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ABSTRACT: Dioxin(-like) exposures are linked to adverse health effects, including cancer. However, metabolic alterations induced
by these chemicals remain largely unknown. Beyond known dioxin(-like) compounds, we leveraged a chemical-wide approach to
assess chlorinated co-exposures and parent compound products [termed dioxin(-like)-related compounds] among 137 occupational
workers. Endogenous metabolites were profiled by untargeted metabolomics, namely, reversed-phase chromatography with negative
electrospray ionization (C18-negative) and hydrophilic interaction liquid chromatography with positive electrospray ionization
(HILIC-positive). We performed a metabolome-wide association study to select dioxin(-like) associated metabolic features using a
20% false discovery rate threshold. Metabolic features were then characterized by pathway enrichment analyses. There are no
significant features associated with polychlorinated dibenzo-p-dioxins (PCDDs), a subgroup of known dioxin(-like) compounds.
However, 3,110 C18-negative and 2,894 HILIC-positive features were associated with at least one of the PCDD-related compounds.
Abundant metabolic changes were also observed for polychlorinated dibenzofuran-related and polychlorinated biphenyl-related
compounds. These metabolic features were primarily enriched in pathways of amino acids, lipid and fatty acids, carbohydrates,
cofactors, and nucleotides. Our study highlights the potential of chemical-wide analysis for comprehensive exposure assessment
beyond targeted chemicals. Coupled with advanced endogenous metabolomics, this approach allows for an in-depth exploration of
metabolic alterations induced by environmental chemicals.
KEYWORDS: dioxin(-like) exposures, chemical-wide association study, metabolome-wide association study, occupational population,
biological pathways, exposome

1. INTRODUCTION
Dioxin(-like) compounds rank among the most notorious
anthropogenic environmental toxicants and have been
extensively studied over the past four decades.1 This chemical
category includes three structurally related subclasses:
polychlorinated dibenzo-p-dioxins (PCDDs), dioxin-like poly-
chlorinated dibenzofurans (PCDFs), and dioxin-like poly-
chlorinated biphenyls (PCBs).2 The risk assessment of dioxin(-
like) compounds, like many other exposures, primarily focuses
on individual chemicals, particularly the most toxic chemical,
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). TCDD is classi-
fied as a “known human carcinogen” and is associated with an
increased risk of all cancers combined.3 Furthermore, TCDD
has been implicated in toxicities concerning the immune,
nervous, endocrine, and reproductive systems.4

A one-by-one assessment of the biological impact of
chemicals may overlook important biological perturbations.
In a metabolome-wide association study (MWAS) by Walker
et al. on trichloroethylene (TCE), it was shown that most of
the observed biological effects were associated stronger with
unknown metabolic products of TCE, as opposed to TCE itself
or prior known metabolites.5 This challenges the conventional
practice of assessing chemical toxicity by focusing solely on
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parent compounds and known metabolites.6 An alternative
strategy could be to first comprehensively map exposures to
known compounds, co-exposures (e.g., unrecognized chemicals
with analogous properties), and their metabolites, followed by
associating these with biological changes. This integrated
chemical-wide and metabolome-wide approach could yield a
more comprehensive evaluation of biological effects.

We illustrate here an example of a chemical-wide and
metabolome-wide investigation (Figure 1) through (i) an
exhaustive targeted analysis of dioxin(-like) compounds, (ii)
connecting these targeted dioxin(-like) compounds to
associated chlorinated compounds characterized using untar-
geted gas chromatography with high-resolution mass spec-
trometry (GC-HRMS), thus encompassing a thorough
representation of dioxin(-like) exposures, and (iii) linking
targeted and related dioxin(-like) compounds with biological
changes assessed through metabolomics and targeted immu-
nological phenotyping.

For these research goals, we used a highly unique
subpopulation of the Dutch herbicide cohort, recognized as
one of the most informative epidemiological studies in dioxin
research.7 The cohort comprised workers of two chlorophe-
noxy herbicide-producing factories.8,9 One factory (factory A)
experienced high TCDD exposure due to a reactor vessel
explosion in 1963. Even decades later, TCDD levels in the

blood of ex-factory A workers remained substantially higher
than in the general population (4 ppt vs below the detection
limit). Likewise, levels of dioxin-like PCDFs and PCBs
generally exceeded background levels, as reported in
monitoring data (Supporting Information, Table S1). This
occupational cohort provides a distinctive opportunity to
investigate the health and biological effects associated with
dioxin(-like) exposures.

