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Objective: The aim of the work described here was to determine whether 3-D ultrasound can provide results com-
parable to those of conventional X-ray examination in assessing curve progression in patients with adolescent idi-
opathic scoliosis (AIS).
Methods: One hundred thirty-six participants with AIS (42 males and 94 females; age range: 10−18 y, mean age:
14.1 ± 1.9 y) with scoliosis of different severity (Cobb angle range: 10º− 85º, mean: of 24.3 ± 14.4º) were
included. Each participant underwent biplanar low-dose X-ray EOS and 3-D ultrasound system scanning with the
same posture on the same date. Participants underwent the second assessment at routine clinical follow-up. Man-
ual measurements of scoliotic curvature on ultrasound coronal projection images and posterior−anterior radio-
graphs were expressed as the ultrasound curve angle (UCA) and radiographic Cobb angle (RCA), respectively.
RCA and UCA increments ≥5º represented a scoliosis progression detected by X-ray assessment and 3-D ultra-
sound assessment, respectively.
Results: The sensitivity and specificity of UCA measurement in detecting scoliosis progression were 0.93 and 0.90,
respectively. The negative likelihood ratio of the diagnostic test for scoliosis progression by the 3-D ultrasound
imaging system was 0.08.
Conclusion: The 3-D ultrasound imaging method is a valid technique for detecting coronal curve progression as
compared with conventional radiography in follow-up of AIS. Substituting conventional radiography with 3-D
ultrasound is effective in reducing the radiation dose to which AIS patients are exposed during their follow-up
examinations.
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Introduction

Scoliosis is a 3-D spine deformity characterized by lateral, rotational
curvatures, often accompanied by abnormal sagittal profile and asym-
metries of thoracic cage [1,2]. The Cobb angle, measured on X-ray
images obtained in a standing position, is considered the gold standard
for assessment of severity of the spine curvature in the coronal plane.
Scoliosis is defined as a Cobb angle ≥10º [2]. Adolescent idiopathic sco-
liosis (AIS) refers to scoliosis that develops from ages 10 to 16 without
any underlying congenital, neuromuscular or syndromic pathology [3].
The prevalence of AIS among the general population is 0.47%−5.2%
globally and 3%−4% in Hong Kong [4,5]. In recent years, the prevalence
of AIS has been on the rise, reaching as high as 10% in northern
countries [6]. Once the spinal deformity develops, it may or may not
progress, with reported progressive rates of up to approximately 12º per
year during the growth spurt [7]. Risk factors of progression include
age, skeletal maturity and scoliosis apex location, and girls suffer from a
higher risk of progression [8]. Progressive scoliosis not only affects the
appearance and imbalance in adolescents but may also lead to compres-
sion of thoracic organs [7,9].

Among a group of untreated AIS patients reported, 29.1%manifested
curve progression, while 17% of them had curve progression that
required medical intervention [10]. To identify those progressed cases
that require proper medical treatment, frequent monitoring of spine cur-
vature progression is needed for AIS patients. Regular checkups every 6
mo are recommended for growing scoliosis patients until skeletal
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Figure 1. Three-dimensional ultrasound scoliosis assessment system Scolioscan
with the components labeled.
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maturity [11]. The radiograph-based Cobb method is considered the
gold standard for assessing the severity of AIS and is the most commonly
used technology for monitoring curve progression [12]. Quantitative
assessment of curve severity in scoliosis is important for diagnosis, treat-
ment management, prognostication and monitoring disease progression
[13]. An increase of at least 5º in coronal Cobb angle on posterior−ante-
rior radiographs between two visits indicates scoliosis progression,
despite inter- and intra-observer variability on measuring the curves in
radiographs [14,15]. The accumulation of radiation dose from repeated
exposures to radiographic assessment has been reported to increase the
risk of cancers in AIS patients undergoing regular full spine radiography
[16,17]. Despite the recommended checkup interval of at least 6 mo,
curve progression can be fast, and many patients undergo more than 10
full-spine radiography sessions during the vulnerable period of adoles-
cence [18,19]. A study in Denmark reported that those with AIS under-
went an average of 16 radiographs during adolescence, and their
prevalence of cancer was 4.8 times higher than that of their age-matched
peers 25 y later [17]. Because of the radiation hazards, frequent radio-
graphic assessment is not recommended, making close monitoring of
disease progression and treatment outcomes challenging. A non-ionizing
imaging modality could facilitate close monitoring of scoliosis progres-
sion and treatment outcomes without the harmful effects of radiation.

