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Evaluation of clinical prediction models (part 3): calculating the 
sample size required for an external validation study
Richard D Riley,1,2 Kym I E Snell,1,2 Lucinda Archer,1,2 Joie Ensor,1,2 Thomas P A Debray,3  
Ben Van Calster,4,5 Maarten van Smeden,3 Gary S Collins6

An external validation study evaluates 
the performance of a prediction model 
in new data, but many of these studies 
are too small to provide reliable 
answers. In the third article of their 
series on model evaluation, Riley and 
colleagues describe how to calculate 
the sample size required for external 
validation studies, and propose to 
avoid rules of thumb by tailoring 
calculations to the model and setting 
at hand.

External validation studies evaluate the performance 
of one or more prediction models (eg, developed 
previously using statistical, machine learning, or 
artificial intelligence approaches) in a different dataset 
to that used in the model development process.1-3 
Part 2 in our series describes how to undertake a 
high quality external validation study,4 including 
the need to estimate model performance measures 
such as calibration (agreement between observed 
and predicted values), discrimination (separation 
between predicted values in those with and without 
an outcome event), overall fit (eg, percentage of 

variation in outcome values explained), and clinical 
utility (eg, net benefit of using the model to inform 
treatment decisions). In this third part of the series, 
we describe how to calculate the sample size required 
for such external validation studies to estimate these 
performance measures precisely, and we provide 
illustrated examples.

Rationale for sample size calculations in external 
validation studies
The sample size for an external validation study should 
be large enough to precisely estimate the predictive 
performance of the model of interest. The aim is to 
provide strong evidence about the accuracy of the 
model’s predictions in a particular target population, 
to help support decisions about the model’s usefulness 
(eg, for patient counselling, within clinical practice).

Many published external validation studies are too 
small, as shown by reviews of validations of statistical 
and machine learning based prediction models.5 6 A 
small sample size leads to wide confidence intervals 
of performance estimates and potentially misleading 
claims about a model’s reliability or its performance 
compared with other models, especially if uncertainty 
is ignored.7 This problem is illustrated in figure 1, which 
shows 100 randomly generated calibration curves 
for external validation of a prediction model for in-
hospital clinical deterioration among admitted adults 
with covid-19. Each curve is estimated on a random 
sample of 100 hypothetical participants (and about 43 
outcome events), with outcomes (deterioration: yes or 
no) randomly generated based on assuming estimated 
probabilities from the covid-19 model are correct in the 
external validation population. Even though the model 
predictions are well calibrated in the population (ie, the 
diagonal solid line in fig 1 is the underlying truth), the 
sampling variability in the observed curves is large. For 
example, for individuals with an estimated probability 
between 0 and 0.05, the observed probability on the 
curves range between about 0 and 0.3. Similarly, for 
individuals with an estimated probability of 0.9, the 
observed probabilities on the curves range from about 
0.6 to 1. Hence, the sample size of 100 participants 
is too small to ensure an external validation study 
provides stable results about calibration performance.

To resolve concerns of imprecise performance 
estimates, and thus inconclusive or misleading 
findings, rules of thumb have been proposed for the 
sample size required for external validation studies. 
For binary or time-to-event outcomes, rules of thumb 
based on simulation and resampling studies suggest 
at least 100 events and 100 non-events are needed to 
estimate measures such as the c statistic (area under the 
receiver operating characteristic curve) and calibration 
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SummaRy pointS
The sample size for an external validation study should be large enough to 
precisely estimate the predictive performance of the model of interest
Many existing validation studies are too small, which leads to wide confidence 
intervals of performance estimates and potentially misleading claims about a 
model’s reliability or its performance compared with other models
To deal with concerns of imprecise performance estimates, rules of thumb for 
sample size have been proposed, such as having at least 100 events and 100 
non-events
Such rules of thumb provide a starting point but are problematic, because they 
are not specific to either the model or the clinical setting, and precision also 
depends on factors other than the number of events and non-events
A more tailored approach can allow researchers to calculate the sample 
size required to target chosen precision (confidence interval widths) of key 
performance estimates, such as for R2, calibration curve, c statistic, and net 
benefit
Calculations depend on users specifying information such as the outcome 
proportion, expected model performance, and distribution of predicted values, 
which can be gauged from the original model development study
The pmvalsampsize package in Stata and R allows researchers to implement the 
approach with one line of code
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slope,8-10 and a minimum of 200 events and 200 non-
events to derive calibration plots including calibration 
curves.9 10 Such rules of thumb provide a starting point 
but are problematic, because they are not specific to 
either the model or the clinical setting, and precision 
of predictive performance estimates also depend on 
factors other than the number of events and non-
events, such as the distribution of predicted values.11-14 
Therefore, rules of thumb could lead to sample sizes 
that are too small (producing imprecise performance 
estimates) or too large (eg, prospectively collecting 
excessive amounts of data that are unnecessarily time 
consuming and expensive).

