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Abstract 

Background:  There is an unmet need for prediction of treatment outcome or patient 
selection for [177Lu]Lu-PSMA therapy in patients with metastatic castration-resistant 
prostate cancer (mCRPC). Quantification of the tumor exposure–response relationship 
is pivotal for further treatment optimization. Therefore, a population pharmacokinetic 
(PK) model was developed for [177Lu]Lu-PSMA-I&T using SPECT/CT data and, subse‑
quently, related to prostate-specific antigen (PSA) dynamics after therapy in patients 
with mCRPC using a pharmacokinetic/pharmacodynamic (PKPD) modelling approach.

Methods:  A population PK model was developed using quantitative SPECT/CT data 
(406 scans) of 76 patients who received multiple cycles [177Lu]Lu-PSMA-I&T (± 7.4 GBq 
with either two- or six-week interval). The PK model consisted of five compartments; 
central, salivary glands, kidneys, tumors and combined remaining tissues. Covariates 
(tumor volume, renal function and cycle number) were tested to explain inter-individ‑
ual variability on uptake into organs and tumors. The final PK model was expanded 
with a PD compartment (sequential fitting approach) representing PSA dynamics dur‑
ing and after treatment. To explore the presence of a exposure–response relationship, 
individually estimated [177Lu]Lu-PSMA-I&T tumor concentrations were related to PSA 
changes over time.

Results:  The population PK model adequately described observed data in all compart‑
ments (based on visual inspection of goodness-of-fit plots) with adequate precision 
of parameters estimates (< 36.1% relative standard error (RSE)). A significant declining 
uptake in tumors (k14) during later cycles was identified (uptake decreased to 73%, 
50% and 44% in cycle 2, 3 and 4–7, respectively, compared to cycle 1). Tumor growth 
(defined by PSA increase) was described with an exponential growth rate (0.000408 h−1 
(14.2% RSE)). Therapy-induced PSA decrease was related to estimated tumor concen‑
trations (MBq/L) using both a direct and delayed drug effect. The final model ade‑
quately captured individual PSA concentrations after treatment (based on goodness-
of-fit plots). Simulation based on the final PKPD model showed no evident differences 
in response for the two different dosing regimens currently used.
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Conclusions:  Our population PK model accurately described observed [177Lu]
Lu-PSMA-I&T uptake in salivary glands, kidneys and tumors and revealed a clear 
declining tumor uptake over treatment cycles. The PKPD model adequately captured 
individual PSA observations and identified population response rates for the two dos‑
ing regimens. Hence, a PKPD modelling approach can guide prediction of treatment 
response and thus identify patients in whom radioligand therapy is likely to fail.

Keywords:  177Lu-PSMA-I&T, Population pharmacokinetic model, PKPD, PSA response, 
NONMEM, Prostate cancer

Introduction
Most prostate cancer (PCa) cells show an overexpression of the prostate-specific 
membrane antigen (PSMA) receptor [1, 2]. Radioligands targeting this PSMA recep-
tor proved effective agents for diagnosis and treatment in metastatic castration-
resistant prostate cancer (mCRPC) [3]. Response to treatment is generally evaluated 
by assessing volume reduction on conventional-imaging and/or decrease in serum 
prostate-specific antigen (PSA) levels, while standardized response criteria for 
PSMA-based PET are not established yet [4, 5]. Though this debate on how to evalu-
ate treatment response is ongoing, approximately 20–30% of all patients treated with 
Lutetium-177 (177Lu) prostate-specific membrane antigen ligand ([177Lu]Lu-PSMA) 
show no response to this expensive treatment independent of the response measure 
used [3, 6–9]. It remains unclear what causes this non-response, though many poten-
tial demographic, histological, biochemical and imaging factors have already been 
investigated to predict response to treatment [10, 11]. Results of these studies were 
inconsistent mainly due to the small and heterogeneous patient populations, which is 
further complicated by the fact that PSMA-therapy is adopted as “last line” treatment 
in a heavily pretreated population. Consequently, there still is an unmet need for early 
prediction of individual treatment outcome or better patient selection before initial-
izing [177Lu]Lu-PSMA therapy.

The mechanism of action of [177Lu]Lu-PSMA is the result of a cytotoxic radiation 
dose due to β minus particle (β−) emission, which modifies the tumor microenviron-
ment and induces DNA damage followed by cell death [12]. Theoretically, a higher 
(homogeneous) cumulative absorbed dose (i.e. the energy deposited by the ionizing 
radiation) in tumor lesions will provide a better response to treatment. Clinical and 
preclinical data demonstrated that the absorbed radiation dose in tumors is indeed 
correlated with cellular damage and treatment response [13–16]. Therefore, individ-
ual predictions of tumor absorbed doses could help to identify patients with a higher 
probability of responding to [177Lu]Lu-PSMA therapy. Still, this exposure–response 
relationship was not evidently assessed in a larger population yet, and it remains 
unknown whether this potential association is linear or a maximum effect is reached 
at some point [17, 18].

A pharmacokinetic/pharmacodynamic (PKPD) modelling approach was selected 
to assess the exposure–response relation of [177Lu]Lu-PSMA therapy in patients with 
mCRPC. The use of such mathematical models is well accepted for nonradioactive 
drugs to establish and describe dose-concentration–response relationships [19, 20]. 
In this work, PSA was used to describe treatment response, because any decline in 
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serum PSA after [177Lu]Lu-PSMA therapy was predictive for response and in several 
studies a PSA-decline ≥ 50% was associated with a better progression free and over-
all survival [10, 21, 22]. Hence, a population PK model for [177Lu]Lu-PSMA-I&T was 
developed using post-administration SPECT/CT data and was extended to a PKPD 
model to describe individual serum PSA dynamics after therapy in patients with 
mCRPC. Using this model, we aimed to better understand the exposure–response 
relationship for [177Lu]Lu-PSMA-I&T and, ultimately, assess whether individual PSA 
dynamics could be related to individual 177Lu-accumulation profiles to aid patient 
selection.

Materials and methods
Patients and data collection

Data from patients treated in our hospital with [177Lu]Lu-PSMA-I&T between Sep-
tember 2019 and January 2023 were collected for population PK model development. 
This retrospective data collection was approved by the Institutional Review Board of 
the Netherlands Cancer Institute (IRBd21288). Baseline patient characteristics were 
collected, such as age, body weight, height and serum creatinine clearance. In addition, 
individual PSA concentrations were collected and used as input for the PD model. As 
pre-treatment PSA value, only the last observation prior to [177Lu]Lu-PSMA-I&T treat-
ment (< 6 weeks) was included in the analysis, to avoid taking into account PSA changes 
due to other previous treatments. For the same reason, PSA observations after the last 
[177Lu]Lu-PSMA-I&T administration were collected up to start of a new treatment.

