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Abstract

Background and Aims: Why only half of the idiopathic peripheral neuropathy (IPN)

patients develop neuropathic pain remains unknown. By conducting a proteomics

analysis on IPN patients, we aimed to discover proteins and new pathways that are

associated with neuropathic pain.

Methods: We conducted unbiased mass-spectrometry proteomics analysis on

blood plasma from 31 IPN patients with severe neuropathic pain and 29 IPN

patients with no pain, to investigate protein biomarkers and protein–protein

interactions associated with neuropathic pain. Univariate modeling was done

with linear mixed modeling (LMM) and corrected for multiple testing. Multivari-

ate modeling was performed using elastic net analysis and validated with internal

cross-validation and bootstrapping.

Results: In the univariate analysis, 73 proteins showed a p-value <.05 and 12 proteins

showed a p-value <.01. None were significant after Benjamini–Hochberg adjustment

for multiple testing. Elastic net analysis created a model containing 12 proteins with

reasonable discriminatory power to differentiate between painful and painless IPN
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(false-negative rate 0.10, false-positive rate 0.18, and an area under the curve 0.75).

Eight of these 12 proteins were clustered into one interaction network, significantly

enriched for the complement and coagulation pathway (Benjamini–Hochberg adjusted

p-value = .0057), with complement component 3 (C3) as the central node. Bootstrap val-

idation identified insulin-like growth factor-binding protein 2 (IGFBP2), complement fac-

tor H-related protein 4 (CFHR4), and ferritin light chain (FTL), as the most discriminatory

proteins of the original 12 identified.

Interpretation: This proteomics analysis suggests a role for the complement system

in neuropathic pain in IPN.

K E YWORD S

complement, neuropathy, pain, proteomics

1 | INTRODUCTION

Distal, symmetric, axonal polyneuropathy is one of the most common

neurological disorders. Its prevalence is estimated at 5.5% in the gen-

eral population and higher percentages in the elderly.1 Although over

100 different etiologies are known to cause peripheral polyneuropa-

thy, in about 40%–50% of patients no cause can be identified despite

extensive laboratory testing.1,2 The most common symptoms asso-

ciated with polyneuropathy are paresthesias, dysesthesias, numb-

ness, and neuropathic pain.3 About half of all patients with

idiopathic peripheral neuropathy (IPN) experience neuropathic

pain4,5 with different intensity levels. However, it remains

unknown why only half of patients develop pain, and there are no

known biomarkers associated with neuropathic pain in this popula-

tion. We hypothesized that certain proteins in plasma could be

associated with higher levels of neuropathic pain in IPN patients.

We used exploratory proteomic analysis to evaluate if any differ-

ence in protein expression or interaction can be detected in patient

cohorts with or without neuropathic pain.

2 | MATERIALS AND METHODS

2.1 | Research registry

The peripheral neuropathy research registry (PNRR) is a large repository

of data and biospecimens from patients with either idiopathic, diabetic,

chemotherapy, or HIV-induced sensory polyneuropathy.6 The collected

dataset includes a neurological examination, nerve conduction studies,

relevant laboratory testing results, standardized symptom question-

naire, as well as the medical and family history of each participant at

the time of enrollment.6 In addition, serum, plasma, and DNA have

been collected for each participant enrolled since 2015. All plasma sam-

ples utilized in this research were collected from patients who were

enrolled in PNRR at these six consortia member sites: Johns Hopkins

University School of Medicine, Icahn School of Medicine at Mount Sinai

Medical Center, Beth Israel Deaconess Medical Center, Northwestern

University Feinberg School of Medicine, University of Utah School of

Medicine and University of Kansas Medical Center.

2.2 | Patient cohort

Patients with painful and non-painful IPN were included in this study.

