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ABSTRACT
Preclinical and clinical studies on the administration of bone marrow-
derived cells to restore perfusion show conflicting results. We
conducted a systematic review and meta-analysis on preclinical
studies to assess the efficacy of bonemarrow-derived cells in the hind
limb ischemia model and identify possible determinants of
therapeutic efficacy. In vivo animal studies were identified using a
systematic search in PubMed and EMBASE on 10 January 2022. 85
studies were included for systematic review andmeta-analysis. Study
characteristics and outcome data on relative perfusion were
extracted. The pooled mean difference was estimated using a
random effects model. Risk of bias was assessed for all included
studies. We found a significant increase in perfusion in the affected
limb after administration of bone marrow-derived cells compared to
that in the control groups. However, there was a high heterogeneity
between studies, which could not be explained. There was a high
degree of incomplete reporting across studies.We therefore conclude
that the current quality of preclinical research is insufficient (low
certainty level as per GRADE assessment) to identify specific factors
that might improve human clinical trials.
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INTRODUCTION
Chronic limb-threatening ischemia (CLTI) is the advanced
stage of peripheral arterial disease (PAD), which is caused by
arterial obstruction. Around 200 million adults worldwide have PAD
(Fowkes et al., 2013), of whom approximately 10% develop CLTI
(Nehler et al., 2014). Current treatments include surgical

revascularization or angioplasty to restore blood flow; however,
success rates are low and these treatments do not increase long-term
survival. Moreover, many patients are not eligible for the currently
available procedures due to surgical risk or comorbidities (Uccioli
et al., 2018). The lack of successful long-term treatment options
results in severe impact on the quality of life (de Nigris et al., 2007a;
Al-Rifai et al., 2019; Haghighat et al., 2019) and a mortality risk of
20% in the first 6 months after initial diagnosis, which increases to
50% over 5 years.

Impaired neovascularization has been implicated as a key
pathophysiological feature in CLTI (de Nigris et al., 2007a; Al-
Rifai et al., 2019; see Haghighat et al., 2019 for a review). Therapies
that improve neovascularization might be a viable option when
revascularization is not possible. One potential strategy to augment
the neovascularization is to administer bone marrow (BM)-derived
mononuclear cells (BM-MNCs) or BM-derived mesenchymal stem
cells (BM-MSCs). BM-MNCs are a mixture of different cell types
present in the BM, including monocytes, macrophages, pericytes and
mesenchymal stem cells (MSCs). These cells have been reported to
promote neovascularization and angiogenesis and restore perfusion
in ischemic areas by secreting growth factors and cytokines
(Yusoff et al., 2019). BM-MSCs are a cell population defined by
their ability to differentiate ex vivo into cells of various tissues upon
stimulation. MSCs also secrete a wide variety of growth factors,
cytokines and extracellular vesicles that promote angiogenesis,
prevent apoptosis and can modulate immunological responses
(Cunningham et al., 2018). Both BM-MNCs and BM-MSCs have
been proposed as highly promising candidates for therapeutic
intervention in CLTI.

Prior to the initiation of clinical trials, the efficacy of BM-derived
cells in CLTI was assessed in relatively few preclinical trials,
primarily using animal models for hind limb ischemia (HLI).
Transplantation of these cells resulted in increased tissue perfusion,
increased angiogenesis and reduced limb loss (Yoshida et al., 2003),
as reviewed in Sprengers et al. (2008). At the same time, clinical pilot
studies in patients with CLTI were conducted, which suggested
translational success from preclinical models. However, these clinical
studies were often small, poorly controlled and not masked (Peeters
Weem et al., 2015). This, combined with the short time between
development of the first animal models of angiogenesis in 1998
(Couffinhal et al., 1998) and the first clinical trials on limb
ischemia in 2002 (Tateishi-Yuyama et al., 2002), raises concerns
for translational failure. Indeed, both a larger randomized clinical
trial and meta-analyses concluded that there was no significant
improvement in major amputation rate, mortality rate or quality of life
(Peeters Weem et al., 2015; Teraa et al., 2015, 2013).

Here, we collected and analyzed the preclinical evidence for BM-
derived cell interventions. We also critically assessed potential
sources of bias and treatment-specific factors (such as dose and
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administration route) that could influence outcomes to inform future
clinical trials.

