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ABSTRACT. The Hipparcos catalog provides a reference frame at optical wavelengths for the new International
Celestial Reference System (ICRS). This new reference system was adopted following the resolution agreed at the
23rd IAU General Assembly held in Kyoto in 1997. Differences in the Hipparcos system of proper motions and the
previous materialization of the reference frame, the FK5, are expected to be caused only by the combined effects of
the motion of the equinox of the FK5 and the precession of the equator and the ecliptic. Several authors have pointed
out an inconsistency between the differences in proper motion of the Hipparcos-FK5 and the correction of the
precessional values derived from VLBI and lunar laser ranging (LLR) observations. Most of them have claimed
that these discrepancies are due to slightly biased proper motions in the FK5 catalog. The different mathematical
models that have been employed to explain these errors have not fully accounted for the discrepancies in the correc-
tion of the precessional parameters. Our goal here is to offer an explanation for this fact. We propose the use of
independent parametric and nonparametric models. The introduction of a nonparametric model, combined with the
inner product in the square integrable functions over the unitary sphere, would give us values which do not depend
on the possible interdependencies existing in the data set. The evidence shows that zonal studies are needed. This
would lead us to introduce a local nonparametric model. All these models will provide independent corrections to
the precessional values, which could then be compared in order to study the reliability in each case. Finally, we
obtain values for the precession corrections that are very consistent with those that are currently adopted.

1. INTRODUCTION

The Hipparcos catalog provides a reference frame at optical
wavelengths for the new International Celestial Reference
System (ICRS), with the accurate positions and proper motions
of more than 118,000 stars (around 1 mas and 1 mas yr�1; ESA
1997). The decision to adopt this new reference system was
taken at the IAU General Assembly held in Kyoto in 1997. Dif-
ferences between the Hipparcos system of proper motions and
the previous version of the reference frame, the FK5, are ex-
pected to be caused only by the combined effects of the motion
of the equinox of the FK5 and the precession of the equator and
the ecliptic. The IAU has recommended that the terms “preces-
sion of the equator” and “precession of the ecliptic” should be
used instead of “luni-solar precession” and “planetary preces-
sion,” respectively (Hilton et al. 2006), and we shall therefore
use this new notation throughout this article. Previous authors,
such as Walter & Hering (2005) and Zhu (2000), have used the
notation Δp to denote the correction in the precession of the
equator (then called the luni-solar precession), and Fricke
(1977) used Δp1, but in order to follow the notation used in
the IAU 2006 resolutions, we refer to these corrections asΔψA.

The usual way to represent the relationships between systems
of proper motions from two catalogs mathematically is

Δμα cos δ ¼ �ωx cosα sin δ � ωy sinα sin δ þ ωz cos δ;

Δμδ ¼ ωx sinα� ωy cosα;
(1)

where α and δ represent the equatorial coordinates right
ascension and declination, respectively, and Δμα, Δμδ are
corrections for the proper motions in right ascension and decli-
nation. The spins ωx, ωy, ωz are related to the values of the
differences in the precessional parameters. Several authors have
pointed out an inconsistency in the differences in the proper
motion of the Hipparcos-FK5 with the value corresponding
to the correction in the precession of the equator and the ecliptic
rate, as derived from VLBI and lunar laser ranging (LLR)
observations. Among these authors, for example, Walter &
Hering (2005) and Zhu (2000, 2006) provided different physi-
cal-mathematical models that were not altogether successful.
They suggested that one of the reasons for these discrepancies
could be the internal bias of the proper motion system of
the FK5.
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This is why we consider that any physical interpretation of a
set of discrete data requires appropriate mathematical treatment
in order to obtain parametric values that may have a physical
meaning. Regardless of the physical sources of these inconsis-
tencies, the data obtained through statistical procedures must be
interpreted a posteriori and, thus, we have to be sure that the
model and the methodology used do not generate errors in
the final results (namely, the corrections for the precessional
parameters). The model in equation (1) is unbiased and so it
may give erroneous results when applied to a biased set of data
(Marco et al. 2004). Our aim is to obtain the corrections to the
precessional parameters using a model that does not depend on
the correlation between the residuals of the random variables
(namely Δμα cos δ, Δμδ).