To move away from rules of thumb, tailored sample 
size calculations are now available for external 
validation studies.11-14 Here, we summarise these 
calculations for a broad audience, with technical 
details placed in boxes to ensure the main text 
focuses on key principles and worked examples. Our 
premise is that an external validation study aims 
to estimate the performance of prediction model in 
new data (see part 1 of our series)15; we do not focus 
on sample size required for revising or updating a 
prediction model. Complementary to sample size, 
and as emphasised in the part 2 of this series,4 
researchers should also ensure external validation 
datasets are representative of the target population 
and setting (eg, in terms of case mix, outcome 
risks, measurement and timing of predictors), and 
typically would be from a longitudinal cohort study 
(for prognostic models) or a cross sectional study (for 
diagnostic models).

Sample size for external validation of prediction models 
with a continuous outcome
When validating the performance of a prediction 
model for a continuous outcome (such as blood 
pressure, weight or pain score), there are many 
different performance measures of interest, as defined 
in detail in part 2 of this series.4 At a minimum, Archer 
et al14 suggest it is important to examine the following 
factors: overall fit as measured by R2 (the proportion of 
variance explained in the external validation dataset), 
calibration as measured by calibration curves and 
quantified using calibration-in-the-large (the difference 
between the mean predicted and the mean observed 
outcome values) and calibration slope (the agreement 
between predicted and observed values across the 
range of predicted values), and residual variance 
(the variance of differences between predicted and 
observed values in the external validation data). Four 
separate sample size calculations have been proposed 
that target precise estimation of these measures, which 
are summarised in figure 2. Unlike rules of thumb, 
the calculations are tailored to the clinical setting and 
model of interest because they require researchers to 
specify assumed true values in the external validation 
population for R2, calibration-in-the-large, calibration 
slope, and variance (or standard deviation) of outcome 
values across individuals.

Specifying these input values is analogous to other 
sample size calculations in medical research, for 
example, for randomised trials where values of the 
assumed effect size and target precision (or power) 
are needed. The dilemma is how to choose these input 
values. Here, we suggest that assuming values agree with 
those reported from the original model development 
study is a sensible starting point, especially if the 
target population (for external validation) is similar 
to that used in the model development study. In 
terms of specifying the true R2, we suggest use of the 
optimism adjusted estimate of R2 reported for the 
development study, where “optimism adjusted” refers 
to the estimate having been adjusted for any overfitting 
during development (ie, from an appropriate internal 
validation15 16; see part 1 of the series15). In terms of 
calibration, we recommend that assuming the model’s 
predictions are well calibrated in the external validation 
population, such that the anticipated true calibration-
in-the-large is zero and the true calibration slope is 1 
(extensions assuming miscalibration are considered 
elsewhere14), corresponding to a level 2 assessment 
in the calibration hierarchy of Van Calster et al.10 The 
variance of outcome values can also be obtained from 
the model development study, or any previous studies 
that summarise the outcome in the target population.

Also required are the target standard errors or 
target confidence interval widths for the model 
performance estimates of interest, with the goal to 
ensure that 95% confidence interval widths are narrow 
enough to allow precise conclusions to be drawn. 
We assume that 95% confidence interval widths are 
approximated well by 2×1.96×standard error. Defining 
the target standard error or confidence interval width 
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Fig 1 | Illustration of the concern of low sample sizes when assessing calibration. Plot 
shows large variability in calibration curves from 100 external validation studies (each 
containing a random sample of 100 participants, and on average 43 outcome events, 
with outcomes generated assuming that the prediction model is truly well calibrated) 
of a prediction model for in-hospital clinical deterioration among admitted adults with 
covid-19
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is subjective, and these values will be different for 
each measure (because they are on different scales), 
but general guidance is given in figure 2. Stata and R 
code to implement the entire calculation is provided 
at https://www.prognosisresearch.com/software, and 
some of the work can be implemented in the Stata and 
R module pmvalsampsize (see example code later). It 
leads to four sample sizes—one for each criterion in 
figure 2—and the largest of these should be taken as 
the minimum sample size for the external validation 
study, to ensure that all four criteria are met.

