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Beyond gait speed: exploring the added 
value of Inertial Measurement Unit‑based 
measurements of gait in the estimation 
of the walking ability in daily life
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Abstract 

Background  Gait speed is often used to estimate the walking ability in daily life in people after stroke. While measur-
ing gait with inertial measurement units (IMUs) during clinical assessment yields additional information, it remains 
unclear if this information can improve the estimation of the walking ability in daily life beyond gait speed.

Objective  We evaluated the additive value of IMU-based gait features over a simple gait-speed measurement 
in the estimation of walking ability in people after stroke.

Methods  Longitudinal data during clinical stroke rehabilitation were collected. The assessment consisted of two 
parts and was administered every three weeks. In the first part, participants walked for two minutes (2MWT) 
on a fourteen-meter path with three IMUs attached to low back and feet, from which multiple gait features, includ-
ing gait speed, were calculated. The dimensionality of the corresponding gait features was reduced with a principal 
component analysis. In the second part, gait was measured for two consecutive days using one ankle-mounted 
IMU. Next, three measures of walking ability in daily life were calculated, including the number of steps per day, 
and the average and maximal gait speed. A gait-speed-only Linear Mixed Model was used to estimate the association 
between gait speed and each of the three measures of walking ability. Next, the principal components (PC), derived 
from the 2MWT, were added to the gait-speed-only model to evaluate if they were confounders or effect modifiers.

Results  Eighty-one participants were measured during rehabilitation, resulting in 198 2MWTs and 135 correspond-
ing walking-performance measurements. 106 Gait features were reduced to nine PCs with 85.1% explained variance. 
The linear mixed models demonstrated that gait speed was weakly associated with the average and maximum gait 
speed in daily life and moderately associated with the number of steps per day. The PCs did not considerably improve 
the outcomes in comparison to the gait speed only models.

Conclusions  Gait in people after stroke assessed in a clinical setting with IMUs differs from their walking ability 
in daily life. More research is needed to determine whether these discrepancies also occur in non-laboratory settings, 
and to identify additional non-gait factors that influence walking ability in daily life.
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Background
One of the main rehabilitation goals for people after 
stroke is to regain the ability to walk in daily life, i.e. to 
ambulate independently inside and outside their home 
[1–3]. During rehabilitation, this ability is often esti-
mated with a measurement of gait speed, for instance a 
two-minute walk test (2MWT) [4–8]. Evidence suggests 
there is a strong association between gait speed and the 
walking ability; a higher gait speed is linked to increased 
community ambulation [4–6].

Nowadays, it has become feasible to collect addi-
tional information about gait, e.g. the stability, regular-
ity and symmetry of the gait pattern, during a 2MWT, 
for instance with inertial measurement units (IMUs). 
Prior research has demonstrated that gait contains rel-
evant information regarding the degree of recovery [9–
11]. Furthermore, Punt et  al. demonstrated that gait is 
associated with the probability of falling in people after 
stroke [12]. However, it is yet unclear if and how gait after 
stroke is associated with their ability to walk in daily life. 
Therefore, to get a better understanding of gait recovery 
after stroke and specify and tailor interventions during 
rehabilitation, the additive value of measuring gait after 
stroke should be further explored.

In previous work, we demonstrated that gait after 
stroke in clinical rehabilitation can objectively and reli-
ably be measured using IMUs [13]. In this study, 106 
gait features in various domains were found to be reli-
able, indicating that a large quantity of information can 
be obtained from a single 2MWT. However, there are 
several drawbacks to the fact that so many gait features 
can be collected. First, it is likely that there is overlap in 
the information that these features contain, since the 
calculations used to determine the outcomes were simi-
lar (e.g., the average time per stride measured from the 
left and right foot sensor). Second, the large number of 
features and the complexity of the features makes it dif-
ficult for clinicians to interpret the outcomes. Lastly, it 
remains unclear what the added value of measuring gait 
with IMUs is, with respect to clinically relevant outcome 
measures. Accordingly, to facilitate the implementation 
of measuring gait using IMUs by clinicians, the dimen-
sionality of outcomes should be reduced and, more 
importantly, the relevance of these outcomes must be 
determined.

An approach to explore the relevance of measuring 
gait with IMUs over gait speed is to identify the relation-
ship between IMU-based gait features and the walking 
ability in daily life. There are several questionnaires and 
tests that are used to assess walking ability in people after 
stroke [3, 14]. A major disadvantage of these question-
naires and tests is that the outcomes are often subjective 
or measured in a lab setting. As an alternative, IMUs can 

objectively measure walking ability in daily life via gait 
features, such as the average gait speed and the num-
ber of steps per day [15, 16]. It is yet unclear if and how 
the information obtained from an IMU-instrumented 
2MWT is associated with these measures of walking abil-
ity in addition to gait speed.