IPN was defined as the presence of an axonal sensory predominant

peripheral polyneuropathy with negative family history, no alcohol abuse,

and negative laboratory testing for the most common causes of PN, such

as diabetes mellitus, kidney disease, vitamin B12 deficiency, and parapro-

teins. IPN patients that did not endorse pain symptoms in the patient

questionnaire (0 on a 0–10 Likert scale) and had no prescription for pain

medications were categorized as having non-painful IPN. Patients were

characterized as having painful IPN if they reported a pain intensity of

6 or more on the 0–10 Likert scale and were taking at least one medica-

tion for neuropathic pain such as duloxetine, gabapentin, pregabalin, or

opioids. Patients who reported high-intensity neuropathic pain without a

prescription for pain medication were excluded, as were patients who

did not endorse experiencing neuropathic pain but had prescriptions for

neuropathic pain medications. These stringent criteria were applied to

optimize the difference in pain intensity between the two groups and

reduce the chance of false-negative results.

The study was approved by each site's institutional review board

and all patients provided written informed consent.

2.3 | Proteomic profiling

Protein depletion: 85%–95% of the six most abundant plasma pro-

teins (albumin, IgG, IgA, transferrin, haptoglobin, and antitrypsin) were

removed using the Multiple Affinity Removal Column (Hu-6, Human,

4.6 � 50 mm, Agilent), in conjunction with an Agilent 1200 high-

performance liquid chromatography (HPLC). Flow-through fractions

were combined and concentrated on a 3 kDa molecular weight spin

cartridge (Amicon Ultra, Millipore). The protein amount was calculated

with an AlphaSpec based on the absorbance at 280 nm.
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2.3.1 | Trichloroacetic acid (TCA)/acetone
precipitation

Proteins (50 μg) were reduced with 50 mM Dithiothreitol in 10 mM

Triethylammonium bicarbonate (TEAB) at 60�C for 45 min followed by

alkylating with 100 mM Iodoacetamide in 10 mM TEAB at room tem-

perature in the dark for 15 min. Mass spectrometry (MS) interfering

reagents were removed by precipitating 50 μg proteins by adding 8 vol-

umes of 10% trichloroacetic acid in cold acetone at �20�C for 2 h. The

pellet was centrifuged at 16000g for 10 min at 4�C. The TCA/Acetone

supernatant was removed, and the protein pellet was washed with an

equivalent 8 volumes of acetone at �20�C for 10 min prior to

centrifuging at 16000g for 10 min at 4�C. The acetone supernatant

was removed from the protein pellet.

2.3.2 | Isobaric mass tag labeling

The 10 protein pellets (50 μg) were resuspended and digested over-

night at 37�C in 100 μL 100 mM TEAB with 5 μg Trypsin/Lys-C per

sample. Each sample was labeled with a unique tandem mass tag

(TMT) 10-plex reagent (Thermo Fisher, Lot # TK271715) according to

the manufacturer's instructions. All 10 TMT-labeled peptides were

combined and dried by vacuum centrifugation.

2.3.3 | Peptide fractionation

The combined TMT-labeled peptides (500 μg) were re-constituted in

100 μL 200 mM TEAB buffer and filtered through Pierce Detergent

removal columns (Fisher Scientific PN 87777) to remove excess TMT

label, small molecules, and lipids. Peptides in the flow through were

diluted to 2 mL in 10 mM TEAB in water and loaded on a XBridge C18

Guard Column (5 μm, 2.1 � 10 mm, Waters) at 250 μL/min for 8 min

prior to fractionation on a XBridge C18 Column (5 μm, 2.1 � 100 mm

column (Waters) using a 0%–90% acetonitrile in 10 mM TEAB gradient

over 85 min at 250 μL/min on an Agilent 1200 series capillary HPLC

with a micro-fraction collector. Eighty-four 250 μL fractions were col-

lected and concatenated into 24 fractions, as previously published by

Wang et al in 2011,7 and dried.

