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To the Editor:

Many lung diseases remain understudied because of a lack
of experimental models. Lung organoids, which consist of
self-organizing epithelial cells, provide versatile in vitromodels for

normal and abnormal biology, drug screening, gene editing, and
personalized therapeutics (1). However, human organoids are
generally derived from lung tissue, which is not commonly obtained,
or induced pluripotent stem cells, which require complex
manipulation. Recently, one study reported airway organoids from
BAL fluid, although sample sizes and characterization were limited
(2). Here, we demonstrate robust establishment of airway organoids
from a variety of human BAL samples and show that these organoids
contain diverse airway cell types. Furthermore, we report the
development of BAL-derived alveolar organoids. These techniques
significantly expand the scope of lung diseases that can be studied
using safely accessible primary human cells. Some of these results
were previously reported as an abstract (3).

We obtained deidentified BAL samples and lung tissue under
protocols approved by the respective institutional review boards.
Generally, 99% of cells in BAL fluid were immune (not shown) (4),
and sorting for rare epithelial cells was not feasible. Instead, we
refined a protocol for selective outgrowth of lung epithelial organoids
from BAL (2). BAL samples from eight unique donors were used
exclusively to optimize the methods. Detailed methods and donor
characteristics can be found in the online supplement.

In brief, 5–10ml of fresh BAL fluid were centrifuged and
processed immediately or cryopreserved in Bambanker serum-free
freezing media. Cells were dissociated using Liberase TM and DNase
I, filtered, washed, and resuspended in growth factor–reduced
Matrigel to a concentration of 100,000–125,000 live cells per 50μl.
Drops of 50μl each were pipetted onto a prewarmed 12-well plate
and allowed to solidify for 25minutes at 37�C. Finally, 1ml of either
airway or alveolar medium was added to each well. We tested a
variety of media components and ultimately used published recipes
with minor modifications. For airway cultures (2), HRG1-b1 was
added at 50ng/ml for the first 3–4days. For alveolar cultures (5, 6),
5μMY-27632 was included in the media, and IL-1b was added at
10ng/ml for the first 3–4days.

These methods yielded rapid and efficient outgrowth of
epithelial organoids within 7–10days. Airway organoids grew as
spheres (Figure 1A). We quantified the success rate of organoid
growth by applying the standardized culture methods to BAL from 21
additional donors, focusing on lung transplant patients undergoing
surveillance bronchoscopies, together with three healthy control
subjects. Airway organoids grew from 17 (94%) of 18 fresh and 4
(57%) of 7 cryopreserved human BAL samples, as well as 6 of 6 fresh
murine BAL samples. Organoids were passaged by gently disrupting
theMatrigel drop and incubating with TrypLE, then shearing
through a pipette five times and replating. Airway organoids could
be passaged for at least 6 months, as reported previously for airway
organoids derived from lung tissue (2). Organoids could also be
cryopreserved and regrown.

We characterized the cell types present in airway organoids.
Immunofluorescence showed predominantly airway basal stem
cells expressing TP63 and KRT5 (Figure 1A). Flow cytometry
corroborated this finding, showing that CD451 immune cells were
eliminated from culture, leaving EpCAM1 epithelial cells, the
majority of which expressed NGFR, a surface marker for basal
cells (Figure 1B). This result was reproducible across all patient
samples. In addition, BAL-derived organoids could be differentiated
at the air–liquid interface using established methods (not shown)
(2, 7).
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To uncover the full breadth of cell types present, we performed
single-cell RNA sequencing, comparing two BAL-derived organoid
lines with organoids derived in similar fashion from lung tissue.
Single-cell libraries were generated using 103Genomics Chromium
Next GEM Single Cell 39 version 3.1 kits and sequenced on NovaSeq.
The data were processed using Cell Ranger version 7.1 and analyzed
using Scanpy (8). After filtering and batch correction using BBKNN

(9), data were referenced to the Human Lung Cell Atlas (10), then
refined at different resolutions to arrive at biologically meaningful
clusters.