Because these data come from the Hipparcos-FK5 com-
parison, they are discrete; to obtain global results such as the
above-mentioned corrections to the precessional parameters,
the residuals should be properly defined over the whole sphere.
To achieve this, it is necessary to use a suitable method and we
can choose between two options to perform the adjustments:
one parametric and one nonparametric. Parametric and nonpara-
metric models could be used separately for each random vari-
able and they are clearly independent. A comparison of their
results could be used as a measure of their reliability. The para-
metric models imply an a priori interpretation of the structure
of the residuals, which may be incompatible with the statistical
properties of the random variables that they represent
(Δμα cos δ, Δμδ). These properties should be preserved when
we expand them to cover the whole sphere. In particular, the
existence of a bias is a traceback to the use of an unbiased
geometrical model, such as the one given in equation (1). This
problem disappears if we use independent analytical adjust-
ments, some of which will be outlined later.

The kernel nonparametric models, henceforth KNP (Simon-
off 1996; Wand & Jones 1995), do not make any assumptions
about the dependence of the random variable residuals (never-
theless, it is possible to prove that they have a relationship of
dependence and it makes sense to suppose the existence of a
spin), in contrast to the case of geometrical models.

Parametric and nonparametric models can be used to com-
pute the induced ωy, ωz values independently by means of a
usual, but discretized, inner product in the functional space
of the square integrable functions on the unitary sphere
[L2ðS2Þ]. These values do not depend on whether bias is con-
sidered or not, and their correct determination is critical in order
to obtain aΔψA correction that is mathematically coherent with
the data and the model used. We should also highlight the pre-
cision of the results that were obtained and the fact that we
worked at two different levels: the statistical and the numerical.
We have already stated that the distribution of the data on the
sphere is practically homogeneous, and so the orthonormality
functional properties with respect to the norm of L2ðS2Þ are
well preserved for discretization and consequently for the ortho-

normality of the discretized space. The numerical methods that
we will employ throughout this work (integration and numerical
adjustment on the sphere) do not produce significant errors,
because they only affect the second decimal place. A possible
source of errors may be the procedure used for nonparametric
adjustment. We took the values hα, hsin δ (Marco et al. 2004)
for the bandwidths for each random variable in equation (3)
in order to minimize the asymptotic value of the mean squared
error, hereafter AMISE, over the whole sphere. See the
Appendix and Wand & Jones (1995) for more details on
these topics. These values are a function of the variance-
covariance matrix of the random variable, the size of the sample
and the geometrical dimension of the random vector. The value
of the AMISE is approximately 0.01 in the units employed in
the study.

Our conclusions agree with those of other authors, such as
Mignard & Froeschlé (2000), in the sense that some of the
discrepancies found when comparing the obtained and the
observed values of precession are due to zonal errors. This fact
should be confirmed by means of a more specific model. The
use of a local KNP, henceforth KNPL, will make it possible to
conduct such a study. The KNP and KNPL models will be
briefly explained in the next section, while in a later section
we will perform approximations to the ωy and ωz values (which
are independent of the method) to show their stability. As the
same authors indicate in their papers (Mignard & Froeschlé
2000), the explanations that have been proposed for the numer-
ical discrepancies are not sufficient. Our explanations do ac-
count for a rather more significant part of the numerical
values. The numerical results will be listed and we will see that
our method explains a high percentage of the precessional va-
lues as derived from VLBI and LLR observations.

2. THE MATHEMATICAL MODELS

We have a set of discrete data on the sphere and we want to
obtain some functions that represent these data on the whole
sphere. In this section, we will define and apply methods that
allow us to obtain such functions, taking into account that the
statistical properties of the discrete sample should be preserved.

In Section 3 we will describe the next step: analysis of the
data set in order to ensure that the data are spatially distributed
over the sphere in a sufficiently homogeneous way, and that
they are distributed as normal random variables with a nonnull
mean. The first property (spatial homogeneity) is not necessary,
but it is desirable, since it ensures that the results obtained from
a discrete and a continuous least squares method can be
compared.

