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Generalized div‑curl based 
regularization for physically 
constrained deformable image 
registration
Paris Tzitzimpasis 1*, Mario Ries 2, Bas W. Raaymakers 1 & Cornel Zachiu 1

Variational image registration methods commonly employ a similarity metric and a regularization 
term that renders the minimization problem well-posed. However, many frequently used 
regularizations such as smoothness or curvature do not necessarily reflect the underlying physics 
that apply to anatomical deformations. This, in turn, can make the accurate estimation of complex 
deformations particularly challenging. Here, we present a new highly flexible regularization inspired 
from the physics of fluid dynamics which allows applying independent penalties on the divergence and 
curl of the deformations and/or their nth order derivative. The complexity of the proposed generalized 
div-curl regularization renders the problem particularly challenging using conventional optimization 
techniques. To this end, we develop a transformation model and an optimization scheme that uses 
the divergence and curl components of the deformation as control parameters for the registration. We 
demonstrate that the original unconstrained minimization problem reduces to a constrained problem 
for which we propose the use of the augmented Lagrangian method. Doing this, the equations 
of motion greatly simplify and become managable. Our experiments indicate that the proposed 
framework can be applied on a variety of different registration problems and produce highly accurate 
deformations with the desired physical properties.

Image registration is a challenging task with numerous applications ranging from remote sensing to astronomy 
and art. In particular, deformable image registration is a topic of major interest in medical image analysis1. Given 
two images obtained at different times, with different devices or even from different scenes, the objective is to 
establish a spatial transformation between them, whereby the term “images” refers generally to 2D as well as 
3D information. In general, this can be formulated as the minimization of a distance metric which quantifies 
the degree of similarity (or dissimilarity) between the given images. Various such metrics have been studied in 
the literature such as the sum of squared differences (SSD), mutual information2,3, normalized gradient fields4 
and others1.

Due to the inherent ill-posedness of the problem in the sense of Hadamard5, the optimization of a data 
similarity metric alone leads to unstable and non-smooth solutions. To aleviate this, variational methods generally 
introduce a regularization term in the minimization functional to ensure well-posedness and restrict the solution 
space to transformations that conform with certain desirable properties. The diffusion regularization6 serves as a 
straightforward approach to avoid oscillatory and non-smooth solutions. The curvature regularization7,8 provides 
similar benefits without penalizing rigid motion while combinations of the two9 can offer benefits in terms 
of registration accuracy and deformation field plausibility. The elastic potential10 employs a model stemming 
from the theory of linear elasticity but is a valid approximation only when the deformations are sufficiently 
small. To address this, the hyperelastic potential has been proposed11, which takes into account the non-linear 
properties of the deformations and also penalizes non-diffeomorphic deformations. The fluid regularization12 
has been proposed as a method to address large scale initial deformations while maintaining the continuity 
of anatomical structures by using a non-linear transformation model and a regularization inspired from fluid 
dynamics. The rigidity penalty13 is a local penalty term aiming to constrain the solution space and enforce some 
physical prior expectation such as tumor volume preservation. The total variation (TV) regularization14 has been 
a notably efficient method for allowing vector field discontinuities and modeling sliding motion. In particular, 
the isotropic total variation15 has been demonstrated to be well-suited for lung image registration, achieving 
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optimal performance on a number of public datasets. Recently, the arbitrary order total variation regularization16 
has provided a generalized framework involving higher-order derivatives. Finally, the locally adaptive total 
p-variation (LaTpV)17 has been introduced to selectively preserve discontinuities at organ boundaries while 
penalizing them inside organs using organ segmentations.

To date, the large collection of different regularization penalties paired together with a multitude of available 
distance metrics have allowed to address a large variety of medical image registration problems very successfully. 
Nevertheless, one drawback of such a broad canon of combinations is that the solutions are generally insular with 
respect to their respective applicability and that each combination introduces their own respective numerical 
challenges. For example, the non-differentiability of TV renders the optimization of TV-based functionals 
challenging, which can introduce numerical instabilities in the optimization process16. Additionally, TV based 
regularization methods rely on heuristic principles and despite delivering excellent results on sliding surfaces 
such as organ boundaries, the estimated deformations in the interior of anatomical regions are not derived from 
explicit physical models, which complicates the interpretability of the results in regions devoid of image contrast. 
On the other hand, regularization penalties that are based on physical models such as the fluid regularization 
admit a physical interpretation but suffer from numerical instabilities that can lead to grid foldings. To ameliorate 
this, numerical stability methods such as regridding or smoothing are often employed12. Other physically 
motivated regularizations such as the hyperelastic model have been evaluated on clinically relevant scenarios18 
with success, but so far not found widespread clinical adoption. Ideally, a regularization penalty should both 
be adaptable to a large variety of different tissue types and application scenarios and physically motivated. 
Nevertheless, despite considerable effort in the recent years, such a regularization penalty providing the “best of 
both worlds” has remained elusive. Here, we like to present a promising candidate for such a regularization and 
evaluate it’s properties and advantages on a broad set of medical image registration tasks.