RESULTS
Screening and inclusion strategy
The search strategy resulted in 3095 articles from PubMed and
EMBASE. After removal of duplicates, title and abstract screening,
and assessment of the full text, 85 studies were included in the
systematic review (Fig. 1). Studies excluded at the full-text assessment
stage and the reasons for exclusion can be found in Table S1.

Study characteristics
Table 1 presents an overview of study characteristics. Most studies
were performed in mice (81%), 13 (15%) studies were performed
in rats and three (4%) in rabbits. 38% of the studies did not report
the sex of the animals, 53% reported using male animals, 13%
reported using female animals and one study used both sexes.
In 92% of studies, animals without comorbidities were used. Other
studies used (multiple) animal models with comorbidities: four
studies used animal models of diabetes, two used obese animals,
four used animals with atherosclerosis and one study used animals
with hypertension. In 35% of the studies, the animals were
immunocompromised, which correlated with the administration of
xenogeneic cells. The method of inducting HLI varied and ranged
from ligation or electrocautery at a single point to full excision of the
artery (Table S2).
Of the three cell models used, BM-MSCs were used in 53%

of studies, 28% used BM-MNCs and 21% used BM cells. One study
compared BM cells and BM-MSCs versus the control group, which

leads to a total of >100% in the summation of studies. Multiple
administration methods were described, of which the majority
comprised intramuscular (74%) or intravenous (21%) injection,
and two studies compared intramuscular versus intravenous
administration. Two studies used intra-arterial administration (Li
et al., 2021; Liu et al., 2009) and two studies injected the cells
intracardially (Finney et al., 2010; Rosova et al., 2008). Finally, there
was a single study that injected intraperitoneally (Noh et al., 2014).
The animals were administered cells at a single time point in 97% of
the studies. However, 57% used multiple injection sites. The doses
varied between 5×104 cells and 2.5×107 cells, with amedian of 1×106

cells. The median dose per injection was 1×105 cells, with a range of
1.7×104 to 2.5×107 cells. The median timepoint of intervention was
24 h after HLI induction, with a range of−24 to 336 h. The follow up
ranged from 7 to 70 days, with a median of 21 days. Most studies
assessed the perfusion at multiple time points (72%).

The cells used for treatment were mainly allogeneic (60%), 31%
were xenogenic and 9% were autologous. A single study compared
both xenogenic and allogenic origins. In the case of xenogenic cells,
the majority were human cells. Five studies included cells from a
diseased donor (either human or a disease model). Most studies did
not report the sex of the donor animals (61%) and most (85%) did
not provide information on whether the cells were cryopreserved.
The remaining 15% reported cryopreservation.

Risk of bias assessment
Many studies showed a lack of clear reporting in the risk of
bias items, which results in an ‘unclear’ score on most of the bias
items. Randomization and/or masking was mentioned in 46% and

Fig. 1. Flowchart of the search and
inclusion strategy. BM-MNC, bone
marrow-derived mononuclear cell;
BM-MSC, bone marrow-derived
mesenchymal stem cell.
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Table 1. General overview of study characteristics

Article code Reference Species Sex (M/F) Age at start Comorbidities Immunocompromised (Y/N)