2.1. The Global and Local KNP Models over the Sphere

Nonparametric adjustments compute the mathematical ex-
pectation of a certain random variable conditioned by another
one. For example, if X is the random variable (in our case,
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Δμα cos δ or Δμδ), the method consists in finding

mXðα; δÞ ¼ E½Xjðα; δÞ� ¼
Z
D
xfðxjα; δÞdx

¼
Z
D
x
fðx;α; δÞ
f ðα;δÞðα; δÞ

dx; (2)

where E½Xjðα; δÞ� is the mathematical expectation of a random
variableX conditioned by the value of the ðα; δÞ (homogeneous
random variable position); D is the range ofX; fðx;α; δÞ is the
joint density function of the three variables; f ðα;δÞðα; δÞ is the
marginal density; and we have the formula fðxjðα; δÞÞ
f ðα;δÞðα; δÞ ¼ fðx;α; δÞ (Wand & Jones 1995). All of them
might be unknown so they will have to be approximated in some
way. This can be achieved with an estimator (Simonoff 1996)
using a kernelK which fulfills the properties:K ≥ 0,

R
Kdx ¼

1 and
R
xKdx ¼ 0. The expression of the estimator for the joint

density is

f̂ðx;α; δÞ ¼ 1

nhxhαhsin δ

×
Xn
i¼1

Kx

�
x� xi

hx

�
Kα

�
α� αi

hα

�
Kδ

�
sin δ � sin δi

hsin δ

�
: (3)

Here, n is the size of the sample, the h-values are ”discretiza-
tions” (properly named bandwidth) of X, α and δ; K refers to
the Epanechnikov kernel (Simonoff 1996):

KðxÞ ¼
�

3
4 ð1� x2Þ jxj ≤ 1
0 jxj > 1

; (4)

with the usual condition for the density:

1

4πμðDÞ
Z
D

Z
S2
f̂ðx;α; δÞ cos δdxdαdδ ¼ 1; (5)

where μðDÞ is the measure of D. Analogous conditions are
given for the marginal density. If we apply equation (2) with
the approximation f̂ ≃ f (and similarly for the marginal den-
sity), consider equation (3) and apply the kernel properties,
we obtain an expression like that of Nadaraya-Watson (Simon-
off 1996), but for the sphere:

mXðα; δÞ ¼
Xn
i¼1

wixi;

wi ¼
Kαðα�αi

hα
ÞKδðsin δ�sin δi

hsin δ
ÞP

n
j¼1 Kαðα�αj

hα
ÞKδðsin δ�sin δj

hsin δ
Þ
: (6)

This expression is independent of the kernel used. We have
taken the kernel given in equation (4) because it fulfills the
minimum value for the AMISE. A local study can be useful

when there are important discrepancies among the statistical
parameters of the variables determined by their zonal position.
Local polynomial estimations are based on finding the solution
to a natural weighted least-squares problem (Simonoff 1996):

min
βj

Xn
i¼1

½yi � β0 � β1ðx� xiÞ �…� βpðx� xiÞp�2

×K

�
x� xi

h

�
; (7)

n being the number of points considered and p the desired
degree of the polynomial . Let Mx be the design matrix:

Mx ¼
1 x� x1 ðx� x1Þp
..
. ..

.
… ..

.

1 x� xn ðx� xnÞp

2
64

3
75; (8)

and let Wx be the weighted matrix:

Wx ¼ h�1diag

�
K

�
x� x1

h

�
;…;K

�
x� xn

h

��
: (9)

Then, if Mt
xWxMx (t denotes transposition) is invertible, we

obtain

β̂ ¼ ðMt
xWxMxÞ�1Mt

xWxy; (10)

and the estimator m̂p for the desired random variable is given by

m̂pðxÞ ¼ et1ðMt
xWxMxÞ�1Mt

xWxy; (11)

er being a ðpþ 1Þ × 1 vector having a value of 1 in the rth entry
and zero elsewhere. We can see that the case for p ¼ 0 is the
KNP model.

2.2. SH2 and the Geometrical Adjustment

A surface harmonic spherical development of order n (SHn

henceforth) is based on the hypothesis that the developed func-
tion has an integrable square on the sphere. The coefficients are
found using precise formulae due to the functional orthogonal-
ity of these harmonics. The computation of the coefficients
fcj; j ≥ 0g, for a given function f , and a truncation of order
n (fY j; j ≥ 0g being the harmonic functions), enables us to
verify the property of minimizing the integral:

Z
S2

�
fðα; δÞ �

Xn2þn

j¼0

cjY jðα; δÞ
�
2

dσ; (12)

where dσ is the area element in the spherical domain. Consid-
ered the vector field on the unitary sphere given by
½ðΔαÞ cos δ;Δδ�t, we know that, under certain regularity hy-
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potheses, it is possible to obtain a development depending on
the vectorial harmonic spherical functions given in Morse &
Feshbach (1953):

Rn;m ¼ r
r
Y n;m; Sn;m ¼ r∇Yn;m;

