms from the perspective of minimizing the pro-

cessing latency and DoS probability, and improving the training efficiency. A user

feedback value of “1” either indicates a BS refusing to provide services or malicious



Simulations and Empirical Convergence Analysis 97

0.0 0.2 0.4 0.6 0.8 1.0
Average size of block body (MB)

0.0

0.2

0.4

0.6

0.8

1.0

CP
U 

cy
cle

s f
or

 b
lo

ck
ch

ai
n 

m
in

er
 B

S

1e8

Proposed RPoS
PoS
PBFT
PoW

(a) CPU cycles required by the blockchain miner BS. A
lower CPU cycle requirement corresponds to a higher re-
source efficiency and lower BS DoS probability.
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(b) Tampering time for the optimized parameters of the
neural networks with different system management scenar-
ios.

Figure 4.6: Computation resource consumption and tampering resistant ability for
different blockchain consensus protocols.

users sending incorrect feedback when service rates are allocated. Unless otherwise

mentioned, the hyper-parameters are summarized in Table 4.3.

Fig. 4.7 shows the training results of BC-DRL with and without malicious BS
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Table 4.3: Hyper-Parameters of Constrained DRL Algorithm

Simulation parameters Values

Discount factors of reward and cost γr , γc 0.95
Learning rates of critic NNs βr, βc 5× 10−4

Learning rate of actor NN βa 2× 10−4

Learning rate of dual variable βλL 0.1
Mini-batch size M 512
Target NNs updating rate φ 5× 10−3

Max replay buffer size 2× 105

Number of steps in each episode Nstep 1000

attacks. To investigate the impact of malicious BS attacks on processing latency

and DoS probability, we include three malicious BSs in our simulation. Each BS

randomly denies service requests from users following the Bernoulli process. We can

observe that both the processing latency and the DoS probability converged to steady

values after approximately 15 episodes. We observe that while BC-DRL achieves

approximately the same reward and cost performance for both scenarios of with and

without malicious BSs, the dual variables for the optimization converge to different

values in each scenario to accurately balance the trade-off between processing latency

and DoS probability.

Fig. 4.8 shows the training results of our proposed BC-DRL solution and a bench-

mark PD-DDPG resource allocation algorithm with PoS consensus. The comparison

between the RPoS and PoS consensus protocols shows that both protocols can sat-

isfy the constraint requirements. However, the RPoS outperforms PoS in terms of

achieving a lower processing latency. The superiority of RPoS can be attributed to

its ability to allocate more computing resources to provide MEC services. This ad-

vantage is due to the random selection of the BS from the committee in the RPoS
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(a) Normalized processing latency when resources are allo-
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Figure 4.7: Performances of BC-DRL solution with and without malicious BS attacks.

consensus protocol, allowing for a more balanced distribution of resources among the

participating BSs. In contrast, the PoS protocol consistently chooses the same BS,

which may result in uneven resource allocation and higher processing latency.

In Fig. 4.9, we compare our constrained DDPG DRL solution with benchmark
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Figure 4.8: Performance of processing latency and DoS probability, when resource
allocated by the proposed constrained DDPG algorithm.

unconstrained DDPG DRL solutions aimed at minimizing either the processing la-

tency or DoS probability. Figs. 4.9(a) and 4.9(b) highlight a fundamental performance

trade-off where the min latency solution leads to an intolerable DoS probability, whilst
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(a) Normalized processing latency when resources are allo-
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Figure 4.9: Processing latency and DoS probability when resources are allocated with
different DRL algorithms. Our proposed algorithm achieves minimum processing
latency with a satisfactory DoS probability.

the min DoS probability solution results in a lengthy processing latency and an un-

necessarily low DoS probability. In contrast, our proposed constrained DRL solution

can achieve a significantly reduced processing latency while maintaining a satisfactory

DoS probability, as determined by the specified maximum long-term cost.
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Figure 4.10: Training results of long-term DoS probability achieved by random ini-
tialization.

4.6.3 Empirical Convergence Analysis

Empirical convergence analysis of our proposed constrained DRL is provided since

the convergence of the proposed DRL is highly affected by the iterative updates

and interactions with the MEC network. Specifically, we focus on analyzing the

convergence ability with dynamic values of the DoS probability constraint, Emax.

Fig. 4.10 shows the training results of long-term DoS probability achieved by ran-

dom initialization when the constraints on the DoS probability equal 0.4 and 1.0,

respectively. This figure shows that both DoS probabilities converge to stable val-

ues with the increasing number of training episodes, indicating that the proposed

algorithm is learning and optimizing the resource allocation efficiently. We can also

observe from this figure that it takes approximately 15 episodes to converge when the

constraint on the DoS probability is 0.4, whilst the number of episodes before conver-

gence increases to approximately 47 when Emax increases to 1.0. This phenomenon

indicates that the difference in the constraint on DoS probability significantly affects
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Figure 4.11: Average DoS probability with random initialization and transfer learning
when DoS probability constraint in the long-term equals one.

the convergence speed of the proposed algorithm.

Fig. 4.11 plots the training results of transfer learning and random initialization

when the maximum long-term DoS probability, Emax, equals 1. For transfer learning,

we initialize the neural network with the well-optimized parameters of the neural net-

work when Emax = 0.4. For the random initialization benchmark, we train the neural

network from scratch. We can observe from Fig. 4.11 that using transfer learning

helps the DRL training to converge at approximately 16 episodes, whilst it takes ap-

proximately 47 episodes for random initialization to converge to approximately the

same value. This is because when the required constraint on DoS probability changes

to a new value, the newly updated optimization problem is still related to the previous

scenario. Therefore, some of the hidden features that have been well-trained in the

previous scenario are still effective to be applied in the new scenario, which further

reduces the required training epochs for convergence.

Fig. 4.12 presents the trade-off between the processing latency and the long-term
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Figure 4.12: The trade-offs between the processing latency and the long-term DoS
probability.

DoS probability achieved through transfer learning. We include a benchmark obtained

from a prior study [Guo et al., 2018], where the authors applied unconstrained DRL

to maximize the weighted sum of the blockchain throughput and the reciprocal of

MEC delay, with equal weighting coefficients of 0.5. It is important to note that the

weighted sum benchmark relies on manually selected weighting coefficients and lacks

the inherent capability to handle the dynamic constraint. In contrast, our constrained

DRL can dynamically update the processing latency in response to changes in the DoS

probability constraint. Interestingly, the trade-off figure achieved by transfer learning

exhibits some non-smooth behavior. This phenomenon highlights that the converged

values achieved by a DRL algorithm are significantly affected by the initialization

values.
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4.7 Chapter Summary

We developed a blockchain-secured deep reinforcement learning (BC-DRL) frame-

work for efficient resource allocation in dynamic environments. The BC-DRL frame-

work introduced a low-latency reputation-based proof-of-stake (RPoS) blockchain

consensus protocol to select trusted base stations (BSs) and resist attacks from both

BSs and users. We formulated the resource optimization problem as a Markov de-

cision process (MDP) that balances processing latency and BS DoS probability. To

address the challenge of high-dimensional inputs, we designed a constrained deep

reinforcement learning (DRL) algorithm to solve the formulated constrained MDP.

Numerical experiments and analysis showed that the proposed BC-DRL solution re-

quires approximately 2.5 times less CPU cycles compared with PoW, and can find

the optimized resource allocation policy while satisfying the given quality-of-service

constraints compared with existing unconstrained DRL-based resource allocation poli-

cies.



Chapter 5

Hybrid-Task Meta-Learning: A
GNN for Scalable and Transferable
Bandwidth Allocation

In this chapter, we develop a deep learning-based bandwidth allocation policy that

is: 1) scalable with the number of users and 2) transferable to different communication

scenarios, such as non-stationary wireless channels, different QoS requirements, and

dynamically available resources. To support scalability, the bandwidth allocation policy

is represented by a GNN, with which the number of training parameters does not

change with the number of users. To enable the generalization of the GNN, we develop

a hybrid-task meta-learning (HML) algorithm that trains the initial parameters of

the GNN with different communication scenarios during meta-training. Next, during

meta-testing, a few samples are used to fine-tune the GNN with unseen communication

scenarios. Simulation results demonstrate that our HML approach can improve the

initial performance by 8.79%, and sampling efficiency by 73%, compared with existing

benchmarks. After fine-tuning, our near-optimal GNN-based policy can achieve close

to the same reward with much lower inference complexity compared to the optimal

policy obtained using iterative optimization.

106
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5.1 Chapter Introduction

Throughout the rapid evolution of wireless communication systems, the spectral

efficiency, which is the amount of information that can be transmitted over a given

bandwidth while maintaining a certain quality of service (QoS) level, still remains

one of the most critical performance metrics for future sixth-generation (6G) wire-

less communications [Chowdhury et al., 2020; Hao et al., 2023]. To maximize

spectrum efficiency, low-complexity bandwidth allocation solutions are critical for

real-time decision-making within each transmission time interval (TTI) that could

be shorter than one millisecond in current fifth-generation (5G) wireless communi-

cations. Furthermore, the number of users requesting bandwidth in each TTI is

stochastic [Gu et al., 2023; Guo and Yang, 2022], each user may have different QoS

requirements [Han et al., 2020; Mohammady et al., 2014; Zanzi et al., 2021], and

wireless channels are non-stationary [Yuan et al., 2021; Zhang et al., 2022], making

it difficult to develop a low-complexity bandwidth allocation policy that is scalable

with the number of users and can satisfy a diverse range of communication scenarios.