Mass spectrometry analysis: Peptides in each of the 24 fractions

were analyzed on an Orbitrap-Fusion Lumos (Thermo Fisher Scien-

tific) interfaced with an Easy-nLC1100 UPLC by reversed-phase chro-

matography using a 2%–90% acetonitrile in 0.1% formic acid gradient

over 110 min at 300 nL/min on an in house packed 75 μm � 150 mm

ReproSIL-Pur-120-C18-AQ column 3 μm, 120 Å (Dr. Albin Maisch,

Germany). Eluting peptides were sprayed into the mass spectrometer

through a 1 μm emitter tip (New Objective) at 2.4 kV. Survey scans

(MS) of precursor ions were acquired from 350–1400 m/z at 120000

resolution at 200 m/z. Precursor ions were individually isolated within

0.7 m/z by data-dependent monitoring and 15 s dynamic exclusion

and fragmented using a higher energy collisional dissociation (HCD)

activation collision energy 35. Fragmentation spectra (MS/MS) were

acquired using a 1e5 automatic gain control (AGC), 250 ms maximum

injection time (IT) at 50000 resolution.

Data analysis: Fragmentation spectra were processed by Prote-

ome Discoverer v2.4 (PD2.4, ThermoFisher Scientific) and searched

with Mascot v.2.8.0 (Matrix Science, London, UK) against RefSeq

human database. Search criteria included trypsin enzyme, one

missed cleavage, 3 ppm precursor mass tolerance, 0.01 Da fragment

mass tolerance, with TMT 6Plex on N-terminus and carbamido-

methylation on C as fixed and TMT 6Plex on K, oxidation on M, dea-

midation on N or Q as variable modifications. Peptide identifications

from the Mascot searches were processed within PD2.4 using Per-

colator at a 5% false discovery rate confidence threshold, based on

an auto-concatenated decoy database search. Peptide spectral

matches (PSMs) were filtered for isolation interference <30%. Rela-

tive protein abundances of identified proteins were determined in

PD2.4 from the normalized median ratio of TMT reporter ions, hav-

ing signal-to-noise ratios >1.5, from all PSMs from the same protein.

Technical variation in ratios from our mass spectrometry analysis is

less than 10%.8

2.4 | Data preparation

The proteomic analysis was performed in six batches, each matched

for type of IPN (5 painful and 5 non-painful), sex, age, and body mass

index. In total, 2276 different proteins were analyzed.

There was a difference between the six batches in absolute

values of many of the proteins. Therefore, all data were normalized

in Proteome Discoverer using the Reporter and Precursor Ions

Quantifier nodes for all proteins in the result file that have any pro-

tein abundance. The normalization factor is the factor of the sum of

a sample and the maximum sum in all files. These data were also cor-

rected for batch effects by scaling the abundance values of each

sample so that the average of all samples is 100 using the Scaling

Mode parameter in Proteome Discoverer. Also due to batch effect,

multiple proteins were not detected in one or multiple complete

batches. Missing proteins were consequently absent in at least 17%

of cases (one batch of 10 subjects) or a multiplication of that.

Because of this high percentage and this biased reason for missing-

ness, imputation was not appropriate.

2.5 | Univariate regression

All variables were individually checked for association with pain,

adjusted for age, sex, and batch. Linear mixed modeling (LMM) was

used to account for the non-independence of protein levels, due to

batch effect of the mass spectrometry. Proteins missing in 50% of

the subjects or more, were excluded (1023 proteins included). LMM

was performed with batch number as a random effect. Coefficients

were calculated from the estimates. Correction for multiple testing

was performed by Bonferroni correction and Benjamini–Hochberg

correction.
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2.6 | Elastic net analysis

In correlated datasets, a multivariable penalized regression analysis

results in a more favorable tradeoff between sensitivity and false-

discovery proportion compared to univariate regression methods.9

Therefore, we applied the elastic net analysis, a variable selection

method that is particularly helpful in datasets with more predictors

than subjects.10 Elastic net analysis was conducted with R-package

glmnet version 4.0–2.11 All variables were standardized to a mean of

zero and a standard deviation of 1. Minimal lambda was obtained by

calculating the area under the receiver operator curve (ROC) using

cross-validation. Alpha was chosen as the value with the lowest mean

square error. Age, sex, and batch were forced in the model by

decreasing their lambda penalty factors to 0.