Al-Rifai-2019 Al-Rifai et al., 2019 Mice M 11 weeks None Y
Amin-2010 Amin et al., 2010 Mice M 8-10 weeks Diabetes, obesity N
Aranguren-2008 Aranguren et al., 2008 Mice M 12-16 weeks None N
Beegle-2016 Beegle et al., 2016 Mice NR NR None Y
Bogt-2012 van der Bogt et al., 2012 Mice M 10-12 weeks None N
Capoccia-2009 Capoccia et al., 2009 Mice NR NR None Y
Cheng-2013 Cheng et al., 2013 Mice M 8 weeks None N
de Nigris-2007 de Nigris et al., 2007b Mice M 8 weeks Atherosclerosis N
Duan-2020 Duan et al., 2020 Mice M, F 6-9 weeks None N
Finney-2010 Finney et al., 2010 Mice F NR None Y
Gan-2009 Gan et al., 2009 Mice M 10 weeks None N
Gremmels-2014 Gremmels et al., 2014 Mice M 8-10 weeks None Y
Guerin-2015 Guerin et al., 2015 Mice NR NR None Y
Guerin-2017 Guerin et al., 2017 Mice NR NR None Y
Hao-2014 Hao et al., 2014 Rabbits M 8-12 weeks None N
Heeschen-2004 Heeschen et al., 2004 Mice NR 8-10 weeks None Y
Hermann-2007 Hermann et al., 2007 Mice F 8-10 weeks None Y
Huang-2014 Huang et al., 2014 Mice M 6 weeks None Y
Imada-2005 Imada et al., 2005 Rats NR NR None N
Ishikane-2008 Ishikane et al., 2008 Rats M 8-12 weeks None N
Iwase-2005a Iwase et al., 2005a Rats M NR None N
Iwase-2005b Iwase et al., 2005b Rats M NR None N
Jeon-2016 Jeon et al., 2016 Mice F 4 weeks None Y
Kim-2007 Kim et al., 2007 Mice NR 8 weeks None Y
Kimura-2014 Kimura et al., 2014 Mice NR Adult None N
Krankel-2008 Krankel et al., 2008 Mice NR NR None N
Kubo-2007 Kubo et al., 2007 Mice NR 12-15 weeks None N
Kubo-2012 Kubo et al., 2012 Mice M 20-22 months None N
Kuwahara-2013 Kuwahara et al., 2013 Mice M 12 weeks None N
Landazuri-2016 Landazuri et al., 2016 Mice M 7-8 weeks None Y
Layman-2011 Layman et al., 2011 Mice NR 6-7 weeks None Y
Leroux-2010 Leroux et al., 2010 Mice NR NR None N
Leroyer-2009 Leroyer et al., 2009 Mice NR NR None NR
Li-2003 Li et al., 2003 Mice M 12-15 months None N
Li-2006 Li et al., 2006 Rats M 18 weeks Obesity N
Li-2010 Li et al., 2010 Mice F 8 weeks None N
Li-2016 Li et al., 2016 Mice M 6 months None N
Li-2021 Li et al., 2021 Mice NR 6-8 weeks None Y
Lian-2010 Lian et al., 2010 Mice NR NR None Y
Liew-2018 Liew et al., 2018 Mice NR 8-12 weeks Diabetes, obesity N
Liu-2009 Liu et al., 2009 Mice NR 12 months Atherosclerosis N
Lu-2012 Lu et al., 2012 Rats NR NR Diabetes N
Mees-2011 Mees et al., 2011 Mice NR 8 weeks None, diabetes,

atherosclerosis
N

Meng-2010 Meng et al., 2010 Rabbits NR NR Diabetes N
Mikami-2013 Mikami et al., 2013 Rabbits NR NR None N
Mori-2007 Mori et al., 2007 Mice NR NR None Y
Napoli-2005 Napoli et al., 2005 Mice M NR None N
Nigris-2007 de Nigris et al., 2007a Rats M 4 weeks Hypertension, none N
Noh-2014 Noh et al., 2014 Mice M 6 weeks None N, Y
Oda-2010 Oda et al., 2010 Mice M 8 weeks None N
Oses-2009 Oses et al., 2009 Mice M 10-12 weeks None N
Otani-2008 Otani et al., 2008 Rats M NR None N
Ozawa-2006 Ozawa et al., 2006 Mice M 8 weeks None N
Park-2018 Park et al., 2018 Rats NR 3-4 weeks None N
Piao-2010 Piao et al., 2010 Rats M NR None N
Qin-2008 Qin et al., 2008 Mice M 12-16 weeks None N
Rahman-2014 Rahman et al., 2014 Mice NR 7-8 weeks None N
Ricles-2016 Ricles et al., 2016 Rats M 11 weeks None N
Rojas-Torres-
2020

Rojas-Torres et al.,
2020

Mice NR 9 weeks None Y

Rosova-2008 Rosova et al., 2008 Mice NR NR None Y
Sasaki-2006 Sasaki et al., 2006 Mice NR 8-10 weeks None Y
Shiba-2009 Shiba et al., 2009 Mice M 8-10 weeks None NR
Sica-2006 Sica et al., 2006 Mice M 2 months Diabetes, none N
Silvestre-2003 Silvestre et al., 2003 Mice M 14 weeks None, atherosclerosis N
Sugihara-2007 Sugihara et al., 2007 Mice M 8 weeks None N