A significant amount of research has been devoted to the construction of realistic transformation models for 
image registration that exclude some highly unphysical deformations and can serve as implicit regularization 
methods. Such methods include B-splines19, volume preserving transformations20 or viscous elastic models and 
diffeomorphic vector fields21. While these methods have demonstrated substantial merit and potential for specific 
anatomies/deformations, their respective generic applicability is frequently limited by their specific assumptions 
about the underlying physics. For example, volume preserving methods are only well-suited for incompressible 
anatomies while diffeomorphic fields are not a valid assumption in the presence of absent correspondences and 
disappearing structures such as inter-subject registration or registration of pre-operative to post-operative scans22. 
An alternative representation of the deformation fields can be given by means of the Helmholtz decomposition 
which expresses a vector field in terms of its divergence and curl components. Using this approach, the registration 
parameters admit a clear physical interpretation. This is to be contrasted with the traditionally used Cartesian 
vector field components which are practical but coordinate dependent. The Helmholtz parametrization has been 
used23–26 to minimize a similarity metric with no explicit regularization, taking advantage of the smoothness 
inherited from the transformation model. It has been reported24 that using such an implicit representation results 
in better stability than B-splines while avoiding grid foldings. A decomposition in terms of potential functions 
for the divergence and curl has also been proposed27 in conjunction with more complex regularizers. In the 
present work, we use the rationale of this prior art to optimize a functional consisting of a similarity metric and 
a regularization which controls certain physical properties of the estimated motion fields. The contribution of 
our work can be summarized in the following points:

•	 We introduce a novel generalized regularizer that is expressed in terms of the divergence and curl, thus 
admitting a clear physical interpretation. Our regularizer is highly versatile, allowing for adaptation to 
problems with different underlying physical principles.

•	 The optimization is expressed in terms of the divergence and curl using the Helmholtz decomposition. 
Although this decomposition has been used before, to our knowledge, this is the first work that introduces 
a constraint to ensure that the curl vector field has vanishing divergence. This constraint is crucial to allow 
for a physical interpretation of the divergence and curl (in the 3D case) as we explain below.

•	 We provide a numerical scheme that allows for an efficient solution irrespective of the regularizer complexity. 
This is highly desirable since complex physical models are often numerically unstable and computationally 
heavy, especially when higher-order terms need to be included.

Methods
We state our image registration problem, which incorporates a regularization term penalizing an arbitrary order 
of the divergence and curl operators of the estimated deformation field. Given the fixed and moving images 
F ,M : � → R defined on some domain � ⊂ R

3 , we seek a deformation field φ : � → � , such that M ◦ φ is 
aligned with F. The deformation field is usually expressed as φ(�x) = �x + �u(�x) where �u(�x) is the displacement 
or motion field. We can then formulate image registration as an optimization problem where the optimal 
displacement field �u∗ is given by:

where � denotes the image domain, ui(�x) : � → R
n are the vector field components, || · || is the standard 

Euclidean norm in R3 , D denotes the image similarity metric, α and β are regularization weights and κ , σ are 

(1)argmin
ui

{
∫

�

D (F ,M, �u)+ α
∥

∥∇σdiv �u
∥

∥

2
+ β

∥

∥∇κcurl �u
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non-negative integers. The functional 1 generalizes previously studied regularizers. In particular, we distinguish 
the following special cases:

•	 For κ = σ = 0 we recover the first order div-curl regularizer that penalizes the amplitude of the divergence 
and curl of the estimated vector fields28,29. For α = β this model is equivalent to the diffusion (smoothness) 
regularization, at the level of the Euler-Lagrange equations30. This equivalence also demonstrates the highly 
restrictive nature of the diffusion regularization which equally penalizes two quantities, the divergence and 
curl, that have no a priori reason to be treated evenly. Another disadvantage of this regularizer is a tendency 
to underestimate the flow gradients31.

•	 For κ = σ = 1 Eq. (1) reduces to the second order div-curl model25,29,30,32,33. This model enforces smoothness 
on the divergence and curl components without penalizing the components themselves. Although this 
description is not derived as an approximation to fundamental physics laws, it forces the divergence and 
curl quantities to form coherent aggregates, thus abiding by the physical properties of fluid flows34. The 
numerical implementation is considerably more demanding than its first order counterpart due to the 
higher order derivatives involved. One method to overcome this is the introduction of auxiliary variables 
that approximate div �u and curl �u by means of additional constraints25,29. However, as we will show, in our 
generalized framework the computational complexity is not affected by the order that one chooses to work 
with. This constitues a substantial advantage of our approach.