Several radiation-free technologies are available for detecting sco-
liosis progression, but are not commonly used clinically because of
various limitations. Surface and electromagnetic topography systems,
for example, can provide only surface information and cannot visual-
ize the internal anatomical information of spine [20,21]. Studies
have indicated that these systems are not precise enough and are
unable to access vertebral rotation and visualize bone architectures
[22]. Recently, artificial intelligence methods using deep learning
have been reported to enhance the accuracy, but their clinical appli-
cations for progression monitoring still need to be carefully validated
[23], given the fact that surface topography of the back yields only
overall information on a scoliotic spine with 3-D deformity. Standing
magnetic resonance imaging (MRI) is a radiation-free modality that
can provide high-resolution internal anatomical information on the
spine. However, its clinical use is limited by the specific and large
installation space required, as well as the extremely high operating
cost and long operating time associated with MRI scans [24].

Ultrasound has been increasingly used in the musculoskeletal system,
including the spine and the nerve [25,26]. Three-dimensional ultra-
sound imaging is a radiation-free and highly portable modality available
for spine imaging on sites, and is relatively more affordable and accessi-
ble for scoliosis patients [24]. The feasibility of using freehand 3-D ultra-
sound imaging to evaluate 3-D anatomic profiles of spines has been
reported [27−30], as has its validity for assessment of scoliosis severity
[29,31]. The feasibility, validity and reliability of a novel 3-D ultrasound
system for coronal spine curvature assessment have been reported in lit-
erature [31−38]. Ultrasound curve angle (UCA), through localizing
transverse processes on the spine, has also been determined to correlate
closely with radiographic Cobb angle (RCA) [39]. A recent study found
that the radiation dose used for children can be reduced by 50% for
referral of treatment based on a threshold of a 20º Cobb angle if the 3-D
ultrasound assessment is used [40]. If progression monitoring for AIS
can also be conducted with 3-D ultrasound assessment, it is expected
that the X-ray dose can be further reduced for those with AIS.

The aim of this study was to evaluate the validity of using 3-D ultra-
sound systems to detect coronal curve progression, with conventional
radiography as the gold standard. It is hypothesized that use of the 3-D
ultrasound system will have high sensitivity and specificity with a low
negative likelihood ratio in detecting coronal curve progression in scoli-
osis when compared with conventional radiography. This would suggest
that the 3-D ultrasound system could be a reliable and non-ionizing
alternative for monitoring spine curvature changes in scoliosis patients.
This allows clinicians and AIS patients to closely monitor spine curva-
ture changes in a non-ionizing and affordable manner.
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Methods

Study population

In this retrospective cohort study, 136 participants who had been
diagnosed with AIS by conventional radiography and had undergone
biplanar low-dose radiography and 3-D ultrasound at a minimum of two
outpatient clinic visits were recruited from a local major scoliosis refer-
ral center. Exclusion criteria are as follows: (i) presence of metallic
implants, as these may affect the function of spatial sensing elements of
the 3-D ultrasound system; (ii) body mass index (BMI) higher than 30.0
kg/m2; and (iii) presence of corrective braces in the patient.

All participants came for follow-up, and visited either two (n = 116)
or three (n = 20) times. Participants underwent both X-ray assessment
and ultrasound assessment during each visit. During each visit, the main
(largest) curvature observed in the baseline radiograph was selected for
analysis, and only that specific angle was monitored in the subsequent
longitudinal follow-up. A change of ≥5º in the RCA and UCA is the indi-
cator of curve progression detected by X-ray and 3-D ultrasound systems,
respectively [15]. On 292 visits by 136 participants, 292 curvatures
were extracted and analyzed.

Ethical approval

Human subject ethical approval was granted by the local institu-
tional review board (Joint Chinese University of Hong Kong−New Terri-
tories East Cluster Clinical Research Ethics Committee) and the
Department of Health. All methods were performed in accordance with
relevant guidelines and regulations. The experiments were conducted in
a generally acceptable ethical and humane fashion. Written informed
consent was obtained from all participants (and guardians) involved for
publication of this article and the accompanying images. A copy of the
written consent is available for review by the Editors-in-Chief of this
journal.