2. METHODS
2.1. Study Population. The subjects involved in this study

were drawn from the Dutch herbicide cohort. Details have
been described elsewhere.8−10 Briefly, this cohort comprised
workers from two factories (denoted as factories A and B)
engaged in manufacturing chlorophenoxy herbicides during the
1950s−1980s in The Netherlands. Factory A’s primary
products were 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)
and 2,4,5-trichlorophenol (2,4,5-TCP), which included
potential contamination with TCDD and other PCDDs. In
March 1963, an explosion occurred within an autoclave for the
synthesis of 2,4,5-TCP, releasing its contents, including
TCDD. Individuals working in production departments at
factory A or present during the accident and subsequent
cleanup were exposed to high levels of TCDD. Conversely,
factory B produced 4-chloro-2-methylphenoxyacetic acid

Figure 1. Workflow of the chemical-wide and metabolome-wide association analyses. Abbreviation: LC-HRMS, liquid chromatography with
orbitrap high-resolution mass spectrometry; GC-HRMS, gas chromatography with high-resolution mass spectrometry; C18, C18-negative mode;
HILIC, HILIC-positive mode; MWAS, metabolome-wide association study; and FDR, false discovery rate.
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(MCPA), 4-chloro-2-methylphenoxy propanoic acid (MCPP),
and, in smaller amounts, 2,4-dichlorophenoxyacetic acid (2,4-
D). While potential by-products in factory B included PCDDs
(mainly with 2 to 3 chlorine atoms) and dioxin-like PCDFs
and PCBs, the presence of TCDD was unlikely.

Workers ever employed in factory A (n = 1167) and factory
B (n = 1143) were enrolled in the cohort. During the third
follow-up period (2007−2008), participants were selected for
blood collection based on a stratified sampling strategy that
considered their exposure status to chlorophenoxy herbicides,
chlorophenols, and associated contaminants. The study
enrolled 82 workers from factory A, half of whom had worked
within production departments or participated in accident-
related cleanup, alongside a randomly selected sample of 70
workers from factory B. All study subjects were male and
completed a questionnaire covering basic information,
anthropometric parameters (height and weight), and lifestyle
habits (smoking status and alcohol consumption). Plasma was
separated and stored at −80 °C.
2.2. Exposure Assessment for Dioxin(-like) Com-

pounds. 2.2.1. Measurement of Targeted Dioxin(-like)
Compounds. Previously identified dioxin(-like) compounds
in plasma were quantified by targeted GC-HRMS in the
Centers for Disease Control and Prevention, USA. Targeted
dioxin(-like) compounds covered seven PCDDs (TCDD,
12378D, 123478D, 123678D, 123789D, 1234678D, OCDD),
ten dioxin-like PCDFs (2378F, 12378F, 23478F, 123478F,
123678F, 123789F, 234678F, 1234678F, 1234789F, OCDF),
and 12 dioxin-like PCBs (PCB77, PCB81, PCB126, PCB169,
PCB105, PCB114, PCB118, PCB123, PCB156, PCB157,
PCB167, PCB189) (Table S1). Concentrations of these
targeted dioxin(-like) compounds were adjusted for total
lipids and reported as parts per trillion (ppt). Values below
detection limits were imputed using the maximum likelihood
method.11

Given TCDD’s protracted half-life in humans, its presence in
biofluids persists for decades post initial exposure. We
previously developed a predictive model to back-extrapolate
plasma TCDD levels at the time of the last exposure
(TCDDmax). This prediction integrated measured TCDD
levels within a one-compartment first-order kinetic model,
where TCDD’s half-life was established at 7.1 years (t1/2)

12

= +

* * t

TCDD background (measured

TCDD background) exp(ln(2) lag/ )
max

1/2

Lag periods for factory A workers were determined by their
occupational history and involvement in the cleanup, following
the 1963 accident.12 Factory B workers were not assigned a lag
period; the measured TCDD levels were taken as the
TCDDmax. The average TCDD concentration detected in
factory B served as the background level in the model.
2.2.2. Measurement of Dioxin(-like)-Related Compounds.