Applied example: external validation of a machine 
learning based prediction model for pain intensity 
in low back pain
Lee and colleagues used individualised physical 
manoeuvres to exacerbate clinical pain in patients 
with chronic low back pain,17 thereby experimentally 
producing lower and higher pain states and recording 
patients’ recorded pain intensity. Using the data 
obtained, the researchers fitted a support vector 
machine to build a model to predict pain intensity (a 
continuous outcome ranging from 0 to 100) conditional 

on the values of multiple predictor variables including 
brain imaging and autonomic activity features. After 
model development, the performance was evaluated 
in validation data comprising 53 participants, which 
estimated R2 to be 0.40.

However, owing to the small size of the validation 
data, wide confidence intervals about model 
performance were produced (eg, 95% confidence 
interval for R2=0.20 to 0.60), and so a new external 
validation study is required to provide more precise 
estimates of performance in this particular target 
population. We calculated the sample size required 
for this external validation study using the approach 
outlined in figure 2, which can be implemented in 
the Stata module pmvalsampsize. We assumed that 
in the external validation population the true R2 is 
0.40 (based on the estimate of R2 in the previous 
validation data); the model is well calibrated (ie, 
the anticipated true calibration-in-the-large is 0 and 
true calibration slope is 1); and the true standard 
deviation of pain intensity values is 22.30 (taken 
from the average standard deviation in the previous 
validation and training datasets in the development 

Criterion 1: calculate the sample size (N) needed to precisely estimate R2 
Use the equation:

N =

This requires specifying an anticipated value for the true R2 (the proportion of variance explained) and SE(R2) (the 
target standard error of the estimated R2) in the external validation dataset.

We recommend using SE(R2) ≤0.0255 (to target a confidence interval width ≤0.1), and choosing R2 to equal the 
optimism adjusted R2 estimate reported for the model development study. 

Criterion 2: calculate the sample size (N) needed to precisely estimate calibration-in-the-large (CITL)
Assuming the model is well calibrated (ie, the anticipated true CITL is 0 and the true calibration slope (λ) is 1), then 
apply the following equation:

N =

This requires specifying the anticipated value for the true R2 (as chosen in criterion 1), SE(CITL) (the target 
standard error of the estimated CITL) and var(Y

i
) (the variance of outcome values in the validation population). The 

var(Y
i
) should be based on existing knowledge (eg, previous studies). The value of SE(CITL) should target a narrow 

confidence interval width for the difference in the mean observed and mean predicted values, and this is context 
specific because it depends on the scale of the outcome. For example, for blood pressure measured in mm Hg, a 
confidence interval width ≤5 might be sought.

Criterion 3: calculate the sample size (N) needed to precisely estimate calibration slope (λ)
Assuming again that the model is well calibrated (ie, anticipated true CITL 0, true λ=1), then apply the following 
equation:

N =                            + 1

This requires specifying an anticipated value for the true R2 (as chosen in criterion 1), and SE(λ) (the target 
standard error of the estimated calibration slope). To ensure a narrow confidence interval for λ, we recommend 
using SE(λ) ≤0.0765 (to target a confidence interval width ≤0.3), or SE(λ) ≤0.051 (to target a confidence interval 
width ≤0.2). The choice is subjective but can be informed by plotting the corresponding empirical distribution of 
calibration curves (we give further guidance on targeting precise calibration curves later in the article).
   
Criterion 4: calculate the sample size (N) needed to precisely estimate the residual variance
To target residual variance estimates in the calibration models that have a margin of error of ≤10%, at least 235 
participants are required, as explained in Archer et al. 

We recommend that multiple (plausible) values of R2 are considered (eg, ±0.1 the original chosen value for 
criterion 1) and the calculations repeated for criterions 1-3 to identify whether a larger sample size is required. 

4R2(1–R2)2

SE(R2)2

(1–R2)

SE(λ)2R2

var(Y
i
)(1–R2)

SE(CITL)2

Fig 2 | Summary of calculations for different sample sizes for external validation of a clinical prediction model for a continuous outcome (modified 
from Archer et al14), which target narrow confidence interval widths (as defined by 2×1.96×standard error) for key performance measures
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study). We targeted a confidence interval width ≤5 
for the calibration-in-the-large (which we considered 
precise given the outcome scale of 0 to 100), ≤0.3 for 
the calibration slope and ≤0.1 for R2.