Image acquisition

A 3-D ultrasound system (Scolioscan, Model SCN801, Telefield Medi-
cal Imaging Ltd, Hong Kong) (Fig. 1) was used for ultrasound scanning.
The technical details of the systems can be found in Zheng et al. [35].
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The participant was instructed to undress and don a gown with an open-
ing on the back; ultrasound gel was applied on the back. All metallic
wear, electronics goods, magnets and any possibly ferromagnetic materi-
als on participants were removed as these materials could interfere with
the electromagnetic tracking sensor used in the 3-D ultrasound system.
The participant was then instructed to step on the scanning platform in a
natural standing position, with the supporters (Fig. 2). Scanning was
then performed by moving the ultrasound probe slowly along the back
from the region below vertebra level L5 to vertebra level T1 with an
average scanning time of 15−20 s. At the same visit, participants were
also scheduled to undergo biplanar low-dose X-ray EOS scanning in a
standing posture similar to that used for the ultrasound scanning.
Angle measurements and study design

By use of the ultrasound projection images obtained with the 3-D
ultrasound system, spine curvature was measured manually by a trained
rater according to the UCA measurement protocol documented in previ-
ous literature [39]. Initially, the shadows of the transverse processes and
lamina−articular processes were identified on the coronal ultrasound
images. Before UCA measurement, the rater was required to locate
appropriate points for line placement on the ultrasound images. Selec-
tion of the vertebra structure for line drawing depended on the location
of the uppermost and lowermost tilted regions of the curve. In cases in
which the most tilted region was observed at or above the T12 vertebra,
the line was drawn through the center of the bilateral transverse process
shadows. Conversely, if the most tilted region appeared below the T12
level, the line was drawn through the center of the widest bilateral part
of the lump, formed primarily by the shadows of the bilateral superior
articular processes. Subsequently, UCA values were computed using the
lines corresponding to the most tilted regions. The measurements were
performed with the RadiAnt DICOM Viewer (Medixant, Poznan,
Poland). Both the operators and the rater were blinded to prior diagnos-
tic results. The posterior−anterior radiographs obtained by the EOS
Figure 2. Assessment with the 3-D ultrasound system. (a) Participant being scanned w
ical ultrasound projection images of a participant with scoliosis in the coronal plane, o
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system were assessed for spine curvature by an experienced rater with
more than 5 y of expertise in spinal research, referred to as RCA. RCA
measurements were performed using the traditional Cobb method to
determine the angle formed between the most tilted upper endplate and
the most tilted lower endplate on coronal X-ray images. The measure-
ments were performed with a RadiAnt DICOM Viewer (Medixant). UCA
and RCA measurements obtained during the two to three visits were
compared and investigated (Figs. 3 and 4).
Statistical analysis

For the determination of spine curvature progression determination,
for each participant, any RCA change not less than the 5º increment was
regarded as indicating a progressive case (X-ray progressive results) by
X-ray, and any UCA change not less than the 5º increment was regarded
as indicating a progressive case (3-D ultrasound progressive results) by
the 3-D ultrasound system. Cases with all RCA changes less than the 5º
increment were regarded as non-progressive cases (X-ray non-progres-
sive results) by X-ray, while cases with all UCA changes less than the 5º
increment were regarded as non-progressive cases (3-D ultrasound non-
progressive results) by 3-D ultrasound system. Progressive results for
both UCA and RCA were regarded as true positive (TP) results. Non-pro-
gressive results for both UCA and RCA were regarded as true negative
(TN) results. Progressive results for RCA with non-progressive results for
UCA were regarded as false-negative (FN) results. Non-progressive
results for RCA with progressive results for UCA were regarded as false-
positive (FP) results. The sensitivity of using the 3-D ultrasound system
to detect scoliotic curve progression was determined as the ratio of TP
cases to radiographic progressive cases (i.e., TP/[TP + FN]). The speci-
ficity of using 3-D ultrasound system to detect scoliotic curve progres-
sion was determined as the ratio of TN cases to radiographic non-
progressive cases (i.e., TN/[TN + FP]).

In addition, the likelihood ratio for detection of negative results with
the 3-D ultrasound system in UCA measurement was (1 − sensitivity)/
ith the ultrasound probe. (b) Software interface shown during scanning. (c) Typ-
btained with the 3-D ultrasound system.



Figure 3. Typical scoliosis case. (a) Coronal plane ultrasound image. (b) UCA measured on the ultrasound image. (c) RCA measured on the EOS image for the same
participant. RCA, radiographic Cobb angle; UCA, ultrasound curve angle.
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specificity. A negative likelihood ratio >1 indicates a negative test result
is more likely to occur in people with the disease than in people without
the disease. A negative likelihood ratio less than 1 indicates a negative
test is less likely in people with the disease than in people without the
disease [41].
Figure 4. Schematic of the study design. UCA, ultraso
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Results

Basic information on the 136 participants (42 males and 94
females, age range: 10−18 y, mean age ± SD: 14.1 ± 1.9 y) with
AIS involved in this study is summarized in Table 1. All participants
und curve angle; RCA, radiographic Cobb angle.



