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Abstract 

The microbiome plays a key role in the health of the human body. Interest often lies in 
finding features of the microbiome, alongside other covariates, which are associated 
with a phenotype of interest. One important property of microbiome data, which is 
often overlooked, is its compositionality as it can only provide information about the 
relative abundance of its constituting components. Typically, these proportions vary 
by several orders of magnitude in datasets of high dimensions. To address these chal‑
lenges we develop a Bayesian hierarchical linear log-contrast model which is estimated 
by mean field Monte-Carlo co-ordinate ascent variational inference (CAVI-MC) and 
easily scales to high dimensional data. We use novel priors which account for the large 
differences in scale and constrained parameter space associated with the compo‑
sitional covariates. A reversible jump Monte Carlo Markov chain guided by the data 
through univariate approximations of the variational posterior probability of inclusion, 
with proposal parameters informed by approximating variational densities via auxiliary 
parameters, is used to estimate intractable marginal expectations. We demonstrate 
that our proposed Bayesian method performs favourably against existing frequentist 
state of the art compositional data analysis methods. We then apply the CAVI-MC to 
the analysis of real data exploring the relationship of the gut microbiome to body mass 
index.

Keywords:  Compositional, Variational inference, Microbiome, Singular multivariate 
normal, Markov chain Monte Carlo

Introduction
The human microbiome is the combined genome of the microorganisms that live 
in the human body. It has been estimated that these microbes make up to 10 trillion 
cells, equivalent to the number of human cells [1]. Advances in genome sequencing 
technologies has enabled scientists to study these microbes and their function and to 
research microbiome-host interactions both in health and disease. The decreasing 
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cost and increasing accessibility of nucleotide sequencing means it is the primary tool 
used to study the microbiome [2]. Any microbiome dataset is compositional [3] as the 
magnitude of a single operational taxonomic unit (OTU) depends on the sum of all 
the OTUs counts, and only provides information about the relative magnitudes of the 
compositional components. This means that the standard methods of analysis such as 
linear regression are not applicable to microbiome data [4], unless a transformation is 
performed.

The large dimensions of these datasets often present a problem in variable selection 
where the number of covariates p exceeds the number of observations n ( p >> n ) and 
the space of possible combinations of significant variables is large, imposing a high com-
putational burden. Sparse variable selection of the p covariates is expected, where just a 
few microbes are associated with the response. Bayesian variable selection approaches 
have the advantage of being able to include prior knowledge and simultaneously incor-
porate many sources of variation. Shrinkage priors encourage the majority of regression 
coefficients to be shrunk to very small values when an estimator is applied identifying 
associations [5]. Alternatively, introducing latent variables produces posterior distribu-
tions of model inclusion and parameter values which enable model choice and a prob-
abilistic understanding of the strength and nature of the association [6]. The different 
approaches within explicit variable selection are characterised by the location of the 
latent variable and its relationship with the covariates ([7–9]).

To model compositional data, a transformation is required to transfer the composi-
tional vectors into Euclidean space. Various log-ratio transformations have been pro-
posed including additive log-ratio (alr), centred log-ratio (clr) [10] and more recently 
isometric log-ratio (ilr) [11]. The ilr transformation defines balances proportional to 
the log difference between two groups which are scale invariant. In ilr linear regres-
sion models, just the first parameter can be interpreted. Thus, the only way to interpret 
the role of d compositional parts for explaining the response is to consider d different 
regression models [12].

In the context of regression, the reparameterised alr transformation (or log-contrast 
model) removes the requirement for a reference category and results in a sum to zero 
constraint on the associated parameter space within the linear model, has proved to 
be useful in allowing a direct inference between selected covariates and the composi-
tional data set [13, 14] propose an adaptive l1 regularisation regression for the log-con-
trast lasso. This has been extended to multiple linear constraints for sub-compositional 
coherence across predefined groups of predictors [15]. To obtain a sparser model [16] 
introduce an additional feature selection step on those variables identified in a two-step 
log-ratio lasso. A general approach to convex optimisation, where the model has been 
extended to the high-dimensional setting via regularization has recently been proposed 
by [17]. In the Bayesian framework [18] introduce a generalised transformation matrix 
on the parameters rather than the covariates, as a function of a tuning parameter c, 
similar to the generalized lasso. This ensures parameter estimates remain in the p space 
and as c reaches infinity the sum to zero constraint is imposed. By incorporating the 
matrix into conjugate prior and avoiding any singular distributions by not strictly impos-
ing the zero sum constraint, a Gibbs sampler for the marginal posterior of the selection 
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parameter can be derived. Alternative Bayesian approaches treat the the microbiome 
predictors as random, parameterised by a multivariate count model. [19] combine this 
with the ilr transformation in a predictive model which identifies correlations across the 
microbiome. [20] cluster on a categorical covariate via a Gaussian mixture model in an 
ANOVA type model, but both approaches do not allow a direct inference between the 
compositional predictors and the response.

The abundances of features in microbiome data often differ by orders of magnitude. 
As far as we know this has not been explicitly accounted for in the current literature. In 
the Bayesian lasso [5] separate scale parameters can have a hierarchical prior placed on 
them rather than this component being marginalised over which results in the Laplace 
prior. In the regularisation case, the choice of hyperprior defines how the parameters are 
shrunk to zero. This model is easily extended to the adaptive lasso [21] by positing inde-
pendent exponential priors on each scale parameter, and then augmenting each tuning 
parameter with additional hyperpriors.

Typically, model selection is performed using Markov chain Monte Carlo (MCMC) 
methods. Various stochastic search based methods have been used to explore the model 
space in a computationally efficient manner ([9, 22, 23]). Despite this body of work, 
MCMC can still be considered too slow in practice for sufficiently large scale problems. 
Variational inference is an alternative technique which uses optimisation to achieve 
computational savings by approximating the marginal posterior densities. Its success in 
machine learning problems has led to concerted efforts in the literature to encourage its 
use by statisticians ([24, 25]). The speed of variational inference gives it an advantage, 
particular for exploratory regression, where a very large model is fitted to gain an under-
standing of the data and identify a subset of the microbiome which can be explored in 
more detail.

Approximate solutions arise in variational inference by restricting the family of densi-
ties which can be used as a proxy for the exact conditional density. Typically, the mean 
field variational family is used where independence is assumed across the factors. Thus 
by specifying conjugate priors, approximate marginal posteriors are members of the 
exponential family [26]. However, many models of interest such as logistic regression 
and non conjugate topic models, do not enjoy the properties required to exploit this 
algorithm. Using variational inference in these settings require algorithms to be adjusted 
to for the specific model requirement. A variety of strategies have been explored includ-
ing alternative bounds ([27, 28]), numerical quadrature [29] and Monte Carlo approxi-
mation [30].

We propose a Bayesian hierarchical linear log-contrast model for compositional data 
which is estimated by mean field Monte Carlo co-ordinate ascent variational inference. 
We use the alr transformation within a log-contrast model which removes the need to 
specify a reference category. Sparse variable selection is performed through novel pri-
ors within a hierarchical prior framework which account for the constrained parameter 
space associated with the compositional covariates and the different orders of magni-
tude in the taxon abundances. As our constrained priors are not conjugate, Monte 
Carlo expectations are used to approximate intractable integrals. These expectations 
are obtained via a reversible jump Monte Carlo Markov chain (RJMCMC) [31], which is 
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guided by the data through univariate approximations of the intractable variational pos-
terior probability of inclusion. We exploit the nested nature of variational inference by 
proposing parameters from approximated variational densities via auxiliary parameters. 
Model averaging over all the explored models can be performed and shrunk estimates of 
the regression coefficient (by the model uncertainty) are available. The approach accom-
modates high dimensional microbial data and offers the potential to be scaled up for 
models with multiple responses.