Existing iterative optimization algorithms can obtain optimal bandwidth alloca-

tion policies, but their computational complexity is generally too high to be imple-

mented in real time [Dong et al., 2021; Lee et al., 2023; Xu et al., 2023b]. To reduce

the computational complexity, deep learning is a promising approach for 6G commu-

nications [Letaief et al., 2022; She et al., 2021]. The idea is to train a deep neural

network that maps the network status to the optimal decision. After training, the

deep neural network can be used in communication systems for real-time decision-

making, referred to as inference [He et al., 2019]. Although deep learning has much

lower inference complexity compared with iterative optimization algorithms, existing
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deep learning solutions using fully connected neural networks (FNNs) are not scalable

to different number of users in wireless networks [Sun et al., 2023]. This is because

the number of training parameters of an FNN depends on the dimensions of the input

and output, which change with the number of users. Thus, a well-trained FNN is not

applicable in wireless networks with stochastic user requests. In contrast to FNNs,

graph neural networks (GNNs) have scalable numbers of training parameters that

adapt to the number of users [Gilmer et al., 2017] — making them highly-suitable

for developing scalable deep learning-based resource allocation solutions for wireless

networks [Liu et al., 2022; Shen et al., 2021]. Furthermore, improving the general-

ization ability of GNN in wireless networks with diverse QoS requirements remains

an open problem.

A key 5G application that requires flexible resource allocation solutions is net-

work slicing, where resources from a shared physical infrastructure is partitioned into

distinct network slices supporting diverse QoS requirements, such as data rate [Guo

and Yang, 2023; Guo et al., 2019], latency [Tang and Zhang, 2007; Wu et al.,

2003], and security [Liu et al., 2019a; Wang et al., 2020; Yang et al., 2021; Yu

et al., 2016], in both long and short coding blocklength regimes [Alsenwi et al.,

2021; Li et al., 2022; Polyanskiy et al., 2010]. To reserve resources for a single slice,

the authors of [Sun et al., 2019d] proposed to compute the weights of different slices

based on the corresponding QoS requirements and the number of service requests.

With this approach, the amount of reserved resources for each slice is stochastic.

Meanwhile, since the wireless channels are non-stationary, the reserved resources and

the wireless channels in the training stage could be different from the actual required

resources in the testing stage [Do et al., 2017; Lu et al., 2021]. As such, the mismatch
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between training data samples and testing data samples remains a crucial bottleneck

for implementing efficient learning-based policies in practical wireless networks.

Recent works have proposed to reduce the online training time by transfer learn-

ing, which involves offline pre-training and online fine-tuning [Dong et al., 2021].

This method effectively reuses previously well-trained neural network features and

significantly improves the sample efficiency. To further improve the online training

efficiency for unseen tasks, meta-learning has been proposed [Andrychowicz et al.,

2016; Finn et al., 2017; Nichol et al., 2016; Raghu et al., 2020]. One of the meta-

learning algorithms, model-agnostic meta-learning (MAML), has been applied to solve

policy mismatch issues caused by varying user requests and non-stationary wireless

channels [Huang et al., 2021a; Wang et al., 2022b; Yuan et al., 2021; Zhang et al.,

2022]. While these aforementioned works have highlighted the generalization ability

of meta-learning for non-stationary wireless resource allocation, no works have ad-

dressed the impact of diverse QoS requirements in different communication scenarios.

In this paper, we put forth a low-complexity bandwidth allocation framework by

designing a GNN that is scalable with the number of users and applying meta-learning

to generalize the GNN to different communication scenarios. In our simulations,

the gap between the sum reward achieved by the GNN-based policy and that of

the optimal bandwidth allocation policy obtained from the iterative optimization

algorithm is less than 6%. HML also improves the initial performance by up to 8.79%

and sample efficiency by up to 73% compared with the MAML benchmark. We also

show that the performance gains of HML is even higher when compared to the other

two benchmarks.
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5.2 Related Works

5.2.1 Intelligent Resource Allocation

Applying deep learning for resource allocation in wireless networks has been widely

studied in the existing literature [He et al., 2019; Sun et al., 2023]. In [He et al.,

2019], the authors showed that learning-based algorithms could obtain near-optimal

solutions, and the computational complexity in inference is low. In [Sun et al., 2023],

the authors proposed a FNN-based unsupervised learning algorithm to optimize the

bandwidth allocation policy. More recently, due to the fact that FNN is not scalable to

the number of users, GNNs have been applied in wireless networks optimizations [Liu

et al., 2022; Shen et al., 2021]. In [Liu et al., 2022], the authors designed a GNN,

which is scalable to the number of users in a wireless network, to minimize the sum-

mation of queuing delay violation probability and packet loss probability. In [Shen

et al., 2021], the authors developed GNN-based scalable learning-based methods to

solve radio resource management problems.

5.2.2 Generalization of Intelligent Resource Allocation

In wireless networks, the user requests, wireless channels, and available resources

for each type of service can be non-stationary. Table 5.1 summarizes some QoS

requirements considered in the related works. For example, data rate, latency, and

security have been investigated in [Guo and Yang, 2023; Guo et al., 2019; Liu

et al., 2019a; Tang and Zhang, 2007; Wu et al., 2003; Yang et al., 2021; Yu et al.,

2016]. These papers mainly focus on scenarios with long channel coding blocklengths,

where the achievable rate of a wireless link can be approximated by the Shannon

capacity. In 5G, the coding blocklength can be short, and Shannon capacity is not
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Table 5.1: Considered QoS Requirements in Related Works

Refs
QoS Data rate Latency Security

Long Short Long Short Long Short

[Guo and Yang, 2023; Guo et al.,
2019]

✓

[Tang and Zhang, 2007; Wu
et al., 2003]

✓

[Liu et al., 2019a; Yang et al., 2021;
Yu et al., 2016]

✓

[Wang et al., 2020] ✓
[Li et al., 2022] ✓ ✓
[Alsenwi et al., 2021] ✓ ✓
[Dong et al., 2021] ✓ ✓ ✓

applicable. As such, the authors of [Li et al., 2022; Wang et al., 2020] established

how to optimize wireless communication systems using the achievable rate in the

short blocklength regime [Polyanskiy et al., 2010]. Meanwhile, different services

may co-exist in one network, and the authors of [Alsenwi et al., 2021; Dong et

al., 2021] considered different QoS requirements in both long and short blocklength

regimes. To support diverse QoS requirements in network slicing, the authors of [Sun

et al., 2019d] proposed to reserve bandwidth for different slices based on the number

of users and the required QoS.

Further considering that the number of requests, the reserved resources, and the

wireless channels are dynamic, improving the generalization ability of deep learning

policies has attracted significant research interests in recent years. One approach

to address this challenge is to carefully initialize the neural network and fine-tune

it online. The authors of [Dong et al., 2021] applied transfer learning to fine-tune

the parameters of deep neural networks that are trained offline in dynamic wireless
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networks. To further improve the sample efficiency in an unseen communication

scenario, meta-learning has been adopted in [Huang et al., 2021a; Wang et al.,

2022b; Yuan et al., 2021; Zhang et al., 2022], where the hyper-parameters of a

deep neural network, such as the initial parameters, are updated according to a

set of communication scenarios in meta-training. In [Huang et al., 2021a], meta-

learning was applied to optimize computing resource allocation policies in mobile

edge computing networks to fit both time-varying wireless channels and different

requests of computing tasks. In [Wang et al., 2022b], meta-learning was applied in

virtual reality to quickly adapt to the user movement patterns changing over time.

To improve the training efficiency in non-stationary vehicle networks, the authors

in [Yuan et al., 2021] proposed optimizing the beamforming using meta-learning.

In [Zhang et al., 2022], the authors combined meta-learning and support vector

regression to extract the features for beamforming optimization, further improving

training efficiency over non-stationary channels.

5.3 System Model and Problem Formulation

We consider an uplink orthogonal-frequency-division-multiple-access communica-

tion system with network slicing where U users are requesting different types of

services from one base station (BS). The BS first reserves bandwidth for each type of

service according to the QoS requirement and the number of users. Then, it allocates

bandwidth to different users within each slice. The resource reservation for different

slices has been extensively studied in the existing literature, so we will focus on de-

veloping bandwidth allocation policies for individual slices with different numbers of

users, non-stationary wireless channels, and dynamic available bandwidth.



System Model and Problem Formulation 113

5.3.1 Different QoS Requirements for Long and Short Pack-
ets

To investigate the generalization ability of our proposed bandwidth allocation

policy, we consider both long and short blocklength regimes with three types of QoS

requirements, i.e., data rate, queuing delay, and security. Thus, there are six scenarios

in total. We denote the reward of the u-th user by

rΦ,ξu , Φ ∈ {D,E, S} and ξ ∈ {I,F}, (5.3.1)

where superscripts D,E, S represent data rate, effective capacity with queuing delay

constraint, and secrecy rate, respectively, whilst the superscripts I,F represent the

scenarios in the infinite long and finite short blocklength regimes, respectively.