We characterized all possible dioxin(-like) exposures using
untargeted GC-HRMS in the Rollins School of Public Health,
Emory University, USA. Plasma samples were prepared and
analyzed using methods described previously.13 Plasma
samples were extracted using 4:1 hexane/ethyl acetate and
analyzed in duplicate using a Thermo Scientific 1310 GC
connected to a Thermo Scientific Q Exactive GC Orbitrap
GC−MS/MS. The GC-HRMS was operated in full-scan mode
over a mass-to-charge (m/z) range of 85−850 and 60,000
resolutions. Uniquely detected metabolic features consisting of

m/z, retention time, and ion abundance were extracted and
aligned using extensible computational mass spectrometry
(XCMS) software.14 To identify unique mass spectra, we
performed a data-driven clustering algorithm using Ram-
ClustR,15 which aggregates feature intensities based on
correlation and retention-time grouping and provides a
weight-averaged intensity for each group of features corre-
sponding to an individual compound. After m/z clustering,
11,004 unique mass spectra, referred to as chemical features,
were identified from the untargeted GC-HRMS data.

To identify additional compounds related to targeted
dioxin(-like) compounds, mass spectra corresponding to each
chemical feature were evaluated for chlorinated isotopic
patterns by linking monoisotopic masses to M + 2, M + 4,
M + 6, and M + 8 isotopic envelopes using the R package
nontarget.16 Compounds showing a significant positive
correlation (Spearman’s rank correlation coefficient >0 with
a p-value below 0.002; corresponding to a 20% false discovery
threshold) with any of the 29 targeted dioxin(-like)
compounds were designated as dioxin(-like)-related com-
pounds. This criterion was chosen to mitigate the impact of
false positives from multiple tests (Text S1). The relationships
among targeted dioxin(-like) compounds and those identified
as dioxin(-like) related were depicted by a correlation-based
network. Node clustering was identified using a multilevel
community detection algorithm implemented in the igraph
package.17 Finally, the network and clustering were visualized
using Cytoscape software.18

Throughout this paper, chlorinated compounds that were
correlated with at least one targeted PCDD are called “PCDD-
related compounds”. Similarly, chlorinated compounds corre-
lated with at least one PCDF or PCB are called “PCDF-related
compounds” or “PCB-related compounds”, respectively.

2.3. High-Resolution Metabolomics. Untargeted metab-
olomic profiling in plasma was conducted using LC-HRMS
(Dionex Ultimate 3000, Q-Exactive HF, Thermo Scientific) in
Emory University, as previously described.19 Two comple-
mentary LC columns were used to maximize coverage,
including reversed-phase with negative electrospray ionization
(C18-negative) and HILIC-positive.20 Plasma samples were
processed by adding two volumes of acetonitrile to precipitate
proteins, and triplicate analyses were conducted in each mode.
The HRMS was operated in full scan mode at 120,000
resolution over a m/z range 85−1275. Raw data files were
extracted and aligned using apLCMS,21 with modifications by
xMSanalyzer.22 In total, 10,477 and 16,605 metabolite features
were detected for C18-negative and HILIC-positive mode,
respectively. Before data analysis, metabolite features were
batch-corrected using ComBat23 and averaged, followed by
removing features with a coefficient of variation among
technical replicates ≥100% and detected in <60% of the
study subjects. The remaining missing values were imputed
using a left-censored quantile regression approach, imple-
mented in imputeLCMD.24 After imputation, 6,914 C18-
negative and 10,773 HILIC-positive LC-HRMS features were
retained for subsequent analyses.

2.4. MWAS of Dioxin(-like) Exposures. Targeted and
related dioxin(-like) compounds and metabolic features were
naturally log-transformed for analyses. In the MWAS, we used
the linear regression framework as implemented in the Omics R
package,25 by regressing metabolic features one-by-one on a
specific exposure compound [either a known or related
dioxin(-like) compound]. These models were adjusted for
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age (continuous variable), factory (categorical variable), and
body mass index (BMI; kg/m2, continuous variable) (model
1). To account for multiple comparisons, the Benjamini−
Hochberg (BH) procedure26 was applied for the MWAS of
each exposure, and a false discovery rate (FDR) threshold of
20% was adopted to identify metabolite features associated
with the exposure. Separate FDR procedures were applied to
metabolic features detected by the C18-negative and HILIC-
positive modes.

In this study, dioxin(-like) exposures primarily originated
from occupational activities and were minimally associated
with lifestyle factors such as smoking and alcohol consumption.
Moreover, we conducted an expanded analysis to incorporate
smoking status and alcohol intake as additional covariates
(model 2). However, corresponding exposure-feature coef-
ficients in model 2 exhibited minimal deviations, less than 3%
on average, compared to those in model 1 (data not shown).
Consequently, smoking and alcohol consumption were less
likely to act as confounders in this study, leading us to select
model 1 for subsequent analyses.