Tn;m ¼ �r × ∇Yn;m; (13)

where Y n;m ðn ≥ 0;�n ≤ m ≤ nÞ are the usual surface spheri-
cal harmonics. Here, we useX to denote the positional vector in
Cartesian coordinates (and not a random variable). If we con-
sider the truncated development in the following way:

ΔX ¼
X1
j¼�1

½c1;jR1;j þ d1;jS1;j þ e1;jT1;j�; (14)

where ΔX ¼ XðrþΔr;αþΔα; δ þΔδÞ � Xðr;α; δÞ is ap-
proximated in the first order, compatibility of the system must
be accomplished, and this implies the functional relationships:

Δα cos δ ¼ ½e1;0 cos δ � e1;1 sinα sin δ � e1;�1 cosα sin δ�
þ ½d1;1 cosα� d1;�1 sinα�; (15)

Δδ ¼ ½e1;�1 sinα� e1;1 cosα�
þ ½�d1;1 sinα sin δ � d1;�1 cosα sin δ þ d1;0 cos δ�:

(16)

In first order of time, all the parameters in equations (15) and
(16) and the functions Δα cos δ,Δδ have two components. The
formula at the initial time is usually employed for correcting
rotation and deformation in position. The velocity components
stand for proper motions. It is necessary that for the proper
motion components and coefficients in equations (15) and (16)
e1;�1 ¼ ωx, e1;1 ¼ ωy, e1;0 ¼ ωz, where ωx, ωy, and ωz represent
the components of the Hipparcos-FK5 spin. This model gener-
alizes the previous geometrical one, but it does not eliminate the
bias (as already pointed out with regard to equation [1]). If there
is some bias in the data, the conclusions reached by applying
them could be wrong. This model supposes the existence of
a direct relationship between the errors in the right ascension
and declination proper motions. In contrast, the SH2 model
makes no a priori assumption about the correlation of the ran-
dom variables because it takes an independent development for
each variable.

3. THE DATA SET: SPATIAL DISTRIBUTION
AND THE RANDOM VARIABLES FOR

THE PROPER MOTION

We compare the Hipparcos and FK5 proper motions, taking
the date of our study as 1991.25 and selecting the stars that ful-
fill the following two conditions (Schwan 2001):

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔα cos δÞ2 þ ðΔδÞ2

q
≤ 200;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðΔμα cos δÞ2 þ ðΔμδÞ2
q

≤ 10mas yr�1:

(17)

A total of 1327 stars are considered in our calculations and we
need to consider the statistical distribution of the random vari-
ables Δμα cos δ, Δμδ. We compute the arithmetical mean and
the standard deviation of the variables, and also the expectations
and the standard deviation σ, as seen in Table 1, with

E½X� ¼
Z
D
xfXðxÞdx σ2 ¼ V arðXÞ ¼ E½X2� � ðE½X�Þ2

(18)

and

fXðxÞ ¼
1

nsh

Xns

i¼1

K

�
x� xi

h

�
; (19)

where K given in equation (4) and ns is the number of stars.
Δμα cos δ,Δμδ are distributed as normal random variables with
a nonnull mean. The function approximated by means of kernel
regression has no exact expression (the integrals were approxi-
mated using a suitable numerical integration formula). Contour
levels are shown in Figures 1 and 2 for the proper motions in

TABLE 1

MEANS AND STANDARD DEVIATIONS

(RESULTS IN mas yr�1)

μ σ E½� ffiffiffiffiffiffiffiffiffiffiffiffiffi
V arðÞp

Δμα cos δ . . . . . . −0.69 2.27 −0.67 1.10
Δμδ . . . . . . . . . . . . 0.21 2.26 0.29 1.09
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FIG. 1.—Differences Hipparcos-FK5 in Δμα cos δ inducted by the KNP
model (mas yr�1).
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right ascension and declination, respectively, where we took
hα ¼ 0:55, hsin δ ¼ 0:17 as the optimal values that minimize
AMISE (Simonoff 1996).

A statistical study of bands of declination zones for the
proper motion is also interesting, since it allows us to consider
the need for a zonal study of the declination bands. We have
taken into account declination zones 15° from the equator.
The statistical results are listed in Tables 2 (northern declina-
tions) and 3 (southern declinations).

The distribution of the errors in right ascension and declina-
tion in 15° declination bands is not homogeneous, in the sense
that the mean is not the same, and in some cases they do not
even distribute normally.