Data Rate Requirement

When the blocklength is long, the data rate reward of the u-th user can be ex-

pressed as

rD,Iu =
wu
ln 2

ln

(
1 +

Puhu
wuN0

)
, (5.3.2)

where wu is the bandwidth allocated to the u-th user, Pu is the transmit power of the

u-th user, N0 is the single-sided noise spectral density, and hu = αugu is the channel

gain, where αu and gu represent the large-scale and small-scale channel gains between

the u-th user and the BS, respectively.

When the blocklength is short, decoding errors cannot be neglected. As such, the

data rate reward of the u-th user can be approximated by [Polyanskiy et al., 2010]

rD,Fu ≈ rD,Iu −
√
Vu
Lu

f−1
Q (ϵu)

ln 2/wu
(5.3.3)

where Vu = 1−
(
1 + Puhu

wuN0

)−2

is the channel dispersion that measures the stochastic

variability of the channel related to a deterministic channel with the same capacity,
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Lu = Tswu is the blocklength, and Ts is the transmission duration of each coding

block. The function f−1
Q (x) is the inverse of the Gaussian Q-function, and ϵu is the

decoding error probability.

Latency Requirement

When considering latency constraints due to queueing delays, the effective capac-

ity is applied to characterize the statistical QoS requirement in wireless communica-

tions, and is expressed as [Li et al., 2022]

rE,ξu =− 1

ϑuTc
ln
(
Egu

[
exp

(
−ϑuTcrD,ξu

)])
, ξ ∈ {I,F}, (5.3.4)

where Tc is the channel coherence time, ϑu is the QoS exponent for queuing delay,

E[·] denotes the expectation, and rD,ξu is the data rate in (5.3.2) or (5.3.3). We note

that ϑu = ln(1/εu)
auτmax

is determined by the maximum tolerable delay bound violation

probability, εu, the packet arrival rate, au, and the threshold of queuing delay, τmax.

Security Requirement

To formulate the wireless security requirement, we consider that there is an eaves-

dropper that attempts to eavesdrop the information transmitted by each user.

In the long blocklength regime, the secrecy rate of the u-th user can be expressed

as [Yu et al., 2016]

rS,Iu =
[
rD,Iu − re,Iu

]+
, (5.3.5)

where [x]+ = max{0, x}, and re,Iu = wu

ln 2
ln
(
1 + Puheu

wuN0

)
is the data rate of the eaves-

dropped channel from the u-th user to the eavesdropper. The channel gain of the
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eavesdropped channel is denoted by heu = αeug
e
u, where α

e
u and geu represent the large-

scale and small-scale channel gains between the u-th user and the eavesdropper, re-

spectively.

In the short blocklength regime, the achievable secrecy rate of the u-th user can

be approximated as [Wang et al., 2020],

rS,Fu =

r
S,I
u −

√
Vu
Lu

f−1
Q (ϵu)

ln 2/wu
−
√

V e
u

Lu

f−1
Q (δu)

ln 2/wu
, hu > heu

0, hu ≤ heu,
(5.3.6)

where V e
u = 1−

(
1 + Puheu

wuN0

)−2

, and δu represents the information leakage, which de-

scribes the statistical independence between the transmitted confidential message

and the eavesdropper’s observation, and is measured by the total variation dis-

tance [Wang et al., 2020].

5.3.2 Bandwidth Reservation for Different Slices

We assume that there can be multiple bandwidth reservation policies for different

slices in network slicing. Given the total bandwidth of the BS, Wmax, the bandwidth

reserved for the τ -th slice is given by

WΦ,ξ
τ = fNS

τ

(
UΦ,ξ
τ , IΦ,ξuτ

)
·Wmax, (5.3.7)

where UΦ,ξ
τ is the number of users in the τ -th slice, IΦ,ξuτ is the QoS class identifier

(QCI) of the uτ -th user in the τ -th slice, and fNS
τ (·, ·) is the network function for

bandwidth reservation in network slicing. Since the sum of the bandwidth reserved

for all the slices equals the total bandwidth of the BS, thus

TNS∑
τ=1

fNS
τ

(
UΦ,ξ
τ , IΦ,ξuτ

)
= 1. (5.3.8)
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where TNS is the number of slices. Inspired by [Sun et al., 2019d], the bandwidth

reserved for each slice depends on the number of users in this slice and the QCI of

these users, e.g.,

fNS
τ (·) =

∑
u∈UΦ,ξ

τ
IΦ,ξuτ∑TNS

τ=1

∑
u∈UΦ,ξ

τ
IΦ,ξuτ

. (5.3.9)

5.3.3 Problem Formulation

To maximize the sum reward subject to the QoS requirements in each slice, we

formulate the bandwidth allocation problem as follows,

max
wΦ,ξ

τ

∑
u∈UΦ,ξ

τ

rΦ,ξu , (5.3.10)

s.t.
∑
u∈UΦ,ξ

τ

wΦ,ξ
u ≤ WΦ,ξ

τ , (5.3.10a)

wΦ,ξ
u ≥ 0, (5.3.10b)

rΦ,ξu ≥ rΦ,ξτ , (5.3.10c)

where wΦ,ξ
τ = [wΦ,ξ

1 , wΦ,ξ
2 , · · · , wΦ,ξ

Uτ
]T is the bandwidth allocated to the users, and rΦ,ξτ

is the minimum threshold of the QoS required by the users. Thus, constraint (5.3.10c)

guarantees the QoS of all the users.

Our bandwidth allocation model is designed to optimize resource utilization in

various types of wireless networks, such as eMBB and URLLC. By specifically ad-

dressing the requirements and challenges associated with these network types, our

model aims to enhance the efficiency and performance of wireless communication

systems in real-world scenarios.
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Algorithm 3: User Scheduling Algorithm

1 Initialize the set of scheduled users as all the users: KΦ,ξ
τ = UΦ,ξ

τ .

2 Drop u-th user if the target in (5.3.10c) cannot be satisfied with WΦ,ξ
τ :

3 for u ∈ UΦ,ξ
τ do

4 Calculate the reward of each user by taking wu = WΦ,ξ
τ into the target

achievable rate shown in eqs. (5.3.2)-(5.3.6) as: rϕ,ξu,max = rϕ,ξu (WΦ,ξ
τ ).

5 if rϕ,ξu,max < rΦ,ξτ then

6 Drop the u-th user: KΦ,ξ
τ = KΦ,ξ

τ − {u}, K = K − 1, and wu = 0.
7 else

8 Get wk,min using binary search function: wk,min = fBiS(hk, r
Φ,ξ
τ ).

9 end

10 end
11 Drop k-user if (5.3.10a) cannot be satisfied with wk,min:

12 while
∑K

k=1wk,min > WΦ,ξ
τ do

13 Identify user holding highest wk,min in KΦ,ξ
τ : kdrop = argmax

k
wk,min.

14 Drop the kdrop-th user: KΦ,ξ
τ = KΦ,ξ

τ − {kdrop}, K = K − 1, and wkdrop = 0.

15 end

5.3.4 Analysis of Problem Feasibility

Given the available bandwidth constraint in (5.3.10a) and the QoS constraint

in (5.3.10c), problem (5.3.10) will be infeasible when some of the users in this slice

have weak channels. To solve this issue, we propose to schedule the users to satisfy

constraints (5.3.10a) and (5.3.10a) by Algorithm 3.

We denote the minimum bandwidth required to meet constraint (5.3.10c) by

wΦ,ξ
min =

[
wΦ,ξ

1,min, · · · , w
Φ,ξ
Uτ ,min

]T
. If some users experience deep fading, leading to∑

u∈UΦ,ξ
τ
wΦ,ξ
u,min > WΦ,ξ

τ , then problem (5.3.10) is infeasible. In this case, the BS will

only schedule the users with sufficiently strong channels. Alternatively, to maximize

the number of scheduled users in problem (5.3.10), we consider that the BS schedules

the K users with the smallest bandwidth requirement. Denote the set of scheduled

users by KΦ,ξ
τ . Then, for any k ∈ KΦ,ξ

τ and u /∈ KΦ,ξ
τ , we have wΦ,ξ

k,min ≤ wΦ,ξ
u,min. After
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user scheduling, problem (5.3.10) can be reformulated as follows,

max
wΦ,ξ

τ

∑
k∈KΦ,ξ

τ

rΦ,ξk , (5.3.11)

s.t.
∑
k∈KΦ,ξ

τ

wΦ,ξ
k ≤ WΦ,ξ

τ , (5.3.11a)

wΦ,ξ
k ≥ wΦ,ξ

k,min. (5.3.11b)

In the following, we investigate how to find the optimal solution to problem (5.3.11).

5.4 HML for GNN-based Scalable Bandwidth Al-

location

In this section, we first illustrate how to obtain the optimal bandwidth allocation

by using an iterative optimization algorithm. Next, we utilize feature engineering

techniques to reformulate the problem, and represent the bandwidth allocation policy

by a GNN. To generalize the GNN, the feature of required minimum bandwidth that

can be used to represent different QoS requirements is used as the GNN’s input.

Then, we develop a meta-learning approach to train the GNN. The goal is to obtain

a policy that is scalable to the number of users and can generalize well in diverse

communication scenarios with different channel distributions, QoS requirements, and

available bandwidth.