Table 1
Distribution of the 136 participants with adolescent
idiopathic scoliosis

Gender

Males 42
Females 94

Age (y) 14.1 ± 1.9 (10−18)a

Body mass index (kg/m2) 18.3 ± 2.2 (13.7−24.8)a

Curve severity (º) 24.3 ± 14.4 (10−85)a

Duration between visits (mo) 15.53 ± 8.8 (4−32)a

a Mean ± standard deviation (range).

Figure 5. Typical progressive case at (a) first visit with (i) UCA measurements and (ii
and (ii) RCA measurement. RCA, radiographic Cobb angle; UCA, ultrasound curve ang

Figure 6. Typical non-progressive case at (a) first visit with (i) UCA measurements a
urements and (ii) RCA measurements. RCA, radiographic Cobb angle; UCA, ultrasound
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came for follow-up visits, either once (n = 116) or twice (n = 20).
The duration between two visits ranged from 4−32 mo, with a
mean of 15.5 mo.

For those diagnosed progressive cases, the mean intervisit duration
was 18.0 ± 9.1 mo (range: 4−31 mo) while the mean intervisit duration
for the non-progressive cases was 15.0 ± 8.6 mo (range: 4−32 mo). It
was observed that the progressive status was independent of intervisit
duration.

In terms of RCA and UCA measurements, 21 and 27 cases were
detected as progressive, respectively (Fig. 5), whereas 115 and 109
cases were detected as non-progressive, respectively (Fig. 6). Among
21 progressive cases determined by RCA measurement, 19 had pro-
) RCA measurement. (b) Follow-up visit after 24 mo with (i) UCA measurements
le.

nd (ii) RCA measurement and (b) follow-up visit after 24 mo with (i) UCA meas-
curve angle.



Table 2
Sensitivity and specificity of using a 3-D ultrasound system to monitor
spine curvature progression in various participant groups

Sensitivity Specificity

Combined batch 0.93 0.90
Gender
Female (N = 94)

Male (N = 42)
0.94 0.88
0.92 1

Age
<13 y (N = 47) 0.94 0.91
13−15 y (N = 44) 0.95 0.86
>15 y (N = 45) 0.9 1

Curve severity
<25º (N = 89) 0.93 0.85
25º−40º (N = 28) 0.92 1
>40º (N = 19) 0.93 1
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gressive results for UCA and 2 had non-progressive results for UCA.
The TP and FN values were 19 and 2, respectively. Among 115 non-
progressive cases determined by RCA measurement, 107 had non-
progressive results for UCA, and 8 had progressive results for UCA.
The TN and FP values were 107 and 8, respectively. Using RCA
measurements as the reference, the sensitivity and specificity of
using the 3-D ultrasound system in monitoring spine curvature pro-
gression were 0.93 and 0.90, respectively. The negative likelihood
ratio of the 3-D ultrasound system test for scoliosis progression was
0.08, which means that there was only an 8% probability of having
progressive scoliosis detected as non-progressive if the 3-D ultra-
sound system measurement was used. Further analysis results indi-
cated that age difference, gender difference and initial curve
severity does not significantly affect the sensitivity and specificity of
using 3-D ultrasound system to monitor spine curvature progression
(Table 2).
Figure 7. (a) False-negative case 1 at first visit with (i) UCA measurements on ultrasound coronal plane image, (ii) RCA measurement on coronal plane radiograph,
(iii) full-scale coronal plane radiograph and (iv) full-scale sagittal plane radiograph. (b) Follow-up visit with (i) UCA measurements on ultrasound coronal plane image,
(ii) RCA measurement on coronal plane radiograph, (iii) full-scale coronal plane radiograph and (iv) full-scale sagittal plane radiograph after 12 mo. RCA, radiographic
Cobb angle; UCA, ultrasound curve angle.
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Discussion