Optimization scheme
We now proceed to the description of the optimization method employed to solve Eq. (1). The starting point is 
the adoption of canonical variables. Instead of the conventional Cartesian components ui(�x), i = 1, 2, 3 of the 
vector field �v , we select the divergence f 1(�x) = div �u and the curl components f i(�x) = (curl �u)i−1 with i = 2, 3, 4 . 
The key observation behind this strategy, is the ability to go back and forth between ui(�x) and f i(�x) which has 
been utilized in previous works23,24,26. The forward mapping f i = G(ui) is straightforward and follows from the 
definition of the f i:

The existence of an inverse mapping ui = F(f i) is a consequence of the Helmholtz theorem which states that 
given a solenoidal vector field �C (so that ∇ · �C = 0 ) and a scalar field � that are sufficiently smooth and vanish 
faster than 1/r2 at infinity, there exists a vector field �v such that

which is unique provided that ||�v|| → 0 as r → ∞ . The inverse mapping ui = F(f i) is implicit and given by 
solving the following set of Poisson equations

where � is the Laplace operator. There exist various div-curl solvers for solving Eq. (3) using direct discretization, 
successive over relaxation, inverse filter and FFT transformations. As has been previously pointed out24, the later 
provides both accuracy and computational efficiency of O(n log n ) complexity. The FFT-solver operates on the 
assumption that the null boundary condition is fulfilled. For this reason we adopted the FFT-solver for this work. 
An important caveat in this discussion is that in order to ensure that the maps F and G are inverses of each other, 
the curl components f i , i = 2, 3, 4 must satisfy the following differential constraint:

which is a consequence of the general identity ∇ · ∇ × �h = 0 for any differentiable vector field h ∈ X
2(R3) . 

Viewed differently, this is also the requirement that the vector field �C in Eq. (2) is solenoidal. The existence of a 
constraint equation should also be expected due to the mismatch of the number of free parameters in the two 
pictures. Using the traditional parametrization to describe motion, there are three degrees of freedom per voxel 
to be estimated, corresponding to the three Cartesian components of the deformation field. In contrast, in the 
proposed framework this number increases to four parameters per voxel, namely the three curl components 
together with the divergence. Since both are equivalent ways of parametrizing motion, the information required 
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should be the same. This apparent paradox is resolved by the existence of the constraint Eq. (4) which reduces 
the effective curl-related degrees of freedom to two. In view of the established equivalence, we recast the 
minimization problem 1 as

We have in this way considerably simplified the form of our regularization at the cost of introducing an equality 
constraint. Although past studies have explored the use of the Helmholtz decomposition for image registration, 
to our knowledge this is the first work where the solenoidal constraint is introduced. In the absence of this con-
straint, the minimization problem can still be well defined but f i will not admit the physical interpretation of 
the divergence and curl components and therefore the optimization problems 5 and 1 would not be equivalent. 
It is also interesting to note that in 2D the curl of a vector field only has one component and the equivalence 
between the two pictures holds without the inclusion of any constraint. In this work, our focus is 3D registration 
and we are consequently led to employ constrained optimization techniques. Hence, we proceed by using the 
Augmented Lagrangian Method (ALM) to rewrite 5 as an unconstrained minimization problem. This method is 
similar to the penalty method where the constraints are directly incorporated into the minimization functional 
using a penalty weight. In contrast with the penalty method though, the ALM introduces additional dynamical 
variables to the objective function (Lagrange multipliers) that are used to enforce the constraints. This way, the 
ALM offers typically faster convergence speed and reduced sensitivity to the initial choice of parameters (pen-
alty weight). For those reasons, the method has been gaining some ground in the field of image processing and 
has been successfully applied in image registration methods35. For the minimization problem 5, the augmented 
Lagrangian is given by

where J (f i) is defined in 5, θ is the penalty weight and � is the Lagrange multiplier. The Euler-Lagrange equa-
tions follow

where Aρ denotes the differential operator that corresponds to the variation of the 
∥

∥∇ρ f i
∥

∥

2 term. An efficient 
method for dealing with such equations has been previously presented9,36 where a semi-implicit iterative scheme 
is used. In this scheme, the linear terms Aρ f i are treated implicitly and the non-linear similarity metric gradi-
ent is treated explicitly. The equations of motion 7 are embedded in a time-marching scheme and a steady-state 
solution is sought. Using k to denote the iteration number and t the time step we have

 where DCT and IDCT are the discrete cosine transform and its inverse and

(5)
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are the eigenvalues of the operator Aρ and jm = 1, ..., nm with nm denoting the image dimension in the mth 
coordinate. The only remaining ambiguity in the above equations is the computation of the similarity metric 
gradients δD /δf i . Those terms are computed using the chain rule24. The process is decomposed into two steps, 
where first one computes

where Fi are the inhomogeneous parts of the Poisson equations defined in Eq. 3. At a second step, the quantities 
of interest are computed as follows