5.4.1 Optimal Policy by Iterative Algorithm

Inspired by the optimization algorithm for resource allocation in [Dong et al.,

2021], we propose an iterative optimization algorithm for solving our problems. We

denote the bandwidth of each resource block by ∆w. At the beginning of the iteration,

the bandwidth allocated to each user is wΦ,ξ
k,min. In each iteration, we calculate the
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Algorithm 4: Iterative Bandwidth Allocation Algorithm

1 Initialize: Bandwidth of a resource block: ∆w.
2 Use user scheduling algorithm to get the minimum required bandwidth for

each scheduled user: wΦ,ξ
k = wΦ,ξ

k,min,∀k ∈ KΦ,ξ
τ .

3 while WΦ,ξ
τ −

∑
k∈KΦ,ξ

τ
wΦ,ξ
k ≥ ∆w do

4 for k ∈ KΦ,ξ
τ do

5 ∆rΦ,ξk (wΦ,ξ
k ) = rΦ,ξk (wΦ,ξ

k +∆w)− rΦ,ξk (wΦ,ξ
k ).

6 end

7 Identify user has highest ∆rΦ,ξk (wΦ,ξ
k ) in KΦ,ξ

τ : kallo = argmax
k

∆rΦ,ξk (wΦ,ξ
k ).

8 Allocate extra ∆w bandwidth to the kallo-th user: wΦ,ξ
kallo

= wΦ,ξ
kallo

+∆w.

9 end
10 Output: Optimal bandwidth allocation policy: wΦ,ξ,opt = wΦ,ξ.

incremental reward of each user when an extra resource block is allocated to it,

denoted by ∆rΦ,ξk (wk) = rΦ,ξk (wΦ,ξ
k + ∆w) − rΦ,ξk (wΦ,ξ

k ). Finally, the resource block

is allocated to the user with the highest ∆rΦ,ξk . The details of the algorithm can be

found in Algorithm 4. The optimality of the algorithm depends on the properties of

the problems. For problem (5.3.11), if it is a convex problem, then Algorithm 4 can

obtain the optimal solution [Dong et al., 2021]. To validate whether problem (5.3.11)

is convex or not, we only need to validate whether rΦ,ξu is concave or not. In the long

blocklength regime, we can prove that the secrecy rate is concave in bandwidth. See

proof in Appendix B.1. Since Shannon’s capacity is a special case of the secrecy rate

when the eavesdropped channel is in deep fading, thus Shannon’s capacity is also

concave in bandwidth. In addition, the authors of [Xiong et al., 2013] proved that

the effective capacity is concave in bandwidth. Therefore, Algorithm 4 can obtain the

optimal solution in the long blocklength regime. In the short-blocklength regime, rΦ,ξu

is not concave when wΦ,ξ
k ∈ (0,∞). Nevertheless, based on the results in [Sun et al.,

2019c], the optimal bandwidth can be obtained in a region [0, wth] ⊂ (0,∞), where
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rΦ,ξu is concave in bandwidth. By searching for the optimal bandwidth in [0, wth],

Algorithm 4 can obtain the optimal solution in the short blocklength regime.

5.4.2 Feature Engineering and Problem Reformulation

To obtain a policy that can generalize well in different scenarios, we propose

to use feature engineering technology to represent the channels and QoS require-

ments with more general features. Specifically, we first normalize the bandwidth

allocation policy by the bandwidth reserved for this slice. The normalized band-

width allocated to the k-th user, k ∈ KΦ,ξ
τ , is given by w̃Φ,ξ

k ≜ wΦ,ξ
k /WΦ,ξ

τ . Then,

the normalized minimum bandwidth required by the scheduled users is denoted by

w̃Φ,ξ
τ,min = [w̃Φ,ξ

1,min, w̃
Φ,ξ
2,min, ..., w̃

Φ,ξ
Kτ ,min]

T. We define the surplus bandwidth as wΦ,ξ
S =

WΦ,ξ
τ −

∑
k∈KΦ,ξ

τ
wk, and further denote the normalized surplus bandwidth by w̃S

Φ,ξ ≜

wΦ,ξ
S /WΦ,ξ

τ .

We note that bandwidth allocation policy maps channels and constraints to the

bandwidth allocated to each user. After scheduling and normalization, the features

of the channel state information and constraints (5.3.11a) and (5.3.11b) can be rep-

resented by w̃Φ,ξ
τ,min. Therefore, the bandwidth allocation policy can be reformulated

as the mapping from w̃Φ,ξ
τ,min and w̃SΦ,ξ to w̃Φ,ξ. We denote this function by

w̃Φ,ξ
τ = fW

(
w̃Φ,ξ
τ,min, w̃

Φ,ξ
S

)
(5.4.1)

where fW(w̃Φ,ξ
τ,min, w̃

Φ,ξ
S ) =

[
fW
1 (w̃Φ,ξ

τ,min, w̃
Φ,ξ
S ), fW

2 (w̃Φ,ξ
τ,min, w̃

Φ,ξ
S ), · · · , fW

K (w̃Φ,ξ
τ,min, w̃

Φ,ξ
S )
]T

and w̃Φ,ξ
k = fW

k (w̃Φ,ξ
τ,min, w̃

Φ,ξ
S ). Given the bandwidth reserved for this slice, the achiev-

able rates of the scheduled users can be expressed as

rΦ,ξ
τ = fΦ,ξ

(
w̃Φ,ξ ·WΦ,ξ

τ

)
= fΦ,ξ

(
fW

(
w̃Φ,ξ
τ,min, w̃

Φ,ξ
S

)
·WΦ,ξ

τ

) (5.4.2)
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Aggregation ReadoutMessage passing

Figure 5.1: GNN-based scalable bandwidth allocation.

where the function fΦ,ξ(w̃Φ,ξ
τ · WΦ,ξ

τ ) =
[
fΦ,ξ
1 (w̃Φ,ξ

1 ·WΦ,ξ
τ ), · · · , fΦ,ξ

K (w̃Φ,ξ
Kτ
·WΦ,ξ

τ )
]T

,

rΦ,ξ
τ =

[
rΦ,ξ1 , · · · , rΦ,ξKτ

]T
, and rΦ,ξk = fΦ,ξ

k

(
fW
k (w̃Φ,ξ

τ,min, w̃S) ·WΦ,ξ
τ

)
. Then, we can

reformulate problem (5.3.11) as a functional optimization problem,

max
fW(·)

∑
k∈KΦ,ξ

τ

fΦ,ξ
k

(
fW
k

(
w̃Φ,ξ
τ,min, w̃

Φ,ξ
S

)
·WΦ,ξ

τ

)
, (5.4.3)

s.t. 1−
∑
k∈KΦ,ξ

τ

fW
k

(
w̃Φ,ξ
τ,min, w̃

Φ,ξ
S

)
≥ 0, (5.4.3a)

fW
k

(
w̃Φ,ξ
τ,min, w̃

Φ,ξ
S

)
≥ w̃Φ,ξ

k,min. (5.4.3b)

In the rest part of this section, we will find the optimal solution to problem (5.4.3).

5.4.3 Proposed GNN

In this subsection, we propose a GNN-based unsupervised learning algorithm to

obtain a scalable bandwidth allocation policy.
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Algorithm 5: GNN for Scalable Bandwidth Allocation.

1 Initialize batch size, J , number of training epochs, N , and learning rate βθ.
2 Randomly initialize θ0.
3 for n = 0, 1, · · · , N − 1 do

4 Message passing: xnk = fFNN

(
w̃Φ,ξ
k,min, w̃

Φ,ξ
S

∣∣∣θn) , ∀k ∈ KΦ,ξ
τ .

5 Aggregation: xn = fConcat (x
n
1 , · · · , xnK) = [xn1 , · · · , xnK ]T and yn = fSoftmax(x

n).

6 Readout: w̃n = fReadout(y
n) = yn · w̃Φ,ξ

S + w̃Φ,ξ
min.

7 Update the loss function by eq. (5.4.4), denoted by fL(θn).
8 Update parameters of the GNN by SGA: θn+1 = θn + βθ∇θfL(θn).

9 end
10 Return the parameters of the GNN as: θopt.

Structure of GNN

As shown in Fig. 5.1, the proposed GNN-based bandwidth allocation algorithm

comprises three key steps: message passing, aggregation, and readout.

Message passing Each scheduled user is a vertex in the GNN. We use a fully

connected neural network (FNN) to obtain the embedding of each vertex, denoted by

xk,∀k ∈ KΦ,ξ
τ . The inputs of each FNN include w̃Φ,ξ

k,min and w̃Φ,ξ
S = 1−

∑
k∈KΦ,ξ

τ
w̃Φ,ξ
k,min.

We use θ to denote the training parameters of the FNN. In the n-th epoch, the

message passing function is given by xnk = fFNN

(
w̃Φ,ξ
k,min, w̃

Φ,ξ
S

∣∣∣θn). Since the vertices

are homogeneous, the training parameters of all the FNNs are the same.

Aggregation In the aggregation step, we first aggregate the embeddings of all the

scheduled users by using a concatenation function, fConcat(·), followed by a Readout

function, fReadout(·), which serves as the activation function in the aggregation. The

output after aggregation is denoted by y.
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Readout The GNN’s output of each vertex is updated by a readout function given

by, fReadout(y) = y · w̃Φ,ξ
S + w̃Φ,ξ

τ,min. Since y is obtained from the Readout function,

the summation of its elements is one. From the readout function, all the surplus

bandwidth is allocated to the users, and constraints (5.4.3a) and (5.4.3b) can be

satisfied.