2.7 | Bootstrap internal validation

The elastic net analysis was validated by bootstrapping with 2000

iterations. The data were bootstrapped based on the different

batches. Elastic net analysis was repeated in each iteration as

described in the previous section. Proteins that were present in at

least 80% of the elastic net analyses were selected as the most rele-

vant biomarkers.

2.8 | Cross-validation

Internal validation of the elastic net model was further assessed using

k-fold cross-validation. The six different batches of the mass spectrome-

try analysis were used as the basis for the cross-validations, where each

batch was alternately left out. The remaining batches were used for

training the model, the batch that was left out was used as the test set

for the cross-validation (k = 6). Training of the model was performed by

logistic regression, using the proteins from the elastic net analysis as

independent variables and pain status as a dependent variable. Applying

this model to the test set, pain status was predicted for the patients in

this set. This was done for each batch as test set. By comparing the pre-

dicted pain status with the true pain status, the average false-positive

rate and average false-negative rate of our model were determined.

2.9 | Protein network and pathway enrichment
analysis

For the construction of the protein network based on protein–protein

interactions, proteins from the elastic net analysis were analyzed in

STRING v11.12 This is an online accessible database that uses multiple

sources of protein–protein interactions for the construction of protein

networks. It calculates whether there is a significant enrichment of

interactions compared to a random protein list of the same number,

with comparable protein sizes and degree distribution. A minimal

required interaction score was set at 0.4.

The database for annotation, visualization, and integrated discov-

ery (DAVID v2021)13 was used for KEGG pathway enrichment analy-

sis. In the functional annotation chart, pathways with a Benjamini–

Hochberg adjusted p-value below .05 were considered significant.

3 | RESULTS

In total, 60 patients were selected for analysis, 30 with painful and

30 with nonpainful IPN. After examination of the clinical data, one

patient in the painless group was misclassified and fulfilled the criteria

for the painful IPN group, resulting in 31 painful and 29 painless IPN

patients. Baseline characteristics are described in Table 1.

The proteomic profiling resulted in 2276 found proteins

(Table S1). Proteins with less than 50% missing (n = 1023 proteins)

were included in the analysis. LMM was performed due to the batch-

specific protein levels. LMM was corrected for age and sex, with batch

number as random effect. In total, 73 proteins showed a p-value <.05

and 12 proteins showed a p-value <.01 (Table 2). None were signifi-

cant after Bonferroni correction (Figure 1) or Benjamini–Hochberg

correction for multiple testing. Pathway analysis on the 73 proteins

showed no significant enriched pathways.

Since there was not a single protein that was associated with the

occurrence of neuropathic pain, we used multivariate modeling by

elastic net analysis to assess if there was a combination of proteins

with a collective association with the presence of neuropathic pain.

Only proteins without missing data (548 proteins) can be used in this

analysis. The elastic net analysis created a model containing 12 pro-

teins (Table 3). Internal cross-validation of these 12 proteins showed a

good discriminatory power of the model to differentiate between

painful and painless IPN, with a false-negative rate (FNR) of 0.10, a

false-positive rate (FPR) of 0.18, and an area under the curve (AUC)

of 0.75.

Network analysis of the 12 proteins showed that eight clus-

tered in one interaction network with complement component

3 (C3) as the central node (Figure 2). This constructed network had

a significant enrichment of protein–protein interactions, compared

to what is expected from an equal number of random proteins

(p = 9.2 � 10�11). Pathway enrichment analysis on the associated

proteins showed the highest significant enrichment in the KEGG

pathway “complement and coagulation cascades” (Benjamini–

Hochberg adjusted p-value = .0057).