Administration of ~ 7.4  GBq [177Lu]Lu-PSMA-I&T was followed by 3-bedposition 
(top of head to mid-thighs) post-administration SPECT/CT imaging at 4, 24  h and 
5–7 days post injection (or only at 24 h and 5–7 days post injection due to changes in 
the scan protocol in our hospital). Two different dosing schedules were clinically used 
in our hospital during the inclusion period; four cycles with a six-week interval and two 
cycles with a two-week interval repeated after twelve weeks based on initial response to 
therapy (‘4 × 6’ vs ‘2 × 2 – repeated after twelve weeks’). Quantification of radioligand 
uptake on post-administration SPECT-images in relevant tissues (i.e. kidneys and sali-
vary glands) was performed using PLANET® Onco (DOSIsoft, SA) by contouring the 
entire kidney cortex and placing spherical volumes-of-interest in the parotid-subman-
dibular gland (20 mm diameter). Blood data were also derived from SPECT-images by 
placing region-of-interests (20 mm diameter) in three to four consecutive slices in the 
descending aorta. For tumors, only uptake in target lesions with a diameter > 20 mm on 
CT was segmented (using 20 mm diameter spheres) to avoid a negative bias in quanti-
fied activity concentration in small volumes, with a maximum of five lesions per patient 
(two per organ system) [23]. Tumor volumes were determined for segmented (target) 
tumors based on diagnostic pre-treatment PSMA-PET/CT imaging using IntelliSpace 
Portal (Philips Healthcare, The Netherlands) with a semi-automatic threshold segmenta-
tion method of 45% of the maximum value of the standardized uptake value normalized 
to lean body mass (SULmax).

For model development, accumulation in the kidney, salivary gland and tumor com-
partments were lumped, by means that the kidney compartment represented both kid-
neys and the tumor compartment represented all tumor tissue. Whole-body data was 
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not used in model development, because no whole body images were available from our 
clinical setting. Observations and predictions for the central compartment were in con-
centrations (MBq/L), whereas for salivary glands, kidneys and tumors the radioactivity 
amounts (MBq) were used. All radioactivity data were corrected for decay to the time 
of injection. Subsequently, radioactivity blood concentrations (MBq/L) were corrected 
using a previously determined correction factor for [177Lu]Lu-PSMA-617 in blood (lin-
ear regression with an intercept of 6.27 MBq/L and a slope of 0.828) [24]. This correction 
based on PSMA-617 data might not be optimal for PSMA-I&T, but no other correction 
factors were available for using blood data derived from SPECT scans in population PK 
models.

Included patients and data

A total of 79 patients received at least one cycle of ~ 7.4 GBq [177Lu]Lu-PSMA-I&T in 
our hospital. All patients had PSMA-positive tumor lesions on pre-treatment diagnostic 
[68Ga]Ga-PSMA PET/CT, and no PSMA-negative tumor lesions as verified with diag-
nostic contrast-enhanced CT, according to the criteria of the VISION study [7]. Patients 
1–10 received (up to) four cycles of ~ 7.4  GBq with an interval of six weeks, while all 
other patients received two cycles of ~ 7.4  GBq with an interval of two weeks. In this 
latter patient group, patients were eligible for extra treatment cycles in case of a PSA 
response based on the initial treatment series. Post-administration SPECT/CTs were 
acquired at 4.6 ± 0.95  h, 23.8 ± 4.5  h and 6.8 ± 0.46  days post injection. SPECT/CTs 
were unreliable in some patients due to inaccurate image reconstruction (n = 22 scans) 
and inaccurate registered scan times (n = 3 scans), thus these data were excluded from 
analysis. In addition, negative blood concentrations (after correction) at the first time 
points after injection were excluded from analysis (n = 17 data observation). Patients 
that exclusively had tumor lesions < 20 mm diameter (determined on diagnostic imag-
ing) were excluded from analysis (n = 3 patients). This resulted in a total of 76 included 
patients, with 409 SPECT/CT scans available for PK model development. The median 
administered activity was 7.38 GBq (5.61–7.76 GBq) and patients received up to eight 
cycles of [177Lu]Lu-PSMA-I&T. A total of 566 PSA observations were available for devel-
opment of the PD model, after exclusion of PSA concentrations collected once a new 
treatment succeeded [177Lu]Lu-PSMA-I&T (n = 6 patients). Patient characteristics are 
provided in Table 1.

Pharmacokinetic model development

Model development was informed by a previously developed population PK model 
for [177Lu]Lu-PSMA-617 [24]. The structural model consisted of five compartments, 
representing a central compartment, salivary glands, kidneys, tumor lesions and a 
combined remaining tissue compartment. Each compartment is a representation of 
the whole organ or tumor and no distinction between subcompartments was consid-
ered, because the exact location of radioactivity can also not be determined based on 
nuclear images. A top-down approach was used for this population PK model and 
most parameters were fitted rather than fixed based on prior knowledge or assump-
tions. Also, no further model selection (e.g. with single or multi-compartments per 
organ of interest) was performed, as is regularly done for PBPK models including 



Page 5 of 24Siebinga et al. EJNMMI Physics           (2024) 11:39 	

parameter assumptions [25]. Renal excretion of [177Lu]Lu-PSMA-I&T was described 
by an excretion rate constant (k10) from the central compartment. Renal excretion 
was not added to the kidney compartment, because kidney exposure mainly reflects 
intracellular uptake rather than radioactivity located in the vascular part. Radiophar-
maceutical transport between the central compartment and all other compartments 
was described by rate constant (k) parameters. Saturable binding equilibriums (maxi-
mum binding capacity (BMAX)) were tested for all PSMA-expressing compartments 
according to Eq. 1, whereas inter-individual (IIV) and inter-occasion variability (IOV) 
were added following Eq.  2. Residual unexplained variability (RUV) for the central 
compartment was described by a combined proportional and additive residual error 
model (Eq. 3) and by a proportional residual error model for all other compartments 
(Eq. 4). A combined error model for the central compartment prevented the model 
being highly reliant on the lowest blood observations (with relatively high noise). Pro-
portional error models are commonly used for biokinetic data in organs [26]. Detailed 
information regarding testing saturable binding equilibriums for all compartments 
and addition of IIV, IOV and RUV was specified previously [24].

where kin and kout represent the rate constants, Acentral and Atarget represent the com-
pound amounts in the central and target compartment, respectively, and BMAX is the 
maximum binding capacity in the target compartment (i.e. PSMA receptor expression).