Unsupervised Learning

The learning algorithm is detailed in Algorithm 5. Specifically, in the n-th epoch,

we use our GNN to obtain the bandwidth allocation and estimate the expectation of

the objective function by using the batch samples according to

fL(θ) =
1

J

J∑
j=1

∑
k∈KΦ,ξ

τ

fΦ,ξ
k

(
w̃Φ,ξ
j,k ·W

NS
j,τ

)
, (5.4.4)

where J is the batch size. Then, we use stochastic gradient descent (SGA) to maximize

the estimated expectation of the objective function in (5.4.3). As shown in [Sun et al.,

2023], maximizing the expectation of the objective function, where the expectation

is taken over channels, is equivalent to maximizing the objective function with given

channels. Thus, from Algorithm 5, we can find the bandwidth allocation policy that

maximizes the objective function in (5.4.3).

Computational Complexity

We compare the computational complexity of our GNN with the iterative al-

gorithm introduced in Section 5.4.1. In cellular systems, both algorithms will be

implemented in each transmission time interval with a duration of less than 1 ms.

Thus, we are interested in the inference complexity of our GNN, i.e., the number of

operations to be executed to obtain the bandwidth allocation in each transmission

time interval.
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Inference complexity of our GNN To compute the embedding of each vertex,

we need to compute the output of the FNN in Fig. 5.1. We denote the number of

layers of the FNN by LFNN and the number of neurons in the ℓ-th layer by mℓ
FNN.

Then, the number of multiplications required to compute the output of the ℓ-th layer

is mℓ
FNN ·mℓ+1

FNN and the total number of multiplications for computing the embedding

is MFNN =
∑LFNN

ℓ=1 mℓ
FNN ·mℓ+1

FNN [Dong et al., 2021]. After obtaining the embeddings

of K users, the number of multiplications required by fReadout(x) and fReadout(y) is

2K. Therefore, the inference complexity of the GNN-based bandwidth allocation

policy is

OGNN = O(K · (MFNN + 2)). (5.4.5)

Complexity of the iterative algorithm In each iteration of the optimization

algorithm, we assign a small portion of the normalized surplus bandwidth, denoted

by ∆w̃, to a user that can maximize the objective function. The algorithm needs

to compute the objective function K times and find the best user. We denote the

complexity for computing the objective function by Ω, then the complexity of the

iterative algorithm is given by

Oiter = O
(
K · wS

∆w
· Ω
)
, (5.4.6)

where wS/∆w represents the number of iterations used in the iterative algorithm.

Complexity comparison To obtain bandwidth allocation in each transmission

time interval, the transmitter either uses the forward propagation algorithm to com-

pute the outcome of the GNN or executes the iterative algorithm. From eqs. (5.4.5)

and (5.4.6), we can see that the computational complexity of our GNN and the it-

erative algorithm increase linearly with the number of users. Recall that MFNN in



HML for GNN-based Scalable Bandwidth Allocation 125

eq. (5.4.5) is quite limited. In contrast, the complexity of the iterative algorithm

also increases with the amount of surplus bandwidth and the resource block and thus

depends on the channels of the users. In addition, the computing complexity for

evaluating the objective function, denoted by Ω in eq. (5.4.6), in each iteration of

the optimization algorithm could also be extremely high. Thus, the inference com-

plexity of the GNN is much lower than the complexity of the iterative optimization

algorithm.

5.4.4 Proposed HML Algorithm

To obtain a GNN with strong generalization ability, we propose an HML algorithm

that combines multi-task learning and meta-learning.

Task, Sample, and Taskset

To apply the meta-learning framework, we first define tasks, samples, and tasksets

in the context of bandwidth allocation problems. A task is a specific bandwidth al-

location problem with a unique combination of system parameters, including the

number of users, U , the channel model (i.e., path loss model, shadowing, and small-

scale channel fading), the QoS requirement, rΦ,ξτ , and the reserved bandwidth, WΦ,ξ
τ .

If any of the above system parameters change, it would result in a different task.

For each task, the samples correspond to the wireless channels that have been trans-

formed into the minimum bandwidth requirement by feature engineering, as specified

in constraint (5.4.3b). There are four tasksets in meta-learning, and a taskset consists

of multiple tasks. We will provide their definitions in the sequel.
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Meta-training
Support set: Query set:

Meta-testing
Fine-tuning set: Evaluation set:

(a) Model-agnostic meta-learning (MAML).

Meta-training
Support set: Query set:

Meta-testing
Fine-tuning set: Evaluation set:

(b) Hybrid-task meta-learning (HML).

Figure 5.2: Tasksets of meta-learning algorithms, where different shapes represent
different tasks.

Support Set and Query Set in Meta-Training

As shown in Fig. 5.2(a), most meta-learning learning algorithms, such as MAML,

consist of a meta-training stage and a meta-testing stage. In meta-training, there are

two tasksets, support set T S and query set T Q. The tasks in the two tasksets are the

same, but the samples of each task in the two tasksets are different. Specifically, we

first set the initialize parameters of the GNN to ϕ, which is randomly initialized at

the beginning of meta-training, and updated in every iteration of the meta-training.

Then, we train the parameters of the GNN by using the tasks and the corresponding

samples in the support set, where θ is initialized with parameters ϕ. Then, we update

the initial parameters ϕ by using the tasks and the corresponding samples in the query
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set. We denote the initial parameters trained in meta-training of MAML by ϕ∗. The

details of the MAML algorithm can be found in [Finn et al., 2017].

Fine-Tuning Set and Evaluation Set in Meta-Testing

To evaluate the generalization ability of the GNN, a different set of tasks that are

unseen in the meta-training stage are used in meta-testing. As shown in Fig. 5.2(a),

the tasks in meta-testing are divided into a fine-tuning set and an evaluation set,

denoted by T F and T E, respectively. The tasks in T F and T E are the same, but

the samples of each task in these two tasksets are different. For each new task in

meta-testing, the samples from the fine-tuning set are used to fine-tune θ, which is

initialized by ϕ∗ obtained in meta-training. After fine-tuning, the updated GNN is

tested with the samples from the evaluation set. If no sample is used to fine-tune the

GNN in the meta-testing stage, we refer to this approach as zero-shot meta-learning.

Otherwise, it is known as few-shot meta-learning. The meta-testing algorithm is

detailed in Algorithm 6.

Meta-Training of Proposed HML Algorithm

Fig. 5.2(b) illustrates the tasks and tasksets used in the meta-training and meta-

testing of the proposed HML algorithm. The difference between MAML and HML

lies in the selection of tasks from the query set. In MAML, the tasks selected from

the query set are identical to those selected from the support set in each meta-

training epoch. To improve the generalization ability, in HML, we select different

tasks from the query set to train the initial parameters of the GNN. Specifically, I ′

tasks are randomly selected from the query set to estimate the average loss of the GNN

parameterized by ϕm in the m-th epoch of meta-training. The step-by-step algorithm
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Algorithm 6: Meta-Testing

1 Initialize the number of training epochs, N , and the learning rate of the
target testing task, βθ.

2 Select the i-th task from the fine-tuning set and the evaluation set: T F
i ∈ T F

and T E
i ∈ T E.

3 Set the initialization parameters of the GNN as: θ0 = ϕ∗.
4 for n = 0, 1, · · · , N − 1 do
5 Randomly select J samples from task T F

i .
6 Calculate loss of in the fine-tuning set according to (5.4.4), denoted by

fL,F(θn).
7 Update the parameters of GNN by: θn+1 = θn + βθ∇θf

L,F(θn).

8 end
9 Randomly select J ′ samples from task T E

i .
10 Evaluate the fine-tuned policies of the i-th task using θN :

wΦ,ξ
i = fGNN

(
w̃Φ,ξ

min,i,j′ , w̃
Φ,ξ
S,i,j′

∣∣θN).
for meta-training of the proposed HML algorithm is described in Algorithm 7, and

the meta-testing algorithm of HML is the same as that of MAML in Algorithm 6.

5.5 Performance Evaluation

In this section, we evaluate the performance of our GNN-based HML algorithm.

The GNN is first initialized by the parameters obtained from meta-training, where all

the tasks aim to maximize the sum of the secrecy rate with different numbers of users

and channel models. Then, we evaluate the performance of our GNN in unseen tasks

with different numbers of users, channel models, objective functions, QoS constraints,

and reserved bandwidth.

5.5.1 Simulation Setup

We consider a BS, located at (0, 0) m, serving multiple users randomly distributed

in a rectangular area, where the coordinates of the users are denoted by (cx,u, cy,u),
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Algorithm 7: Meta-Training of Hybrid-Task Meta-Learning

1 Randomly initialize the training parameters for all the tasks, ϕ, the number
of meta-training epochs, M , the learning rate of meta-training, βϕ, and the
learning rate of each task, βθ.

2 for m = 0, 1, · · · ,M − 1 do
3 Select a batch of I tasks from the support set:

T S
i ∈ T S, i ∈ {1, 2, · · · , I}.

4 for i = 1, 2, · · · , I do
5 Set the initial parameters of the GNN to θmi = ϕm.
6 for n = 0, 1, · · · , N − 1 do
7 Randomly select J samples from task T S

i .
8 Calculate the loss function in the support set according to (5.4.4),

denoted by fL,S(θm,ni ).
9 Update the parameters by: θm,n+1

i = θm,ni + βθ∇θf
L,S(θm,ni ).