4. CORRECTIONS TO PRECESSION
FROM HIPPARCOS AND FK5

PROPER MOTIONS

Supposing that the Hipparcos and FK5 systems were rigid
frames, the two proper motion systems would be connected
using equation (1). The rotational spins ωx, ωy and ωz of the
FK5 system with respect to the Hipparcos system determine
the difference in the rate of precessionΔψA. But the precession

corrections determined from comparing the Hipparcos and FK5
proper motion systems show a significant discrepancy com-
pared to the observational VLBI and LLR-determined values,
ΔψA ¼ �3 mas=yr andΔe ¼ �1:2 mas=yr (ΔψA is the differ-
ence in the precession of the equator rate andΔe is the fictitious
motion of the equinox; Miyamoto & Soma 1993). Several
authors have performed studies in order to justify these discre-
pancies. For example, Walter & Hering (2005) studied the
Hipparcos proper motion system and considered that, after
deducting the influence of the Oort constant B, the remaining
rigid rotation component was the noninertial rotation of the
Hipparcos system, with a value of �0:71 mas=yr. After com-
paring the corrected Hipparcos and the FK5 proper motions
these authors found that they were still not coherent with the
VLBI observed precession value, and concluded that an extra
correction to the FK5 proper motion system was necessary.
More recently, Zhu (2007) analyzed the systematic errors of
PPM and ACRS (both catalogs in the FK5 system) proper
motions by comparing them with the Hipparcos proper
motions, and concluded that the existence of internal problems
in the proper motions system of the FK5 were the main reason
why it is not possible to use the precession correction to connect
the two proper motion systems. The angular rates of rotation
ωx, ωy and ωz allow us to obtain information about the correc-
tion to the precession of the equator according to the following
relationships (Fricke 1977):

ωx ¼ 0; (20)

ωy ¼ �ΔψA sin ε; (21)

ωz ¼ ΔψA cos ε�Δe; (22)

ε being the obliquity of the ecliptic, ε ¼ 23:4392911111°
(J2000.0). In equation (22) we have disregarded the correction
to the precession of the ecliptic because it has been proved to be
negligibly small. Since the spin values represent a rigid rotation
over the whole sphere, the limited number of 1327 points might
provide unstable results in the numerical process (nevertheless,
as we shall see, a posteriori these inaccuracies are not present,
probably due to the good spatial and statistical properties of the
data). We have generated a homogeneous network of points
over the whole sphere, thus making it possible to combine
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FIG. 2.—Differences Hipparcos-FK5 in Δμδ inducted by the KNP model
(mas yr�1).

TABLE 2

STATISTICAL RESULTS FOR THE BANDS OF 15° IN DECLINATION

(IN MAS)

δ N° Stars μα σα μδ σδ

0° 15° . . . . . . 160 −1.11 2.42 0.05 2.16
15° 30° . . . . . 172 0.20 1.90 0.40 1.94
30° 45° . . . . . 147 −0.58 1.69 −0.17 2.00
45° 60° . . . . . 107 −0.56 1.77 −1.00 1.60
60° 75° . . . . . 80 0.42 1.31 −0.21 1.47

TABLE 3

STATISTICAL RESULTS FOR THE BANDS OF 15° OF DECLINATION

(IN MAS)

δ N° Stars μα σα μδ σδ

−15° 0° . . . . . . . . 181 −0.75 2.11 −0.13 1.97
−30° −45° . . . . . 168 −1.47 2.66 −0.15 2.26
−45° −30° . . . . . 133 −1.96 2.48 1.35 2.90
−60° −45° . . . . . 101 −0.95 2.42 1.92 2.46
−75° −60° . . . . . 56 1.17 1.84 0.60 2.27
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statistical and numerical methods in order to test the results. We
then separately applied a SH2 (analytical model), a KNP, and a
KNPL (statistical models). It is not possible to obtain the
corrections to the precessional parameters directly from these
values and equations (20), (21) and (22). Instead, we need to
obtain the “induced” values for these angles. Once we have
defined the residuals over the whole sphere, it is possible to
check the accuracy of the ωy and ωz values, taking into account
the following points:

1. The ΔψA, Δe values should be obtained from ωy and ωz.
2. The latter values are obtained using the inner product of

an adjustment function (SH2, KNP, KNPL) with the suitable
orthogonal function.