Implementation details
In this work, we used the Local Correlation Coefficient (LCC) metric37 which generalizes the cross-correlation 
similarity metric by assuming a linear relationship between image intensities only locally. The image similarity 
gradient was computed as in various previous works15,38,39 using a Gaussian weighting kernel with a user-
defined standard deviation w. Additionally, the truncated version of the LCC gradient was used15 in order to 
speed up the computation. This approximation has been reported15 to outperform the full gradient approach. 
Although the results of this work are obtained using the LCC metric, it should be pointed out that our method 
is generally applicable to other similarity metrics as well. The automatic time-step and penalty weight estimation 
allows for a seamless transition between different similarity metrics without the need to adjust other algorithm 
hyperparameters.

The proposed optimization method is summarized in Algorithm 1. In order to avoid local minima and speed-
up the computation, a coarse-to-fine scheme40 was used where the registration is performed on a number of 
pyramid levels determined by the requirement that no dimension becomes smaller than 16 pixels. Before down-
sampling, a Gaussian smoothing filter is applied on the images with a standard deviation of (s − 1)/2 where s 
denotes the scaling factor (so that larger SD is used for lower resolutions to avoid aliasing). At the final resolution 
level ( s = 1 ) (original image resolution) no smoothing filter is applied. The values of the registration parameters 
f i at each level are used to initialize the parameters for the subsequent level. We used linear interpolation for 
resampling the images and the registration parameters f i.

The size of the time step t is crucial to ensure convergence and satisfaction of the solenoidal constraint. Since 
numerical instabilities are usually a result of large values of the update terms tδD /δf i in Eq. 7, we selected an 
automatically estimated time step that ensures boundedness of those terms given by

The prefactor of 0.02 was empirically found to deliver good numerical stability and convergence speed. The 
penalty weight θ associated to the solenoidal constraint in Eq. 6 is also empirically related to the time step t by 
θ = 0.4/t . In this way, both t and θ do not require any external input.

Due to the use of the chain rule in Eq. 9, numerical errors in the similarity metric gradient δD /δui tend to 
be amplified and propagate to the estimation of the δD /δf i update terms. This also affects the time step esti-
mation in Eq. 10. In order to ameliorate this effect and reduce numerical instabilities, we used outlier pruning, 
mapping outliers of δD /δf i to their nearest non-outlier value. Our simple outlier detector defines outliers as 
elements more than three standard deviations from the mean. We found that this computationally efficient 
method strikes a good balance between accuracy and speed. Despite the additional step of outlier pruning, 
this methods enables the use of larger time steps therefore accelerating convergence in addition to making the 
optimization more stable.
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Algorithm 1.   ALM for generalized div-curl algorithm

Experimental results
In this section we describe a series of experiments that are designed to test the performance of the proposed 
GDC algorithm on a set of problems with different underlying physical assumptions.

Effect of the curl regularization on the constraint convergence
Both the solenoidal constraint (Eq. 4) and the curl regularizer affect the estimation of the curl components f i 
(i = 2, 3, 4) . In this experiment we aim to investigate their interplay by examining the constraint convergence 
profile for different regularization parameters κ and β . A single image pair was used from the DIR-lab dataset41 
(case 4) in which the initial deformation was moderate, corresponding to an average displacement of 9.42 mm. 
We made this choice because for this experiment we want to carry out the registration on a single resolution level 
without the employment of a coarse-to-fine scheme, in order to eliminate the influence of image and control 
parameter resampling. The images were thus registered at a fixed resolution of 64× 64× 32 . To evaluate the 
degree of satisfaction of our equality constraint we used the mean residue �|Ck(�x)|�x∈� where Ck is the expres-
sion of the constraint 4 evaluated at iteration k. The domain � was taken to be the pulmonary volumes defined 
by manual segmentations. This was done in order to avoid measurements in the image background which are 
devoid of physical meaning and because we expect that the effect of parameter variation on the convergence 
profile will be more pronounced in this region where larger scale motion takes place. We also conducted the 
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same experiment after disabling the constrained optimization component by setting θ = 0 . In this way, we were 
able to get some insight to the effect of the ALM framework on the optimization.

The results of the experiment are shown in Figure 1. We make the following observations: 

1.	 Without the introduction of constrained optimization the quantity �|Ck(�x)|� increases monotonically with 
the iteration number. Therefore, as expected, without the explicit introduction of a constrained optimization 
method like the ALM, the constraint is not satisfied and the f i (i=2,3,4) do not admit the interpretation of 
the curl components since they have a non-trivial divergence.