We compare the performance of the proposed modelling approach with the lasso, the 
log-contrast lasso [14], two-stage log-ratio lasso [16] and selbal [32] on simulated data. 
Our method is then applied to a subset of the “Know Your Heart” cross-sectional study 
of cardiovascular disease [33] in order to examine the association of the gut microbiome 
with body mass index (BMI). The study was conducted in two Russian cities Novosi-
birsk and Arkhangelsk, enrolling 4542 men and women aged between 35 and 69 years 
recruited from the general population. A health check questionnaire was completed, 
providing information on smoking, weight and levels of alcohol consumption. We ana-
lyse the microbiome of 515 subjects from the Arkhangelsk region at the phylum and 
genus level, as the 16 S rRNA sequencing of faecal samples was only performed for these 
participants, alongside age and health covariates.

Methods
Microbiome model

The microbiome data begins as raw counts for each taxon. Any zeros are replaced by 
a small pseudo-count (typically 0.5), before each row is standardised to sum to 1. The 
sample space of a vector of components is a simplex for each data point, where the rows 
of each vector make up the design matrix Qn×d . The set of compositional explanatory 
variables can be transformed onto the unconstrained sample space Rd−1 using the alr 
transformation

where qi is the ith row of Q and the ratios have been arbitrarily chosen to involve the 
division of each of the first d − 1 components by the final component. The log linear 
model, with the alr transformed variables as proposed by [13], can be expressed as

where θ̃ = (θ1, ..., θd−1)
T is the corresponding (d − 1) vector of regression coefficients 

and ǫi is independent noise distributed as N (0, σ 2) . Although convenient, the interpreta-
tion of the model depends on the arbitrary choice of the reference category. If we expand 
the dot product alr(qi) · θ̃ and set

(1)alr(qi) = log
qi1

qid
, log

qi2

qid
, ..., log

qid−1

qid
,

(2)yi = α1n + alr(qi)θ̃ + ǫi
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the log contrast model can be conveniently expressed in matrix form [14] as

where Z = (log q1, ..., log qd) is the n× d compositional design matrix and 
θ = (θ1, ..., θd)

T is a d-vector of regression coefficients constrained to the affine 
hyperplane.

This likelihood is used by [18] who specify a d dimensional multivariate normal distri-
bution on θ within a “spike-and-slab” prior,

where Jd is a matrix of ones and V is the generalised transformation matrix which incor-
porates the tuning parameter c to constrain the θ parameter space and takes the form 
in (5) for the alr transformation. This approach allows the probability distribution to 
remain in the d dimensional space as V is a matrix of full rank, facilitating conjugate 
updates, as the sum to zero constraint is not imposed exactly.

Interest often lies in assessing the association of unconstrained data, in the form of cat-
egorical or continuous covariates against the response, alongside the microbiome. Two 
additional design matrices are added to the likelihood, X which comprises the scaled 
continuous covariates and W  which contains the dummy variables for the g = 1, ...,G 
categorical variables coded to indicate the mg levels with respect to the intercept. The 
likelihood for our model is thus expressed as

Compositional priors

The linear constraint on the unconstrained vector can be expressed in matrix form as

where T is an idempotent matrix of rank d − 1 . If we originally parametrise 
θj ∼ N (µj ,ψj) , where the large differences in the order of magnitude of each row of the 
Z design matrix are accounted for by allowing each parameter θj to have a separate vari-
ance parameter ψj , then the constrained random variables associated with the composi-
tional explanatory variables are from a singular multivariate normal distribution

(3)θd = −

d−1
∑

j

θ̃j ,

(4)y = α1n + Zθ + ǫ subject to

d
∑

j=1

θj = 0

(5)θ |σ 2,ψ ,V ∼ Nd(0, σ
2ψV), V = Id −

c2

1+ c2d
Jd

(6)y = α1n + Xβ +W ζ + Zθ + ǫ subject to

d
∑

j=1

θj = 0.

(7)T = (Id − (1/d)Jd)

(8)θ |µ,ψ ∼ SMVNd(Tµ,Tdiag(ψ)TT )
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with ψ a vector of scale parameters. This prior respects the sum to zero constraint 
imposed by the reparametrisation of the likelihood in (6). The distribution is degenerate, 
the transformation matrix T means the covariance matrix is singular, and will assign 0 
values to all sets in the d dimensional space. [18] treat the constraint as a tuning parame-
ter, restricting the values that θ can take whilst still remaining in the d dimensional space 
so that the marginal posterior can be obtained in closed form. Our approach imposes 
the constraint exactly. The singular multivariate normal prior for the compositional data 
can be considered to be at the unobtainable limit of c in the alr transformation approach 
(5), when the tuning parameter creates a singular matrix where the standard normal 
prior is no longer appropriate.

We augment the prior on θ with dependent latent indicator variables from a product of 
Bernoulli distributions which have been truncated to account for the alr transformation 
which prevents the selection of a single taxon into the model

where I is the indicator function. This truncation is particularly important in the 
presence of sparsity. The full singular multivariate normal spike-and-slab prior for 
p(θ |ξ) = p(θ ξ |ξ)p(θ ξ̄ |ξ) , where θ ξ and θ ξ̄ are subvectors of θ such that

�+
ξ  denotes the Moore-Penrose pseudo inverse of the matrix TξD(ψξ )Tξ defined by 

A+ = VS+UT if A = USVT is the singular value decomposition of A and S+ is the 
diagonal matrix which has the same entries as S and where S+i i = 1/Sii for the nonzero 
diagonal entries. The pseudo-determinant det∗ is defined as the product of the nonzero 
eigenvalues of the matrix and ξ is a vector of zeros and ones. The θ ξ parameters are 
dependent (the covariance for unit scale is equal to the fraction −1/dξ and for the case of 
dξ = 2 the correlation is 1). This prior implies a univariate spike-and-slab on the diago-
nal of the covariance matrix in (10),

A beta distribution is placed on the sparsity parameter κ and the hyperparameter bψ is 
given a gamma prior. This approach can be interpreted as replacing the continuous mix-
ing density in the Bayesian lasso, which can have either hierarchical structure [21] or 
be marginalised over [5], with a discrete mixture. This set of explicit variable selection 
priors on the compositional data ensures that the marginal posterior of variable ξj repre-
sents the inclusion of the jth taxon in the model.

(9)p(ξ |κ) ∝
∏

j=1

κξj (1− κ)1−ξj I
[

∑

j

ξj �= 1
]

,

(10)

p(θ ξ |�, ξ) =
1

(det∗(2π�+
ξ ))

(−1/2)
exp

(

−
1

2
θ ξ�

+
ξ θ ξ

)

and p(θ ξ̄ = 0|ξ) = 1,

(11)p(ψ |ξ) =

d
∏

j=1

[

b
aψ
ψ

Ŵ(aψ)
(ψj)

−aψ−1 exp{−bψψ
−1
j }

]ξj

δ0(ψj)
1−ξj ψj > 0 ∀ j.
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Priors

The choice of the remaining prior distributions is partly down to convenience. The prior 
distributions and likelihood are semi-conjugate pairs which means the optimal form for 
the mean field variational density is in the same exponential family form.

We employ a variable selection spike-and-slab prior [34] for βs associated with the con-
tinuous variables in the design matrix X , where each s parameter is independent. The spike 
is a point mass at 0 (Dirac distribution) with probability 1− p(γs) = 1− ω and the slab is 
a zero centred Gaussian with variance w which requires the variables to be standardised. 
The binary latent indicator variable γs represents the inclusion of the sth covariate in the 
model.

In the case of the categorical data matrix, we are interested in selecting the group of 
variables associated with the response into the model, rather than a particular level. 
Each factor variable (or group) g = 1, ..,G has j = 1, ...,mg ,mg+1 levels which are coded 
as dummy variables in W  with reference to the intercept. Motivated by the Bayesian 
group lasso [35] who introduce binary indicators to perform selection both between and 
within the groups levels, we employ a variable selection spike-and-slab prior on the vec-
tor ζ g with dimension mg . The spike is a point mass at 0 (Dirac distribution) with prob-
ability 1− p(χg ) = 1−  ̺ and the slab is a zero centred Gaussian with variance v. The 
binary latent indicator variable χg represents the inclusion of the gth categorical variable 
into the model. In the case where there factors have just 2 levels, the prior reduces to the 
same form as its unrestricted continuous counterpart, with a different scale parameter.