Applying each of the four criteria, the pmvalsampsize 
code is: 

pmvalsampsize, type(c) rsquared(.4) varobs(497.29) 
citlciwidth(5) csciwidth(.3)

This calculation suggests that the number of 
participants required for precise estimates is 886 for 
R2, 184 for calibration-in-the-large, 258 for calibration 
slope, and 235 for the residual variance. Hence, at 

Criterion 1: calculate the sample size (N) needed to precisely estimate the observed/expected (O/E) 
statistic 
Apply the following equation:

N =

Where φ is the assumed true outcome event proportion in the external validation population and SE(ln(O/E )) is 
the target standard error of the ln(O/E ) statistic, which would ensure a precise confidence interval width on the 
O/E scale. The choice of SE(ln(O/E) is context specific, because it depends on the overall event probability in the 
population–as can be seen in the covid-19 applied example and discussion by Riley et al. 

Criterion 2: calculate the sample size (N) needed to precisely estimate calibration slope (β)
Apply the following equation:

N =

Where SE(β) is the target standard error for the calibration slope estimate. The I
α
, I

α,β
, and I

β
 are elements of Fisher’s 

information matrix, and depend on the distribution of the linear predictor values (LP
i
, which are the predicted 

values on the log-odds scale) in the external validation population, and correspond to the mean value of a
i
, mean 

value of b
i
, and mean value of c

i
, respectively, where: 

a
i
 =                                                             b

i
 =                                                          c

i
 =

Our Stata and R code calculate I
α
, I

α,β
, and I

β
 automatically, based on the specified distribution for LP

i
 (see box 1) and 

the assumed calibration performance. We recommend, as a starting point, assuming the model is well calibrated 
(ie, α  is 0 and β is 1). In terms of target precision, we suggest using a SE(β) ≤0.0765 to target a confidence interval 
width ≤0.3, or SE(β) ≤0.051 to target a confidence interval width ≤0.2. The choice is subjective but can be informed 
by plotting the empirical distribution of calibration curves (we give further guidance on targeting precise 
calibration curves later in the article).

Criterion 3: calculate the sample size (N) needed to precisely estimate the c statistic
We use the following formula for the standard error of the c statistic, proposed by Newcombe, which makes no 
assumptions about the underlying distribution of the prediction model’s linear predictor:

SE(C) ≈

Here, C is the anticipated true c statistic for the external validation population, φ is the assumed true outcome 
event proportion in the external validation dataset, and SE(C) is the target standard error of C (we recommend 
values ≤0.0255, so that the confidence interval width is ≤0.1). Given these input values, our R and Stata code use 
an iterative process to identify the sample size (N) to achieve the target SE(C).

Criterion 4: calculate the sample size (N) needed to precisely estimate the standardised net benefit (sNB) 
at one (or more) probability threshold value (pt) of interest for clinical decision making (if relevant)
Apply the following equation derived by Marsh et al:

N =

Where (sNB
pt

) is defined as NB
pt

/φ, based on sensitivity and specificity values that correspond to the chosen 
distribution of predicted values and assuming the model is well calibrated. The standardisation ensures that the

maximum value is 1 regardless of the external validation setting. Also, w=                                         and the model’s

sensitivity and specificity are the anticipated values at threshold p
t
, which can be inferred from the assumed 

distribution of the linear predictor from criterion 2. If there are a range of thresholds of interest, then the 
calculation should be repeated for each. A reasonable approach to specify the target standard error of the 
standardised net benefit, SE(sNB

pt
), is to choose the value that would yield a 95% confidence interval that at least 

excludes the treat none approach’s net benefit value of 0. This implies that sNB
pt

 – (1.96 × SE(sNB
pt

))>0, where 
sNB

pt
 is the assumed true value of the standardised net benefit, such that SE(sNB

pt
) < sNB

pt
/1.96.

(1–φ)

φ(SE(In(O/E)))2

( )

)

( () )

I
α

SE(β)2(I
α
I

β
–I2

α,β
)

exp(α + β  LP
i
)

(1+exp(α + β  LP
i
))2

C(1-C)   1+            –1                    +N 1 – C
1 + C2 2 – C

( sensitivity (1-sensitivity)

φ
+ +

w2 specificity (1-specificity)
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w2 (1-specificity)2
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2

SE(sNB
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)2

1

φ

(1 – φ)
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t

p
t

N2φ (1–φ)
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i
)

(1+exp(α + β  LP
i
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i
))2
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i
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i
)

Fig 3 | Summary of different sample size criteria for external validation of a clinical prediction model for a binary outcome, as originally proposed by 
Riley et al.11 In criterion 3, the formula for the standard error of the c statistic was proposed by Newcombe.21 In criterion 4, the equation applied is 
derived by Marsh et al19
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least 886 participants are required for the external 
validation study, in order to target precise estimates of 
all four measures. If only 258 participants are recruited, 
then the anticipated confidence interval for R2 is wide 
(0.31 to 0.49), which would be a concern because the 
estimate of R2 not only reveals the overall model fit, but 
also contributes toward the estimate of the calibration 
slope and calibration-in-the-large (fig 2).