2.	 For κ = 1 the corresponding values of �|Ck(�x)|� are smaller than for κ = 0 . This is because κ = 1 imposes a 
penalty on the derivatives of f i (i=2,3,4) which appear in the expression of Ck(�x) . Furthermore, for the same 
κ , increasing β values lead to smaller average residue due to the stricter penalty imposed on f i (i=2,3,4).

3.	 With the introduction of constrained optimization (bottom plots), the average residue is decreased by about 
two to three orders of magnitude compared to the unconstrained optimization (top plots).

4.	 For constrained optimization, larger β values lead to smaller residue for the same reason as the unconstrained 
case.

5.	 Using constrained optimization (bottom plots) the final average residue does not significantly vary for 
different κ and β values as is the case for unconstrained optimization (top plots).

6.	 For κ = 1 the average residue takes more iterations before it stabilizes. This effect is more pronounced for 
smaller β values.

Pulmonary registration
Lung registration has been an active field of research, presenting some additional challenge due to the high degree 
of compressibility of lung tissue. Many registration algorithms align visible structures very well but have been 
reported to do so at the expense of anatomical plausibility. Most notably, the deformation fields are often not 

Figure 1.   Summary of the constraint profile for different curl regularization parameters with and without the 
introduction of the ALM framework. The y-axis shows the average constraint residue inside the pulmonary 
volumes. Top left: First order curl regularization ( κ = 0 ) without constrained optimization ( θ = 0 ). Top right: 
Second order curl regularization ( κ = 1 ) without constrained optimization ( θ = 0 ). Bottom left: First order curl 
regularization ( κ = 0 ) with constrained optimization ( θ  = 0 ). Bottom right: Second order curl regularization 
( κ = 1 ) with constrained optimization ( θ  = 0).
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bijective, resulting in negative values of the Jacobian determinant Jac(�u) := det(I+ ∇�u) . Similarly, significant 
spatial irregularities of Jac(�u) are considered implausible. Some methods42,43 have successfully attempted to avoid 
such artefacts by explicitly adding an infinite penalty for transformations with Jac(�u) → 0 or Jac(�u) → ∞ , lead-
ing to deformations of high accuracy and plausibility. We here wanted to test whether our framework allows for 
sufficient spatial accuracy while maintaining anatomical properties such as the smoothness of Jac(�u) . To that 
end, we configured our proposed regularization with κ = σ = 1 (corresponding to the second order div-curl 
regularizer). We used the 10 publicly available DIR-LAB datasets41. All images were resampled to a resolution 
of 256× 256× 128 . We registered the two extreme respiratory phases of each dataset for varying values of α . 
The regularization weight associated to the curl smoothness was kept to a small value of µ = 0.1 . To assess the 
algorithm accuracy, we measured the average target registration error (TRE) defined as

where (u0, v0,w0) are the Cartesian components of the ground truth deformations and (u, v, w) the estimated 
ones. Angle brackets are used to denote the average with respect to the points for which the ground truth 
deformation is known. For further assessment, we also compute the standard deviation of the logarithm of 
Jacobian determinant (SDLogJac) inside the lungs to evaluate the smoothness of the volumetric changes.

The results are shown in Figure 2. The TRE and SDLogJac are reported separately for cases 1-5 and 6-10. We 
observe that although the TRE remains stable for a large range of regularization weight values, the SDLogJac 
decreases. Additionally, the optimal TRE was below 1.5 mm for cases 1-5 and below 2 mm for all cases except 
case 7 for which the lowest TRE was 2.18 mm. This indicates that the proposed algorithm can consistently 
achieve subvoxel accuracy. To visually illustrate the effect of varying the regularization weight α on the Jacobian 
determinant, we have collected coronal slices from all the cases in Figure 3 showing the spatial distribution of 
the Jacobian determinant for the different α values.

Locally incompressible motion inside rigid organs
A number of previous studies have examined the performance of registration algorithms inside the liver and 
kidneys using constraints on the Jacobian determinant44,45 or registration using a pre-defined region of interest 