Continued

3

RESEARCH ARTICLE Disease Models & Mechanisms (2024) 17, dmm050632. doi:10.1242/dmm.050632

D
is
ea

se
M
o
d
el
s
&
M
ec
h
an

is
m
s



29% of studies, respectively. However, studies only described
randomization of ex vivo or in vitro samples during analysis, not of
the actual treatment. The randomization process that was used to

allocate treatment to animals or the method by which samples were
masked was never clearly reported, and none of the studies reported
sample size calculation or preregistration (Fig. 2A). Half of the

Table 1. Continued

Article code Reference Species Sex (M/F) Age at start Comorbidities Immunocompromised (Y/N)

Sumi-2007 Sumi et al., 2007 Mice M 30-35 weeks None N
Sun-2015 Sun et al., 2015 Mice NR NR None Y
Sun-2017 Sun et al., 2017 Mice M 8 weeks None N
Takagi-2005 Takagi et al., 2005 Rats M 8 weeks None N
Tanaka-2010 Tanaka et al., 2010 Mice M 8 weeks None N
Thej-2021 Thej et al., 2021 Mice NR 10-12 weeks None Y
Thomas-2020 Thomas et al., 2020 Mice NR NR None Y
Walter-2005 Walter et al., 2005 Mice NR NR None Y
Wang-2019 Wang et al., 2019 Mice M 6 weeks None Y
Wu-2009 Wu et al., 2009 Mice M 8-10 weeks None N
Xiang-2017 Xiang et al., 2017 Mice F 8-10 weeks None N
Yamada-2021 Yamada et al., 2021 Mice M 12 weeks None N
Yan-2012 Yan et al., 2012 Mice M NR None N
Yan-2013 Yan et al., 2013 Mice F 10 weeks None Y
Yao-2020 Yao et al., 2020 Mice M 10-12 weeks None Y
You-2006 You et al., 2006 Mice NR NR None Y
Zhang-2008 Zhang et al., 2008 Mice M 8-10 weeks None N
Zhang-2011 Zhang et al., 2011 Mice F 8-10 weeks None N
Zhang-2012 Zhang et al., 2012 Mice F 8 weeks None N
Zhuo-2010 Zhuo et al., 2010 Rats F 6-8 weeks,

60-64 weeks
None N

F, female; M, male. Y, yes; N, no. NR, not reported. Additional details can be found in Table S3.

Fig. 2. Reporting of study quality indicators and risk of bias assessment. (A) Number of studies reporting specific quality indicators. (B) Risk of bias
assessment using the SYRCLE risk of bias tool. Each item was scored as having a low, high or unclear risk of bias. n=85 studies.
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studies (48%) clearly reported experimental groups with similar
baseline characteristics at the start of the experiment (Fig. 2B). The
number of animals included in different experiments was often
(68%) not clearly mentioned, which resulted in an increased risk of
attrition bias (Fig. 2B). A full overview of scores for each study can
be found in Table S4.

Meta-analysis
Overall effect
Nine studies included in this review did not report the number
of animals used and were excluded from the meta-analysis.
The remaining 76 studies included 111 individual comparisons.
The effect of BM cell treatment on limb perfusion was assessed
using 1053 animals in total. Meta-analysis showed an overall effect
size of 18.3 [95% confidence intervals (CI)=15.9-20.7, P<0.001],
suggesting that BM cell treatment results in better perfusion
compared to that of the control condition (Fig. 3). However, the
heterogeneity between studies was very high at 91%.

Subgroup analysis and exploring heterogeneity
With the aim of identifying determinants of treatment efficacy,
subgroup analyses were performed using meta-regression on ten
variables that were previously identified in the literature as
potentially contributing to efficacy (Table S5). After correcting
for multiple testing, none of the variables significantly affected the
standard mean difference, nor did they explain heterogeneity, and
the residual I2 (indicating the remaining variation due to between-
study heterogeneity) remained high in all analyses (Table 2). We
were thus unable to identify the source of the high heterogeneity.
Forest plots for each subgroup analysis can be found in Figs S1-S9.

Our previous work suggested a trend towards less efficacy
at a higher dose (Gremmels et al., 2014). We thus assessed the
effect of the dose on limb perfusion.Meta-regression shows an almost
flat line and thus no correlation between the effect size and the dose
(Fig. 4). As such, the dose does not explain the heterogeneity between
studies, showing a R2 of 0.00% and a P-value of 0.9.