Hierarchical priors are also included to fully incorporate the uncertainty surround-
ing these parameters. The probability that a given covariate in the design matrices of 
X and W  affects the response is modelled by the parameters ω and  ̺, with beta priors. 
Inverse gamma distributions with gamma (shape and scale) hyperpriors on their respec-
tive scales are placed on the prior variance parameters w and v.

Variational inference

We employ coordinate ascent variational inference (CAVI) [36] as our estimation proce-
dure, rather than relying entirely on MCMC which often requires substantial computing 
resources when the dimensionality of the problem is large. We use structured mean field 
variational family, where dependencies between parameters are explicitly incorporated 
within blocks and independence is retained across the blocks ([37–40]). Each latent 
variable is still governed by a distinct factor in the variational density. An example of 
an approximating posterior block which captures the natural dependency between the 
latent indicator variable γj and the corresponding regression coefficient βj directly asso-
ciated with the design matrix X is

This leads to a natural type of approximation for hierarchical Bayesian models, where 
the hierarchical structure of the prior often suggests a good hierarchical structure for 
the posterior approximation. The full structured mean field approximation distribu-
tion q(ϑ) , where ϑ represents all of the latent variables in the model, is defined in the 

(12)q(βj , γj) = q(βj|γj)q(γj).
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Additional file 1: Sect. 1. The full DAG of the Monte Carlo coordinate ascent variational 
inference (CAVI-MC) model is in Additional file 1: Fig. S2.

Unconstrained updates

The variational inference updates are available analytically for all unconstrained param-
eters and hyperparameters in the model. Derivations are given in the Additional file 1: 
Sect. 1. The updates involve a combination of univariate and multivariate calculations. 
The regression parameters directly associated with the X and W  design matrices have 
joint updates in the same spike-and-slab form as their priors. The conjugate update for 
q(βs, γs) is

with free parameters

and

where (·)(1) denotes the q expectation. The conjugate update for q(ζ g ,χg ) is

where the free parameters for ζ g are updated by the multivariate extension of the previ-
ous univariate update,

q(βs|γs, y) = N (µβs , σ
2
βs
)γsδ0(βs)

1−γs q(γs|y) = Bern((γs)
(1))

σ 2
βs

=
(

�Xs�
2(σ−2)(1) + (w−1)(1)

)−1
,

µβs =(σ−2)(1)σ 2
βs
XT
s

(

y − (α)(1)1n −
∑

k �=s

Xk(βk)
(1)+

−
∑

g

W g (ζ g )
(1) − Z(θ ξ )

(1)

)

(γs)
(1) =

[

1+ exp

{

(log(1− ω))(1) − (logω)(1)+

−
1

2

(

(logw−1)(1) − µ2
βs
σ−2
βs

− log(σ 2
βs
)

)}]−1

,

(13)q(ζ g |χg , y) = Nmg (µζg
,�ζg )

χg δ0(ζ g )
1−χg q(χg |y) = Bern((χg )

(1)),
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The marginal expectation of ζ g and βs is the mean of the conditional density when the 
parameter is included in the model, shrunk by the probability of being included in the 
model. The nested q density update for each free parameter(s) is the expectation of the 
log joint distribution with respect to all the other factors. Thus, any update involving a 
marginal expectation from a parameter with a spike and slab prior involves a form of 
regularisation.

The selection of the spike-and-slab priors for βs , ζ g and θ with sparsity inducing 
hyperparameters for variable selection, shrinks the parameters estimates in the vari-
ational updates rather then performing explicit variable selection as in MCMC. These 
estimates are a useful proxy for the final model effects, but as opposed to a model 
with regularisation priors, the expectation of the model indicator parameters gives 
us the probability of a covariate being associated with the response. In the case of 
ζ g , which is associated with the gth categorical covariate, the parameterisation has a 
convenient interpretation. Each element in the vector is free to vary but all elements 
are shrunk by the same value. Thus the expectation (χg )(1) is the probability of the 
categorical covariate (rather than the individual levels) being included in the model.

CAVI‑MC

The conditional vector update q(θ |ψ , ξ) is available analytically and takes the form

where δ0 is the Dirac distribution on the subvector θ ξ̄ with updates

�ζg =
[

(σ−2)(1)W T
g W g + (v−1)(1)

]−1
,

µζg
=(σ−2)(1)�ζgW

T
g

(

y − (α)(1)1n −
∑

s

Xs(βs)
(1)+

−
∑

k �=g

W k(ζ k)
(1) − Z(θ)(1)

)

,

(χg )
(1) =

[

1+ exp

{

(log(1− ̺))(1) − (log ̺)(1)+

−
mg

2
(log v−1)(1) −

1

2
µT
ζg
�−1

ζg
µζg

−
1

2
log(det(�ζg ))

}]−1

.

(14)q(θ ξ |ξ , y) = SMVNdξ (Tξµθξ
,Tξ�θξTξ ), q(θ ξ̄ |ξ , y) = δ0(θ ξ̄ ),

(15)µθξ
= �θξ (σ

−2)(1)ZT
ξ



y − (α)(1)1n −
�

s

Xs(βs)
(1) −

�

g

W g (ζ g )
(1)





(16)�θξ =
(

(TξD(ψξ )Tξ )
+ + (σ−2)(1)ZT

ξ Zξ

)−1
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The truncated Bernoulli prior distributions for ξ and unique scale parameter ψj for each 
element in θ , prevents a conjugate posterior update for the joint block q(θ ,ψ , ξ) . All 
other updates are available analytically.

The difficult to compute joint q(θ ,ψ , ξ) update is performed by inserting a Monte 
Carlo step within the mean field variational inference approach. We take advantage of 
the structure of the target density p(ϑ , y) ≡ f (ϑ) (the data y is omitted for notational 
purposes as its fixed) which has the form

for r-dimensional constant vector η , vector function T (ϑ) and relevant scalar functions 
h > 0 . In our case this admits the factorisation for all j /∈ J

where J  is the set of all analytically available updates. This allows us to avoid generating 
and storing the samples from the approximating densities which would involve consider-
able computational cost, by using the q marginal expectations in the Monte Carlo esti-
mate for q(θ |ψ , ξ) . [30] show that, under regularity conditions, an CAVI-MC recursion 
will get arbitrarily close to a maximiser of the evidence lower bound with any given high 
probability.

The MCMC approach involves two move types, within-model moves where the 
samples are generated from a Metropolis-Hastings sampler and between-model 
moves which are sampled from a RJMCMC. The samplers involve using some form of 
the joint approximating posterior q(θ ,ψ , ξ |y) ∝ q(θ |ψ , ξ , y)q(ξ ,ψ |y) which is simpli-
fied as q(θ |ψ , ξ , y) has the conjugate spike-and-slab form (14).

Randomly choose either a between-model move which consists of sequentially 
updating ξ ,ψ |ξ and θ |ψ , ξ or a within-model move where ξ is not updated. This natu-
rally leads to questions regarding the proposals for ψ which has a constrained support 
and ξ which has the potential to be a very large binary space.

Between‑model RJMCMC ‑ approximating q(ξ ,ψ |y) to p(ξ |ϑ) for the proposal distribution 

jm(ξ , ξ
′)

The choice of priors for the parameters associated with microbiome features, the indica-
tor vector ξ and set of scale parameters ψξ , prevents a conjugate update for q(θ ,ψ , ξ) . An 
MCMC step is introduced to sample from the intractable q approximating posterior. To 
search the binary space we use a RJMCMC where the proposal for ψj conditional on ξj = 1 
is from the q approximating density of the auxiliary parameter �j

where the calculation of the free parameters a∗�j
 and b∗�j

 is explained in the next section. 
θ is generated directly from the singular multivariate normal target distribution (14).