TRE =
〈

√

(u− u0)2 + (v − v0)2 + (w − w0)2
〉

,

Figure 2.   Summary of the pulmonary registration experiment results. The average TRE and SDLogJac is 
reported for different values of the regularization weight α . Cases 1-5 and 6-10 are shown separately for clearer 
illustration.
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(ROI)46. On a similar approach, a method for organ motion estimation from raw image data has been proposed47 
using diffeomorphic incompressible flows by projecting the velocity fields on the space of divergence-free vector 
fields. It is expected that inside the liver and kidneys the Jacobian determinant of the image transformation is 
approximately equal to 1. Therefore, significant deviations from this value are interpreted as physically implau-
sible. In this experiment we used four pairs of abdominal T1w MR-scans acquired at different time points, with 
misalignment caused by respiratory and peristaltic motion. The resolution of the images is 192× 75× 192 with a 
voxel size of 1.95× 2× 1.95 mm3 . The liver and kidneys on each scan have been segmented by a medical expert. 
We demonstrate here that our model can be easily tuned for this task by imposing a variable penalty on the 
divergence. Therefore for this task we set σ = 0 (corresponding to a first order div regularizer) and κ = 1 . The 
regularization weight β associated to the curl was kept to a moderate value of β = 2 and we varied the divergence 
related weight α over a range of different values (0.1,0.5,1,2,5,10) in order to obtain different degrees of (local) 
rigidity in the estimated transformation fields. In order to assess the registration quality we evaluated the Dice 
similarity coefficient (DSC) after registration on the liver and kidneys. As a measure of the local incompressibility 
inside the liver and kidneys we used |Jac(�u)− 1| . In this measurement, we excluded points located on the organ 
boundaries in order to avoid numerical errors due to boundary effects such as sliding motion.

The mean values of |Jac(�u)− 1| for each case are shown in Figure 4 and a detailed analysis for one of the cases 
is shown in Figure 5. The DSC after registration indicate that all registrations were successful in aligning the 
organ volumes. Additionally, the plots in Figure 4 indicate that an increase in the regularization weight α results 
in a higher degree of incompressibility. The same conclusion can be drawn from Figure 5 where the distributions 
of |Jac(�u)− 1| inside the liver and kidneys are shown to cluster closer to zero as α increases. These results are in 
accordance with our theoretical analysis.

Figure 3.   Coronal slices of all 10 cases for different α values showing the reference anatomy with the Jacobian 
determinant overlaid on it.
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Synthetically deformed pelvic image
In this experiment, our goal was to test the efficacy of the curl regularization of the proposed framework. For 
this reason, we set up an experiment entailing the estimation of irrotational motion. We artificially deformed a 
pelvic MR scan of resolution 256× 256× 128 and voxel size 1.7× 1.7× 0.7 mm3 . The synthetic deformation was 
generated by displacing 1000 randomly selected control points located inside the bladder. The entire deformation 
field was interpolated using B-splines. The control points were radially displaced from a pre-defined geometric 
center which was taken to be the center of the bladder. In this way, the generated deformations are almost irro-
tational providing a fitting testing setup for the proposed curl regularization. We coregistered the original and 
deformed images using a fixed second order div-regularization ( σ = 1,α = 1 ) and a curl regularization ( κ = 0 ) 
for a number of different weights β . We measured the TRE and the curl magnitude inside the bladder for the 
different regularization weight values.

The results are summarized in Figure 6. As we can see, increasing the regularization weight β , decreases the 
magnitude of the curl (left boxplot). At the end, for β = 0.7 the curl magnitude boxplot becomes almost identical 

Figure 4.   Left: Mean |Jac(�u)− 1| inside the liver ploted against the regularization weight α associated to the 
divergence regularization for the 4 different cases tested. Middle: Same plot for the kidneys. Right: DSC scores 
after registration computed on the liver and kidney volumes for each case and for each regularization weight 
value.

Figure 5.   Detailed analysis and visual illustration of the Jacobian determinant distribution inside the liver 
and kidneys for the abdominal case with the largest initial displacement (case 4). The boxplots illustrate the 
distribution of |Jac(u)− 1| inside the liver (upper boxplot) and kidneys (bottom boxplot) for different values of 
the regularization weight α . In the middle, coronal slices of the reference and moving image are shown together 
with their superposition. On the right, coronal slices of the reference image are shown with the Jacobian 
determinant colormaps overlaid for different values of the regularization weight α.
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to the ground truth (G.T.) and the corresponding TRE attains its minimum value. This demonstrates that highly 
irrotational motion can be recovered using a strong penalty on the curl magnitude. More generally, adjusting 
the regularization weight β , we can easily model our prior knowledge regarding the degree of irrotationality of 
the motion field.

Thoracic registration with large initial displacement
In order to further assess the accuracy of the proposed GDC framework and enable future comparisons with 
other methods, we used the 30 cases provided by the Lung CT DIR dataset48. Each case contains the inhale/
exhale thoracic CT scans together with a large number of vessel-bifurcation landmarks (on average 1260 
landmarks per case). The scans have been collected from a variety of repositories, were acquired using different 
acquisition parameters, include both healthy subjects and subjects with lung disease and have varying voxel 
sizes. Those factors contribute to significant data heterogeneity. One of the advantages of this study is that the 
generated landmarks are uniformly distributed throughout the lung volume, offering a more holistic evaluation 
of alignment accuracy.