10 end
11 Select a batch of I ′ tasks from the query set:

T Q
i′ ∈ T Q, i′ ∈ {1, 2, · · · , I ′}.

12 for i′ = 1, · · · , I ′ do
13 Randomly select J ′ samples from task T Q

i′ , j′ ∈ {1, 2, ..., J ′}.
14 Calculate the loss function in the query task:

fL,Q
i

(
θm,Ni

)
= 1

I′
1
J ′

I′∑
i′=1

J ′∑
j′=1

∑
k∈KΦ,ξ

τ

fΦ,ξ
k

(
w̃Φ,ξ,m
i′,j′,k ·WNS

τ,j

)
,

15 end

16 end
17 Calculate the loss function in meta-training:

fL,Meta,m (ϕm) = 1
I

I∑
i=1

fL,Q
i

(
θm,Ni

)
.

18 Update the initial parameters: ϕm+1 = ϕm + βϕ∇ϕf
L,Meta,m (ϕm).

19 end
20 Return the optimal initial parameters of the GNN: ϕopt = ϕM .

where cx,u and cy,u ∈ [−100, 100] m. These users are distributed randomly within

these coordinates. When the QoS requirement is secrecy rate, an eavesdropper is also

randomly located in the above rectangular area. The transmitted signal of each user

is a complex Gaussian process with zero-mean and equal variance, σ2 = 1. Channel



Performance Evaluation 130

Table 5.2: Chapter 5 Key Simulation Parameters

Simulation parameters Values

Transmit power of each user, Pu 23 dBm
Single-sided noise spectral density, N0 -174 dBm/Hz
Channel coherence time, Tc 1ms [Li et al., 2022]
Duration of one time slot, Ts 0.125ms
Decoding error probability, ϵu 10−5 [Li et al., 2022]
Information leakage, δu 10−2 [Li et al., 2022]
QoS exponent of queuing delay, ϑu 10−3 [Li et al., 2022]
Minimum size of bandwidth resource block, ∆w 10 kHz
Learning rates, βθ/βϕ 10−4

Batch sizes of GNN, J/J ′ 32
Batch sizes of meta optimizer, I, I ′ 4, 2

models include large-scale channels and small-scale channels. Specifically, the large-

scale channels depend on path loss and shadowing fading, whilst small-scale channels

follow Rice, Nakagami, and Rayleigh distributions with various parameters in Table

5.3, in this table

pSu(ψ) =
10/ ln 10√
2πσψdB

ψ
exp

(
−(10 log10 ψ − µψdB

)2

2σ2
ψdB

)
, (5.5.1)

pIu(z|s, σ) =
z

σ2
exp

(
−z

2 + s2

2σ2

)
· I0
(zs
σ2

)
, (5.5.2)

pNu (z|m,σ) =
2mmz2m−1

Γ(m)(2σ2)m
exp

(
−mz

2

2σ2

)
, (5.5.3)

pRu (z|σ) =
z

σ2
exp

(
− z2

2σ2

)
. (5.5.4)

. The number of neurons in each layer of the GNN is 2/32/64/64/32/1. Unless

otherwise mentioned, the simulation parameters are summarized in Table 5.2, and

the parameters of tasksets are defined in Table 5.3.
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Table 5.3: Chapter 5 System Parameters of Different Tasks

Parameters T S & T Q T F & T E

Network scale Number of users UΦ,ξ
τ ∈ {10, 11, · · · , 30} UΦ,ξ

τ = 50

Channels

Path loss:
αu = (du)

−γu γu ∈ {2, 3} γu = 4

Shadowing: pSu(ψ) ψdB ∈ {3, 4, 5} ψdB = 8
Small-scale:
pIu(z|s, σ),
pNu (z|m,σ),
pRu (z|σ)

pIu(z|s, σ), s ∈ {1 · · · 5},
pNu (z|m,σ),m ∈ {2, · · · , 6}

pRu (z|σ)

QoS
Rewards max

w

∑
u∈US,I

τ

rS,Iu

max
w

∑
u∈UΦ,ξ

τ

rΦ,ξ
u ,

Φ ∈ {D,E, S},
ξ ∈ {I,F}

Constraints (Mbps) rS,Iτ ∈ {1, · · · , 10} rΦ,ξτ = 10

Reserved
Bandwidth

Constraints (MHz) W S,I
τ ∈ {10, · · · , 100} WΦ,ξ

τ = 100

5.5.2 Performance of GNN

Fig. 5.3 shows the training losses when the number of users increases from 10 to

50. The results show that the unsupervised learning algorithm can converge after a

few hundred training epochs for different numbers of users, and the convergence time

increases slightly with the number of users.

After the training stage of the unsupervised learning algorithm, we select 1000

samples from the evaluation set of the same task to evaluate the constraint and reward

achieved by the GNN in Fig. 5.4. The results in Fig. 5.4(a) show that the secrecy rates

of all the scheduled users are equal to or higher than the requirement, rS,Iτ = 10 Mbps.

The results in Fig. 5.4(b) show that the sum secrecy rate achieved by the GNN is

close to that achieved by the iterative optimization algorithm in Section 5.4.1 (with

legend “Optimal”). In other words, the unsupervised learning algorithm can obtain
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Figure 5.3: Training losses with different numbers of users, where the secrecy rate in
the long blocklength regime is considered, rS,Iτ = 10 Mbps, and W S,I

τ = 100 MHz.

a near-optimal solution.

5.5.3 Meta-Testing Performance of HML

In this subsection, we evaluate the generalization ability of the proposed HML

algorithm. The differences between tasks in meta-training and meta-testing are shown

in Table. 5.3. In meta-testing, we first select an unseen task that is not included in

meta-training. In each training epoch of the meta-testing, 32 samples are randomly

selected from T F to fine-tune the GNN, whilst all the 1000 testing samples from the

same task in T E are used to evaluate the performance.

Different Wireless Channels and QoS Requirements

In this part, we set W S,I
τ = 100 MHz and rS,Iτ = 10 Mbps for all types of services.

The other parameters follow the rules in T S and T Q as shown in Table. 5.3. We

compare the initial performance and sample efficiency of HML with four benchmarks:

1) Optimal, 2) Model-agnostic meta-learning (MAML), 3) Multi-task learning-based
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Figure 5.4: Testing samples are selected from taskset T F and T E in Table. 5.3.

transfer learning (MTL Transfer), and 4) Random initialization.

• Optimal : The optimal solution is obtained by the iterative algorithm detailed

in Section 5.4.1, and its optimality has been proved in [Dong et al., 2021].

• MAML: MAML is one of the most widely used meta-learning algorithms, and

its key ideas have been discussed in Section 5.4.4.
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• MTL Transfer : Transfer learning improves the sample efficiency by fine-tuning

the parameters of the pre-trained GNN in a task with fewer training samples.

With multi-task learning (MTL), the initial performance is much better than

random initialization as the GNN is pre-trained in multiple tasks [Finn et al.,

2017; Ye et al., 2020]. To execute MTL transfer learning, we only need to

replace the initialization in line 2 of Algorithm 5 by the pre-trained parameters.

• Random Initialization: Random initialization is the conventional method that

trains the GNN from scratch with a new task.

In figures 5.5–5.7, we compare our HML with the benchmark algorithms by analyzing

the training epochs needed for convergence, the horizontal axis represents the training

epochs used to fine-tune the GNN, and 32 samples from T F are used to train the GNN.

The vertical axis represents the sum of the rewards of all the users, and the average

is taken over samples, i.e., 1000 testing samples from T E are used. We refer to it as

the average sum reward.

In Fig. 5.5, we consider the average sum of secrecy rates and illustrate the im-

pacts of the number of users, channel models, and coding blocklength on the initial

performance and sample efficiency of different methods. The results in Fig. 5.5 show

that HML achieves the best initial average sum secrecy rate and the highest sam-

ple efficiency compared with all the benchmarks. In Fig. 5.5(a), HML can converge

in 8 training epochs. Both MAML and MTL transfer learning takes more than 30

epochs to converge. Thus, HML can reduce the convergence time by up to 73%.

After the fine-tuning, the gap between learning methods and the optimal solution is

around 1.45%. In Fig. 5.5(b), the coding blocklength in meta-testing is also different

from that in meta-training. As a result, the gap between the initial performance of
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(a) Secrecy rate in long blocklength regime.
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Figure 5.5: Meta-testing with unseen channel models.

HML and the optimal solution is 7.93%. After fine-tuning, the gap reduced to 3.74%,

which is larger than the gap in Fig. 5.5(a), where the blocklength is the same in

meta-training and meta-testing.

Fig. 5.6 shows the average sum of data rates achieved by different methods. The

results indicate that when the reward function and the QoS constraint in meta-testing
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(b) Achievable rate in short blocklength regime.

Figure 5.6: Meta-testing with unseen QoS requirements of rate rates and unseen
channels.

are different from that in meta-training, the gaps between the initial performance of

HML and the optimal solution increase to 13.77% and 14.93% in long and short

blocklength regimes, respectively. After fine-tuning, the gaps between the learning

methods and the optimal solution are smaller than that in Fig. 5.5. This is because

Shannon’s capacity/achievable rate are two special cases of the secrecy rate in the



Performance Evaluation 137

100 101 102 103

Training epochs for fine-tuning GNN
1.5

1.8

2.1

2.4

2.7

3.0

Av
g.

 su
m

 e
ffe

ct
iv

e 
ca

pa
cit

y 
(G

bp
s)

26.23%

5.80%

Optimal
Proposed HML
MAML
MTL transfer
Random initialization

(a) Effective capacity in long blocklength regime.
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Figure 5.7: Meta-testing with unseen QoS requirements and unseen channels.

long/short blocklength regimes when the eavesdropped channels are in deep fading.