The aim of this study was to explore if gait features, 
measured with IMUs, improve the estimation of walking 
ability in daily life in people after stroke. This was done 
by assessing if IMU-based gait features significantly affect 
the relationship between gait speed and measures of 
walking ability.

Methods
Participants and study design
Longitudinal data from people after stroke in clinical 
stroke rehabilitation were collected. Participants were 
recruited in five clinical rehabilitation-centers in the 
Netherlands between January 1, 2021 and January 1, 
2023. All participants were diagnosed with stroke accord-
ing to the definition of the World Health Organization 
[17]. Inclusion criteria were 1) above the age of 18; 2) in 
the sub-acute or chronic phase after stroke; 3) signed the 
informed consent; 4) capable of understanding and per-
forming simple tasks; 5) a Functional Ambulation Cat-
egories of at least 3. Participants were excluded if they 
were unable to walk at least 0.05 meters per second for 
two minutes [13]. Participants provided written informed 
consent prior to participating. This study was approved 
by the medical ethical review committee of Utrecht 
(METC number: 20-462/C). This study is reported fol-
lowing the STROBE guidelines [18].

Procedure
At a three-week interval, an assessment was adminis-
tered by a physiotherapist or trained research assistant 
during stroke rehabilitation, spanning from admission to 
discharge. The assessment consisted of two parts.

In the first part, during a clinical assessment, partici-
pants walked for two-minutes at self-selected speed on 
a fourteen-meter walking path with cones at both ends. 
Data were collected with three IMUs (manufactured by 
Aemics b.v. Oldenzaal, The Netherlands), located at the 
left and right foot and low back. The IMUs consisted of a 
triaxial accelerometer and gyroscope and measured with 
a sampling rate of 104 samples per second. The ranges 
of the accelerometer and gyroscope were set to 8m/
s2 and 500°/s respectively. Participants were allowed to 
walk with a walking aid in the 2MWT. If the participant 
walked both with and without walking aid in daily life, 
the walking test was administered under both conditions 
[13]. In addition to the gait assessment, demographics 
(age, gender) and stroke-specific characteristics (stroke 
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type and side) were collected and the following standard 
clinical tests were administered: Berg Balance Scale [19], 
Trunk Control Test [20], Motricity index [21], Modified 
ranking scale at admission [22], Barthel Index at admis-
sion [23] and the Functional Ambulation Categories both 
with and without walking aid [24].

In the second part of the assessment, participants were 
measured for two consecutive days, following the clinical 
assessment, with a single IMU. The same sensor was used 
as in the 2MWT, however only the sensor was placed at 
the calf, and only acceleration was measured with a sam-
pling rate of 52 samples per second [25]. The sampling 
rate and location of the sensor were adjusted for meas-
urement during daily life to enhance the battery life of 
the sensor and minimize the risk of sensor loss during the 
assessment.

Data processing
After the assessment, the collected IMU-based gait and 
physical-activity measurements were uploaded in an 
online environment in which they were processed and 
stored.

The 2MWT data underwent resampling to 100 Hz and 
were adjusted for the gyroscope offset. Subsequently, 
106 gait features, including spatio-temporal, frequency, 
complexity, and asymmetry features, were calculated per 
measurement. These features were utilized to character-
ize gait of people after stroke. A complete list of all the 
gait features is provided in Table A2.

The data of the IMU-measurement in daily life were 
split up into parts of 10 seconds before applying a pre-
viously trained convolutional neural network with long-
term short-term memory to identify gait in daily life. The 
model was trained on a balanced dataset containing walk-
ing at gait speeds between 0.5 and 5 km/h, among other 
activities, such as sitting, lying, standing, and standing 
kitchen work. The model achieved an accuracy of 0.93 
indicating an excellent ability to identify gait. Next, a 
step-detection algorithm was applied to count the total 
number of steps relative to the total wearing time, with 
a minimum of 8 hours. Finally, a sensor-fusion algorithm 
was applied to combine the accelerometer and gyroscope 
data and compute linear acceleration [26]. Next, a Zero 
Velocity Potential Update was applied to determine the 
stand- and swing phases during walking [27]. The linear 
acceleration in anterior-posterior direction during the 
swing phases was integrated twice to determine the posi-
tion, which allowed us to calculate the total covered dis-
tance per epoch, and thus the gait speed. This allowed the 
calculation of the average gait speed and maximum gait 
speed per day. These three described measures were used 
to indicate walking ability.