As the assumed R2 value of 0.40 is just a best 
guess, we repeated the sample size calculations using 
different values of 0.30 and 0.50. The use of 0.50 
decreased the required sample size, but the use of 0.30 
led to larger required sample sizes with 905 for R2, 214 
for calibration-in-the-large, 400 for calibration slope, 
and 235 for the residual variance. Hence, it might be 
more cautious to assume an R2 of 0.30, and thus recruit 
905 participants if possible.

Sample size for external validation of prediction models 
with a binary outcome
When evaluating the performance of a prediction 
model for a binary outcome (such as onset of pre-
eclampsia during pregnancy), researchers must 
examine discrimination as measured by the c statistic 
(ie, the area under the receiver operating characteristic 
curve), and calibration as measured by calibration-
in-the-large (eg, the observed/expected statistic) 

and calibration slope.11 Furthermore, if the model 
is to be used to guide clinical decision making, then 
clinical utility can be measured by the net benefit 
statistic,18 19 which weighs the benefits (eg, improved 
patient outcomes) against the harms (eg, worse patient 
outcomes, additional costs) of deciding on some 
clinical action for patients (eg, a particular treatment 
or monitoring strategy) if their estimated event 
probability exceeds a particular threshold.18 20 These 
performance measures were defined in detail in part 2 
of our series.4

To target precise estimates of these four measures of 
model performance, we suggest four separate sample 
size calculations.11 These calculations are summarised 
in figure 3 along with general guidance for choosing 
standard errors that target narrow confidence interval 
widths (defined by 2×1.96×standard error) for each 
performance measure.21 Complementary approaches 
have also been suggested.19 22

As for continuous outcomes, these sample size 
calculations for binary outcomes also require 
prespecifying aspects of the (anticipated) external 
validation population and assumed true model 
performance in that population—namely, the outcome 
event proportion (ie, overall risk), c statistic, observed/
expected statistic, calibration slope, distribution 
of estimated probabilities from the model, ideally 

Box 1: Guidance about what prespecified information is needed when applying sample size calculations for a binary outcome, modified from 
Riley et al11

Anticipated proportion of outcome events in the external validation population (ie, the overall risk of the outcome event)
This proportion can be based on previous studies or datasets that report outcome prevalence (for diagnostic situations) or incidence by a particular 
time point (for prognostic situations) for the target population.
Anticipated c statistic in the external validation population
Initially, this value could be assumed equal to the optimism adjusted estimate of the c statistic reported for the model development study (or the 
c statistic reported for any previous validation study in the same target population), but alternative values (eg, ±0.05 of this value) can also be 
considered.
Prediction model’s anticipated (mis)calibration in the external validation population
A practical starting point is to assume that the model is well calibrated in the validation dataset, such that the anticipated true observed/expected 
statistic is 1 and true calibration slope is 1. Many validation studies show miscalibration, with calibration slopes less than 1 owing to overfitting 
in the original model development study; however, in terms of the sample size calculation, a conservative approach (as it leads to larger required 
numbers) is to assume a calibration slope of 1.11

Distribution of the model’s estimated event probabilities in the external validation population
This task is perhaps the most difficult, and the distribution must give the same overall outcome event proportion as assumed above. The distribution 
of predicted values on the log odds scale (also known as the distribution of the linear predictor or the logit transformation of the probability values) 
is required, and a practical starting point is to assume the same distribution as reported in the model development study. In the model development 
study, histograms of event probabilities are occasionally provided as part of a calibration plot, and so could be approximated by a identifying a 
suitable distribution on the 0 to 1 scale (eg, a beta distribution is used in our applied covid-19 example later in this article), followed by conversion to 
the log odds scale. Sometimes the histograms are presented stratified by outcome status, and then these can be approximated, with samples taken 
from each while ensuring that the overall outcome event proportion is correct.