(1)
dAtarget

dt
= kin ∗ Acentral ∗ 1−

Atarget

BMAX
− kout ∗ Atarget

Table 1  Patient characteristics

GFR glomerular filtration rate, PSA prostate-specific antigen

Characteristic Median (range)

Patients (n) 76

Age (years) 73 (48–91)

Weight (kg) 79 (61–116)

GFR (calculated using Cockcroft Gault) (mL/min) 80.9 (25.9–181)

Hematocrit 0.35 (0.22–0.44)

Baseline PSA (µg/L) 260 (0.12–4896)

Tumor volume of segmented tumors (L) 0.0443 (0.000122–0.546)

Injected radioactivity (MBq) 7378 (5605–7763)

Received dosing schedule (n)

 ‘4 × 6’ 10

 ‘2 × 2—repeated after twelve weeks’ 66

Number of cycles received (n)

 1 76

 2 74

 3 48

 4 37

 5 6

 6 4

 7 1

 8 1
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where P represents the PK parameter estimate for individual i, Ppop represents the pop-
ulation PK parameter estimate and η represents the IIV or IOV effect for individual i 
with mean 0 and variance ω2. Cobs represents the observed concentration for individual 
i and observation j, Cpred represents the predicted concentration and εp and εadd repre-
sent the proportional and additive error, respectively, both distributed with mean 0 and 
variance σ2.

Covariate testing was performed based on clinical plausibility, to evaluate whether 
covariates could partly explain IIV on PK parameters. Renal function was assumed a 
relevant covariate for clearance, since [177Lu]Lu-PSMA-I&T is renally excreted [27]. 
The clinical plausibility of tumor volume being important for PSMA-ligand distribu-
tion was shown in several previous publications [24, 28–31]. Only target tumor vol-
ume was available for covariate modelling, and, therefore, total tumor volume could 
not be used. Similar to the previously developed model [24], the tested covariates 
were tumor volume on the salivary gland (k12), kidney (k13) and tumor uptake rate 
(k14) and renal function (by means of the estimated glomerular filtration rate based on 
creatinine clearance) on the excretion rate (k10, i.e. renal clearance from the blood). 
Tumor volume was tested as a power (Eq.  5), linear (Eq.  6) and exponential (Eq.  7) 
covariate function, whereas renal function was evaluated as a linear covariate (Eq. 6) 
[32]. A linear covariate model for renal function is pharmacologically most suitable, 
since renal excretion via glomerular filtration is the only route of elimination and this 
is expected to linearly increase with an increased estimated glomerular filtration rate.

where Pcov is the estimated individual parameter value, Ppop is the estimated population 
parameter value, COV is the individual’s covariate value, COVmedian is the median value 
of the tested covariate and θcov represents the estimated effect of the covariate on Ppop.

In addition, body weight was tested on all PK parameters by means of allometric scal-
ing in relation to the median body weight, where exponents for volume of distribution 
(V) and rate constants (k) were set to 1 and -0.25, respectively [33]. Lastly, for radionu-
clide therapies, there is an ongoing debate about the hypothesis that the absorbed dose 
in tumors is likely to decrease in later cycles. This phenomenon was shown by Garkavij 

(2)Pi = Ppop ∗ e
ηi

(3)Cobs,ij = Cpred,ij ∗
(

1+ εp,ij
)

+ εadd,ij

(4)Cobs,ij = Cpred,ij ∗
(

1+ εp,ij
)

(5)Pcov = Ppop ∗

(

COV

COVmedian

)θcov

(6)Pcov = Ppop +

(

θcov ∗

(

COV

COVmedian

))

(7)Pcov = Ppop ∗ e
θcov∗

(

COV
COVmedian

)
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et al. for [177Lu]Lu-DOTATATE, but clear evidence regarding this effect in PSMA-ther-
apy is lacking [34]. To provide evidence regarding the existence of this cycle effect for 
[177Lu]Lu-PSMA-I&T, all cycles were tested as dichotomous covariates on uptake in 
salivary glands (k12), kidney (k13) and tumors (k14) by means of relating the uptake in a 
cycle to a fraction of the uptake in the first cycle, according to Eq. 8 [35]. Due to limited 
patients receiving more than four cycles, these cycles were lumped as a single additional 
cycle effect.

where Pcov is the estimated individual uptake parameter value, Ppop is the estimated pop-
ulation uptake parameter value and θcov values represent the fraction of uptake for that 
cycle compared to Ppop (i.e. uptake in the first cycle).

Pharmacodynamic model development

A sequential modelling approach was used for PKPD model development [36], where 
an additional compartment was considered to describe PSA concentrations over time. 
Baseline PSA concentrations were estimated as a typical population value with an 
estimated IIV on this population baseline value. PSA growth was included using an 
exponential first-order PSA growth rate (kG), as previously described by Van Hasselt 
et al. [37]. The direct effect of [177Lu]Lu-PSMA-I&T treatment on PSA was modelled 
with Edrug being elimination from the PSA compartment. For Edrug, a linear function, 
an Emax function and a sigmoid Emax model were evaluated (see Eqs.  9–11, respec-
tively) [17].

where kD is a drug-induced effect, Ctumor is the estimated concentration in the tumor 
compartment (taking into account radioactive decay), EMAX is the maximal drug induced 
effect of [177Lu]Lu-PSMA-I&T on PSA, EC50 is the [177Lu]Lu-PSMA-I&T concentration 
at which half of the maximum drug-induced effect on PSA occurs and γ is a hill coeffi-
cient (that was both estimated and fixed during model development).

Some patients showed an ongoing decrease in PSA even after treatment with [177Lu]
Lu-PSMA-I&T was completed and radioactivity in tumors was eliminated. Therefore, 
a delay of the PD effect after administration of [177Lu]Lu-PSMA-I&T (Edelayed) was 
evaluated using an effect compartment with a linear drug effect (Eq.  8) on the PSA 
compartment [38]. This delayed effect was assessed both solely as well as additional 
to the direct effect (Edrug). In the final model, both direct and a delayed effect were 

(8)Pcov = Ppop ∗ θ
cycle2
cov1 ∗ θ

cycle3
cov2 ∗ θ

cycle4−7

cov3

(9)Edrug = kD ∗ Ctumor

(10)Edrug =
EMAX ∗ Ctumor

EC50 + Ctumor

(11)Edrug =
EMAX ∗ C

γ
tumor

EC
γ
50

+ C
γ
tumor
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included, so that the total PSA dynamics over time were described following Eq. 12. 
No decrease of PSA was assumed without an initial treatment cycle.

where kG is the first-order PSA growth rate, PSA represents the PSA concentration at 
a certain time point, Edrug and Edelayed are functions representing the direct effect and 
delayed effect of [177Lu]Lu-PSMA-I&T on PSA, respectively.