3. SH2 is an analytical model, while KNP and KNPL are
statistical models. The ωy and ωz values are obtained by means
of a numerical discretization of the functional least squares
problem.

Since the models applied are independent of any other
adjustment that may be used, each particular procedure will
be as follows:

1. By using KNP and Φy ¼ � sinα sin δ and taking into
account that ðKNP; Y 21Þ ¼ ωyðΦy; Y 21Þ and ðKNP; Y 20Þ ¼ ωz

ðcos δ; Y 20Þ (see Marco et al. 2004), where parentheses repre-
sent the usual inner product and Y 21 ¼ 3 sinðαÞ sinðδÞ cosðδÞ,
Y 20 ¼ 3=2 sinðδÞ2 � 1=2 are spherical surface harmonics,
which are elements of the functional basis of L2ðS2Þ functions.
Applies analogously to the KNPL model.

2. By using SH2 (SH2 denotes the development in equa-
tion (12) in spherical harmonics truncated at the second order)
and Φy, and taking into account that c21ðY 21; Y 21Þ ¼
ωyðΦy; Y 21Þ, c20ðY 20; Y 20Þ ¼ ωzðcos δ; Y 20Þ (see Marco et al.
2004), where c21 and c20 represent the coefficients for the
Y 21 and Y 20 functions in development (12), respectively.

From the ωy and ωz values, we can obtain ΔψA using equa-
tion (21). In this case, computing Δe using equation (22) is not
recommended for the following reasons:

1. There is a bias and this bias is not properly a spin, (see
Fricke 1977). This is related to the next point, together with
the way ωx, ωy and ωz are obtained.

2. There are three correlated variables at the equator: Δe, ωz,
and the RA proper motion bias (Δμα cos δ).

By direct application of the definition of bias of a random
variable,

1

4π

Z
S2
Δμα cos δdσ ¼ Δμα cos δ: (23)

The correlation among the three parameters Δe, ωz and the RA
proper motion bias is true for the whole sphere, but it is parti-
cularly interesting to consider it at the equator, where we have
δ ¼ 0, and the resulting relationships areΔe ¼ Δμα cos δ � ωz.

To compute Δe, the only unknown value is the bias, which pro-
vides the value Δμα cos δ ¼ 0:67 mas=yr The resulting values
are listed in Table 4, where they can also be compared with
those obtained by other authors. The values denoted as Wal-
ter(nom) are the nominal values as given by Walter & Hering
(2005), corresponding to the accepted parameters of precession
from the P03 precession theory of Capitaine et al. (2003).

We can see that the results obtained when applying SH2,
KNP and KNPL are in strong agreement with the precession
correction derived from VLBI and LLR observations, and they
are also very close to the optimum value.

5. CONCLUSIONS

1. We have a discrete set of data with some specific charac-
teristics and we search for a generalization of these data over the
whole sphere which preserves these characteristics. Some of
them refer to the spatial distribution, which may be homoge-
neous or not, while others refer to statistical properties (in par-
ticular, mean and variance) and kind of distribution.

2. The functional and statistical adjustment must be coherent.
There are several possible methods of analysis that result in dif-
ferent models.

3. Spherical harmonics are used in the SH2 model, and as
they include the constant function in the functional basis, their
use could result in a bias for a function (we are now considering
RA and DEC proper motions separately). The models coming
from developments in vectorial harmonics (with only rotations
or rotations plus deformation) do not admit bias.

4. The Gauss-Markov theorem states that the minimum-
quadratic estimator is the best among those that appear when
the residuals are distributed normally with null mean and var-
iance σ2. So, the application of a mathematical model to a par-
ticular case in which these hypotheses are not verified cannot be
justified at all. If the data are not unbiased, then the model
cannot be either. Suitable mathematical treatments are the de-
velopments in spherical harmonics (see point 3 in this list)
and the nonparametric models.