Sensitivity analysis
A sensitivity analysis was performed using the perfusion measured
at the latest time point for each study as opposed to the time point of
maximum perfusion. The overall analysis as well as all subgroup
analyses were rerun. The analysis showed an overall effect size of
18.56 (95% CI=14.30-22.81) (Fig. 5), which was similar to the
previously observed effect size. The effect, although slightly lower,
is still significant. The heterogeneity remains unchanged, and here
too, no subgroup analysis showed any significant result.

Publication bias
The trim-and-fill analysis added 36 studies on the left-hand side of
the plot (Fig. 5), which suggests that nearly 25% of datapoints are
missing. The pooled effect size was significantly reduced from 18.3
(95% CI=5.9-20.7) to 11.4 (95% CI=8.5-14.3), indicative of a
substantial risk of publication bias in our dataset.

Fig. 3. Forest plot showing an increase in the relative maximum
perfusion between the ischemic and the non-ischemic limb after
treatment with BM-MNCs or BM-MSCs in animal models of hind limb
ischemia. Effects were plotted as the mean difference (MD) and pooled
using a random-effects model. The diamond represents the estimate of the
mean difference across all studies and the dashed line represents the point
estimate of the mean difference. n=111 comparisons from 76 studies.
BM-MNC, bone marrow-derived mononuclear cell; BM-MSC, bone marrow-
derived mesenchymal stem cell.
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DISCUSSION
In this systematic review and meta-analysis, we show that BM cell
therapy ameliorates perfusion deficits in the preclinical HLI model.
Despite marked differences between approaches, such as dose,
administration route, animal age and comorbidities, BM cell therapy
was beneficial in all cases.
The failure of cell therapy clinical trials in CLTI resulted in

extensive discussion of possible contributing factors in the literature.
The clinical literature suggested geographic and gender-related
factors (Teraa et al., 2013), as well as the ex vivo manipulation,
including cryopreservation, of the cells. In our synthesis of the
preclinical evidence, we assessed several additional factors that could
have affected therapeutic efficacy. These are: species, comorbidity,
presence of immunodeficiency, administration route, cell type, cell
origin and donor characteristics, cryopreservation, and cell dose.
Synthesis of the evidence indicates severe limitations in the

external validity of preclinical CLTI models: CLTI is more prevalent
in women than in men (Sigvant et al., 2007; Kavurma et al., 2023),
but in preclinical trials, male animals are overrepresented; only 13%
of the studies included female animals. Animals are generally
healthy young adults, whereas patients with PAD are often elderly
and have comorbidities such as diabetes or atherosclerosis. Only 11
studies included in this review used animals with comorbidities.
Lastly, there was often only a short delay between HLI induction
and treatment. Although the timing of the treatment is similar to the
timing of treatment in acute peripheral ischemia, CLTI generally has
a more chronic course (Londero et al., 2014). It has been well
established that the local tissue environment is markedly different in
chronic ischemia compared to that in an acute ischemic setting,
which reduces the external validity of the treatment setup used in
most HLI studies.
Our meta-analysis shows that in the HLI model, BM cell

treatment has an overall beneficial effect, resulting in an increase in
perfusion of the affected limb. However, these findings need to be
interpreted with caution as there was considerable heterogeneity.

Unexplained high heterogeneity suggests a shortcoming in our
understanding of what drives the differences between CLTI models
and the efficacy of stem cell treatment therein, making it
questionable as to whether these models can be used to inform
research in humans. We conducted subgroup analyses to explore
possible factors that contribute to treatment efficacy; however, none
of them showed a significant difference or lowered heterogeneity.

Most of the studies were conducted in mice, but none provided a
rationale for this choice. Practical considerations may have played a
role, as mice are cheap both to acquire and keep, and a wide variety
of transgenic mice is available for purchase, especially in
comparison to rats or larger mammals. However, genetic disease
models were only rarely used. Although studies in cardiovascular
disease have shown that large animal models show increased
external validity and considerably greater similarity to humans
(Tsang et al., 2016), these were completely lacking in our dataset.
Lastly, several studies suggest that the specific background (strain)
of model animals influenced their recovery after HLI. However, this
mostly concerned immunocompromised mice (Helisch et al., 2006;
Chalothorn and Faber, 2010), and our subgroup analysis did not
reveal an effect of immunostatus.