Furthermore, covariates were tested to improve the model fit of the PD model, where 
selection of potential covariates was guided by clinical and biological relevance. Tumor 
volume and age were assumed to be related to PCa disease severity and thus were tested 
as covariates to describe variability on baseline PSA (by using power and linear func-
tions, according to Eqs.  5 and 6, respectively). In addition, resistance of the [177Lu]
Lu-PSMA-I&T effect over time and a change of kG during treatment were assessed. 
IIV was evaluated for all PD parameters by using an exponential function (according to 
Eq. 2). In case the random effect distribution was non-normal (and thus visually devi-
ated from the  assumed distribution shape), a box-cox transformation of that specific 
η was performed [39]. A proportional (Eq. 4) and combined proportional and additive 
residual error model (Eq. 3) were tested to describe residual errors [32].

Model evaluation

Evaluation of model fits were guided by physiological plausibility of parameters and eval-
uation of goodness-of-fit (GOF) plots [40], prediction corrected visual predictive checks 
(pcVPC) [41], the change in objective function value (dOFV), successful minimization, 
decrease in IIV and the uncertainty in parameter precision. These aspects together sup-
ported model evaluation and thereby determined whether the model adequately fit the 
observed data [40]. Precision of parameter estimates was determined using the sam-
pling importance resampling (SIR) approach [42]. For hierarchical nested models, a p 
value < 0.05 was considered a significant improvement of the model fit (corresponding to 
a decrease in OFV of ≥ 3.84 points following a Chi-square distribution with 1 degree of 
freedom).

Simulations

Population simulations based on the final PKPD model were performed to evalu-
ate treatment response for both dosing regimens. A patient population was simulated 
(n = 2000) based on patient characteristic distributions of all included covariates of our 
clinical population (n = 76). The simulated dosing regimens included: four cycles of 
7.4 GBq with a six-week interval (referred to as ‘4 × 6’) and two cycles of 7.4 GBq with 
a two-week interval which was repeated after 12 weeks (referred to as ‘2 × 2 − repeated 
after twelve weeks’). Endpoints were response and stable disease at the end of treatment 
(i.e., 24 weeks after start of treatment), where response was defined as a ≥ 50% decrease 
in PSA and stable disease as no increase in PSA [43, 44].

(12)
dPSA

dt
= kG ∗ PSA− (Edrug + Edelayed) ∗ PSA
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Exposure thresholds

As an exploratory analysis, the final population PKPD model was used to assess a poten-
tial tumor exposure threshold required to achieve treatment response. The individu-
ally (Bayesian) estimated area under the curve (AUC) based on the first two treatment 
cycles was related to the change in PSA (%) for each patient. Since PSA is a continu-
ous response measure and there is no defined moment to determine response, two end-
points for response were considered: nadir PSA and the last measured PSA value after 
the first two treatment cycles. A linear regression was performed to assess the relation-
ship and was subsequently used to define tumor AUC thresholds required to achieve 
treatment response (≥ 50% decrease in PSA) [43, 44]. Formal statistical testing was not 
possible, since individual (Bayesian) estimates of tumor exposure cannot be considered 
independent variables.

Software

The modelling was performed using NONMEM (version 7.5; ICON development 
Solutions, Ellicott City, MD) using the first-order conditional estimation method with 
interaction (FOCE-I) and ADVAN13. Data processing, visualization of GOF plots and 
pcVPCs and simulations based on the PKPD final model as well as the linear regression 
were performed using R (version 4.2.1).

Results
Population pharmacokinetic model

A five-compartment model with first-order kinetics was developed to describe the 
observed [177Lu]Lu-PSMA-I&T accumulation data. An overview of the population PK 
model (including the PD model) is provided in Fig.  1. Renal excretion (k10) was esti-
mated 0.253 h−1 (5.2% RSE). The central volume of distribution (V1) was fixed to 10.3 

Fig. 1  Schematic overview of the final PKPD model for [177Lu]Lu-PSMA-I&T describing PSA dynamics, where 
the PK and the PD model are depicted in black and grey, respectively
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L, because blood data derived from scans were considered too unreliable for accurate 
parameter estimation. Final model parameter estimates for kin values to all compart-
ments were 0.0105 h−1 (9.2% RSE), 0.0321 h−1 (6.9% RSE), 0.00967 h−1 (9.9% RSE) and 
0.275  h−1 (6.8% RSE) for compartment two to five (i.e. salivary glands, kidneys, tumor 
and remaining tissue), respectively. Allometric scaling was added to all PK parameters 
(dOFV −11.3). As mentioned before, creatinine clearance, tumor volume and cycle 
effects were introduced as covariates. Serum creatinine clearance was not identified as 
a covariate on k10, since the OFV and model fit did not improve (dOFV −0.207). Tumor 
volume was selected as a covariate on the tumor uptake rate (k14) using a power func-
tion, which showed the best improvement in model fit (dOFV −89.9, compared to dOFV 
−87.3 for a linear function and dOFV −31.0 for an exponential function). The estimated 
covariate value was 1.08 (7.5% RSE), where a two-times higher volume resulted in a 2.11-
fold increased tumor uptake rate. A slight tumor sink effect was identified for salivary 
glands, where an increased tumor volume resulted in a lower salivary gland uptake rate 
(k12) (using a power function with an estimated covariate value of 0.0910 (30.0% RSE), 
dOFV −7.46). No effect of tumor volume on the kidney uptake rate (k13) was identi-
fied (dOFV −1.53). A cycle effect was identified with a significant decreased [177Lu]
Lu-PSMA-I&T uptake in tumors in later cycles (dOFV −157), where the tumor uptake 
rate decreased to 73%, 50% and 44% uptake in cycle 2, 3 and 4–7 compared to cycle 
1, respectively. Unfortunately, the limited available data for the ‘4 × 6’ dosing scheme 
were not sufficient to identify different cycle-effects for both dosing schemes. There-
fore, these differences in dosing intervals might have impacted our estimates and these 
estimates probably mainly reflect the ‘2 × 2 – repeated after twelve weeks’ scheme. Still, 
when excluding all patients receiving the ‘4 × 6’ scheme, a smaller decrease of 82.9% was 
estimated for cycle 2 (whereas other estimates did not substantially change). Saturable 
uptake into the salivary glands was included with an estimated BMAX of 134 MBq (15.5% 
RSE). Adding saturable uptake for the kidney and tumor compartments resulted in non-
identifiable BMAX estimates, implying no detectable saturable binding with current spe-
cific activities, and thus were not included. Cycle-to-cycle variability (or IOV) was most 
profound for tumors (estimated 37.8% (16.5% RSE)) and was thus only added on the 
tumor uptake rate parameter for reasons of model simplicity. This IOV reflects a ran-
dom variability in tumor uptake between cycles, in addition to the identified cycle effect 
(i.e. structural decrease in tumor uptake in subsequent cycles). IIV was highest on the 
tumor uptake rate parameter (k14) and BMAX of the salivary gland compartment (63.4% 
and 67.0% coefficient of variation (CV), respectively), while IIV on other PK parameters 
was rather small (< 35%  CV). All PK parameters were estimated with adequate preci-
sion (RSE < 36.1%). RUV for the central compartment was best explained by estimating 
the proportional (similar to our previous model [24]), but also the additive component 
(dOFV -40.4). Final population and individual predicted concentrations were in line 
with the observed [177Lu]Lu-PSMA-I&T data for all compartments (see Fig.  2). Final 
parameter estimates and parameter precision for the population PK model are provided 
in Table 2, whereas individual prediction vs observation plots are provided in Additional 
file 1: Figures S1-S3.