5. The values for the correction of precession obtained from
the global and local KNP model are in very good agreement
with the optimum values as obtained from VLBI and LLR. With
respect to the precision of the results obtained in the study, there
are two possible sources of error: The KNP approximation; in

TABLE 4

PARAMETER VALUES FOR THE CORRECTION OF THE

PRECESSION (IN mas yr�1), EXPLAINED IN TEXT

ωy ωz ΔψA Δe

Walter(Nom) . . . . . . 1.2 −1.5 −3 −1.2
KNP . . . . . . . . . . . . . . . 1.04 1.73 −2.61 −1.06
KNPL . . . . . . . . . . . . . 0.98 1.83 −2.45 −1.16
SH2 . . . . . . . . . . . . . . . 1.03 1.69 −2.58 −1.02
MF . . . . . . . . . . . . . . . . 0.60 0.70 −1.51 −2.10
Walter . . . . . . . . . . . . . 0.65 0.77 −1.66 −2.30
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this case, we must take into account (Marco 2004) that the
values hα, hsin δ were taken in such a way that they minimize
the AMISE. These values are a function of the variance-
covariance matrix of the random variable, the size of the sample,
and the geometrical dimension of the random vector. In this
case, the value of the AMISE is approximately 0.01 in the units
of the work. Secondly, there is the question of discretization.
The reliability of the results that were obtained is based on
the existence of the L2ðS2Þ inner product, where a numerical
method of integration compatible with the desired precision
was used. These two sources of error are not additive. In

conclusion, both precisions are coherent with the parameters
that we want to evaluate.

6. The given (statistical-analytical-numerical) procedure is
linear, in the sense that if we suppose the Δμα cos δ, Δμδ

discrepancies are due to a particular cause j, the computation
of the corresponding ω1j, ω2j, ω3j contributions to ω1, ω2 and
ω3 would be computed following the same procedure as the one
we have applied globally.

Part of this work was supported by grant P1-1B2006-11 from
Fundacio Caixa Castello BANCAIXA.

APPENDIX

SOME REMARKS ABOUT AMISE

Let X be a random variable with density function fðxÞ. The
mathematical expectation is computed by means of the expres-
sion E½X� ¼ Rþ∞

�∞ xfðxÞdx and it is an obvious generalization
of the concept arithmetic mean.

If we want to approach a density function by means of an
estimator f̂ and with a bandwidth h, we can obtain a measure
of this approach in the L2 norm. Thus, we get the ISE
(integrated squared error): ISE ¼ Rþ∞

�∞ ffðxÞ � f̂ðx;hÞg2dx.
Usually, the estimator depends on a sample, so this quantity
becomes another random variable. Its mathematical expectation
is the MISE value but it is not suitable to practical purposes.
This value depends on the kind of approximation f̂ , the size
of the sample n, and the bandwidth selected value h. It is
possible to obtain an asymptotic expression to the MISE value
in increasing powers of h. The leading terms are the AMISE
value, ð1=½nh�ÞRðKÞ þ ð1=4Þh4μ2ðKÞ2Rðf 00Þ, where RðKÞ ¼R
KðxÞ2dx and μ2ðKÞ ¼ R

x2KðxÞdx
The optimization of this expression with respect to the kernel

K is not direct due to the coupling between K and h, but it can
be achieved rescaling K in the form KδðzÞ ¼ 1

δKðzδÞ and then
selecting δ0 such that RðKδÞ ¼ μ2ðKδÞ2. We obtain the solu-
tion δ0 ¼ fRðKÞ=μ2ðKÞ2g1=5 and the corresponding AMISE
expression becomes

AMISEff̂ð:;hÞg ¼ CðKδ0Þ
�

1

nh
þ 1

4
h4Rðf 00Þ

�
(A1)

where CðKÞ ¼ fRðKÞ4μ2ðKÞ2g1=5
The problem of finding a kernelK minimizing CðKÞ subject

to the conditions of the kernel, i.e.,
R
KðxÞdx ¼ 1;

R
xKðxÞd

x ¼ 0 and
R
x2KðxÞdx ¼ σ2

K < ∞, provides a family of ker-
nels depending on this bound σK (Hodges & Lehmann 1956).
A particular case provides the Epanechnikov kernel; see
equation (4).

The optimum value for minimizing AMISE is h0 ¼
f½RðKÞ�=½σ4

KRðf 00Þ�g1=5n�1=5. Selecting a reference density
(such as the Gaussian density; in other cases, we should
introduce a conversion factor) for f and denoting σ as the
standard deviation of the data set, one can obtain an ex-
pression depending on n, the size of the sample, h0 ≈ cK
σn�1=5; cK being a constant which depends only on the kernel
K.

If we consider a random two-dimensional vector, the differ-
ent optimum h values are given by the vector H ¼ P

1=2n�1=6

where
P

is the matrix of variance-covariance. These expres-
sions are equally true when applied to a regression function pro-
blems by means of a kernel method.
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