There is considerable research in sampling high-dimensional binary vectors. [41] propose 
a general model for the proposal which combines local moves with global ones by changing 

(17)f (ϑ) = h(ϑ) exp(�η,T (ϑ)� − A(η)), ϑ ∈ Sp

h(ϑ) = hq(ϑj)(ϑj)hq(ϑ−j)(ϑ−j), Tl(ϑ) = Tl,j(ϑj)Tl,−j(ϑ−j), 1 ≤ l ≤ r,

(18)π(ψj|ξj = 1) = IGq(a
∗
�j
, b∗�j

),



Page 11 of 29Scott et al. BMC Bioinformatics          (2023) 24:210 	

blocks of variables. They find that the acceptance rates for Metropolis-Hastings samplers 
that include, exclude or swap a single variable improves. [22] extend their model with adap-
tive parameters which change during the mixing of the MCMC. Motivated by incorporat-
ing information from data into the proposal parameters, we use the variational inference 
posterior distribution q(ξ ,ψ |y) which is only available up to a constant of proportionality

to obtain a univariate approximation relative to the jth element to guide the RJMCMC. 
These normalised probabilities are used to obtain our proposal probabilities in a birth-
death and swap sampling scheme. Similar to adaptive parameters in MCMC, these selec-
tion probabilities are updated at each iteration of the CAVI.

The pseudo determinant in (19) is approximated by removing the constraints Tξ and tak-
ing the MCMC expectation conditional on ξj = 1 . So for the jth element the approximation 
is

where the curly brackets {} denote an MCMC expectation and 0/ defines an expectation 
over all non-zero values. A similar approach can be used to approximate the determi-
nant containing �θξ

where σ̄ 2
θj

 is the non-zero variance average over the MCMC iterations, obtained by 

extracting the diagonal from �θ(ξ ,ψ)
 at each iteration. If the jth term has not been included 

in the model the term is approximated by

After approximating �θξ to a scalar for each jth element the matrix dot product reduces 
to

To account for the cross product terms which contains the elements of ξ not equal to 
j and the associated µθ terms, a combination of conditional expectations and marginal 
expectations which shrink the values in proportion to its probability of being zero, is 

(19)

q
�

ξ ,ψ
�

�y
�

∝ exp

�

1

2
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µT
θ(ξ ,ψ)
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TT
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�

+

+
1

2
log
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∗
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+
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ξj(log κ)
(1) −

1

2
log
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∗
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TξD(ψξ )Tξ

�

�

+

+
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j

(1− ξj)(log(1− κ))(1) − (aψ + 1)
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j
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�

j
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−1
j +

+(aψ log(bψ)− log(Ŵ(aψ))
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j
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

,

(20)log(det∗(TξD(ψξ )Tξ )) ≈ {log(ψj)}
{1}
0/ ,

log(det∗(Tξ�θξTξ )) ≈ log(σ̄ 2
θj
),

(21)log(det∗(Tξ�θξTξ )) ≈ log

(

[

�Zj�
2(σ−2)(1)

]−1
)

.

(22)µT
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(

∑
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.
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used. As ξj can not be separated from the sum in the numerator dξ , two approximations 
of the matrix dot product are used conditional on the expectation from the previous 
chain.

Defining the expectations with respect to the parameter currently being updated from 
the previous MCMC by a curly bracket as:

•	 {µθj }
{1}
0/  : Conditional expectation ξj = 1 . Weighted average of the nonzero terms from 

previous chain,
•	 {µθj }

{1} : Expectation wrt q from the previous chain,
•	 {dξ }

{1} : Expectation wrt q from the previous chain,

the approximation of the dot product (Tξµθξ
)TTξµθξ

 for {dξ }{1} > 2 is thus

and

Although {dξ ∈ N0|dξ ≤ d, dξ �= 1} , the support of the MCMC expectation {dξ }{1} is the 
positive real line so we threshold on 2. When {dξ }{1} > 2 the probabilities used in the 
proposal distribution for the RJMCMC, derived from approximating Equation (19) and 
normalising is

which contains the variational expectations and an MCMC conditional expectation 
from the previous iterations. This is then used to propose the various move types in the 
RJMCMC.

Pseudo updates for MCMC proposals

A conjugate update for the parameters associated with the microbiome features 
q(θ ,ψ , ξ) is prevented by the choice of priors for the indicator vector ξ and set of scale 
parameters ψξ . Samples from the intractable q approximating posterior are simulated 
from an MCMC step instead. The move types in the RJMCMC for ξ use an element-
wise approximation of the joint q(ξ) density (23). For the proposal distribution of ψ , we 

σ̄−2
θj

(

∑
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
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use the model likelihood and an unconstrained approximation to the constrained pri-
ors. In order to do this we define auxiliary parameters (upper case Greek letters) which 
are unconstrained versions of the constrained parameters. We derive pseudo variational 
updates from an unconstrained model with a simpler prior parametrisation, then use 
the q approximating distribution of the relevant auxiliary parameter as our proposal for 
ψ . We can think of the auxiliary parameters as introducing an alternative directed acy-
clic graph (DAG) which is updated first, helping us to approximate the model in order 
to guide the MCMC step (depicted in the Additional file 1: Fig. S1). These updates are 
refined by the full variational inference updates which account for the constraint at each 
iteration. The parameter κ and the hyperparameters a�, b� which are set to aψ , bψ pro-
vide a link back to the constrained model.

The series of pseudo variational updates are determined from a simple prior parametri-
sation where the parameters associated with the compositional covariates are not con-
strained to sum to 0. This unconstrained model has the following prior parametrisation

where � are the unconstrained version of the θ parameters, � are the variance param-
eters for � which are both dependent on the model selection parameters ϒ . The prior 
for the model selection parameter ϒj is a simple Bernoulli distribution. The remain-
ing priors and likelihood take the form defined in the initial prior parametrisation. The 
introduction of independence across each univariate (�j ,�j ,ϒj) block, (where the data 
is being treated as unconstrained) ensures the q expectations are all available in closed 
form (derived in the Additional file 1: Sect. 1).

Despite the similarities of the prior parametrisation to (13), the addition of a sepa-
rate scale parameter �j for �j prevents a joint conjugate update on the (�j ,�j ,ϒj) 
block. Instead we update q(�j ,ϒj) (for j = 1, ..., d ) before updating q(�j|ϒj) . Both 
require expectations conditional on ϒj as well as the typical marginal expectations. 
The full q(�j ,ϒj) update is

The binary form of the pseudo update for �j and ϒj enables us to determine the values 
for the conditional expectations. In (24) we have under q, where we condition on the 
value of ϒj

p(�j|�j ,ϒj) = N (�j|0,�j)
ϒjδ0(�j)

1−ϒj ,

p(�j|ϒj) = IG(�j|a�, b�)
ϒjδ0(�j)

1−ϒj ,

p(ϒj) = Bern(ϒj|κ),

(24)q(�j ,ϒj) ∝ N (�j|µ�j , σ
2
�j
)ϒjδ0(�j)

1−ϒj .

(25)

{
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(
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2
log σ 2
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+ (log κ)(1) −

Eq(log�j|ϒj)

2
+

µ2
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2
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−1
j |ϒj]

)}ϒj
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(1− κ)(1) + δ0(�j)
}1−ϒj
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which allows us to set the expectations in the normal variance update as Eq[�
−1
j |ϒj = 1]

The conditional expectation prevents us averaging over ϒj which shrinks the marginal 
expectation, creating an update which has the same form as (13). Using the form of 
(25) to determine the conditional expectation and normalising gives the probability of 
inclusion

The univariate approximation of q(ξ ,ψ |y) (23) can be interpreted as a refinement 
of (ϒj)

(1) using MCMC expectations and information on all elements of ξ to partially 
account for the constraint in the probability of inclusion.

The spike-and-slab form of the pseudo update for q(�j|ϒj) allows us to again back 
out the conditioning in the conditional expectation of Eq[�

2
j |ϒj] in b∗�j

.

As the update �j is conditional on ϒj , the free parameters in the proposal distributions 
are not a function of shrunken estimates. The q(�j|ϒj , y) auxiliary approximating den-
sity is then used to propose scale parameters with the appropriate support, which are 
informed by the data, for ψξ in the MCMC move.