We categorized metabolic features into three subclasses
based on their associations with PCDD(-related) compounds,
PCDF(-related) compounds, and PCB(-related) compounds
under a FDR 20%. Subsequently, separate pathway enrich-
ments were performed for each subclass of metabolic features.
2.5. Biological Pathway Enrichment and Metabolite

Annotation. To characterize metabolic features associated
with dioxin(-like) exposures, we first matched the significant
features to an internal compound database, confirmed by
authentic reference standards, denoting level 1 confidence.27

Features without matches with authentic standards were
annotated using xMSannotator.28 This tool categorizes
annotations into different confidence tiers using a multistage
clustering algorithm based on database matches. We searched
against the Human Metabolome Database (HMDB)29 with a
mass tolerance of ±5 ppm and a retention time tolerance of ±5
s. The adducts were “M + H”, “M + 2H”, “M + ACH + 2H”,
“M + Na”, “M + ACN + H”, “M + ACN + Na”, “2M + H”, and
“M + H + H2O” for positive mode and “M − H”, “M − H2O −
H”, “M + Na − 2H″, “M + Cl”, “M + Hac − H”, and “2M −
H” for negative mode. Annotations suggested with a high
confidence level by xMSannotator were presented as level 4
confidence annotations, according to Schymanski et al.27

Metabolic pathways associated with dioxin(-like) exposures
were identified using Mummichog (version 1.0.10) with a mass
tolerance of ±5 ppm.30 Associated metabolic pathways were
identified using a pathway significance threshold <0.05 as well
as the presence of at least four metabolites associated with the
exposures.
2.6. Integration of Metabolic Pathways and Immune

Phenotypic Measures. To explore the potential mechanisms
underlying dioxin(-like) exposure toxicity, we used a network-
based integration approach to evaluate the relationship
between the metabolic pathways associated with dioxin(-like)
exposures and immune phenotypic end points. Immune
markers, including cytokines and growth factors (n = 21),
hematologic parameters (i.e., cell counts) (n = 23), humoral
immunity markers [immunoglobulins (Ig) and complement
factors (C)] (n = 7), and lymphoma makers (n = 3), were
previously measured for factory A workers31−34 (Table S3).

For factory A workers, principal component analysis (PCA)
was conducted on the intensities of significant metabolic
features within each enriched Mummichog-identified pathway.

Subsequently, first principle component (PC1) scores were
computed as a summary measure for each respective pathway.
These PC1 scores, representing metabolic pathways, were
subjected to partial least-squares (PLS) regression via the
xMWAS package35 to explore potential associations with all
immune markers. In PLS regression, the association score
between variables from two matrices approximates their
correlation coefficient, determined by PLS components and
regression coefficients.36 The resultant pairwise associations,
marked by an |association score| exceeding 0.3 and p-value
below 0.05, were used to build a network to visualize the
connections between the pathways and biomarkers. A
multilevel community detection method was applied to
uncover clusters of pathways and biomarkers.37 The network
and identified communities were visualized using Cytoscape.18

3. RESULTS
3.1. Study Population and Dioxin(-like) Exposures.

After the inclusion of workers with a diagnosis of cancer
(except for skin cancer) (6 from factory A and 9 from factory
B), 76 workers from factory A and 61 workers from factory B
were retained in the analyses. Workers in factory A were older
compared to those in factory B (69.0 vs 58.8 years, p < 0.001)
(Table 1). No significant differences were observed in BMI,
alcohol intake, and smoking status between the two factories.

As expected, the concentrations of PCDDs were markedly
higher in factory A workers compared to factory B workers (all
p < 0.05) (Table S1). Notably, the difference in TCDD levels
between the two factories was substantial (median 4.35 vs 0.30
ppt, p < 0.0001). Levels of dioxin-like PCDFs and PCBs were
comparable across both factories. We observed moderate
correlations among PCDDs and some high correlations among
PCBs (rs > 0.9), while most PCDFs were only weakly
correlated (Figure S3).

Of the 499 suspected chlorinated compounds detected by
untargeted GC-HRMS, 152 were identified as possible dioxin(-
like)-related compounds. Specifically, 109 chlorinated com-
pounds correlated to at least one PCDD, 136 to at least one
PCDF, and 58 to at least one PCB (Table S4). Because of the
correlated properties of targeted compounds, the overlap
among the three categories of dioxin(-like)-related compounds
was considerable (Figure S4). Our analysis of the network
integrating targeted and related dioxin(-like) compounds
identified six densely interconnected communities (Figure 2

Table 1. Characteristics of Study Participantsa

factory A
(n = 76)

factory B
(n = 61) p-valueb

age (years), mean (SD) 69.0 (7.7) 58.8 (9.0) <0.001
body mass index (kg/m2)c,
mean (SD)