If no direct information is available to inform the linear predictor distribution, then the assumed true c statistic can also be used to infer the 
distribution,11 22 under a strong assumption that if the calibration slope is 1 then the linear predictor is normally distributed with different means but 
a common variance for those with and without an outcome event. We suggest that this is a last resort, because it could be a poor approximation when 
the assumptions break down.11 An alternative is to undertake a pilot study to better gauge the distribution. Such pilot data can still be included in the 
final sample used for external validation.
Potential probability (risk) threshold(s) for clinical decision making (if relevant)
These thresholds should be determined by speaking to clinical experts and patient advisory groups in the context of the decisions to be taken (eg, 
treatments, monitoring strategies, lifestyle changes) and the overall benefits and harms from them.
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specified on the log-odds scale (also known as the 
linear predictor distribution), and probability (risk) 
thresholds of interest for clinical decision making (if 
relevant).

Guidance for choosing these input values is given 
in box 1; as discussed for continuous outcomes, a 
sensible starting point for the performance measures is 
to base values on those (optimism adjusted) estimates 
reported from the model development study.

Applied example: external validation of a model for 
deterioration in adults admitted to hospital with 
covid-19
In 2021, Gupta et al developed the ISARIC 4C 
deterioration model,23 a multivariable logistic 
regression model for predicting in-hospital clinical 
deterioration (defined as any requirement of 
ventilatory support or critical care, or death) among 
adults admitted to hospital with highly suspected or 
confirmed covid-19. The model was developed using 
data from 260 hospitals including 66 705 participants 
across England, Scotland, and Wales, and validated 
in a separate dataset of 8239 participants from 
London. Model performance on validation was judged 
satisfactory (c statistic 0.77 (95% confidence interval 
0.76 to 0.78); calibration-in-the-large 0 (–0.05 to 0.05); 
calibration slope 0.96 (0.91 to 1.01)), and greater net 
benefit compared with other models. However, further 
external validation is now required to check that model 
predictions are still reliable after the introduction of 
covid-19 vaccines and other interventions.

To calculate the sample size required, we applied 
the approach outlined in figure 3, with input values 
chosen based on box 1. We assumed that in the 
external validation population, the model would be 
well calibrated (ie, the anticipated true observed/
expected statistic is 1 and true calibration slope is 1) 
with an anticipated c statistic of 0.77 based on the 
previous validation study. Further, we assumed that 
the distribution of the model’s event probabilities in 
the external validation population would be similar 
to that in the histogram presented by Gupta et al23 in 
their supplementary material; by trial and error, we 
approximated this histogram by using a beta(1.33, 
1.75) distribution (fig 4), yielding a similar shape and 

with the same overall outcome event proportion of 
0.43.

We targeted a confidence interval width of 0.22 for 
the observed/expected statistic (which corresponds to 
a small absolute error of about 0.05 compared with the 
assumed overall outcome event proportion of 0.43; see 
calculations elsewhere11), 0.3 for the calibration slope, 
0.1 for the c statistic, and 0.2 for the standardised net 
benefit. Applying the sample size calculations, the 
corresponding Stata code is:

pmvalsampsize, type(b) prevalence(.43) 
cstatistic(.77) lpbeta(1.33,1.75) oeciwidth(.12) 
csciwidth(.3) cstatciwidth(.1)

This calculation gives a minimum required sample 
size of 423 (182 events) for the observed/expected 
statistic, 949 (408 events) for calibration slope, 347 
(149 events) for c statistic, and 38 (16 events) for 
standardised net benefit at a threshold of 0.1; and 
407 (175 events) for standardised net benefit at a 
threshold of 0.3. Hence, at least 949 participants (408 
events) are required for the external validation study 
to target precise estimates of all four measures and, in 
particular, to ensure calibration is properly evaluated. 
This sample size is much larger than the rule of thumb 
of 100 (or 200) events and 100 (or 200) non-events.

Additional calculations were done to see how the 
required sample size changed when our assumptions 
changed. For example, when assuming the model has 
the same distribution of estimated probabilities but 
with worse performance of either a calibration slope of 
0.9 or a c statistic of 0.72, the sample size required was 
fewer than the 949 participants originally identified. 
However, if we assumed the external validation 
population had a narrower case mix distribution, and 
so used a tighter distribution of predicted values than 
the previous beta distribution, a sample size larger than 
949 participants was required for precise estimation 
of the calibration slope. This change in target sample 
size emphasises the importance of understanding the 
target population and its likely distribution of predicted 
values. In the absence of any information, a pilot study 
might be useful to help gauge this distribution.