Cryopreservation did not affect perfusion. In human clinical trials
that failed to meet endpoints, cryopreservation and thawing protocols
have beenmentioned as possible contributing factors (Xu et al., 2012;
Galipeau, 2013; Francois et al., 2012). Additionally, cryopreservation
can affect in vitro efficacy (Bahsoun et al., 2019). Our analysis
suggests that cryopreservation does not affect BM-derived cell
therapy in the context of perfusion, although the high heterogeneity in
our cohort precludes firm conclusions.

Our findings are similar to human clinical meta-analyses, which
reported increased perfusion after cell-based treatment in placebo-
controlled trials (Peeters Weem et al., 2015; Bahsoun et al., 2019).
However, in human clinical studies, cell-based treatments neither
reduced amputation rates nor increased survival rates (Peeters
Weem et al., 2015). These outcomes are only very rarely reported in
the animal studies assessed in this review, and a meta-analysis using
these outcomes would not be possible.

Due to incomplete reporting, it is difficult to assess the rigor and
quality of the reported data extracted in this review, leaving all
studies at an unclear risk of several types of bias. For example,
descriptions of randomization and masking methods were often not
provided, and selection bias on the reported data could often
not fully be ruled out. Importantly, none of the studies reported
an a priori power calculation, which puts the results at risk of
reporting spurious findings, outcome switching and hypothesizing
after results are known (HARKing). These issues decrease our
confidence in the evidence base. Improved reporting of both study
characteristics as well as outcome validation is an essential next step
towards increasing quality of animal research. High risk of bias has
been suggested as a possible reason for the initial promising results
in human clinical trials, with later randomized controlled trials

Table 2. Statistical results for all subgroup analyses using a
random-effects model

Subgroup R2 (%) P-value Residual I2 (%)

Species 5 0.2 93
Comorbidity 0 0.4 94
Immunocompromised 3 0.08 93
Administration route 3 0.03 92
Cell type 0 0.4 93
Donor species 5 0.2 93
Cell origin 0 0.9 94
Donor comorbidity 0 0.4 94
Cryopreservation 2 0.3 93
Cell dose 0 0.95 94

After correcting for multiple testing, a P-value of 0.005 was considered
significant.

Fig. 4. Meta-regression analysis of effect size versus dose
(number of cells). The red line represents the trend of the effect
size. n=111 comparisons from 76 studies.
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showing no benefit of cell-based treatment over the placebo (Rigato
et al., 2017). It is possible that similar factors play a role in
preclinical studies; however, the lack of clear reporting in most
studies precludes meaningful analysis.
Our publication bias assessment using trim-and-fill analysis

suggests that nearly 25% of the evidence in this field remains
unpublished, indicating an overestimation of the treatment
effect, although a significant effect remains after correcting
for missing studies. Due to the high heterogeneity and the
limited variation in sample size between the studies, this has to
be interpreted with care. In view of the general prevalence
of publication bias in animal research, we encourage researchers
to make use of preregistration, registered reports and data
repositories to make all animal data available, regardless of
their significance level.

GRADEing the certainty in the evidence
Based on the study characteristics, risk of bias assessment and meta-
analysis results, we performed a ‘Grading of Recommendations,
Assessment, Development and Evaluations’ (GRADE) assessment
in line with the recommendations for animal studies (Aref et al.,
2019). The certainty in the evidencewas downgraded due to risks of
bias (serious), inconsistency (very serious), indirectness (serious)
and publication bias (serious) (Table 3). A dose-response effect
was absent, and although there was consistency across rodents, we
deem the variety in species included too limited to upgrade the
certainty in the evidence. Overall, the certainty in the evidence was
classified as low.

Strengths
This review provides a comprehensive overview of animal studies
investigating the use of BM-derived stem cells in HLI. The meta-
analysis was conducted using rigorous and robust methods. The
protocol was preregistered (van Rhijn-Brouwer et al., 2021) and
peer reviewed (van Rhijn-Brouwer et al., 2021).