Bootstrap validation was used to find the most discriminatory

proteins out of these 12 proteins. After 2000 bootstrap iterations of

elastic net modeling, three out of the 548 proteins were found in

more than 80% of the models. These three proteins, insulin-like

growth factor-binding protein 2 (IGFBP2), complement factor

H-related protein 4 (CFHR4), and ferritin light chain (FTL), were all

present in the 12 proteins from the initial elastic net analysis. Internal

cross-validation on these three proteins showed a slightly improved

discriminatory power compared to the 12 proteins (FNR = 0.07,

FPR = 0.18, AUC = 0.77). Based on these AUC discriminatory prop-

erties, the combination of these three proteins have a discriminatory
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power that is comparable to that of the total model, and thus seem to

be the principal discriminatory proteins.

4 | DISCUSSION

In this proteomic study on neuropathic pain in IPN patients, we were

unable to find proteins that were independently associated with

severe neuropathic pain. However, we were able to create a multivari-

ate model, containing 12 proteins that collectively exhibit a reason-

able discriminatory power in distinguishing patients with painless IPN

from those with severely painful IPN. Several of these proteins play a

role in the immune system and the model is significantly enriched for

the complement and coagulation cascade pathway. Furthermore,

complement factor C3 is the central hub in the model, and one of the

three principal discriminatory proteins (CFHR4) in the multivariate

bootstrap analysis serves as a complement activator by binding with

C-reactive protein and C3b.14 In the univariate LMM analysis, C3 was

associated with neuropathic pain (coefficient 1.50, p = .037, Table 2).

This suggests a role for the complement system in neuropathic pain

in IPN.

There is already evolving preclinical evidence that the comple-

ment system plays a pivotal role in the development of neuropathic

pain in multiple forms of peripheral neuropathy. In a chemotherapy-

induced peripheral neuropathy (CIPN) study on rats, paclitaxel caused

complement activation, but in C3 knockout rats, mechanical allodynia

after paclitaxel administration was significantly lowered compared to

the wild-type rats.15 Another study showed that the complement sys-

tem, and specifically C3, was upregulated in a rat model for neuro-

pathic pain. After plasma depletion of C3 using cobra venom factor,

there was a significant decrease in pain behavior.16 In a proteomic

study of pain in mice, multiple inflammatory pathways were altered

after partial sciatic nerve injury. On day one, the complement and

coagulation cascade pathway was the most significant altered

TABLE 1 Baseline characteristics.
All Painful Painless p-value

n (%) 60 31 (52) 29 (48)

Female (%) 22 (36.7) 12 (38.7) 10 (34.5) .73

Age in years, mean (SD) 65.0 (11.7) 63.8 (10.9) 66.3 (12.5) .40

Disease duration, mean (SD) 8.4 (9.2) 7.4 (6.9) 9.5 (11.3) .38

Missing (%) 1 (1.7) 0 (0) 1 (3.4)

Height in cm, mean (SD) 176.8 (9.9) 177.5 (10.6) 176.0 (9.2) .55

Weight in kg, mean (SD) 86.9 (18.8) 91.3 (20.5) 82.2 (15.8) .061

BMI, mean (SD) 27.6 (4.6) 28.7 (4.9) 26.4 (4.0) .052

Vitamin B12 level, mean (SD) 717.7 (456) 766.8 (470) 665.2 (442) .39

HgA1C level, mean (SD) 5.4 (0.41) 5.4 (0.47) 5.4 (0.34) .86

Missing (%) 6 (10) 2 (6.5) 4 (13.8)

Sural nerve SNAP, mean (SD) 2.5 (1.9) 2.9 (1.8)) 2.0 (2.2) .10

Missing (%) 8 (13) 4 (13) 4 (14)

Abbreviations: BMI, body mass index; SD, standard deviation; SNAP, sensory nerve action potential.

TABLE 2 Proteins with univariate linear mixed modeling (LMM) unadjusted p-value below .01 (no p-value below .05 after adjusting for
multiple testing).