Overall, this study determined the feasibility of using 3-D ultrasound
to monitor spine curvature progression with high sensitivity and speci-
ficity in detecting spine curvature progression. With respect to the man-
ual scanning procedures of the 3-D ultrasound system used in this study
for single coronal spine curvature assessment, previous articles have
reported on its feasibility, validity and reliability with promising results
[31−38]. Additionally, the reliability of ultrasound curve angle mea-
surement, both intra-rater and inter-rater, was documented in a recent
study [39]. Apart from detecting scoliosis in a single clinical visit, the
3D- ultrasound system is aimed at monitoring spine curvature progres-
sion longitudinally without any radiation hazard. The results of this
study indicated that the sensitivity and specificity of using the 3-D ultra-
sound system to monitor spine curvature progression were 0.93 and
0.90, respectively, with a negative likelihood ratio of 0.08.
Figure 8. False-negative case 2 at (a) first visit with (i) UCA measurements on ultra
(iii) full-scale coronal plane radiograph and (iv) full-scale sagittal plane radiograph. (b
(ii) RCA measurement on coronal plane radiograph, (iii) full-scale coronal plane radio
Cobb angle; UCA, ultrasound curve angle.
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Some studies have reported on the feasibility of using non-radiation
imaging technologies for longitudinal follow-ups of scoliosis. A cross-
sectional study reported the application of surface topography for moni-
toring scoliosis curve progression in 100 participants. With some limita-
tions, the reported sensitivity and specificity were 0.86 and 0.72,
respectively [20]. Another study reported that the sensitivity and speci-
ficity of using the DIERS surface topography system to detect scoliosis
curve progression were only 0.64 and 0.69, respectively [42]. Compared
with several surface imaging technologies, ultrasound imaging technol-
ogy can reveal internal anatomical information on the spine, making its
assessment results more promising. Ultrasound technology can signifi-
cantly reduce the unnecessary exposure of AIS patients to radiation. One
study reported the application of the ultrasound system SonixTABLET
(Analogic Ultrasound—BK Medical, Peabody, MA, USA) equipped with
a position and orientation tracking transducer, in 200 participants. In
that study, with a 3-D ultrasound technology, the reported sensitivity
sound coronal plane image, (ii) RCA measurement on coronal plane radiograph,
) Follow-up visit with (i) UCA measurements on ultrasound coronal plane image,
graph and (iv) full-scale sagittal plane radiograph after 21 mo. RCA, radiographic
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and specificity for detecting scoliosis curve progression were 0.90 and
0.85, respectively, with a negative likelihood ratio of 0.08 [43]. The
present study confirmed a similar finding to similar, but obtained more
promising results with higher sensitivity of 0.93 and specificity of 0.90
and with a similar likelihood ratio, with the biplanar low-dose X-ray as a
reference. The present study used a commercially available 3-D ultra-
sound system specifically designed for scoliosis assessment. Taking
advantage of the volume projection imaging method [33], the 3-D ultra-
sound system used in this study involves fewer manual procedures in
scoliosis angle assessment after scanning, which enhances the potential
of its application in scoliosis progression monitoring. Moreover, this
study ensures that each participant undergoes ultrasound assessments
using the same system and postures at both baseline and follow-up visits,
allowing for a direct comparison of the results. This study represents the
first publication to use ultrasound exclusively for assessing progression
in scoliosis. By focusing solely on ultrasound as a monitoring tool, the
findings of this study provide valuable insights into the feasibility and
potential of ultrasound as a standalone modality for tracking scoliosis
progression, highlighting its innovative and ground breaking nature.
The promising results of this study indicate that using 3-D ultrasound
system for detecting scoliosis progression can greatly reduce the radia-
tion to which AIS patients are exposed.

Among the cases with FN and FP results, those cases with FN results
are of most concern clinically because these can underestimate the curve
severity of patients, causing a delay in treatment and related consequen-
ces. There were two FN cases that exhibited progression in RCA but
not UCA. The unclear transverse processes in the thoracolumbar region
and the postural difference between radiographs taken are potential
causes of the inconsistent results between 3-D ultrasound and biplanar
low-dose radiography. Unclear transverse processes may lead to error in
the manual drawing of the horizontal lines for UCA measurement, while
a thick fat layer may cause a large attenuation of the ultrasound signal
so as to limit the penetrating power to reach the bone surface.