Algorithm

CAVI is performed by iterating through the analytical variational updates, maxim-
ising the evidence lower bound (ELBO) with respect to each coordinate direction 
whilst fixing the other coordinate values. For the q(θ ,ψ , ξ) block an MCMC is imple-
mented to obtain Monte Carlo estimates of the intractable marginal expectations of 
the approximating densities. The proposal probabilities for the sampling scheme are a 
function of the data and the free parameters, and are updated at each iteration of the 
CAVI.

For each run we compute the ELBO (derived in Additional file  1: Sect.  1), with the 
updated free parameters, until this converges to the local optimum. The ELBO is no 
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2
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longer monotonically increasing because of the Monte Carlo variability, but we are able 
to declare convergence when the random fluctuations are small around a fixed point. 
The implementation of the overall approach is described in Algorithm  1, with the 
MCMC move detailed in 2.

It is computationally inefficient to start with a large number of iterations m, when the 
current variational distribution can be far from the maximiser. The software allows the 
user to specify a smaller number of iterations to begin with before increasing the num-
ber of iterations as the algorithm becomes more stable, improving the accuracy of the 
Monte Carlo estimates.
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Simulation study
We validate the performance of our variational inference model, focusing on the com-
positional element, in a simulation experiment against four frequentist variable selec-
tion approaches with software freely available; L1 lasso [42], log-contrast lasso [14], 
two-stage log-ratio lasso [16] and selbal [32]. All except the vanilla lasso explicitly 
account for the compositional nature of the design matrix within the feature selection.

We simulate data from an additive log-ratio model. An n× d data matrix O = (oij) 
is drawn from a multivariate normal distribution Np(µo,�o) , and then the composi-
tional covariate matrix Q = (qij) is obtained via the transformation qij =

exp(τoij)
∑d

k=1 exp(τoik )
 . 

The covariates thus follow a logistic normal distribution [43]. To account for the dif-
ferences in the order of magnitudes of the components so common in microbiome 
data, we fix τ = 2 and let µoj = log(d × 0.5) for j = 1,..., 5 and µoj = 0 otherwise. Thus 
we have 5 of the compositional (or microbiome) features with a larger order of magni-
tude. We vary the number of compositional features d from 45 to 200 for n = 100 , to 
ensure a setting where the features out number the observations. As the correlations 
between the abundances of features in the microbiome can vary quite considerably 
according to the taxonomy class, we choose three settings for �o : �o = I, (ρ|i−j|) with 
ρ = 0.2 or 0.4.

We select 6 compositional features to be associated with the response, 3 of which 
have a larger order of magnitude, via a d dimensional θ vector with non-zero ele-
ments θ ξ = (1,−1.5, 0.5,−1, 1.5,−0.5) . The signal to noise ratio (SNR) is defined as 
SNR = Mean(|θ ξ |)/σ . To generate the data with the various choices of SNR, this 
expression is solved for σ and 100 simulations are generated.

Rearranging the simulated data model as we have only 3 unique non-zero values of θ

we obtain the all-pairs log-ratio model with a 0 intercept, as in [16].
The log-contrast lasso of [14] is a L1 penalization lasso on the log transformed vari-

ables with the additional constraint that the sum of coefficients is zero. This is fitted 
using the glmnet.constr in R, by augmenting the data with an additional data point 
with all features equal to 1 and a response value of zero. By assigning this value a large 
weight the resulting parameter estimates will approximately sum to zero. A two-stage 
log-ratio lasso procedure by [16] builds on the [14] model by adding an additional for-
ward selection step which effectively prunes the model for a sparser solution, whilst 
maintaining the parameter constraint. The selbal [32] is a balance selection algorithm 
which starts with a search of the two taxa whose balance, a log-contrast where the 
coefficients of the linear function sum to zero, is most closely associated with the 
response. Once the first two-variable balance is selected, the algorithm performs a 
forward selection process to add further variables to the model. For all of the com-
parison methods, prediction and cross-validation is performed over a grid of values 
to determine model selection and tuning parameter estimation.

As the focus of the simulation study is on the compositional element, the param-
eters associated with the unrestricted design matrix are omitted from the Bayesian 
structure in the CAVI-MC. Vague priors are placed on the hyperparameters for the 

(29)yi = 1 log(qi1/qi6)+ 1.5 log(qi2/qi7)+ 0.5 log(qi3/qi8)+ ǫi for i = 1, ..., n,



Page 18 of 29Scott et al. BMC Bioinformatics          (2023) 24:210 

CAVI-MC model (highlighted with red in the DAG (Additional file 1: Fig. S2)). Stand-
ard variable selection in high-dimensional data with spike-and-slab priors in a Bayes-
ian framework is well understood [44]. The sparsity of the compositional features is 
controlled by the choice of aκ and bκ on the Beta hyperprior on κ . We fix their choice 
by specifying a prior average number of covariates, d∗ , expected to be included in the 
model, setting

We perform the simulations with d∗ equal to 6 or 12 and report the average, reflecting 
uncertainty in d∗.

Since the optimisation problem for maximizing the ELBO is non-convex, the approach 
can be sensitive to initialization of the variational parameters. For each simulation, the 
variational parameters are initialized via random samples from the associated prior 
distribution. 25 variational inference iterations are performed (although the algorithm 
typically converges after approximately 6 iterations) for each run. The initial number of 
between-model MCMC iterations is set to 5000, before 10,000 iterations are performed 
after the 5th set of variational inference updates.

To assess the performance of the approaches we use metrics which evaluate the ability 
to select the correct variables and estimate the appropriate effects. The prediction error 
(PE), defined as PE = 1

ntest
(ytest − Ztest θ̂ train)

T (ytest − Ztest θ̂ train) , is computed using an 
independent test sample of size 5. We compute the l2 loss ||θ̂ − θ ||2 and bias squared 
to assess the accuracy of the coefficient estimates. To asses the accuracy of the variable 
selection, the true positive rate (TPR or sensitivity) and false positive rate (FPR or 1 - 
specificity) is reported, where positives and negatives in the context of the frequentist 
approaches refer to non-zero and zero coefficients respectively. For each of these met-
rics, the respective standard deviation across datasets is included. Variable selection for 
the CAVI-MC is performed by thresholding the marginal approximate posterior distri-
bution E[q(ξj|y)] at 0.5. The approximate posterior mean is used for the parameter esti-
mate of the Bayesian model.

The vanilla lasso and the log-contrast lasso consistently detect the true parameters for 
low SNRs, but this comes at a considerable cost of a high false positive rate. This failure 
to capture the sparsity of the true model is a function of the the number of composi-
tional covariates and the correlation between the compositional covariates. The results 
for ρ = 0 and d = 45 and d = 200 are plotted in Figs. 1 and 2. When d is 45 and ρ = 0.4 
these two approaches can incorrectly select over a third of the covariates. This is not 
the case with either the selbal, log-ratio lasso or the CAVI-MC. These methods control 
for false positives whilst still maintaining a high probability of identifying the correct 
features.

The proposed CAVI-MC Bayesian method out performs the constrained lasso and 
selbal with respect to FPR, and prediction error (Tables  1, 2, 3, 4, 5, 6, 7 and  8). The 
performance of the CAVI-MC is very similar to the log-ratio lasso for moderate and 
strong SNRs. The CAVI-MC requires slightly more signal to detect the true parameters, 
but consistently outperforms the log-ratio lasso in controlling for false positives. The 
Bayesian approach has the additional benefit of a posterior distribution for each of the 

(30)aκ = 1 bκ =
(d − d∗)

d
.
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Fig. 1  Results of the simulation study for d = 45 and ρ = 0 . The “% true positive recovered” reports the 
proportion of times that the true parameters are selected in the model. The “% nulls selected” graph shows 
the average fraction of null variables selected in the model

Fig. 2  Results of the simulation study for d = 200 and ρ = 0 . The “% true positive recovered” reports the 
proportion of times that the true parameters are selected in the model. The “% nulls selected” graph shows 
the average fraction of null variables selected in the model
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associated compositional parameters θj in the model and additional model flexibility. 
Where as the log-ratio lasso is restricted to models of the form of (29), the CAVI-MC 
can accurately capture models for any number of unique non-zero values.