Accession Protein Gene Coefficient p-value

NP_001121070.1 Insulin-like growth factor II IGF2 .50 .00035

NP_000588.2 Insulin-like growth factor-binding protein 2 IGFBP2 .31 .00054

NP_001269122.1 Ribonuclease 4 RNASE4 .70 .00085

NP_001305754.1 Beta-hexosaminidase subunit alpha HEXA 2.06 .00086

NP_002075.2 Glutathione peroxidase 3 GPX3 .59 .0020

NP_000590.1 Insulin-like growth factor-binding protein 5 IGFBP5 .68 .0023

NP_001072993.1 Multifunctional protein ADE2 PAICS 1.51 .0034

NP_066934.1 Reversion-inducing cysteine-rich protein with Kazal motifs RECK .23 .0042

NP_065833.1 Kelch-like protein 42 KLHL42 1.53 .0048

NP_003869.1 Gamma-glutamyl hydrolase precursor GGH 1.37 .0050

XP_016863203.1 Predicted: alcohol dehydrogenase 4 ADH4 1.92 .0062

NP_000886.1 Leukotriene A-4 hydrolase LTA4H 1.19 .0094
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pathway and C3 was one of the most significantly upregulated pro-

teins. Transfer experiments of mouse sera to naïve mice lowered pain

threshold and induced cold hypersensitivity.17 These rodent studies

support our findings that the complement system (with upregulation

of C3) is associated with neuropathic pain. These studies also might

indicate that complement activation is not only associated with but

also is a causal factor for the development of neuropathic pain in

rodents.

We found IGFBP2 as another central protein in our model. In the

univariate regression analysis, it was associated with a decreased risk

for neuropathic pain (coefficient 0.31, p = .00054), although not sig-

nificant after correction for multiple testing. IGFBP2 is a potent binder

of insulin-like growth factors I and II (IGF-I and IGF-II). It prevents the

binding of IGFs to their receptor, IGF1R, limiting their biological

effects. Apart from the regulation and growth of axons, both IGF

forms play a role in the upregulation of neuropathic pain and neuroin-

flammatory responses by promoting the release of interleukins and

tumor necrosis factor alpha (TNF-α).18,19 IGFBP2 is capable of

decreasing this neuroinflammatory response and could thereby poten-

tially reduce the development of neuropathic pain.

Low IGFBP2 levels are reported as an independent predictor for

future development of prediabetes and type 2 diabetes.20,21 Diabetes

is an important risk factor for the development of peripheral neuropa-

thy. Although we cannot exclude the possibility that some IPN

patients might develop diabetes in the future, the patients did not ful-

fill the criteria for diabetes or prediabetes at the time of the plasma

withdrawal (based on HgA1C and/or fasting glucose). Furthermore,

the mean disease duration at time of this study was 8.4 years, which

makes it unlikely that patients will develop diabetes as a cause for

their neuropathy.

F IGURE 1 Volcano plot of the
univariate LMM analysis of 1023 proteins
with pain status. In total, 73 proteins had
a p-value below .05 (orange dots above
lower dotted line), but no p-value
surpassed the Bonferroni threshold for
multiple testing (upper dotted line).

TABLE 3 Proteins identified in the elastic net model, and their univariate linear mixed modeling (LMM) results.

Accession Protein Gene

LMM LMM

Coefficient p-value

NP_001290430.1 Calponin-2 CNN2 1.46 .034

NP_000055.2 Complement C3 C3 1.50 .037

NP_001188479.1 Complement factor H-related protein 4 CFHR4 .42 .011

NP_001104026.1 Filamin-A FLNA 1.45 .067

NP_000137.2 Ferritin light chain FTL .62 .043

NP_001191236.1 Vitamin D-binding protein GC .50 .024

NP_000549.1 Hemoglobin subunit alpha 2 HBA2 1.49 .036

NP_000509.1 Hemoglobin subunit beta HBB 1.50 .033

NP_001121070.1 Insulin-like growth factor II IGF2 .49 .00035

NP_000588.2 Insulin-like growth factor-binding protein 2 IGFBP2 .31 .00054

NP_002611.1 Platelet factor 4 variant 1 PF4V1 1.40 .036

NP_000292.1 Plasminogen PLG .53 .022
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The average BMI level in the painful IPN group is somewhat