For FN case 1, the RCA changed from 12.6º to 19.8º while the UCA
changed from 11.0º to 13.0º (Fig. 7). In this case, postural deviation was
Figure 9. Typical false-positive case with ultrasound curve angle at (a) first visit and
and (d) follow-up visit after 29 mo.
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observed between the radiographs taken. Lateral trunk shift between
head and pelvis was observed in the follow-up visit but not the first visit.
And spine curvature was relatively small so that a slight manual devia-
tion in horizontal line drawing may affect the positive/negative result.
Moreover, the transverse processes were not clear on the ultrasound pro-
jection images. A relatively thicker fat layer in the follow-up visit might
contribute to the unclear transverse processes in the ultrasound image
for this case as the thick fat layer may facilitate the ultrasound attenua-
tion. For this and similar cases, an ultrasound probe with lower fre-
quency and higher penetrating ability can be explored and investigated.

For FN case 2, the RCA changed from 14.9º to 27.7º while the UCA
changed from 19.0º to 20.2º (Fig. 8). In this case, there was a compara-
tively larger curvature at the follow-up visit, and the potential cause of
the inconsistency was the postural difference between visits on which
the radiographs were obtained. As shown in the radiographs, the partici-
pant’s hands were lifted up and kept at a 90º angle to her core body for
the first visit, but freely placed in front of her core body for the follow-
up visit. This reminds us that it is important to have a consistent posture
during follow-up imaging assessment, whether X-ray or 3-D ultrasound
imaging is used. The 3-D ultrasound system used in the present study
has an integrated body positioning device, possibly facilitating a consis-
tent posture during follow-up examinations.

There were a relatively large number of FP cases with up to 8 cases
among 136 participants (Fig. 9). The traditional Cobb method uses the
vertebra body for measurement while the UCA method uses the trans-
verse processes for measurement, and the transverse processes are some-
how further apart from the center of the vertebra bodies, especially on
the lumbar region. Rotation and asymmetric deformation of the vertebra
bodies may contribute to the overestimated results, mainly in severe
cases. In addition to the severe cases with vertebra body deformation or
rotation, there were some mild cases with FP results, perhaps because of
the postural deviation between radiographs taken and unclear trans-
verse processes shown on the ultrasound projection images. However,
FP cases were not very concerning clinically in scoliosis progression
assessment.
(b) follow-up visit after 29 months; and radiographic Cobb angle at (c) first visit
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There were limitations attributed to the unfavorable ultrasound
image quality, which resulted in challenges in the UCA measurement.
Some transverse processes of the lumbar vertebrae were not captured
within the ultrasound transducer’s scanning width. Additionally, the
participants with thicker fat layers in the spine region, included in this
study, had reduced image quality. To address these issues, future studies
could explore the use of ultrasound transducers with curved surfaces
and lower frequencies to improve penetration. Furthermore, rotation of
the vertebra body led to relatively poor ultrasound images, as the fea-
tures of bilateral vertebrae could not be shown on a single plane after
volume projection [44]. As a potential solution, the adoption of change-
able probes to suit different participants is recommended for the ultra-
sound assessment device.

In this study, the application of the 3-D ultrasound system involved
manual procedures for selecting the best images among the nine various
depth projection layers and for angle measurement. Automated proce-
dures and deep learning techniques will be implemented to streamline
these processes [45,46]. The quality of ultrasound images was
also subject to scanning activities and participant condition. Therefore,
providing more precise instructions to participants and offering
adequate training to operators are crucial for further improving the
results.

The sample size in this study was relatively small, and some partici-
pants had already reached skeletal maturity, making the progression
information less clinically significant [47]. Therefore, future studies
should aim to include a larger number of participants in the “higher
chance of curve progression period” and to extend the follow-up period
to cover the entire curve development until skeletal maturity.

In this study, only the ultrasound projection images obtained in the
coronal plane using the 3-D ultrasound system were analyzed. To gain a
more comprehensive understanding of spine curvature progression,
future studies could analyze the 3-D profile of the spine using biplanar
low-dose radiography in combination with the existing 3-D ultrasound
system.

Conclusions

In this study, the feasibility of using 3-D ultrasound in monitoring
spine curvature progression has been determined. The sensitivity and
specificity of the 3-D ultrasound system, compared with the reference
RCA, were 0.93 and 0.90, respectively, indicating its comparability
to X-ray in monitoring scoliosis progression for the tested group of
136 participants. With a low negative likelihood ratio of 0.08, the 3-
D ultrasound system effectively reduces unnecessary diagnostic radia-
tion for monitoring scoliosis progression. This highlights its potential
for minimizing patient exposure to radiation in scoliosis progression
assessment and providing a safer approach to scoliosis treatment
management. Further studies with larger sample sizes and longer fol-
low-up periods, starting at an earlier stage of skeletal maturity, are
recommended to evaluate the system’s effectiveness and expand its
application in clinical practice.
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