It is easier to learn a good policy when the problem becomes less complicated.

Fig. 5.7 shows the average sum of effective capacities achieved in the meta-testing

stage, where the initial parameters of the GNN are obtained from meta-training,

and the GNN is trained with tasks maximizing the sum secrecy rate in the long
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blocklength regime. In other words, the QoS requirement in meta-testing is queuing

delay requirement, which is quite different from the security requirement in meta-

training. By comparing the results in Figs. 5.7 and 5.5, we can observe that the

gaps between the HML and the optimal solution in Fig. 5.7 are larger than the gaps

in Fig. 5.5. Nevertheless, HML can still converge in around 10 to 30 epochs and

outperforms the other benchmarks in Fig. 5.7.

Meta-Testing with Different System Parameters

In this part, we focus on secrecy rates in the long blocklength regime in both

meta-training and meta-testing, and change the values of rS,Iτ , W S,I
τ , and US,I

τ to

investigate their impacts on the initial performance and sample efficiency of HML in

meta-testing.

In Fig. 5.8, we evaluate the initial performance and sample efficiency with different

rS,Iτ in support sets and query sets in meta-training. Specifically, we set rS,Iτ to

10 Mbps and 1 Mbps in meta-training in Figs. 5.8(a) and 5.8(b), respectively. In Fig.

5.8(c), rS,Iτ is randomly selected from the set {1, · · · , 10} Mbps in meta-training. In

meta-testing, we increase rS,Iτ from 1 Mbps to 10 Mbps. The results in Figs. 5.8(a)

and 5.8(b) indicate that the gaps between zero-shot learning (with 0 training epochs

in meta-testing) and the optimal solution increase with the difference between rS,Iτ in

meta-training and rS,Iτ in meta-testing. To increase the generalization ability, we can

increase the diversity of tasks in meta-training as shown in Fig. 5.8(c). In this way,

our GNN is near-optimal with zero-shot learning.

In Fig. 5.9, we validated the generalization ability of our GNN with dynamic band-

widthW S,I
τ . In meta-training,W S,I

τ is randomly selecting from the set {10, · · · , 100}MHz.

In meta-testing, we increase W S,I
τ from 10 to 100 MHz. The results in Fig. 5.9 show
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(b) rS,Iτ = 1 Mbps in meta-training.
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(c) rS,Iτ ∈ {1, · · · , 10} Mbps in meta-training.

Figure 5.8: Meta-testing with dynamic secrecy rate requirements, rS,Iτ ∈
{1, · · · , 10} Mbps, whereW S,I

τ = 100 MHz and US,I
τ = 10.

that our GNN is near-optimal with different values of W S,I
τ . In Fig. 5.10, we further

validate the generalization ability of our GNN with different numbers of users. In

meta-training, the number of total users is randomly selected, US,I
τ ∈ {10, 11, ..., 30}.

In meta-testing, we increase the number of total users from 5 to 50. The results in

Fig. 5.10 show that the proposed HML can obtain a GNN that has strong general-

ization ability with different numbers of users. The gap between the GNN and the

optimal policy increases slightly with US,I
τ . This is because the scale of the problem
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Figure 5.9: Meta-testing with dynamic bandwidth W S,I
τ ∈ {10, · · · , 100} MHz in

meta-training, where rS,Iτ = 10 Mbps and US,I
τ = 10.

increases with US,I
τ , and it is more difficult to learn the bandwidth allocation policy

of a large-scale problem compared with that of a small-scale problem.

5.6 Chapter Summary

In this paper, we developed an HML approach to train a GNN-based scalable

bandwidth allocation policy that can generalize well in various communication sce-

narios, including different number of users, wireless channels, QoS requirements, and

bandwidth. The main idea is to train the initial parameters of the GNN with vari-

ous tasks in meta-training, and then fine-tune the parameters with a few samples in

meta-testing. Simulation results showed that the performance gap between the GNN

and the optimal policy obtained by an iterative algorithm is less than 5% in most of

the cases. For unseen communication scenarios, the GNN can converge in 10 to 30

training epochs, which are much faster than the existing benchmarks. Our approach

can be extended beyond bandwidth allocation, such as power allocation, precoding,
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Figure 5.10: Meta-testing with different numbers of users US,I
τ ∈ {5, 10, · · · , 50},

where rS,Iτ = 10 Mbps and W S,I
τ = 100 MHz.

and repetitions. Nevertheless, the featuring engineering and the structure of GNN in

other scenarios deserve further investigation.



Chapter 6

Conclusions and Future Work

In this thesis, we focused on developing secure and intelligent resource allocation

optimization frameworks for low-latency wireless communications. The contributions,

insights, and possible extensions in future work are provided in this chapter.

6.1 Summary of Contributions and Insights

We proposed double blockchain (DBC), blockchain-secured deep reinforcement

learning (BC-DRL), and hybrid-task meta-learning (HML) to highlight new insights

for developing novel resource allocation schemes in low-latency wireless communica-

tion networks.

First, we aimed to reduce the latency by optimizing the resources of the nodes in a

cloud-fog IoT network, in which we proposed a scalable DBC architecture composing

a cloud-layer information blockchain (IBC) and an fog-layer reputation blockchain

(RBC). The IBC was managed by the cloud server located in the cloud layer, whilst

the RBC was managed by the base stations (BSs) randomly located in the fog layer.

The scalable DBC addressed the high resource requirement issue of conventional sin-

gle blockchain by utilizing the proposed mapping protocol and node classification

142
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algorithms. In addition, we provided stochastic analysis for the proposed DBC archi-

tecture, which demonstrated the effectiveness of applying DBC in large-scale wireless

IoT networks with low-latency and tampering-resistant requirements.

Next, we focused on the edge layer, where multiple randomly located BSs pro-

vided MEC services for multiple users. The target was to minimize the transmis-

sion and computing latency subject to a maximum threshold on the denial-of-service

(DoS) probability in a secure manner. To achieve this goal, we proposed to em-

bed blockchain into the decentralized MEC network. Specifically, we designed a

constrained deep reinforcement learning (DRL) algorithm to optimize the comput-

ing resources for blockchain management and MEC service-provisioning. Simulation

results validated that the proposed BC-DRL framework can effectively resist data

tampering attacks, satisfy the time-varying user requests, and handle the dynamic

requirement of DoS probability.

Finally, we extended the wireless network’s quality-of-service (QoS) requirement

beyond low-latency, incorporating high data rates and enhanced security through

network slicing (NS) technology. The wireless network comprised different slices sup-

porting diverse QoS requirements. Within each slice, we further considered the issue

of dynamic numbers of requesting users, a challenging problem in wireless networks.

To achieve the scalable resource allocation policy, a scalable graph neural network

(GNN) was designed. The GNN adapted its topology according to the dynamics of

user numbers. Subsequently, the HML algorithm was proposed to address the low

training efficiency issue caused by the non-stationary wireless channels. The combina-

tion of GNN and HML generalized the bandwidth allocation to perform in a scalable

and transferable manner.
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6.2 Future Work

With the rapid development of wireless and machine learning technologies, we

have identified several important emerging requirements in the area of low-latency

wireless communications. To satisfy these requirements, we outline several potential

extensions to the work presented in this thesis.

6.2.1 Network Slicing

In this thesis, we focused on resource allocation for computation and bandwidth

in Chapters 4 and 5. In real-world wireless networks, further performance improve-

ments could be achieved by optimizing critical wireless resources, such as transmit

power and base station (BS) selection. We can add the transmit power in the policy

spaces of BC-DRL and the scalable GNN frameworks, followed by joint optimization

of the bandwidth and transmit power. In addition, in the decentralized wireless net-

work considered in BC-DRL, we can include a machine learning-based BS selection

algorithm to further reduce the complexity and improve the robustness in dynamic

environments.

An end-to-end learning model can be utilized to reduce the latency of signal

processing [Kotary et al., 2021]. Therefore, it can be interesting to develop an end-

to-end learning algorithm that achieves the same goal of scalable and transferable

bandwidth allocation as that in HML, but with lower latency. A potential solution

is to use a cascaded neural network [Dong et al., 2021], composing both the user

scheduling and bandwidth allocation algorithms.
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6.2.2 Wireless Security

In Chapter 5, we investigated the scenario where a single base station (BS) serves

multiple users in the presence of one eavesdropper. It would be interesting to extend

this single eavesdropper model to multiple eavesdroppers trying to eavesdrop the

confidential information transmitted in the wireless network. A potential solution is

to represent the wireless network with multiple users and multiple eavesdroppers as

a bipartite graph, in which the vertices are divided into the user vertices and the

eavesdropper vertices. Based on the represented structure of the bipartite graph, we

can optimize the resource allocation according to the features of these two kinds of

vertices.