Each of the methods ability to detect the true parameters in the model deterio-
rate in the presence of large correlation and low SNR (Tables  1 and 2 ). The selbal 
appears to be the most robust method for larger correlation but clearly struggles to 
select the correct features even with much higher SNRs. The between-model moves 
in the CAVI-MC rely on a RJMCMC which is guided by an approximation of the like-
lihood. When the signal is low and correlation high, this reduces the ability to guide 

Table 1  Table of true positive rate, false positive rate, L2 loss and prediction error for the additive-
log-ratio model with SNR of 0.5 and d of 45

Bates refers to the two-stage log-ratio lasso and VB refers to the CAVI-MC

Method ρ TPR FPR L2 PE

Lasso 0 0.937 ± 0.091 0.262 ± 0.136 18.465 ± 1.933 4.741 ± 2.901

Lin 0 0.972 ± 0.067 0.266 ± 0.124 18.572 ± 1.847 4.828 ± 2.928

Bates 0 0.822 ± 0.147 0.029 ± 0.048 19.504 ± 1.803 4.837 ± 3.059

Selbal 0 0.655 ± 0.117 0.002 ± 0.008 21.159 ± 1.541 5.305 ± 3.570

VB 0 0.678 ± 0.111 0.002 ± 0.008 20.072 ± 1.560 4.687 ± 2.948

Lasso 0.2 0.882 ± 0.133 0.271 ± 0.140 18.442 ± 1.996 5.051 ± 2.951

Lin 0.2 0.897 ± 0.125 0.292 ± 0.143 18.526 ± 2.215 4.939 ± 2.866

Bates 0.2 0.767 ± 0.128 0.042 ± 0.057 19.425 ± 1.828 5.023 ± 2.727

Selbal 0.2 0.637 ± 0.114 0.005 ± 0.012 21.259 ± 1.718 4.815 ± 2.800

VB 0.2 0.640 ± 0.141 0.002 ± 0.007 20.156 ± 1.549 4.410 ± 2.475

Lasso 0.4 0.825 ± 0.137 0.294 ± 0.163 18.330 ± 2.118 4.661 ± 3.396

Lin 0.4 0.835 ± 0.139 0.354 ± 0.151 18.322 ± 2.180 4.651 ± 3.205

Bates 0.4 0.692 ± 0.165 0.058 ± 0.079 19.471 ± 2.169 4.583 ± 3.437

Selbal 0.4 0.550 ± 0.168 0.004 ± 0.012 21.134 ± 1.699 4.733 ± 3.852

VB 0.4 0.428 ± 0.211 0.001 ± 0.005 20.835 ± 2.021 4.370 ± 2.948

Table 2  Table of true positive rate, false positive rate, L2 loss and prediction error for the additive-
log-ratio model with SNR of 0.5 and d of 200

Method ρ TPR FPR L2 PE

Lasso 0 0.820 ± 0.118 0.086 ± 0.056 18.037 ± 3.142 4.673 ± 2.765

Lin 0 0.793 ± 0.130 0.099 ± 0.061 17.830 ± 3.280 4.746 ± 2.753

Bates 0 0.665 ± 0.124 0.007 ± 0.013 19.862 ± 2.434 5.052 ± 3.219

Selbal 0 0.523 ± 0.165 0.001 ± 0.002 21.987 ± 2.050 5.257 ± 3.453

VB 0 0.608 ± 0.138 0.000 ± 0.001 21.392 ± 2.388 4.760 ± 3.139

Lasso 0.2 0.797 ± 0.145 0.097 ± 0.069 18.149 ± 3.537 5.903 ± 3.475

Lin 0.2 0.813 ± 0.136 0.129 ± 0.082 17.236 ± 4.241 6.590 ± 3.841

Bates 0.2 0.662 ± 0.186 0.009 ± 0.015 19.785 ± 2.792 6.229 ± 4.564

Selbal 0.2 0.523 ± 0.162 0.001 ± 0.003 21.988 ± 1.979 6.763 ± 3.814

VB 0.2 0.617 ± 0.141 0.002 ± 0.007 20.739 ± 2.174 6.409 ± 3.599

Lasso 0.4 0.705 ± 0.150 0.112 ± 0.071 17.574 ± 3.755 7.193 ± 4.369

Lin 0.4 0.615 ± 0.203 0.125 ± 0.088 17.864 ± 4.715 8.344 ± 4.456

Bates 0.4 0.545 ± 0.199 0.011 ± 0.015 20.014 ± 2.700 6.401 ± 3.994

Selbal 0.4 0.455 ± 0.162 0.002 ± 0.004 21.533 ± 1.790 6.932 ± 5.012

VB 0.4 0.295 ± 0.180 0.000 ± 0.001 23.043 ± 2.210 9.111 ± 5.407
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the sampler to the the true parameters within a large binary space. The approximation 
of q(ξ ,ψ |y) for univariate proposals is slightly less effective at identifying the correct 
features, compared with the log-contrast lasso approach which identifies the initial 
variables for the log-ratio lasso.

The L2 loss and squared bias diagnostics (Additional file 1: Tables 9–16) indicate 
the CAVI-MC estimates the model well, as it typically outperform all but the log-
ratio lasso. Given the true model in the simulation study is a log-ratio model (29), 
the log-ratio lasso benefits from estimating a much smaller number of parameters 
than the other methods. As the CAVI-MC is more flexible than the log-ratio lasso, 
the squared bias for this simulation scenario is typically larger, but this comes with 

Table 3  Table of true positive rate, false positive rate, L2 loss and prediction error for the additive-
log-ratio model with SNR of 0.83 and d of 45

Method ρ TPR FPR L2 PE

Lasso 0 1.000 ± 0.000 0.277 ± 0.139 10.979 ± 1.114 1.766 ± 1.191

Lin 0 1.000 ± 0.000 0.287 ± 0.140 10.978 ± 1.182 1.786 ± 1.215

Bates 0 0.985 ± 0.053 0.026 ± 0.041 11.456 ± 1.011 1.639 ± 1.113

Selbal 0 0.680 ± 0.061 0.000 ± 0.000 13.925 ± 1.022 1.904 ± 1.294

VB 0 0.867 ± 0.140 0.004 ± 0.009 11.784 ± 1.135 1.618 ± 1.125

Lasso 0.2 0.993 ± 0.033 0.314 ± 0.140 10.932 ± 1.112 1.597 ± 0.884

Lin 0.2 0.998 ± 0.017 0.329 ± 0.134 10.997 ± 1.042 1.579 ± 0.869

Bates 0.2 0.965 ± 0.080 0.042 ± 0.056 11.478 ± 0.929 1.564 ± 0.929

Selbal 0.2 0.672 ± 0.037 0.000 ± 0.000 14.366 ± 0.903 1.746 ± 0.978

VB 0.2 0.900 ± 0.113 0.002 ± 0.007 11.878 ± 0.962 1.473 ± 0.889

Lasso 0.4 0.965 ± 0.080 0.352 ± 0.149 10.840 ± 1.248 1.692 ± 0.872

Lin 0.4 0.972 ± 0.071 0.426 ± 0.151 10.752 ± 1.280 1.674 ± 0.951

Bates 0.4 0.868 ± 0.145 0.043 ± 0.064 11.701 ± 1.241 1.602 ± 0.966

Selbal 0.4 0.668 ± 0.050 0.000 ± 0.000 13.395 ± 0.958 1.643 ± 0.879

VB 0.4 0.802 ± 0.135 0.001 ± 0.008 12.510 ± 1.064 1.413 ± 0.707

Table 4  Table of true positive rate, false positive rate, L2 loss and prediction error for the additive-
log-ratio model with SNR of 0.83 and d of 200