For each case, the inhale and exhale scans were resampled to an isotropic voxel size of 1mm. The images were 
then padded to ensure that their dimensions agree and further padding was added to avoid crucial structures 
such as the lungs being close to image boundaries. Subsequently, both images were resampled to 256× 256× 256 
voxels. For consistency, the algorithm parameters used in this experiment were the same as the ones used in the 
pulmonary registration experiment of the DIR-lab cases. We used a second order div-curl model ( σ = κ = 1 ) 
with µ = 0.1 and α = 5 (which is the midpoint of the range of values used in the pulmonary registration 
experiment in Figure 2).

Figure 6.   Left: The original (reference) and deformed (moving) MR images together with the deformation 
magnitude. Middle: Boxplots of the voxel-wise TRE for various values of the regularization parameter β . The 
initial TRE boxplot is shown in orange. Right: Boxplots of the curl magnitude for different β values. The ground 
truth (G.T.) curl magnitude boxplot is shown in orange. Both the TRE and the curl magnitude are measured 
exclusively inside the bladder.

Figure 7.   Left: Boxplots of the target registration error before and after registration for the 30 thoracic CT 
scans. The largest TRE values before registration are often due to rigid misalignment. Right: An example (case 
16) of the image overlap before and after registration. The moving image is shown in green and the reference 
image in magenta. For this case, the TRE is reduced from 34.8 mm before registration to 1.38 mm after 
registration.
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The results are shown in Figure 7. On the same figure, we have included a visualization of one of the cases 
(case 16) to illustrate the degree of alignment before and after registration. This case represents one of the largest 
residual TRE of 1.38 mm (corresponding to the whisker of the “after registration” boxplot). The mean (standard 
deviation) of the TRE’s is 0.91 mm (0.65 mm). The two worst cases were registered with a TRE close to 3 mm 
while in all the rest, the proposed method achieved a TRE scores below 1.5 mm.

Discussion
In this work we have proposed a highly-flexible physics-inspired solution for deformable image registration. 
At its core, the problem formulation relies on the Helmholtz decomposition of a vector field into its divergence 
and curl components, which allowed placing independent penalties on their values and/or their derivatives. 
This resulted in a framework encompassing a wide spectrum of physical models that can be configured by 
tuning the differential operator orders κ , σ in Eq. (1). We have tested our model on a number of anatomies with 
different physical properties such as incompressibility or irrotationality and demonstrated that our framework 
can deliver deformations which are both of high accuracy as well as conform with physical model constraints. 
Beyond these specific cases, the proposed solution provides a generalized framework that can be easily adjusted 
to different tissue types and be combined with a multitude of image similarity metrics. The high adaptability 
of our framework lends itself to a convenient general purpose registration tool that could be advantageous in 
clinical practice where the use of multiple distinct and specialized registration solutions is often not feasible.

Aside from the flexibility of the regularization model, a significant advantage of our method is that while in the 
scope of this work we have used the LCC as a data fidelity term, it is worth noting that the employed numerical 
solver described in Algorithm 1 allows for its seamless replacement with other similarity metrics such as sum 
of squared differences or normalized gradient fields. This, in turn, facilitates the extension of the proposed 
registration model to a wider category of, potentially multi-sensor, problems. Furthermore, this also allows for 
a straight-forward exploration of various data fidelity - regularization combinations, via the same numerical 
framework, and subsequent selection of an optimal model for the application-at-hand.

An important benefit of decomposing the regularization in terms of the divergence and curl components 
is the reduced sensitivity to parameter selection. Using regularizations such as smoothness, that penalize all 
degrees of freedom indiscriminately, the output deformation field can be highly sensitive to regularization 
weight variation. On the contrary, disentangling the motion parameters related to volume change and rotation, 
allows for varying the penalty on one set of parameters without affecting the other, leading to more robust and 
reproducible motion estimation. This can be seen from the TRE plots in Figure 2 where a change of the divergence 
related regularization weight by an order of magnitude has practically no effect on the spatial accuracy of the 
motion fields in spite of the Jacobian determinant distribution being substantially affected (Figures 2 and 3). 
The same conclusion can be drawn from the abdominal experiment, where the DSC overlap of the liver and 
kidneys remains stable for different regularization weights (Figure 4) but the distribution of Jac(�u) inside the 
organs drastically changes. Those findings also highlight the fact that when using contrast based evaluation 
metrics such as landmarks or organ segmentations, the physical properties of the obtained deformations are often 
overlooked since the registration accuracy is only assessed on a small contrast-rich subset of the entire anatomy 
of interest. Previous studies have emphasized this point and have proposed the use of biologically motivated 
quality assurance metrics beyond anatomical landmarks to enable more holistic evaluations49. Such information 
is essential for tasks requiring voxel-wise accuracy in contrast deficient regions.