Limitations
As we selected relative perfusion as primary outcome measure, this
resulted in the exclusion of several early preclinical studies that used
histological parameters as outcome measures, including most
studies that served as a foundation for the first clinical trials.
Relative perfusion represents a functional measure and is therefore
viewed as more clinically relevant compared to histology. As
relative perfusion is normalized to the contralateral control limb, we
also expected this to minimize heterogeneity.

Additionally, in the included studies, a range of methods to
induce HLI was used. It has previously been suggested that some
methods used to create HLI affect perfusion to different degrees
(Aref et al., 2019). We did not take the specific surgical methods to
induce HLI into account in our meta-analysis. Future research
should address this potentially important model-related factor.

Conclusion
Our meta-analysis consistently shows a positive effect of
BM-derived stem cells on limb perfusion, although with a high
heterogeneity, for which no explanation could be found. An unclear
risk of bias and limitations in external validity of the models used
might contribute to limited translational success. We were unable to
identify specific factors that might affect treatment efficacy. Future
animal studies should aim to eliminate the possible causes of the
heterogeneity in the dataset by increased adherence to reporting
standards and increased quality of study design.

MATERIALS AND METHODS
This systematic review and meta-analysis was conducted according to a
prospectively registered (CRD42021226592) and published (van Rhijn-
Brouwer et al., 2021) protocol, and adheres to the 2020 updated PRIMSA
reporting guidelines (Page et al., 2021). One amendment to the protocol was
made (specification of a sensitivity analysis) as recorded in PROSPERO (https://
www.crd.york.ac.uk/prospero/display_record.php?RecordID=226592).

Search strategy
In vivo animal studies investigating the effects of BM-MSCs or BM-MNCs
on perfusion after HLI were identified using a systemic search in

Fig. 5. Publication bias assessment using trim-and-fill analysis added
36 missing studies (open circles) to the original 111 comparisons
(filled circles). The dashed vertical line indicates the pooled estimate based
on the model. A pseudo confidence interval region is drawn around this
value with bounds equal to ±1.96×s.e.

Table 3. GRADEing the certainty in the evidence for the outcome
relative perfusion

Parameter

Certainty assessment
Number of studies 85
Study design Animal studies with internal controls

(ischemic versus non-ischemic limb)
Risk of bias Serious*
Inconsistency Very serious‡

Indirectness Serious§

Imprecision Not serious
Other considerations Serious¶

Number of limbs
Stem cells 1053
Control 1053
Effect
Absolute (95% CI) MD 18.3% higher (15.9-20.7 higher)
Certainty Low

CI, confidence interval; MD, mean difference. Overall, the certainty in the
evidence was classified as low. *Nearly all studies were at an unclear risk of
several types of bias. ‡There was high between-study heterogeneity that could
not be explained by any of ten predefined potential effect modifiers. §There
were important differences in, among other variables, sex, age, presence of
comorbidities, and timing of treatment between the animals used and the
human target population. ¶Publication bias assessment showed 36 (+24%)
studies added by trim-and-fill analysis.
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PubMed and EMBASE via Ovid (https://oce.ovid.com/). Both databases
were searched from inception up to 10 January 2022. The search was based
on the components ‘ischemia’, ‘limb’, ‘PAD’ and ‘stem cells’ (see
supplementary Materials and Methods for the full search strings).
Laboratory animal search filters were used to specifically identify animal
studies (Hooijmans et al., 2010; de Vries et al., 2014).

Screening and study selection
After removal of bibliographic duplicates, the retrieved records were screened
for eligibility based on their title and abstract. Using our predefined exclusion
criteria, records were excluded if they (1) did not present unique outcome data
from an in vivo animal experiment, (2) did not report on a permanent HLI
model or (3) did not involve the administration of a cell product.
Subsequently, eligible studies were screened for final inclusion based on
their full text. In this phase, only studies investigating BM-MNCs and BM-
MSCs were selected for final inclusion. In addition to the criteria above,
studies were excluded if (4) the origin of the MSCs was unclear or not
specified, (5) the cells were modified after isolation, (6) the animals
underwent co-interventions or received co-medications, (7) no appropriate
control group was present or (8) our primary outcome, the perfusion of the
ischemic limb relative to that of the control limb, was not reported. No
language restrictions were applied. In both screening phases, each record was
assessed by two independent reviewers who were not aware of each other’s
screening decisions. Disagreements were resolved through discussion or, if
consensus could not be reached, by a third reviewer serving as arbiter.