Guidance for targeting precise calibration curves 
especially in regions containing thresholds relevant to 
clinical decision making
Calibration is often neglected in validation studies,5 24 
despite it being widely recommended, for instance as 
an item in the TRIPOD (Transparent Reporting of a 
multivariable prediction model for Individual Prognosis 
or Diagnosis) reporting guideline.25 Yet in clinical 
practice, predicted values (in particular, estimated 
event probabilities) are used for patient counselling 
and shared decision making—for example, to guide 
treatment decisions, invasive investigations, lifestyle 
changes, and monitoring decisions. Hence, external 
validation studies must produce precise estimates of 
calibration curves to reliably examine calibration of 
observed and predicted values. Ideally, curves should 
be precise across the whole range of predicted values, 
which is why our sample size criteria aims to estimate 
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Fig 4 | Comparison of histogram (grey bars) of predicted values (estimated event 
probabilities) in the validation population of Gupta et al23 with our assumed beta 
distribution (curved line) used 
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calibration-in-the-large (observed/expected statistic) 
and calibration slope precisely. At the bare minimum, 
curves should be precise within regions containing 
possible probability thresholds relevant for clinical 
decision making. We discuss this topic further in the 
supplementary material.

Very large sample sizes might be needed to estimate 
the whole calibration curve precisely. Furthermore, 
choosing the target standard errors for the calibration 
measures (slope and calibration-in-the-large) is 
subjective and difficult to gauge, especially for binary 
outcomes because the slope is estimated on the logit 
scale. To deal with this problem, we suggest plotting 
the empirical distribution of calibration curves that 
arise from a dataset with the sample size identified 
based on particular chosen target standard errors 
(eg, corresponding to a confidence interval width of 
0.3 for the calibration slope), to check whether their 
variability is sufficiently low, especially in regions 
encompassing thresholds relevant to decision making. 
This approach can be done as follows:
•	 Simulate a large number of datasets (eg, 100 

or 200) with the sample size identified (for 
the chosen target standard errors), under the 
same assumptions as used in the sample size 
calculation (eg, assumed calibration slope of 1, 
same distribution of predicted values).

•	 For each dataset separately, derive a calibration 
plot including a calibration curve, as described in 
the second paper in this series.4

•	 On a single plot, overlay all the calibration curves 
to reveal the potential range of calibration curves 
that might be observed in practice for a single 
external validation study of that sample size. 
If variability is considered to be high on visual 
inspection, then a larger sample size is needed. 
Conversely, if variability is very precise, a lower 
sample size might suffice, especially if the original 
sample size is not considered attainable.

•	 As mentioned, at the bare minimum, researchers 
should ensure low variability of curves in regions 
of most relevance for clinical decision making.

To illustrate this approach, figure 5 shows the 
empirical distribution of 100 calibration curves for 
our two applied examples when simulated using the 
sample size previously calculated to target a standard 
error of 0.0765 (confidence interval width of 0.3) for 
the calibration slope. For the pain intensity continuous 
outcome, 258 participants were identified as necessary 
for estimating calibration slope assuming it was 1, and 
the corresponding distribution of curves based on this 
sample size is reasonably narrow (fig 5A). At predicted 
values less than 80, the spread of observed curves 
corresponds to a difference in pain score of only about 
5 to 10. Only at the upper end is the variability more 
pronounced (differences up to about 20), for example, 
with curves spanning pain scores of 80 to 100 at a 
predicted score of 90. If values in this range represent 
thresholds critical to clinical decision making, then 
larger sample sizes might be required. However, any 
value over 80 is likely to be always classed as very high, 

and so the observed variability in this upper range is 
unlikely to be important. Hence, the calculated target 
sample size of 258 participants still seems sensible.

For the covid-19 deterioration model with 949 
participants (408 events), the variability is also quite 
narrow across the entire range of event probabilities, 
although slightly larger at very high probabilities (0.8 
to 1); the spread of observed curves corresponds to a 
difference in observed probabilities of about 0.05 to 
0.15 in most regions, which is reasonably precise. If 
the target confidence interval width for the calibration 
slope is narrowed to 0.2 (rather than 0.3), then the 
minimum required sample size increases dramatically 
to 2137 participants (918 events), and yet the reduction 
in variability of the calibration curves is relatively small 
(supplementary fig S1), with differences in observed 
probabilities of about 0.05 to 0.10 in most regions. 
Hence, such a large increase in sample size (with costs 
and time in participant recruitment, for example) 
might be difficult to justify.