Statistical analysis
The statistical analysis consisted of three steps: 1) fea-
ture selection; 2) dimensionality reduction; and 3) linear 
mixed models. The feature selection and dimensionality 
reduction steps were applied to extract relevant informa-
tion from the raw IMU data. These two steps resulted in 
a few gait features, which were then used to assess the 
additive value of the IMU measurement in the estimation 
of the measures of walking ability in daily life. All analy-
ses were performed using Python (version 3.7.3). The 
used algorithms are available via: ‘https://​github.​com/​
Richa​rdFel/​PCA_​gait’. The mathematical equations used 
in this study are described in in Felius et al. [13].

Feature selection
First, all 106 gait features that demonstrated good to 
excellent test-retest reliability (ICC ≥ 0.75) in Felius et al. 
were calculated for all 2MWTs [13]. Second, a correlation 
matrix was created to compute the correlation coeffi-
cients between the gait features. If the correlation coef-
ficient between two features was > 0.95, these features 
were considered identical. Subsequently, the feature with 
the highest summed overall correlation was excluded. 
Third, the Kaiser-Meyer-Olkin measure (KMO) was used 
as a measure of sampling adequacy and calculated for all 
features and per feature. An overall KMO and a KMO per 
feature of >0.7 and > 0.5 were considered acceptable for 
analysis [28]. Finally, the gait features were standardized 
by calculating z-scores.

Dimensionality reduction
A Principal Component Analysis (PCA) was applied to 
reduce the amount of overlapping information in the 
2MWT gait features. PCA has been applied to gait fea-
tures in several studies [29–31]. It tries to explain the 
maximum amount of total variance by transforming the 
original variables into fewer linear principal components 
(PCs), while retaining as much information as possible 
[28]. In this study, a PCA was conducted on the z-scored 
gait features. The Kaiser’s criteria, which states that only 
PCs with an eigenvalue >1 should be considered, was 
used to determine which PCs should be retained [28]. 
The retained PCs were named based on the gait feature 
with the highest correlation to the PC.

To estimate the robustness and reliability of the PCs, 
the PCs were externally validated with previously col-
lected data [13]. This data consists of test-retest meas-
urements of gait in people after stroke, measured with 
a one-day interval. The same protocol was used as 
described in this study. First, gait features were calculated 
per measurement and transformed into z-scores. Next, 
the loadings of the PCA, computed with the longitudinal 

https://github.com/RichardFel/PCA_gait
https://github.com/RichardFel/PCA_gait
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data, were used to transform the gait features of the test-
retest data into PCs. The test-retest differences between 
the PCs were calculated using the root-mean-square 
error (RMSE) to estimate the generalizability. Addition-
ally, the intraclass correlation coefficient (ICC 2.1) and its 
95% confidence interval, the standard error of measure-
ment (SEM) and the minimal detectable change (MDC) 
for the between-day reliability were calculated per com-
ponent. An ICC of 0.5-0.75 was seen as moderate reli-
ability, 0.75-0.9 as good, and >0.9 as excellent [32, 33].

Linear mixed models
The relationship between gait speed, the PCs and the 
measures of walking ability was evaluated in three steps 
using Linear Mixed Models [34]. Linear Mixed Models, 
i.e., multilevel models, are an extension of standard linear 
models, containing both fixed and random effects. The 
random effects are added on a subject level, accounting 
for the correlation of repeated observations within sub-
jects. This allows us to analyze the relationship between 
gait speed, the PCs and walking ability using longitudinal 
data.

First, the associations between the PCs, gait speed, and 
the measures of walking ability were estimated with the 
Pearson’s correlation coefficient. If the absolute correla-
tion coefficient between two PCs, or a PC and gait speed 
was higher than ≥ 0.9, only one PC or gait speed was 
included in a linear model to prevent collinearity.

Second, a Linear Mixed Model was created per meas-
ure of walking ability to determine the association with 
gait speed obtained from the 2MWT. The participants 
were added as a random effect to the models. The PCs 
were added via a forward selection procedure, testing for 
confounding and effect modification. A confounder was 
marked as a percentual change of 10% of the gait speed 
coefficient, and effect modification was seen as significant 
if the interaction term had a p-value < 0.05 [34]. The for-
ward selection procedure resulted in a definitive model 
per measure of walking ability. These definitive models 
contained gait speed and all PCs that were marked as 
confounders or effect modifiers. Last, the definitive mod-
els were compared with the gait speed only model via the 
normalised RMSE, Akaike information criterion (AIC), 
and Bayesian information criterion (BIC) [35, 36].