Study characteristics
Data were extracted from all included studies by one reviewer. A random
selection of 10% of the data was assessed by a second reviewer to determine
the accuracy of the data extraction. A third reviewer served as arbiter in case of
disagreements. In addition to bibliographical details (first author, year and
journal), we extracted characteristics of the animal model used, including
species, sex, age at the start of the study, comorbidities and whether the
animals were immunocompromised. Details on all relevant experimental
groups were extracted, including the number of animals in each group, the
type of treatment and control(s) used, the timing of the intervention relative to
HLI induction, the number of administrations, dose, administration route,
administration site and timing of the outcome assessment. Regarding the cells
and cell donors, we extracted data on the cell type, donor species, sex, age and
comorbidities, whether the cells were allogenic to the recipient and whether
cells had been cryopreserved before use.

For studies in which the dose was unclear, the number of cells reported
was presumed to be the total dose given (Yao et al., 2020; Huang et al.,
2014; Park et al., 2018; Sun et al., 2017; Tanaka et al., 2010). For one study
mentioning animals being divided into groups without giving exact
numbers (Li et al., 2021), an equal distribution was assumed.

Risk of bias assessment
The risk of bias was assessed for each article according to the SYRCLE risk
of bias tool and the determinants specified therein (Hooijmans et al., 2014)
by two independent reviewers. Briefly, the risk of selection, performance,
detection, attrition and reporting bias was assessed as being low, unclear or
high. In addition to the risk of bias, the SYRCLE tool includes reporting of
key quality indicators (yes versus no), which we assessed. The key quality
indicators report (1) any randomization, (2) any masking, (3) a sample size
calculation, (4) preregistration of a study protocol and (5) a conflict-of-
interest statement. Disagreements were resolved through discussion or, if
consensus could not be reached, by a third reviewer serving as arbiter. Both
assessments focused on the experimental groups and outcome relevant for
this evidence synthesis.

Outcome data extraction
The relative perfusion in each experimental group was extracted in
percentages. The number of animals in each group, the mean and the
standard deviation (s.d.) were recorded. Where necessary, the s.d. was
recalculated from the standard error of the mean (s.e.m.). If no numerical
data were reported, datawere extracted from graphs using FIJI. If the number

of animals in a group was given as a range, the lowest number was used as a
conservative estimate. If multiple cell types were assessed, outcome data
from each cell type were included separately.

If the outcome was measured at multiple time points, data from the time
point of highest efficacy (maximal difference between the control and
treatment group) were recorded for the main analysis to study the maximal
efficacy of treatment. Data from the latest available time point were recorded
for the sensitivity analysis (see Results).

Meta-analysis
The meta-analysis was performed in R using the ‘meta’ (Balduzzi et al.,
2019) and ‘metafor’ (Viechtbauer, 2010) packages (see supplementary
Materials and Methods for R scripts). The difference in relative perfusion
between the treatment group and the control group was expressed as the
mean difference and the corresponding 95% CI and pooled using a random-
effects model. Between-study heterogeneity was assessed using I2 and R2.

To identify potential determinants of treatment efficacy (sources of
heterogeneity), subgroup analyses were conducted based on animal species,
comorbidities, whether the animals were immunocompromised, the
administration route and dose, the cell type, donor species, whether the
cells used were allogenic or from a diseased donor, and whether the cells were
cryopreserved. All subgroup analyses were performed using stratified meta-
regression, except for ‘dose’, for which a linear regression was used. In each
subgroup analysis, we calculated the R2 statistic, which indicates the
percentage of the heterogeneity that was accounted for by the variable, along
with its P-value and the residual I2 statistic, which expresses the remaining
variation due to between-study heterogeneity.

Themain analyses were performed using the data extracted at the time point
of maximum efficacy. To assess the robustness of this approach, a sensitivity
analysis was performed using the data from the latest available time point.

As there were ten subgrouping variables, we used the Bonferroni–Holmes
correction to determine the level of significance at P=0.005 instead of
P=0.05.

Publication bias
Publication bias was assessed through visual inspection of a funnel plot
and a statistical assessment of asymmetry using trim-and-fill analysis
(Viechtbauer, 2010).
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