Page 11 of 24Siebinga et al. EJNMMI Physics           (2024) 11:39 	

Population pharmacodynamic model

The PK model was expanded with one PD compartment representing PSA dynamics. 
The baseline PSA was fixed to avoid overparameterization and high correlations between 
parameter estimates. This value was initially estimated 140 µg/L based on baseline PSA 
measurements and fixed to this value during further model development, therefore it 
still reflects the baseline PSA of this population. Tumor volume was identified as a linear 
covariate on the baseline PSA with an estimated covariate value of 57.5 µg/L (38.9% RSE) 
(dOFV -4.51). Age did not explain IIV on the baseline PSA (dOFV -1.01). The exponen-
tial PSA growth rate was estimated 0.000408  h−1 (14.2% RSE) and this parameter was 
not identified to change during treatment. A linear model described the direct drug 
effect on PSA dynamics best (based on GOF plots, model convergence and precision of 
parameter estimates [17]) and parameters could not be reliably estimated using an EMAX 
model or a sigmoid Emax model to describe the direct drug effect. KD, direct was estimated 

Fig. 2  Goodness-of-fit plots of the final population PK model for [177Lu]Lu-PSMA-I&T, including population 
predictions (PRED) versus observations (A), individual predictions (IPRED) versus observations (B), conditional 
weighted residuals (CWRES) versus time after injection (C) and CWRES versus PRED (D), for all compartments 
separately
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0.000335 L·day−1·GBq−1 (40.1% RSE). Addition of a delayed [177Lu]Lu-PSMA-I&T effect 
greatly improved the model fit (dOFV -177). The parameter describing first-order delay 
to the effect compartment (ke0) was estimated 0.00128 h−1 (13.1% RSE), while the drug 
induced delayed effect (kD, delay) was estimated 0.0000328 L·day−1·MBq−1 (17.4% RSE). 
For IIV on kG, a box-cox transformation was applied, since strong deviation from the 
log-normal distribution was observed and the transformed IIV clearly improved the 
model fit (dOFV -28.7). An IIV on kD, delayed was added to capture potential different 
post-treatment effects. IIV on PD parameters was considerable, with 179%, 90.9%, 140% 

Table 2  Model estimates of the final pharmacokinetic model for [177Lu]Lu-PSMA-I&T

95% CI and RSE values were obtained from the SIR

BMAX maximum binding capacity, CI confidence interval, CV% coefficient of variation, RSE relative standard error, SIR 
sampling importance resampling, V1 central volume of distribution

a Added using a power covariate function: Pcov = Ppop ∗
(

COV
COVmedian

)θcov

b Added as fractional change: Pcov = Ppop ∗ θ
cycle2
cov1 ∗ θ

cycle3
cov2 ∗ θ

cycle4−7

cov3
c Fixed parameter

Pharmacokinetic parameters Estimate (RSE%) 95% CI

Structural parameters

k10 (h−1) 0.253 (5.2%) 0.229–0.281

k12 (h−1) 0.0105 (9.2%) 0.00878–0.0125

 Tumor volume on k12
a 0.0910 (30.0%) 0.0350–0.544

k21 (h−1) 0.0629 (6.3%) 0.0555–0.0715

k13 (h−1) 0.0321 (6.9%) 0.0281–0.0368

k31 (h−1) 0.0625 (5.4%) 0.0561–0.0689

k14 (h−1) 0.00967 (9.9%) 0.00807–0.0117

 Tumor volume on k14
a 1.08 (7.5%) 0.921–1.24

 Cycle 2 on k14
b 0.731 (8.1%) 0.619–0.857

 Cycle 3 on k14
b 0.498 (11.3%) 0.407–0.624

 Cycle 4–7 on k14
b 0.436 (11.6%) 0.350–0.544

k41 (h−1) 0.0150 (3.4%) 0.0141–0.0161

k15 (h−1) 0.275 (6.8%) 0.240–0.314

k51 (h−1) 0.0247 (6.5%) 0.0216–0.279

BMAX compartment 2 (MBq) 134 (15.5%) 100–183

V1 (L) 10.3c

Inter-individual variability

k10 (CV%) 33.1 (18.5%) 27.6–39.7

k13 (CV%) 33.4 (22.2%) 26.8–40.8

k14 (CV%) 63.4 (18.9%) 52.0–75.1

k15 (CV%) 29.1 (35.5%) 20.2–40.0

BMAX compartment 2 (CV%) 67.0 (36.1%) 49.1–94.2

Inter-occasion variability

k14 (CV%) 37.8 (16.5%) 31.5–44.1

Residual unexplained variability

Proportional error compartment 1 (CV%) 55.5 (29.0%) 39.0–71.6

Additive error compartment 1 (MBq/L) 9.57 (16.8%) 8.02–11.2

Proportional error compartment 2 (CV%) 39.7 (8.6%) 36.7–43.2

Proportional error compartment 3 (CV%) 31.9 (8.5%) 29.4–34.6

Proportional error compartment 4 (CV%) 32.7 (9.7%) 30.0–36.2
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and 87.5% (all CV) on baseline PSA, kG, kD, direct and kD, delay, respectively. RUV was best 
described by a proportional error model.