26.9 (3.0) 27.1 (3.6) 0.726

alcohol intake (units/week),
mean (SD)

13.2 (13.6) 13.7 (15.1) 0.835

smoking status, n (%) 0.594
never smokers 12 (15.8%) 13 (21.3%)
former smokers 46 (60.5%) 32 (52.5%)
current smokers 18 (23.7%) 16 (26.2%)
aAbbreviations: SD, standard deviation. bp values from the t-test for
continuous variables and the chi-square test for categorical variables,
subjects from factory A vs factory B. cBody mass index (BMI) was
calculated as the weight in kilograms divided by the square of the
height in meters.
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and Table S5). All PCBs except PCB169 were grouped in
Community 1, while five PCDDs were in Community 2.
TCDD was clustered with 23478F and 234678F in
Community 3.
3.2. MWAS of Dioxin(-like) Exposures. The numbers of

metabolic features significantly associated with each targeted
and its related dioxin(-like) compounds at a 20% FDR
threshold are given in Table 2. While no feature was
significantly associated with any targeted PCDD, we found
that the PCDD-related compounds contributed substantially to
metabolic alterations. Specifically, 3,110 C18-negative and
2,894 HILIC-positive features were found to be associated
with at least one of the PCDD-related compounds. This
phenomenon of enriched metabolic changes is held for PCDFs
and PCBs, alongside their corresponding-related compounds.
Predicted maximum levels of TCDD were not associated with
any metabolic feature (Figure S5).
3.3. Annotations of Metabolic Features in Response

to Dioxin(-like) Exposures. Among the metabolic features
showing significant associations with dioxin(-like) exposures,
level 1 annotations included 21 amino acids, 9 fatty acids, 4
cofactors, D-glucose, cholesterol, uric acid, and xanthine (Table
S7). Further annotations at level 4 confidence included 7
androstane steroids and 8 metabolites from glycerolipids and
glycerophospholipids.

In terms of metabolic pathway annotations, there were 33
pathways enriched from the metabolic features linked with
PCDD(-related) compounds, 38 pathways with PCDF(-
related) compounds, and 27 pathways with PCB(-related)
compounds (Table 3). Among these, 21 pathways showed
shared enrichment across all three subclasses, including 7 lipid
pathways (de novo fatty acid biosynthesis, fatty acid activation,

fatty acid metabolism, linoleate metabolism, phytanic acid
peroxisomal oxidation, omega-3 fatty acid metabolism, and
phosphatidylinositol phosphate metabolism), 6 amino acid
pathways (alanine and aspartate, arginine and proline, aspartate
and asparagine, histidine, lysine, and urea cycle/amino group
metabolism), 3 carbohydrate pathways (amino sugar, buta-
noate, and pentose and glucuronate interconversion), purine
metabolism, vitamin B6 metabolism, glutathione metabolism,
drug metabolism, and xenobiotics metabolism.

3.4. Integration of Metabolic Pathways with Immune
Phenotypic End Points. The integration analysis involving
metabolic pathways and immune end points was conducted
only among factory A workers. Since the pathways largely
overlapped for the three subclasses of dioxin(-like) exposures,
integration analysis was first done involving pathways
associated with all exposures and then moved on to analyses
including pathways associated with PCDD(-related), PCDF(-
related), and PCB(-related) compounds, separately.

In the network encompassing all pathways, every pathway
(represented by PC1 scores) was associated with at least one
immune marker (Figure 3). Community detection revealed the
presence of three communities. Community 1 consisted of
subsets of T and B lymphocytes, alongside complement factors
(C3 and C4) and a lymphoma marker, soluble B-cell activation
marker 27 (sCD27). Pathways associated with this community
mainly included various amino acid pathways, the cofactor
metabolism pathway (vitamin B3, B6, and porphyrin),
xenobiotic metabolism pathways, and pathways of the purine
and tricarboxylic acid (TCA) cycle. Community 2 predom-
inantly included various cytokines and growth factors (mainly
interleukins), hematologic parameters (red blood cells,
hemoglobin, hematocrit, monocytes, B cells, and T helper

Figure 2. Network of targeted and related dioxin(-like) compounds network was generated based upon Spearman correlations between targeted
dioxin(-like) compounds and their related compounds. Community detection was used to identify closely related nodes, which were indicated by
node color. Correlation magnitude was indicated by the edge color.
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cells), and lymphoma markers [soluble CD30 (sCD30) and
interleukin 1 receptor antagonist (IL1RA)]. This community
also exhibited associations with many lipid and fatty acid
pathways, glucose metabolism pathways (pentose phosphate,
pentose, and glucuronate interconversions), and the prop-
anoate pathway. A smaller cluster, Community 3, included
cytokines and growth factors, immunoglobins (IgD, IgE, and
IgG), hematologic parameters [naiv̈e CD4 cells, large granular
lymphocytes (LGL)], clustered with pathways of cofactors
(vitamins B1 and B9), pyruvate, and butanoate.