Method ρ TPR FPR L2 PE

Lasso 0 0.965 ± 0.068 0.120 ± 0.084 10.238 ± 2.330 1.998 ± 1.127

Lin 0 0.962 ± 0.082 0.135 ± 0.089 10.070 ±2.661 2.002 ± 1.114

Bates 0 0.887 ± 0.141 0.004 ± 0.009 11.923 ± 1.318 1.909 ± 1.196

Selbal 0 0.687 ± 0.150 0.000 ± 0.000 14.837 ± 1.199 2.424 ± 1.475

VB 0 0.725 ± 0.104 0.000 ± 0.001 12.706 ± 1.119 1.962 ± 1.061

Lasso 0.2 0.972 ± 0.075 0.134 ± 0.076 9.911 ± 2.239 2.045 ± 1.214

Lin 0.2 0.972 ± 0.071 0.158 ± 0.079 9.580 ± 2.344 2.351 ± 1.443

Bates 0.2 0.925 ± 0.126 0.004 ± 0.009 11.691 ± 1.368 1.806 ± 1.178

Selbal 0.2 0.657 ± 0.074 0.001 ± 0.001 14.494 ± 1.011 2.649 ± 1.624

VB 0.2 0.720 ± 0.170 0.000 ± 0.001 12.947 ± 1.908 2.186 ± 1.496

Lasso 0.4 0.847 ± 0.125 0.142 ± 0.084 10.054 ± 2.316 3.142 ± 1.834

Lin 0.4 0.810 ± 0.121 0.172 ± 0.084 9.630 ± 2.456 3.341 ± 1.861

Bates 0.4 0.798 ± 0.142 0.008 ± 0.015 11.790 ± 1.642 1.860 ± 1.116

Selbal 0.4 0.633 ± 0.085 0.001 ± 0.001 13.986 ± 1.097 2.669 ± 1.896

VB 0.4 0.603 ± 0.139 0.000 ± 0.001 13.611 ± 1.971 2.418 ± 1.797
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the distinct advantage of being able to accurately capture a much large space of 
models.

The performance of the CAVI-MC, from varying the thresholding value for 
E[q(ξj|y)] when the SNR of 0.83, is plotted in Fig.  3 where the purple point repre-
sents the value for 0.5. Despite the log-ratio lasso having a larger TPRs, the points 
for ρ = 0.2 and ρ = 0.4 fall inside the CAVI-MC ROC curve (further ROC curves are 
in the Additional file 1: Fig. S3–S5).

Table 5  Table of true positive rate, false positive rate, L2 loss and prediction error for the additive-
log-ratio model with SNR of 1.67 and d of 45

Method ρ TPR FPR L2 PE

Lasso 0 1 ± 0.000 0.365 ± 0.179 5.265 ± 0.699 0.432 ± 0.308

Lin 0 1 ± 0.000 0.388 ± 0.164 5.310 ± 0.686 0.434 ± 0.331

Bates 0 1 ± 0 0.029 ± 0.058 5.685 ± 0.580 0.358 ± 0.257

Selbal 0 0.770 ± 0.091 0.000 ± 0.000 9.644 ± 0.762 1.810 ± 0.729

VB 0 1 ± 0 0.008 ± 0.015 5.633 ± 0.492 0.378 ± 0.247

Lasso 0.2 1 ± 0 0.334 ± 0.166 5.389 ± 0.623 0.471 ± 0.289

Lin 0.2 1 ± 0 0.308 ± 0.164 5.321 ± 0.686 0.482 ± 0.295

Bates 0.2 1 ± 0 0.022 ± 0.036 5.805 ± 0.454 0.445 ± 0.275

Selbal 0.2 0.667 ± 0 0 ± 0 10.274 ± 0.549 1.364 ± 0.568

VB 0.2 1 ± 0 0.003 ± 0.008 5.705 ± 0.438 0.416 ± 0.263

Lasso 0.4 1 ± 0 0.378 ±0.141 5.384 ± 0.5875 0.523 ± 0.346

Lin 0.4 1 ± 0 0.423 ± 0.141 5.358 ± 0.598 0.536 ± 0.333

Bates 0.4 1 ± 0 0.019 ± 0.035 5.792 ± 0.427 0.417 ± 0.257

Selbal 0.4 0.667 ± 0.024 0 ± 0 9.365 ± 0.547 0.945 ± 0.581

VB 0.4 1 ± 0 0.008 ± 0.015 5.633 ± 0.492 0.441 ± 0.273

Table 6  Table of true positive rate, false positive rate, L2 loss and prediction error for the additive-
log-ratio model with SNR of 1.67 and d of 200

Method ρ TPR FPR L2 PE

Lasso 0 1 ± 0 0.130 ± 0.077 4.959 ± 1.004 0.436 ± 0.310

Lin 0 1 ± 0 0.124 ± 0.066 5.000 ± 0.988 0.429 ± 0.288

Bates 0 1 ± 0 0.005 ± 0.012 5.664 ± 0.629 0.364 ± 0.234

Selbal 0 0.673 ± 0.400 0.000 ± 0.000 10.296 ± 0.561 0.588 ± 0.351

VB 0 0.985 ± 0.063 0.000 ± 0.001 5.801 ± 0.676 0.354 ± 0.230

Lasso 0.2 1 ± 0 0.146 ± 0.072 4.780 ± 0.920 0.474 ± 0.294

Lin 0.2 1 ± 0 0.165 ± 0.079 4.641 ± 0.981 0.549 ± 0.352

Bates 0.2 1 ± 0 0.005 ± 0.011 5.641 ± 0.558 0.434 ± 0.259

Selbal 0.2 0.667 ± 0.102 0 ± 0 10.379 ± 0.503 1.047 ± 0.544

VB 0.2 1 ± 0 0.001 ± 0.002 6.231 ± 0.438 0.526 ± 0.382

Lasso 0.4 1 ± 0 0.143 ± 0.064 4.912 ± 0.915 0.472 ± 0.273

Lin 0.4 1 ± 0 0.182 ± 0.073 4.607 ± 1.010 0.492 ± 0.317

Bates 0.4 1 ± 0 0.008 ± 0.009 5.541 ± 0.522 0.430 ± 0.285

Selbal 0.4 0.667 ± 0.017 0 ± 0 9.204 ± 0.528 1.138 ± 0.538

VB 0.4 0.978 ± 0.077 0.000 ± 0.001 5.810 ± 0.626 0.397 ± 0.249
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Table 7  Table of true positive rate, false positive rate, L2 loss and prediction error for the additive-
log-ratio model with SNR of 2.5 and d of 45

Method ρ TPR FPR L2 PE

Lasso 0 1 ± 0 0.397 ± 0.159 3.647 ± 0.386 0.211 ± 0.125

Lin 0 1 ± 0 0.374 ± 0.144 3.668 ± 0.377 0.214 ± 0.122

Bates 0 1 ± 0 0.022 ± 0.034 3.914 ± 0.303 0.191 ± 0.119

Selbal 0 0.790 ± 0.073 0.000 ± 0.000 8.645 ± 0.562 1.637 ± 0.526

VB 0 1 ± 0 0.015 ± 0.019 3.848 ± 0.278 0.197 ± 0.119

Lasso 0.2 1 ± 0 0.297 ± 0.134 3.723 ± 0.360 0.184 ± 0.107

Lin 0.2 1 ± 0 0.279 ± 0.137 3.817 ± 0.366 0.196 ± 0.113

Bates 0.2 1 ± 0 0.019 ± 0.033 3.957 ± 0.284 0.169 ± 0.102

Selbal 0.2 0.667 ± 0 0 ± 0 9.161 ± 0.404 1.182 ± 0.369

VB 0.2 1 ± 0 0.004 ± 0.010 3.870 ± 0.267 0.159 ± 0.091

Lasso 0.4 1 ± 0 0.366 ± 0.145 3.544 ± 0.371 0.226 ± 0.163

Lin 0.4 1 ± 0 0.429 ± 0.139 3.533 ± 0.393 0.229 ± 0.150

Bates 0.4 1 ± 0 0.019 ± 0.035 3.811 ± 0.316 0.186 ± 0.115

Selbal 0.4 0.667 ± 0 0 ± 0 8.192 ± 0.386 0.707 ± 0.279

VB 0.4 1 ± 0 0.017 ± 0.017 4.104 ± 0.313 0.208 ± 0.126

Table 8  Table of true positive rate, false positive rate, L2 loss and prediction error for the additive-
log-ratio model with SNR of 2.5 and d of 200