Based on this final PKPD model, GOF plots (Fig. 3) and the pcVPC (Fig. 4) showed 
that the model was able to adequately capture PSA dynamics over time. Discrepan-
cies between population predictions and PSA observations were mainly caused by 
patients that showed extreme high or low baseline PSA values and subsequent PSA 
concentrations. Still, these observations were captured by the model by including 
IIV, as is also shown in the pcVPC where simulated variability captured observed 
variability in PSA concentrations. Plots comparing model predictions with individ-
ual PSA observations are provided in Additional file 1: Figure S4. All parameter esti-
mates for the PD model and according parameter precision are shown in Table 3.

Simulations

Simulations based on the final model showed only slight differences in PSA dynam-
ics between both dosing schedules (‘4 × 6’ vs ‘2 × 2 − repeated after twelve weeks’) 
(see Fig. 5). Stable disease (i.e. no increase in PSA) was predicted for 54.8% vs 56.4% 
of all patients after the ‘4 × 6’ and ‘2 × 2 − repeated after twelve weeks’ dosing sched-
ule, respectively. Response to therapy with a ≥ 50% decrease in PSA was predicted 

Fig. 3  Goodness-of-fit plots of the final population PKPD model for [177Lu]Lu-PSMA-I&T, including PSA 
population predictions (PRED) versus PSA observations (A), PSA individual predictions (IPRED) versus PSA 
observations (B), conditional weighted residuals (CWRES) versus time after injection (C) and CWRES versus PRED 
(D)
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Fig. 4  Prediction corrected visual predictive check of the final PKPD model for [177Lu]Lu-PSMA-I&T describing 
PSA dynamics (based on 1000 simulations). Solid lines and dashed lines represent median observed 
values and 10th and 90th percentiles of observed values, whereas dark and light blue areas represent 95% 
confidence intervals of the simulated median and 10th and 90th percentiles of simulated values

Table 3  Pharmacodynamic model estimates of the final model for [177Lu]Lu-PSMA-I&T

95% CI and RSE values were obtained from the SIR

CI confidence interval, CV% coefficient of variation, PSA prostate-specific antigen, RSE relative standard error, SIR sampling 
importance resampling
a Fixed parameter
b Added using a linear covariate function: Pcov = Ppop +

(

θcov ∗

(

COV
COVmedian

))

Pharmacodynamic parameters Estimate (RSE%) 95% CI

Structural parameters

Baseline PSA (µg/L) 140a

 Tumor volume on baseline PSA (µg/L)b 57.5 (38.9%) 15.5–101.6

PSA growth rate (kG) (h−1) 0.000408 (14.2%) 0.000286–0.000517

Direct drug-induced effect (kD, direct) (L·day−1·GBq−1) 0.00335 (40.1%) 0.000961–0.006147

Rate constant effect compartment (ke0) (h−1) 0.00128 (13.1%) 0.00105–0.00171

Delayed drug-induced effect (kD, delay) (L·day−1·MBq−1) 0.0000328 (17.4%) 0.0000235–0.0000450

Box-cox shape parameter  −0.822 (28.3%)  −1.24 to −0.414

Inter-individual variability

Baseline PSA (CV%) 179 (17.4%) 151–210

kG (CV%) 90.9 (32.6%) 64.2–121

kD, direct (CV%) 140 (51.2%) 61.0–206

kD, delay (CV%) 87.5 (26.1%) 66.1–109

Residual unexplained variability

Proportional error (CV%) 29.3 (9.2%) 27.0–32.2
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for 42.4% and 44.7% of all patients for the ‘4 × 6’ and ‘2 × 2—repeated after twelve 
weeks’ dosing schedule, respectively. A simulated difference in PSA concentrations 
was visually observed between both dosing regimens during the simulated follow-
up period, where the ‘2 × 2 − repeated after twelve weeks’ scheme showed a more 
prominent decrease in PSA (shown in Fig. 5).

Fig. 5  Simulated PSA dynamics based on the final population PKPD model (median simulation with 50% 
prediction interval, n = 2000) after treatment with [177Lu]Lu-PSMA-I&T with two different dosing schemes: 
two cycles of 7.4 GBq with a two-week interval (series repeated after twelve weeks) (‘2 × 2’) and four cycles of 
7.4 GBq with a six-week interval (‘4 × 6’). Simulated results implied a slightly more prominent decrease in PSA 
(especially after the second cycle) for the ‘2 × 2 - repeated after twelve weeks’ scheme

Fig. 6  Relationship between the observed change in PSA and the individually estimated cumulative area 
under the curve (AUC) in tumors (i.e. time-integrated activity) after the first two treatment cycles, where the 
change in PSA was determined based on the nadir value (A) and the last measured value (B) compared to 
the baseline PSA value
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Exposure thresholds

Linear regression analyses showed an evident relationship between tumor exposure 
(AUC) and change in PSA (for both nadir PSA as endpoint measure and the last meas-
ured PSA concentration as endpoint measure) (see Fig. 6). Treatment response (≥ 50% 
decrease in PSA) was calculated to occur with a threshold AUC of 709.5 MBq·h/mL in 
case the nadir PSA value was the outcome measure, while 1188 MBq·h/mL AUC was 
required for obtaining a ≥ 50% decrease in PSA at the last measurement after the first 
two cycles.

Discussion
A population PKPD model was developed for [177Lu]Lu-PSMA-I&T based on clinical 
imaging data of 76 patients with mCRPC. The PKPD model showed adequate descrip-
tion of PSA changes over time during and following treatment with [177Lu]Lu-PSMA-
I&T. Radioactivity concentrations in the tumor compartment proved informative to 
describe PSA dynamics as a measure of treatment response, indicating the presence of 
an exposure–response relation. This was the first study to quantify PSA response based 
on PK of [177Lu]Lu-PSMA-I&T using a population modelling approach. Further elabo-
ration regarding the identified cycle effect (and random cycle-to-cycle variability), the 
quantified direct and delayed effects of [177Lu]Lu-PSMA-I&T tumor exposure on PSA 
dynamics and the simulated response results for both dosing regimens are provided 
below.

PK model (structure)

The PK model structure resembles a lumped physiologically based pharmacokinetic 
(PBPK) model including only the organs of interest (i.e. a minimal PBPK model [45]). 
Lumped compartments (without distinction between subcompartments) were used, 
because nuclear imaging data do not allow intra-compartment distinction of the loca-
tion of the radioactivity and assumptions are always required to make such distinctions 
(e.g. using PBPK models). As a result, not all system-specific parameters, drug-specific 
parameters and physiological processes as required for a full PBPK were necessary 
and a simpler description of drug-transfer could be used. In addition, parameters and 
their variability were estimated (i.e. top-down approach) rather than defined before-
hand based on drug and system specific prior knowledge (i.e. bottom-up approach). All 
parameters could be fitted since data observations for most (lumped) compartments 
were available, resulting in an identifiable model. This approach enabled straightforward 
individual Bayesian estimation of parameter estimates and description of uptake in all 
compartments, which will be relevant in future individual predictions. More informa-
tion on differences between population PK and PBPK modelling approaches can be 
found in literature [46].