For networks specifically for each dioxin(-like) subclass,
three communities were identified for both networks for
PCDD(-related) and PCB(-related) compounds, and compo-
sitions were similar to those in the network for all exposures
(Figure S8A,C). Whereas, in the case of PCDF(-related)
compounds, the network yielded four communities (Figure
S8B).

4. DISCUSSION
In this study, we employed a pioneering approach that
integrates chemical-wide and metabolome-wide analyses. The
rationale for using chemical-wide analyses is that important
biological insights might be missed by neglecting associated
chemicals or related metabolites. This work was motivated by
our previous observation in a MWAS on TCE conducted by
Walker et al.5 In that study, it was observed that most
exposure-related biological effects exhibited stronger associa-
tions with previously unidentified metabolic products of TCE
rather than with TCE itself or recognized precursor
metabolites. Similarly, in the present study, by including
dioxin(-like)-related compounds, we have obtained a much
richer insight into the associated biological responses. This
finding challenges the prevailing paradigm of evaluating the
toxic effects of chemicals solely by examining parent
compounds and potentially recognized metabolites.6

It is important to note that applying this chemical-wide
approach to different chemicals in other studies may not be

Table 2. Number of Metabolic Features Significantly Associated with Dioxin(-like) Exposuresa

congener C18-negative featuresb HILIC-positive featuresb

targeted compound related compoundsc totald targeted compound related compoundsc totald

PCDDs
TCDD 0 2528 2528 0 776 776
12378D 0 1789 1789 0 998 998
123478D 0 2147 2147 0 2163 2163
123678D 0 2058 2058 0 1099 1099
123789D 0 1010 1010 0 1604 1604
1234678D 0 125 125 0 46 46
OCDD 0 413 413 0 158 158
totald 0 3110 3110 0 2894 2894

dioxin-like PCDFs
2378F 2 NA 2 5 NA 5
12378F 0 267 267 0 3 3
23478F 0 3240 3240 0 2839 2839
123478F 0 1572 1572 0 682 682
123678F 1 902 903 0 156 156
123789F 0 0 0 0 0 0
234678F 0 1688 1688 1 727 727
1234678F 0 4 4 0 302 302
1234789F 0 NA 0 0 NA 0
OCDF 1 NA 1 1 NA 1
totald 4 3411 3413 7 3086 3091

dioxin-like PCBs
PCB77 0 NA 0 143 NA 143
PCB81 0 NA 0 0 NA 0
PCB126 237 503 692 42 77 112
PCB169 0 2153 2153 0 2053 2053
PCB105 151 1182 1277 12 124 127
PCB114 0 1314 1314 0 740 740
PCB118 319 1182 1360 6 124 126
PCB123 100 292 360 9 67 71
PCB156 0 1270 1270 0 182 182
PCB157 0 1270 1270 0 182 182
PCB167 346 1540 1662 0 195 195
PCB189 0 1272 1272 0 183 183
totald 507 2347 2536 192 2057 2196

aAbbreviation: NA, not applicable [due to no chlorinated compound identified as related compound for the corresponding targeted dioxin(-like)
compound]. bThe number of features associated with targeted or related dioxin(-like) compound under FDR 20%, adjusted by age, BMI, and
factory. cFeatures significantly associated with at least one related compound, which were significantly correlated with the specific targeted dioxin(-
like) compound. dTotal number of unique features.
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straightforward. We acknowledge the uniqueness of the TCE
and dioxin(-like) instances, wherein the identification of

halogenated signals in untargeted HRMS analysis and prior
knowledge of occupational exposure to parent compounds

Table 3. Enriched Biological Pathways Associated with Dioxin(-like) Exposures

aThe average number of significant putative metabolites that were associated with dioxin(-like) exposures among each metabolic pathway. bThe
average number of metabolites detected in each metabolic pathway. cThe percentage of overlap size to pathway size.
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enabled us to identify related compounds and their metabolic
products. However, considering the progress in HRMS data
annotation capabilities through authentic standards and
various in silico tools, the feasibility of this approach is likely
to extend to other chemical-classes in the future. Our findings
in this study underscore the potential benefits of this strategy,
suggesting that it could lead to an enhanced assessment of
toxicological effects.