Method ρ TPR FPR L2 PE

Lasso 0 1 ± 0 0.130 ± 0.077 3.384 ± 0.637 0.206 ± 0.124

Lin 0 1 ± 0 0.120 ± 0.064 3.412 ± 0.645 0.202 ± 0.127

Bates 0 1 ± 0 0.003 ± 0.007 3.847 ± 0.339 0.178 ± 0.115

Selbal 0 0.667 ± 0.000 0.000 ± 0.000 9.460 ± 0.367 0.396 ± 0.191

VB 0 1 ± 0 0.001 ± 0.002 3.797 ± 0.284 0.178 ± 0.106

Lasso 0.2 1 ± 0 0.150 ± 0.075 3.293 ± 0.662 0.230 ± 0.138

Lin 0.2 1 ± 0 0.172 ± 0.069 3.107 ± 0.657 0.269 ± 0.167

Bates 0.2 1 ± 0 0.003 ± 0.006 3.849 ± 0.302 0.184 ± 0.118

Selbal 0.2 0.667 ± 0.000 0.000 ± 0.000 9.399 ± 0.362 0.791 ± 0.351

VB 0.2 1 ± 0 0.001 ± 0.002 3.667 ± 0.319 0.254 ± 0.156

Lasso 0.4 1 ± 0 0.170 ± 0.080 3.142 ± 0.711 0.230 ± 0.133

Lin 0.4 1 ± 0 0.186 ± 0.067 3.095 ± 0.672 0.226 ± 0.132

Bates 0.4 1 ± 0 0.005 ± 0.006 3.792 ± 0.313 0.180 ± 0.104

Selbal 0.4 0.667 ± 0.000 0.000 ± 0.000 8.019 ± 0.356 0.876 ± 0.316

VB 0.4 1 ± 0 0.000 ± 0.001 3.671 ± 0.295 0.186 ± 0.110

Fig. 3  Plot of the ROC curves for the CAVI-MC for a SNR of 0.83 for each value of ρ
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Data
We apply our proposed method to a subset of the main study in Arkhangelsk, con-
taining 515 men and women aged between 35 and 69 years recruited from the gen-
eral population, from the “Know your Heart” cross-sectional study of cardiovascular 
disease [33]. As part of the study, participants were asked to volunteer faecal sam-
ples for analysis of the gut microbiome. The relative abundances of the microbes 
were then determined by 16 S rRNA sequencing (using the variable regions V3–V4) 
followed by taxonomic classification using a Naive Bayes classifier [45]. A baseline 
questionnaire captured unconstrained covariate information on age, sex and smok-
ing status. Information on alcohol consumption from the questionnaire and bio-
marker data was used to derive a categorical factor with four levels on alcohol use.

The gut microbiome plays an important role in energy extraction and obesity [46], 
which we illustrate by regressing body mass index (BMI) against the microbiome at 
the phylum and genus level alongside the unconstrained covariates. The counts are 
transformed into relative abundances after adding a small constant of 0.5 to replace 
the zero counts [47] and then log transformed. BMI is also log transformed and the 
continuous age covariate is standardised.

Vague priors are placed on the hyperparameters for the CAVI-MC model. Given 
the previous results from  microbiome against BMI  analysis, d∗ for the hyperprior 
on κ is set to 8. The birth-death or swap move parameter φ is set to 0.5. Four runs of 
the CAVI-MC algorithm are performed, each with different initialisation values for 
the q expectations and the ELBO is monitored to confirm convergence. For each run 
20 variational inference iterations are performed (although the algorithm typically 
converges after approximately 6 iterations). The initial number of between-model 
MCMC iterations is set to 5000, before 10,000 iterations are performed after the 5th 
set of variational inference updates.

Despite different initial starting point the CAVI-MC converges to the same maxi-
mum. Thresholding the marginal expectation of the approximate posterior distribu-
tions at 0.5, we find an increase in Firmicutes (which has a −0.8 correlation with 
Bacteroidetes) and a decrease in Synergistetes is associated with an increase of BMI 
at the phylum level. At the genus level, BMI is increased by an increase in Roseburia 
and a reduction in Oscillospira. The corresponding marginal expectation of the 
approximating posterior E[q(ξ |y)] , for both the phylum and genus level are plotted 
in Figs. 4 and 5. We also find BMI to be positively associated with age. The ELBO for 
each model at each microbiome level indicates an optimum has been reached (Addi-
tional file 1: Fig. S6 and S7), with each run finding the same local optimum.

Our findings appear to be consistent with previous studies. The ratio of Firmicutes 
to Bacteroidetes at the phylum level is considered to be a biomarker for obesity ([48, 
49]). Increases in physical training of rats has led to an increase in their levels of 
Synergistetes [50]. At the genus level [51] identifies Roseburia to be positively cor-
related with obesity in children, and [52] determines Oscillospira to be negatively 
associated with BMI.
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Discussion
Our Bayesian hierarchical linear log-contrast model estimated by structured mean field 
Monte Carlo co-ordinate variational inference improves Bayesian regression modelling 
for compositional data. Sparse variable selection is performed through priors which 
fully account for the constrained parameter space associated with the compositional 

Fig. 4  Plot of the marginal expectation of the approximating posterior Eq[p(ξ |y)] at the phylum level. The 
grey denotes a positive θj , black a negative θj . The bars above the 0.5 probability of inclusion (red dashed line) 
are Firmicutes and Synergistetes respectively

Fig. 5  Plot of the marginal expectation of the approximating posterior Eq[p(ξ |y)] at the genus level. The 
grey denotes a positive θj , black a negative θj . The bars above 0.25 probability of inclusion (blue dashed line) 
are Roseburia, Oscillospira and Oxalobacter respectively. The red dashed line at 0.5 probability of inclusion 
indicate the thresholding value used to determine a significant association
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covariates. We introduce Monte Carlo expectations to approximate integrals which are 
not available in closed form. These expectations are obtained via RJMCMC with pro-
posal parameters informed by approximating variational densities via auxiliary parame-
ters with pseudo updates. As long as there is sufficient signal to guide the RJMCMC, the 
approach leads to a high TPR and low FPR in compared with frequentist compositional 
approaches.

The CAVI-MC suffers when the SNR is low and the correlation is high. Addressing 
the correlation by adapting the prior parametrisation may help to improve the model 
in these settings. One approach to address this issue is to use a Markov Random Field 
prior [53] which imposes a structure on the selection of ξ . [18] use this prior to incor-
porate the phylogenetic relationship among the bacterial taxa alongside a model which 
partially accounts for the constraint on the parameters. Alternatively, to avoid having to 
pre-define the structure of the taxa, a Dirichlet Process could be used to account for the 
correlation of the microbiome by clustering the covariates [54] prior to the regression.

At the genus level, despite the CAVI-MCMC identifying associations between the 
BMI and Roseburia and Oscillospira, some of the other microbiome features which have 
been found to be associated with BMI were not detected. Bifidobacterium has been 
found to be negatively associated with BMI in children [55]. This taxon was also found 
to be associated with BMI in adults, alongside a negative association between BMI and 
Methanobrevibacter [56]. However, associations between BMI and the gut microbiome 
at the genus level are subject to a high degree of variation across studies [57]. This maybe 
partly explained by the tools used to construct the microbiome datasets, which can iden-
tify quite different results from the same sample [58].

As genetic sequencing becomes more widely available, interest grows in modelling the 
relationship between the microbiome and a complex set of phenotypes such as blood 
concentrations of lipids or other metabolites. Bayesian hierarchical models have been 
introduced for multiple outcomes ([59, 60]), which leverage shared information improv-
ing predictor selection. These approaches often use the simplifying assumption of condi-
tionally independent residuals to allow different covariates to be associated with different 
responses. In future work, we would like to explore this multiple response extension to 
our model, using a hierarchical approach to allow information on the shared parame-
ters to be pooled whilst incorporating correlation between the responses to aid variable 
selection.

Supplementary material
Supplementary Material which contains the derivations of all of the analytical updates 
for the CAVI-MC is available online.
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