In [Hao et al., 2023], we have demonstrated that the CSI uncertainty can greatly

affect the value of the secrecy rate. It would be interesting to include the channel state

information (CSI) uncertainty when evaluating the data rate of the eavesdropper in

Chapter 5. Autoencoder has demonstrated its potency as a formidable tool capable

of reconstructing original information through training on datasets with and without

CSI uncertainty. Therefore, it would be possible to consider enhancing the secrecy

rate by designing an autoencoder when the accurate CSI of the eavesdropper is hard

to achieve.

6.2.3 Integrated Terrestrial and Non-Terrestrial Network

In future 6G communication systems, non-terrestrial networks, including UAVs

and satellite networks, will serve as a complement to the current terrestrial network.

As such, it would be interesting to expand our current system model from a terres-

trial network to an integrated terrestrial and non-terrestrial (T-NT) network, and
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investigate the secure and intelligent resource allocation accordingly.

A new integrated blockchain will need to be developed for integrated T-NT net-

works. In Chapter 3, we investigated the DBC blockchain architecture of the cloud-

edge wireless network, which comprises cloud servers, edge servers, and IoT devices.

However, the resources of nodes in the non-terrestrial network cover a much wider

range compared with terrestrial nodes. Thus, how to design the integrated blockchain

for secure node management for the T-NT network with maximum resource utilization

efficiency will be a challenging problem with possible solutions arising from multi-type

blockchain data scheduling, which was analyzed in [Hu et al., 2023].

In addition to considering more categories of resources, it can be interesting to

develop novel machine learning-based resource allocation for the T-NT network com-

posed of nodes with resource amounts across a wider range than the terrestrial net-

works of IoT, MEC, and NS networks.

Lastly, to enhance the flexibility and applicability, we could explore how our model

adapts to various point processes [Hourani et al., 2016]. Understanding how differ-

ent point processes affect resource allocation and network performance is crucial for

optimizing system design across diverse deployment scenarios. This research avenue

promises to advance wireless communication systems by addressing evolving network

needs.
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Appendix for Chapter 3

A.1 Derivation of Blockchain Processing Latency

In the pre-prepare step, the processing latency is expressed as

τ gbc,i(t) =
f g
bc,i(t)

ai(t)
+ max

i∈NM(t),j∈NV(t)

{
ℓb(t)

Wi,j

}
, (slots) (A.1.1)

where the first term is the block miner signature generation time and the second

term is the maximum block multicasting time from the miner BS i ∈ NM(t) to the

validator BSs j ∈ NV(t), where Wi,j is the data transmission rate from the i-th BS

to the j-th BS.

In the prepare step, each validator BS adds their signature to the received block

from the miner BS. The CPU cycles required for the j-th validator in the t-th time

slot can be calculated by fv
bc,j(t) = 1{j ∈ NV(t)} · κbcℓb(t) (CPU cycles). Each

validator BS multicasts the block to all the other committee BSs after validating the

signature in the block header. Thus, the processing latency is derived as

τvbc,i(t) = max
j∈NV(t)

{
fv
bc,j(t)

aj(t)

}
+ max

j∈NV(t),k∈NC(t),k ̸=j

{
ℓb(t)

Wj,k

}
, (slots) (A.1.2)

where the first term is the maximum signature validating time amongst all validator

BSs j ∈ NV(t), and the second term is the maximum block multicasting time to all
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committee BSs k ∈ NC(t).

Finally, in the commit step, the block is multicasted to all other BSs for secure

storage in the blockchain. The processing latency is given by

τ cbc,i(t) = max
k∈NC(t)

{
f c
bc,k(t)

ak(t)

}
+ max

k∈NC(t),l∈NB,l ̸=k

{
ℓb(t)

Wk,l

}
, (slots) (A.1.3)

where the first term is the maximum signature validating time amongst all committee

BSs k ∈ NC(t) and the second term is the maximum multicasting time to all BSs

l ∈ NB.

A.2 Derivation of Service Rate Allocated in One

Time Slot

Based on (4.5.4), the processing latency of the service rates allocated in the

t′-th time slot is given by

τi(t
′) = ⌈τbc,i(t′) + τsp,i(t

′)⌉, (slots) (A.2.1)

where ⌈·⌉ is the ceiling function. In the t-th time slot, the remaining processing

latency of the service rates allocated in the t′-th time slot can be expressed as

τ̂i(t, t
′) = (τi(t

′)− (t− t′))+, (slots). (A.2.2)

In the t-th time slot, the service rates been hold equal to the service rates allocated

in the t′-th time slot, and can be described as

âi(t, t
′) = ai(t

′) · 1{τ̂i(t, t′) > 0}, (CPU cycles/slot) (A.2.3)

where 1{·} is the indicator function, which equals one when τ̂i(t, t
′) > 0, and equals

zero otherwise.

The state of the service rates allocated in the t′-th time slot is defined as its
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remaining processing latency and the service rate hold by it, i.e.,

ŝi (t, t
′) = [τ̂i(t, t

′), âi(t, t
′)] . (A.2.4)

If the BS did not allocate any service rates in the t′-th time slot, both τ̂i(t, t
′) and

ai(t, t
′) are zeros. If the initialized processing latency τi(t

′) is smaller than Tmax, then

τ̂i(t, t
′) and âi(t, t

′) are also updated to zeros before t′ + Tmax.

A.3 Proof of Equivalence

We prove the equivalence of problem (4.5.1) and problem (4.5.12) by proving

the equivalence of the objective function and the constraint, respectively.

For the equivalence of the objective function, since our considered stochastic pro-

cesses are stationary and ergodic, we have E[τi(t)] = E[τi(t̂)], where t̂ ̸= t. Thus, the

objective function can be derived by

max
µ(·)

Ri,µ(t) =max
µ(·)

Eµ

[
∞∑
t̂=t

γ t̂−tr ri(t)

]

=max
µ(·)

Eµ
[
ri(t)

1− γr

]
=max

ai(t)
Eµ[−τ ai (t)]

=min
ai(t)

E[τi(t)].

(A.3.1)

For the equivalence of the constraint, we take eq. (4.5.10) and Emax = ϵmax/(1−γc)

into eq. (4.5.11), we have

Ci,µ(t) =
Eµ[ci(t)]
1− γc

≤ ϵmax

1− γc
. (A.3.2)

Thus, we have Eµ[ci(t)] ≤ ϵmax, which is mathematically equivalent to the constraint

in problem (4.5.1).

In conclusion, the objective function and the constraint of problem (4.5.1) and

problem (4.5.12) are all equivalent, thus these two problems are equivalent. This
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completes the proof. □

A.4 Proof of the Markov Property

In the t-th time slot, the action of the i-th BS is assigned to provide its physical

service rate denoted by ai(t). As shown in (4.5.7), the state of the i-th BS in the

(t+ 1)-th time slot is

ŝi(t+ 1) =


si(t+ 1, t+ 1− Tmax)

si(t+ 1, t+ 1− Tmax + 1)
...

si(t+ 1, t+ 1)


T

, (A.4.1)

where the dimension of the state in (A.4.1) is Tmax. Since si(t, t
′) beyond Tmax are

uncorrelated. Thus, the next state, ŝi(t+ 1), only depend on the state and action in

the t-th time slot. Therefore, the Markov property holds. This completes the proof.

□



Appendix B

Appendix for Chapter 4

B.1 Proof of Concavity for Secrecy Rate in Long

Blocklength Regimes

To prove the concavity of the secrecy rate in long blocklength regimes, we only need

to prove that the second derivative of the secrecy rate is positive. We first calculate

the partial derivative of the secrecy rate of the k-th scheduled user as follows,

∂rS,Ik (wD,Iτ,k )

∂wD,Iτ,k

=
∂
(
rD,Ik (wD,Iτ,k )− re,Ik (wD,Iτ,k )

)
∂wk

=

−ζk + ln

(
1 +

ζk
wD,I

τ,k

)
(wD,Iτ,k + ζk)

ln(2)(wD,Iτ,k + ζk)
−
−ζek + ln

(
1 +

ζek
wD,I

τ,k

)
(wD,Iτ,k + ζek)

ln(2)(wD,Iτ,k + ζek)

=

ln

(
wD,I

τ,k +ζk

wD,I
τ,k +ζek

)
ln(2)

+
(ζek − ζk)w

D,I
τ,k

ln(2)(wD,Iτ,k + ζk)(w
D,I
τ,k + ζek)

,

(B.1.1)

where ζk = Pkhk/N0 and ζek = Pkh
e
k/N0. Since the secrecy rate of the user increases

with the increasing of the allocated bandwidth, we have ∂rS,Ik (wD,Iτ,k )/∂wD,Iτ,k < 0. The

151
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second derivative of rS,Ik (wD,Iτ,k ) can be derived as follows,

∂2rS,Ik (wD,Iτ,k )

∂wD,Iτ,k

2 =
∂

∂wD,Iτ,k

(
∂rS,Ik (wD,Iτ,k )

∂wD,Iτ,k

)

=
(ζek − ζk)

(
(ζek + ζk)w

D,I
τ,k + 2ζekζk

)
ln(2)(wD,Iτ,k + ζk)2(w

D,I
τ,k + ζek)

2
.

(B.1.2)

For any scheduled user, we have ζk > ζek. Thus, ∂
2rS,Ik (wD,Iτ,k )/∂wD,Iτ,k

2
< 0. Therefore,

rS,Ik (wD,Iτ,k ) is concave. This completes the proof. □
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