Consistent with flow cytometry and immunofluorescence
results, single-cell RNA sequencing revealed that most cells in airway
organoids were basal cells, whereas secretory/goblet, ciliated,
neuroendocrine, and tuft cells were present in lower abundance
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Figure 1. Airway organoids from BAL fluid. (A) Representative phase contrast image of an airway organoid 7–10days after initial plating
(passage 0). After expansion, immunofluorescence on whole organoids shows predominant expression of basal cell markers TP63 (green) and
KRT5 (magenta). Scale bars, 100mm. (B) Representative flow cytometry at passage 2 shows selective outgrowth of EpCAM1 NGFR1 airway
basal cells. The NGFR1 population formed a majority across all samples analyzed. (C) Uniform Manifold Approximation and Projection (UMAP)
of airway organoids derived from two different human BAL samples and normal lung tissue, and distribution of cell populations in each airway
organoid culture. Inset shows subclustering of the small ionocyte/tuft/neuroendocrine population. (D) Dot plot of canonical cell markers.
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Figure 2. Alveolar organoids from BAL fluid. (A) Representative phase contrast image of an alveolar organoid 7–10days after initial plating
(passage 0). After expansion, immunofluorescence on sectioned organoids shows expression of the alveolar type 2 (AT2) cell markers
surfactant protein C (SPC; green) and HT2-280 (magenta) on the expected apical surface. Scale bars, 100mm. (B) Representative flow
cytometry at passage 2 shows selective outgrowth of EpCAM1 HT2-2801AT2 cells. The HT2-2801population was variable across all samples
analyzed and could be sorted. (C) Uniform Manifold Approximation and Projection (UMAP) of alveolar organoids derived from two different
human BAL samples and normal lung tissue, and distribution of cell populations in each alveolar organoid culture. BAL 1 is an unsorted alveolar
organoid culture, whereas BAL 2 organoids were grown from HT2-2801 sorted cells; tissue-derived organoids were not sorted. (D) Dot plot of
canonical cell markers.
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(Figures 1C and 1D).We also observed KRT131 basal cells similar to
“hillock” cells that are believed to help repopulate airways after injury
and FOXI11CFTR1 ionocytes, a cell type of interest in cystic fibrosis
(11–13). This highlights the utility of our method for modeling
airways from diverse patients and potentially studying many
biologically relevant cell types.

We also derived alveolar organoids from BAL, which have not
previously been described. Alveolar organoids grew from 16 (89%) of
18 fresh and 5 (71%) of 7 cryopreserved human BAL samples, as well
as 7 of 7 fresh murine BAL samples. They typically had a dense
appearance with an irregular border (Figure 2A). In line with the
known difficulty of expanding alveolar type 2 (AT2) cells, we
generally maintained alveolar organoids through four passages, with
a maximum of seven to date. Immunofluorescence showed
expression of surfactant protein C as well as the AT2 cell surface
marker HT2-280 on the apical membrane (Figure 2A). Flow
cytometry corroborated outgrowth of AT2 cells (Figure 2B). Notably,
across 14 samples analyzed by flow cytometry, the proportion of
AT2 cells in the alveolar cultures ranged widely, from 3% to 93% of
epithelial cells; there were sometimes immune, mesenchymal, or
airway cells remaining. This heterogeneity could be overcome by
sorting for HT2-2801 cells when needed. Finally, we analyzed the
transcriptomic profile of the alveolar organoids—one unsorted
(BAL 1) and one sorted (BAL 2)—alongside unsorted tissue-derived
organoids. The predominant cell type was AT2 in all three samples
(Figures 2C and 2D). No AT1 cells or transition states were observed.

In summary, we established and characterized airway and alveolar
lung organoids from human BAL. Our serum-free, feeder-free
methods carry several advantages: Initially unsorted, rare epithelial
cells grow out within 7–10days; all cells are from one person; many
cell types are represented; expansion and differentiation are feasible;
and organoids can be banked for future use. In preliminary studies,
similar results can be obtained with lung tissue and human bronchial
epithelial cells. Alveolar organoids from human BAL are more difficult
to expand than airway organoids and sometimes benefit from
downstream sorting for AT2 cells. Limitations include the variability
of BAL techniques and fluid composition, whichmay impact organoid
outgrowth, and a need to understand whether the cells that grow from
BAL fluid are representative of patients’ disease processes.Work is
underway to examine how the properties of organoids correlate to
specific lung conditions. Overall, these techniques enable new
strategies for modeling diverse lung diseases using accessible primary
human cells.�
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