The activation of the aryl hydrocarbon receptor (AhR)
stands as a well-established mechanism of action for dioxin(-
like) compounds.38 While numerous studies have investigated
AhR-linked gene and protein expression,38 the underlying
metabolic mechanism within the human body has received
limited exploration. In an earlier study, we used nuclear
magnetic resonance spectroscopy for metabolomic analysis on
the same study population.39 Like our current investigation,
this earlier analysis yielded few signals associated with the
targeted TCDD (no. of features = 27, p < 0.05; none survived
after multiple testing corrections). Jeanneret et al. identified 24
metabolites as putative biomarkers of dioxin exposures among
TCDD-exposed workers.40,41 Liang et al., comparing HRMS
for a high and low TCDD-exposed group, identified 20
metabolites strongly correlated to the summed toxicological
equivalent quantity scores of 17 congeners of 2,3,7,8-
substituted dioxins.42 In our enriched analyses, including
dioxin(-like)-related compounds, we identified over 7,000
HRMS signals, underscoring the potency of integrating
chemical-wide and metabolome-wide analyses.

Oxidative stress has been identified as a key mechanism
underlying the toxicity of dioxin(-like) compounds,38 with
biomolecules such as DNA, proteins, and lipids becoming

targets of free radical attacks.43 In our study, a pathway
enrichment analysis strongly suggests effects related to
oxidative stress. The results point toward disruption in
nucleotide metabolism, highlighted by the observation that
PCDD(-related) and PCB(-related) compounds were linked to
the purine pathway, while PCDF(-related) compounds were
associated with both the purine and pyrimidine pathways.
Seven amino acids susceptible to oxidative damage, annotated
at level 1 (methionine, cysteine, lysine, proline, threonine,
histidine, and tyrosine), were found to be associated with at
least one of the three subclasses of dioxin(-like) exposures, and
these associations were confirmed through enrichment
analysis. Perturbations in lipids, encompassing membrane
lipids (pathways of phospholipids, glycolipids, and cholesterol)
and long-chain polyunsaturated fatty acids (omega-3 fatty acid
pathway and linoleic acid with level 1 annotation), provide
additional support for oxidation-induced lipid peroxidation.
Conversely, reductions in the antioxidants, specifically
glutathione and ascorbic acid pathways, further support
heightened oxidative stress.

Carcinogenesis stands as the most severe outcome of
dioxin(-like) toxicity, with TCDD, PCB126, and 23478F
being classified as human carcinogens.44 In our study,
pathways involving pyruvate (a glycolysis product), pentose
phosphate, and the TCA cycle exhibited associations with both
PCDD(-related) and PCDF(-related) compounds. Fatty acid
pathways, encompassing biosynthesis, transport, activation,
and degradation, demonstrated relations to all three subclasses
of dioxin(-like) exposures. These aberrations in bioenergetic
synthesis and fatty acid metabolism are consistent with
microenvironmental shifts in human malignancies.

Figure 3. Network analysis of dioxin(-like)-related pathways and immune markers. Abbreviation: IL, interleukin; GMCSF, granulocyte-macrophage
colony-stimulating factor; GCSF, granulocyte colony-stimulating factor; TNF-α, tumor necrosis factor alpha; EGF, epidermal growth factor; FGF2,
fibroblast growth factor 2; GRO, melanoma growth stimulatory activity/growth-related oncogene; IP10, interferon gamma-induced protein 10;
MCP-1, monocyte chemotactic protein-1; MDC, macrophage derived chemokine; MIP-1α, macrophage inflammatory protein-1 alpha; MIP-1β,
macrophage inflammatory protein-1 beta; sCD40L, soluble CD40 ligand; TGF-α, transforming growth factor alpha; sCD30, soluble CD30; sCD27,
soluble CD27; IL1RA, interleukin 1 receptor antagonist; RBC, red blood cells; HGB, hemoglobin; HCT, hematocrit; PLT, platelet counts; MO,
monocytes; GR, granulocytes; LY, lymphocytes; B-cel, B cells; B-naiv̈e, naiv̈e B cells; B-IgM, IgM+ memory B cells; B-IgG, IgG/IgA+ memory B
cells; T-cel, T cells; TH-cell, T helper cells; TH-CD38/CD4, CD38/CD4 cells; TH-naiv̈e, naiv̈e CD4 cells; TH-memory, memory CD4 cells; TC-
cel, cytotoxic T cells; TC-CD38/CD8, CD38/CD8 cells; TC-naiv̈e, naiv̈e CD8 cells; TC-memory, memory CD8 cells; LGL, large granular
lymphocytes; and NK-cel, natural killer cells.
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Our study also presents novel evidence of dysregulations
within several metabolic pathways associated with dioxin(-like)
exposures. Particularly noteworthy are microbiome-related
pathways involving butanoate and propanoate and cofactor
metabolisms, including porphyrin and B vitamins. Animal
studies have indicated that exposure to TCDD and PCB126
can induce alterations in gut microbial composition.45,46