With respect to the convergence properties of the solenoidal constraint, as can be seen in Figure 1, the average 
residue reaches a plateau after the first 100-150 iteration steps, indicating that the constraint does not further 
decrease from this point on. We have empirically found this to be a sufficient amount of iterations per resolution 
level for both the constraint residue and the registration to converge. In effect, the computation time for our 
current Matlab implementation is approximately 15 minutes for a 256× 256× 128 image. The computational 
bottleneck rests in the FFT-solver which is used twice in every iteration of the algorithm (steps 2 and 4 in the 
k-iteration loop of Algorithm 1). The first time, it is used to map the div-curl components back to the Cartesian 
coordinate frame (which is necessary to warp the moving image and compute the similarity metric gradient) and 
the second time it is used to compute the similarity metric gradient with respect to Fi . Those two steps account 
for approximately 40% of the total computation time. Due to the highly localized computational burden and the 
inherent parallelizability of the GDC algorithm, we believe that the computation time could be largely reduced. 
We are confident that such improvements could render the GDC algorithm more suitable for applications with 
restrictive latency requirements.

It should also be stressed out that the proposed optimization framework can be applied to a much larger 
family of regularizers. Due to the linearity of Eq. (8), our framework can be used to solve the much more general 
registration problem given by the following functional:

where an arbitrary number of divergence or curl orders are penalized with different weights. In this work we 
elected to only focus on the use of two terms on the basis of clarity of presentation. Due to the generality 
of regularizers that the framework of Eq. (11) incorporates, we believe that it can be useful for addressing 
complex models in the future. Another point that deserves some attention is that although integer values of σm 
and κn in Eq. (11) admit a clear interpretation, their physical meaning becomes less transparent for fractional 
values. As discussed in previous studies9,36 differential operators of fractional order are not well-defined in the 
spatial domain but can be viewed as implementing features of both contiguous integer values. This conclusion 
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is corroborated by our experience. We further point out that the use of the div-curl variables as registration 
parameters could serve as a useful tool for addressing more general regularization functionals of the form 
R(div(u), curl(u)) for which the resulting equations of motion are possibly non-linear in the divergence and curl 
components. One such example would be a penalty on the L1-norm of the div-curl components which would 
allow for spatial discontinuities. An approach along these lines was proposed50 for the 2D case and reported the 
potential of preserving large shearing values on a small subset of the field of view comprising organ boundaries. 
Allowing for such motion types would be an interesting extension of our work that we intend to investigate 
further in the future.

In spite of enabling greater modeling flexibility, employing a large number of regularization terms in Eq. 
(11) introduces further weights whose tuning can require additional effort. To this end, we believe that future 
work is needed in the direction of automatic parameter calibration by extracting physical quantities from image 
data. This could facilitate not only a faster algorithm calibration but also allow for more accurate subject-specific 
registration models. Recent work in this direction using deep learning methods51 has shown promising results, 
maintaining good accuracy while improving the physical plausibility of the estimated deformation fields. Finally, 
the spatial invariance of the regularization weights across images encompassing anatomic structures of very 
different physical properties is a strong assumption that bears no physical justification. It would therefore be 
advantageous to allow for spatially varying regularization weights that can account for the different mechanical 
properties of the various anatomical regions. Previous studies have addressed this issue to some extent by 
imposing local anatomical constraints52 or by adapting the regularization based on the position of a voxel relative 
to organ boundaries using segmentations17,53,54 or image-based information55. Although these approaches offer 
some degree of local control, we believe that further investigation is needed in order to model the full complexity 
of anatomical structures and their interactions.

Closing, we would like to underline that the application domain of our method is not restricted to medical 
image registration. For example, our physics inspired framework is highly applicable in image sequence 
analysis of fluid flows. The extraction of physically consistent fluid flows can be be of major scientific interest in 
environmental sciences such as oceanography and meteorology where monitoring the atmosphere is becoming 
increasingly significant. What is more, we believe that an important message of the present work is that the 
adoption of proper optimization variables that are fittingly adapted to the problem at hand, can be crucial to the 
solvability of an optimization problem. We believe that this rationale could be conducive to efficiently solving a 
number of other optimization problems.

Conclusions
We have presented a novel optimization solution for physically-inspired image registration regularization, 
based on a generalized div-curl model. We have demonstrated that the generality of our approach allows 
convenient adaptation to different registration problems across anatomies/organs with a variety of underlying 
physical properties. Given the increasing need for high accuracy computational methods in the medical field, 
we believe that the introduction of physically informed motion models can be highly advantageous in future 
applications. Finally, we hope that the proposed optimization solution using the divergence and curl components 
as registration parameters, can provide a fitting setup for other optimization problems.

Data availability
The two thoracic CT image datasets used in this study for the validation of pulmonary registration and 
convergence analysis are available at www.dir-lab.com and zenodo.org/records/8200423. The rest of the image 
datasets can be shared upon reasonable request to the corresponding author.
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