Renal clearance was estimated 2.61 L/h, which is comparable to the reported clear-
ance for [177Lu]Lu-PSMA-617 of 2.04 L/h [47]. Comparison of rate constants for drug 
transfer between different compartments is hampered by absolute radioactivity amounts 
being relatively small in tumors compared to organs (due to volume differences between 
these compartments). However, these parameter differences showed that maximum 
concentrations are achieved slower in tumors. The volume of distribution (V1) of 10.3 L 
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reflects that, apart from receptor binding, the drug is hydrophilic and remains mainly in 
the blood. Kratochwil et al. reported an initial volume of distribution of 22 L for [177Lu]
Lu-PSMA-617 [48], which approximated extracellular body water. Taking into account 
our additional description of separate compartments, these results are quite compara-
ble. Estimated half-lifes for organs-at-risk and tumors were approximately 11 h and 46 h, 
respectively. For tumors, this is comparable to previous reported half-life of 51 h, while 
for organs our estimated half-life is clearly lower than the reported 33 h [49]. This might 
be due to the different PSMA-ligand.

A limitation of our PK model is the number of available data points per patient. Unfor-
tunately, only two or three scans per cycle were available for PK model development, 
which is due to the retrospective nature of our study and thus could not be avoided. 
Also, in clinical practice, three imaging moments is considered the maximum, as post-
treatment imaging has a major impact on the wellbeing of patients and places a burden 
on department logistics.

Cycle‑to‑cycle effects

The cycle-to-cycle variability of 37.8% (CV) on the tumor uptake rate (k14) was hypothe-
sized to play a part in [177Lu]Lu-PSMA-I&T PK based on previously reported results for 
[177Lu]Lu-PSMA-617, where a somewhat higher CV was found of 43.5% [24]. Though 
differences are small, these might be caused by different treatment intervals (two-week 
instead of six-week interval) for most patients. Excretion rates of these slightly differ-
ent PSMA-ligands were comparable (0.253 h−1 for PSMA-I&T vs 0.288 h−1 for PSMA-
617) [24]. Covariate analysis during population PK model development showed that 
tumor uptake rates evidently decrease in subsequent treatment cycles to 73.1%, 49.8% 
and 43.6% in cycle 2, 3 and 4–7, respectively, compared to cycle 1. Recently, first clini-
cal evidence for this cycle effect was published in a small population treated with 
[177Lu]Lu-PSMA-I&T (n = 5–15 patients per cycle) [50]. The average tumor absorbed 
dose decreased in this study from 3.5 Gy/GBq in the first cycle to 3.3 Gy/GBq (94%), 
2.7 Gy/GBq (77%) and 2.4 Gy/GBq (68%) in the second to fourth cycle. Reduced tumor 
uptake in later cycles could be due to tumor cell kill and/or a decrease in PSMA recep-
tor expression, caused by radiation damage to all previously targeted cells and/or recep-
tors. Also, tumor vascularization might be harmed due to radiation effects, since some 
evidence for this phenomenon was recently provided [51]. A similar cycle-effect was 
also tested on uptake in salivary glands (being an organ-at-risk for toxicity), where a 
slight decrease was observed in cycle two (84.6%) compared to cycle one, whereas this 
decreased uptake diminished in cycle three (98.1%). This indicated that salivary gland 
tissues are not capable to recover from radiation induced damage in two weeks, while 
after approximately twelve weeks the cells seem restored and/or compensated uptake 
(e.g. by increased expression or perfusion), so that accumulation was similar to start of 
treatment. The limited capabilities for tissue regeneration and remodeling after radia-
tion induced damage for the tumor (microenvironment) compared to normal tissues is 
one of the cornerstones of radiation-based therapies. The fact that a gradual decrease 
in accumulation over cycles is present for tumors, but to a far lesser extent in normal 
organs, is highly relevant and underlines the need for more personalized dosing schemes 
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as opposed to fixed dosing regimens (e.g. by increasing the injected radioactivity in ini-
tial cycles).

Modelling PSA dynamics

Since this is the first PKPD model for [177Lu]Lu-PSMA-I&T, evaluation of estimated 
PD parameters is challenging. PSA growth seemed captured accurately, since kG of 
0.000408 h−1 is comparable to a previous estimated PSA growth rate of 0.000366 h−1 in 
castration resistant PCa patients [37]. Precision of the parameters related to the PD part 
of the model was less adequate. Hence, the developed model could be improved in future 
research. First, current data in tumors only represented segmented tumors. Since many 
patients have extensive metastases and the included tumor lesions do not represent over-
all tumor uptake, this might not fully reflect PSA changes. Secondly, the first ten patients 
treated in our hospital were selected based on extreme late-stage disease. Patients cur-
rently treated with [177Lu]Lu-PSMA-I&T in our hospital are, generally speaking, in a bet-
ter clinical condition and these two groups (i.e. ‘4 × 6’ and ‘2 × 2 − repeated after twelve 
weeks’) in our included patients might not reflect one population of patients. Still, data of 
all patients was included for PK model development, to include all available information 
on both dosing regimens. Thirdly, additional PSA observations might improve the model 
fit even further. Lastly, an additional covariate analysis in a larger patient population will be 
useful, so that IIV might be further explained and PSA dynamics is even better captured.

The simulated response rates (patients showing a ≥ 50% decrease in PSA) after [177Lu]
Lu-PSMA therapy based on our PKPD model was comparable to published large popu-
lation data, with 42.4% and 44.7% of all patients for the ‘4 × 6’ and ‘2 × 2 − repeated after 
twelve weeks’ dosing schedule, respectively, versus 46.0% and 52.0% in the VISION trial 
and REALITY study, respectively [7, 22]. Our simulations showed somewhat compara-
ble PSA responses 24 weeks after start of treatment for both dosing regimens, though 
the ‘2 × 2 − repeated after twelve weeks’ dosing scheme showed an evident decrease 
direct after the second cycle. By comparing responses at 24 weeks after start of treat-
ment, it should be noted that this was ten weeks after the last treatment cycle for the 
‘2 × 2 − repeated after twelve weeks’ group, whereas six weeks after the last treatment 
cycle for the ‘4 × 6’ group. In addition, the eventual response effect might be underesti-
mated for the ‘2 × 2—repeated after twelve weeks’ group, since patients not responding 
to therapy will not receive a second therapy series. Possibly, administering the second 
treatment series earlier after the first treatment series might result in a larger decrease in 
PSA. Also, the patient selection based on the initial treatment cycle should be improved 
in future research, to avoid treating patients that are unlikely to respond to therapy. Our 
simulation results implied that the ‘2 × 2 − repeated after twelve weeks’ would at least 
result in similar response rates compared to the ‘4 × 6’ scheme studied in the VISION-
trial [7], but might even lead to better response rates in case of further optimization.