higher than in the painless group, and is near-significant (Table 1,

p = .052). An elevated BMI is one of the components of the metabolic

syndrome, a condition associated with the development of peripheral

neuropathy.22 This might also play a role in the IGFBP2 association

from this study, since low IGFBP2 levels are inversely associated with

BMI.23 Serum complement C3 levels have previously been associated

with insulin resistance,24 body fat percentage,25 metabolic syndrome

components and BMI.26 It is possible that a proportion of the found

associations with C3 and IGFBP2 levels are caused by potential BMI

differences, although the direction of causality between BMI, C3,

IGFBP2, and neuropathy remains unknown, as is whether inflamma-

tion or neuropathic pain plays a role in this association.

Ferritine light chain (FTL), the third central protein of our model,

is a subunit of ferritin and is traditionally linked to iron storage. How-

ever, it was subsequently shown to have broader effects including

immunomodulation.27 Ferritin is upregulated during infection, inflam-

mation, and malignancy. It reduces the extracellular iron levels and

limits the availability for microbes.27,28 This effect is macrophage-

induced,28 the complement system does not seem to play a role in its

inflammatory effect.29 Ferritin can also have other effects on the

immune system, for instance by suppressing antibody production of

B-lymphocytes and decrease phagocytosis of granulocytes.29 The

impact of FTL or ferritin on the peripheral nervous system and periph-

eral neuropathy remains unknown.

The mean sural sensory nerve action potential (SNAP) is higher in

the painful neuropathy group compared to the painless group (respec-

tively 2.0 and 2.9 μV) although the difference is not significant

(p = .10). This difference is probably caused by a higher portion of

small fiber neuropathy involvement in the painful neuropathy group.

Small fiber damage causes neuropathic pain but does not alter the

nerve conduction studies, since these measure large fiber involve-

ment. We can expect the nerve conduction studies to be less

affected (and thus higher) in the painful neuropathy group, although

in this study only a non-significant trend toward a difference was

found.

One important limitation of this study is the relatively small sam-

ple size (n = 60). An increased sample size has improved power to

identify more associated proteins, especially in the univariate analysis.

In this univariate analysis, no protein was significantly associated with

pain status after correction for multiple testing. To avoid false-positive

associations due to the many proteins tested (1023) compared to the

relative low number of patients (60), we used Bonferroni adjustment,

a stringent correction for multiple testing, for the univariate analysis.

However, also when using more lenient adjustment methods, like the

Benjamini–Hochberg correction for multiple testing, none of the indi-

vidual proteins reached significance. It is possible that in a larger

cohort, some of these proteins might show a significant association

on univariate analysis that withstands correction for multiple testing.

It might also improve the AUC, which with 0.75–0.77 is reasonable

but not high enough for clinical application. A larger cohort size may

also lead to the discovery of additional pathways with smaller effect

sizes, providing more opportunities for potential insight into mecha-

nisms of neuropathic pain in patients with IPN.

Another limitation is the lack of an independent replication

cohort. Although we show robust internal validation with cross-

validation and bootstrapping, an external validation by an independent

cohort could further verify our findings.

Therapeutic development of agents that target-specific compo-

nents involved with neuroinflammation is rapidly evolving.30,31 For

instance, monoclonal antibodies and receptor antagonist proteins

directed at components of the complement system are currently being

investigated for multiple different indications, such as chronic inflam-

matory demyelinating polyneuropathy (CIDP), systemic lupus erythe-

matosus, and Guillain Barre syndrome.31 Recently, antibodies directed

at complement C3 and C5, have been approved for paroxysmal noctur-

nal hemoglobinuria, myasthenia gravis, and neuromyelitis optica.32,33

Whether such complement therapies are of use for neuropathic pain

remains uncertain. A follow-up proteomics study on a larger patient

group would be the next step toward verifying the association with the

complement system and identifying a potential optimal antibody target.
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