Additionally, PCB126 has been linked to elevated gut
inflammation,46 while TCDD administration exhibited a
mitigating effect on gut inflammation.47 The alteration of
cofactors in response to dioxin-like compounds remains
unexplored in experimental studies. The interplay between
environmental dioxin(-like) compounds, the microbiome, and
cofactors calls for further investigation.

Adverse immunological effects have been extensively
documented in experimental studies.48 However, human data
remains inconclusive. To investigate the immune toxicity of
dioxin(-like) exposures, we performed integrative network
analysis, connecting perturbed metabolic pathways and
phenotypic measures of immune responses from samples of
highly TCDD-exposed workers. In the network incorporating
all dioxin(-like)-related pathways, distinct subsets of lympho-
cytes were grouped in the same community and linked to
antioxidant pathways involving methionine, cysteine, and
glutathione. Previous studies have shown that TCDD can
suppress the differentiation of CD4+ T cells into effector cells49

and potently inhibit IgM production.50 Our findings suggest
that oxidative stress could potentially underlie immune
toxicity. As expected, relevant measures of cytokines and
growth factors clustered together and exhibited enrichment
with two inflammation-related pathways, linoleate, and
leukotriene. Additionally, pathways related to fatty acid
metabolism, bioenergy production, and gut microbiome were
clustered with B-cell activation markers shown to be predictive
of lymphoma risk. This highlights the potential role of immune
responses in dioxin-like-induced carcinogenesis and micro-
biome dysbiosis.

We acknowledge several limitations in our study. First, this
study adopts a cross-sectional design. Consequently, we cannot
infer the temporal sequence of exposure and the health
outcomes. Nonetheless, due to the protracted elimination of
dioxin(-like) compounds, the measured levels effectively
represent historical exposures. Second, the workers in factory
A were, on average, 10 years older than the workers in factory
B, and it is possible that other unmeasured factors differed
between factories. However, in subgroup analyses by factory,
the associations for dioxin(-like) compounds and metabolic
features remained highly consistent with those in the main
analysis, which included workers from both factories (Figure
S9). Therefore, we conclude that characteristics specific to
each factory did not substantially impact the effects of dioxin(-
like) exposures in our presented analyses. Third, over the
course of an extended 35 year follow-up period in the Dutch
herbicide cohort, 27% of participants had died (567 out of
2,106 workers), and 5% were lost to follow-up (109 out of
2,106).10 This attrition may introduce the “healthy worker
effect”, which may result in underestimating the adverse effects
attributed to dioxin(-like) exposures. Fourth, precise annota-
tions and absolute quantification of dioxin-like-related
compounds continue to pose challenges. This limitation also
impedes ascertaining these toxic chemicals’ origin, whether
they originate from the environment or from endogenous
metabolic modification. Therefore, future studies are necessary.

Lastly, the study assessed targeted and untargeted dioxin-like
exposures in two separate laboratories, without accounting for
potential measurement variations between different analytical
pipelines. Additionally, the untargeted compounds were not
normalized for the lipid content. In a sensitivity analysis of
MWAS on untargeted compounds, we further adjusted for
total lipid levels measured at the time of the targeted
measurement. The resulting altered features were similar to
those generated in this study (data not shown). This suggests
that the lipid content did not considerably bias our findings.

We employed a pioneering approach that integrates
chemical-wide and metabolome-wide analyses. This innovative
approach substantially broadens the ability to evaluate the
biological effects of chemical exposures, encompassing not only
the traditionally recognized dioxin(-like) compounds but also
all relevant compounds representing co-exposures and
exposure metabolites. The results from the MWAS align with
the existing understanding of dioxin(-like) toxicities, high-
lighting perturbations in metabolic pathways linked to amino
acids, lipid and fatty acids, carbohydrates, and nucleotides.
Importantly, our study offers new perspectives regarding the
mechanisms of action of dioxin(-like) compounds, such as
altered activities of the gut microbiome.
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