Conversely, the 100 or 200 events rule-of-thumb 
corresponds to 233 or 466 participants, respectively, 
which leads to a wider variability of observed 
calibration curves spanning a difference in observed 
probabilities of about 0.15 to 0.2 (200 events) to 0.2 
to 0.25 (100 events) in most regions (supplementary 
fig S2), and introduces much more uncertainty about 
calibration agreement, including in ranges where high 
risk thresholds (eg, between 0.05 and 0.1) might exist. 
Hence, reducing the target sample size also does not 
appear justified here, and so the originally calculated 
949 participants (408 events) still reflects a sensible 
and pragmatic target for the external validation study 
in terms of calibration.

Extensions
Missing data in external validation of continuous or 
binary outcome prediction models
So far, we assumed that the external validation study 
had no missing data, but in practice some participants 
could have missing outcomes (eg, due to loss to follow-
up) or missing predictions (eg, due to missing values of 
predictors in the model). In such situations, inflating 
the original sample size to account for potential 
missing information is helpful. For example, if 5% of 
participants are anticipated to have missing outcomes 
or predictor values, then 999 participants should be 
recruited (999×0.95=949, the sample size calculated 
earlier based on complete data).

Prediction models with time-to-event outcomes
Extension to external validation of prediction models 
with a time-to-event (survival) outcome is challenging, 
because closed form (ie, analytical) calculations 
are difficult to derive. To resolve this problem, we 
suggest a simulation based approach to assess the 
precision of estimates of calibration, discrimination, 
and net benefit.12 13 In brief, external validation 
datasets of a particular sample size are simulated 
under assumptions about the event and censoring 
distributions, the length of follow-up, the model’s 
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linear predictor distribution, and the (mis)calibration 
performance. Then, for each external validation 
dataset, predictive performance and calibration curves 
are estimated at each time point, and the extent of their 
precision and variability examined. Stata and R code 
are available at https://www.prognosisresearch.com/
software.12 Jinks et al consider sample size for precise 
estimation of Royston’s D statistic.26

Planning to obtain existing datasets
Many external validation studies plan to obtain an 
existing dataset with a fixed sample size (rather 
than recruit new participants). In that situation, our 
approaches can be adapted to calculate the expected 
precision (confidence interval width) conditional 
on that dataset’s sample size and any other known 
characteristics (eg, distribution of estimated 
probabilities, observed variance of continuous 
outcomes, observed outcome event proportion, 
censoring rate). This calculation will help researchers 
and potential funders to ascertain whether the dataset is 
large enough (eg, to justify any costs and time involved 
in obtaining the data), while also considering other 
quality aspects (eg, setting, recording of predictors, 
measurement methods). Sample sizes can be increased 
further by combining data from multiple sources, such 
as individual participant data from multiple studies or 
electronic healthcare records across multiple practices 
or hospitals.27 28

Clear and transparent reporting
With regard to sample size, the TRIPOD reporting 
guideline prompts authors to explain how the study 
size was arrived at.16 25 In the context of our proposed 
sample size calculations for external validation 
studies, for a continuous outcome (fig 3) this reporting 
item would entail providing the anticipated values 
for R2, calibration-in-the-large, and calibration slope 
together with target standard errors or confidence 
interval widths. For a binary outcome (box 1), this 
reporting item would entail providing the assumed 
outcome event proportion, observed/expected 
statistic, calibration slope, distribution of the linear 
predictor (eg, beta distribution and its parameters), 
and c statistic, together with target standard errors 
or confidence interval widths, and any probability 
thresholds (for clinical decision making).

Conclusions
This article concludes our three part series on 
evaluation of clinical prediction models, in which 
we have discussed the principles of different types 
of evaluation,15 the design and analysis of external 
validation studies,4 and, here, the importance of 
sample size calculations to target precise assessments 
of a prediction model’s performance. This article 
complements related work on sample size calculations 
for model development.29-32
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Fig 5 | Distribution of calibration curves for (A) pain intensity prediction model (based 
on 258 participants) and (B) covid-19 deterioration prediction model (based on 949 
participants (408 events)), derived from 100 simulated datasets with the sample size 
required to estimate the calibration slope precisely according to a target confidence 
interval width of 0.3 (standard error ≤0.0765) for the calibration slope. Simulations 
assume that the models are well calibrated, with a true calibration slope of 1 and 
calibration-in-the-large of zero
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