The established tumor threshold AUCs are a first step towards this patient selection, 
since a clear relationship between tumor AUC and therapy outcome is shown. How-
ever, the linear relationship comes with uncertainty and might not represent the optimal 
model, thus further evaluation is required based on additional data. Also, ideally, other 
response measures should be used to assess threshold AUCs and these need to be com-
pared to these established thresholds. These potential improvements, together with the 
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already comparable simulated response rates, make the ‘2 × 2 − repeated after twelve 
weeks’ dosing regimen an interesting scheme for radioligand therapy.

Direct and delayed effects of radiation

Evaluation of the PD model showed an adequate description of PSA dynamics for the 
majority of patients by including a direct and delayed effect of [177Lu]Lu-PSMA-I&T. 
Regarding the identified direct and delayed effects, interpretation of results needs fur-
ther elaboration. The direct effect showed a rather low kD, direct. Therefore, the direct 
effect of this radioligand therapy is limited for the majority of patients and the delayed 
treatment effect clearly contributed to the overall response. The existence of delayed 
effect was expected, since radiation damage is known to be caused by both direct and 
indirect action of radiation on the targeted cells [52]. Furthermore, it is of interest to 
relate our results to observations from external beam radiation therapy and brachyther-
apy, where cell survival is often modelled using linear-quadratic models [53, 54]. Using 
these models, the radiation effect on cells is assessed with alpha and beta parameters (a 
linear and quadratic component, respectively), which both reflect the radiosensitivity of 
cells (i.e. higher values indicate more sensitive cells) [55]. The alpha/beta ratio indicates 
the fractionation sensitivity of cells, where generally speaking, the higher the ratio, the 
more linear the cell survival curve and thus the less sensitive the cells are to fraction. 
With low alpha/beta ratios, the linear component is less important and this represents 
late responding tissue with a high sensitivity for fraction sizes [53, 55–57]. PCa showed 
a low alpha/beta ratio of about 1.5–3 Gy [56–60], which indicated late responding cells 
and may be in line with our findings of a delayed effect of the radionuclide treatment [56, 
57, 61]. In addition, considering repair of PCa cells [57], a new dose is ideally adminis-
tered close to the previous administration, to limit the possibility of tumor cell repair 
while simultaneously giving the healthy tissue time to do some repair. This is accom-
plished by using a ‘2 × 2’ dosing scheme, where the second cycle of [177Lu]Lu-PSMA-I&T 
is administered almost directly after wash-out of the tumor exposure from the previous 
cycle. This can be compared with radiotherapy models where cell repair is taken into 
account, such as brachytherapy [62]. Still, increasing injected radioactivity doses might 
increase efficacy due to the delayed effect on PSA, which is in line with achieving higher 
tumor doses per fraction as proposed in hypofractionated schemes for low alpha/beta 
ratio PCa tissue.

The included delayed effect was linearly concentration-dependent. Mechanistic 
explanations of a delayed treatment effect of [177Lu]Lu-PSMA-I&T could be changes 
in the tumor microenvironment, such as the before mentioned alteration in vasculari-
zation [51]. A radiation-induced bystander response could also explain the identified 
delayed effect, which is a phenomenon that explains how non-irradiated cells could 
show damage similar to ionizing radiation as a result from neighbor cells being irradi-
ated [63, 64]. Though exact mechanisms of the radiation-induced bystander effect are 
very complex, the interaction of irradiated cells with the immune system is likely to 
play an important role [65, 66]. A delayed effect on PSA levels is also described after 
external beam radiation therapy, since the average time to nadir PSA after radiother-
apy is approximately fifteen months [67]. It is important to mention that this delay in 
PSA effect does not per se reflect a similar delayed effect on overall tumor treatment 
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response. The estimated delay is probably also partly related to PSA being our PD 
measure, because changes in PSA are likely to occur somewhat after treatment [67, 
68]. This could be partly due to occurrence of a PSA-flare phenomenon after start 
of treatment, which was previously hypothesized before for radioligand therapy with 
[177Lu]Lu-PSMA-617 [68, 69]. In that case, PSA does not immediately decrease after 
start of treatment due to release of PSA out of responding tumor cells. Therefore, cau-
tion is also warranted with interpretation of direct effect results, since the identified 
direct effect refers to a direct effect on PSA response (and not per se overall treatment 
response).

Future applications

Using a PKPD modelling approach, an evident exposure–response relationship was 
identified for [177Lu]Lu-PSMA-I&T, where tumor accumulation was related to direct 
and delayed effects on PSA dynamics. Eventually, this population model could form the 
basis to individually predict tumor exposure and treatment response using Bayesian 
forecasting (similar as applied in a therapeutic drug monitoring approach [70]). Base-
line PSA levels combined with observed uptake in tumors and all prior known patient 
characteristics (i.e. covariates in the model) can be used to estimate individual Bayesian 
estimates (based on previous established population parameters, IIV, IOV and RUV). 
These Bayesian parameter estimates can then be used to predict individual PSA changes 
over time. In addition, since the debate on how to evaluate treatment response is ongo-
ing, future PKPD models should also include RECIST criteria or tumor growth as PD 
measures [71]. The approach of predicting individual response to therapy could guide 
individualized dosing or selection of patients for radioligand therapies.

Conclusions
Our population PK model accurately described observed radioactivity in salivary glands, 
kidneys and tumors after [177Lu]Lu-PSMA-I&T treatment in patients with mCRPC. A 
declining tumor uptake over cycles was revealed and tumor uptake was estimated to 
decrease to 73%, 50% and 44% in cycle 2, 3 and 4–7, respectively, compared to cycle 
1. Higher tumor accumulation was related to better PSA response, explained by both a 
direct and delayed effect of [177Lu]Lu-PSMA-I&T therapy. The final PKPD model ade-
quately captured individual PSA observations and identified population response rates 
and tumor AUC thresholds. Using such a PKPD modelling approach in future research 
could help to individually predict treatment outcome and, thus, identify patients in 
whom radioligand therapy is likely to fail.
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