Results
Demographics and characteristics
Longitudinal data were collected from seventy-seven 
people after stroke during rehabilitation. The data con-
sisted of 198 2MWT measurements and 135 correspond-
ing measurements of walking ability. Participant and 
measurement characteristics are described in Table  1. 

Figure 1 visualizes the distribution of gait speed in daily 
life of all participants and that of one specific participant.

Feature selection
Thirty-six of the 106 gait features were removed due 
to a correlation coefficient > 0.95. No variables were 
excluded because of the Kaiser-Meyer-Olkin measure 
(KMO). The average overall KMO was 0.89, which is 
considered sufficient for the analysis. The PCA resulted 
in nine principal components (PC) with an eigenvalue 
of >1, accounting for 85.1% explained variance. The first 
PC accounted for 56.5% of the total explained variance. 
The other eight PCs accounted for 8.2%, 5.3%, 4.8%, 
2.9%, 2.3%, 2.1%, 1.6%, 1.5% respectively. Based on the 
features with the highest correlation, the PCs were 

Table 1  Participant and measurement characteristics

Abbreviations: m meter, s second, FAC Functional ambulation categories
a A selection of three features was made to give an impression of the outcomes 
of the 2MWT

Patient Characteristics (N = 77) Outcome

Gender

  Male 44

  Female 33

Age in years 71.5 ± 12.8

Stroke type

  Ischemic 31

  Haemorrhagic 24

  Unknown 22

Stroke side

  Left 31

  Right 36

  Unknown 10

Barthel Index at admission (N = 73) 14.0 ± 4.6

Berg Balance Scale at admission (N = 72) 38.7 ± 15.2

FAC at admission

  With walking aid (N = 74) 2.6 ± 1.8

  Without walking aid (N = 73) 2.6 ± 1.8

Trunk control test at admission (N = 70) 94.1 ± 14.9

Modified ranking scale at admission (N =54) 3.3 ± 0.8

2MWT (N = 198)a

  Walking aid

    Yes 111

    No 87

Gait speed (m/s) 0.71 ± 0.29

Mean stride time [s] 1.3 ± 0.4

Mean stride length [m] 0.9 ± 0.2

Measures of walking ability in daily life (N = 135)
  Average gait speed [m/s] 0.37 ± 0.08

  Maximum gait speed [m/s] 0.64 ± 0.15

  Number of strides 2338 ± 1683
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labelled: tempo, asymmetry, postural stability, trunk 
movement, stride variation, rhythm, stride intensity, 
stride distance, and stride regularity. The correlation 
between the PCs and the measures of walking ability is 
described in Table A1 in the Appendix. All PCs dem-
onstrated an ICC-value of > 0.75 indicating a good to 
excellent reliability. The ICC and RMSE are described 
in Table A2 in the Appendix.

Linear mixed models
Correlation coefficients
The correlation coefficients between outcomes from the 
2MWT and the measures of walking ability are visual-
ized in Fig. 2. The gait speed obtained from the 2MWT 
was strongly correlated to tempo (PC0), postural stability 
(PC2), variability (PC4), rhythm (PC5), intensity (PC6), 
and stride distance (PC7). Moreover, the 2MWT gait 
speed was moderately correlated to the maximum gait 
speed and the number of steps in daily life. Asymmetry 
(PC1), Trunk movement (PC3), and Regularity (PC8) 
were weakly correlated to all other variables. To avoid 
collinearity, tempo (PC0) and stride distance (PC7) were 
not used in the same linear model as two-minute walk-
test Gait speed.

Estimations
The gait-speed-only Linear Mixed Models demonstrated 
a significant relationship between the 2MWT gait and 
the average gait speed, the maximal gait speed, and the 
number of steps. Only Intensity (PC6) was a confounder 
in the relationship for all three measures of walking abil-
ity. Additionally, an interaction effect was found between 
gait speed and Intensity (PC6) for the maximum gait 
speed and the number of steps. The nRMSE, AIC and 
BIC all indicated a comparable outcome of the gait speed 
only and the combined model (Table 2). The residuals of 
the definitive models were normally distributed, and the 
variance was homogeneous (Figure A1, A2). The overall 
estimation of the definitive models was weak for the aver-
age and maximum gait speed and moderate for the num-
ber of steps per day (Fig. 3).

Discussion
We assessed the relevance of measuring gait in clinical 
stroke rehabilitation with Inertial Measurement Units 
(IMU), by evaluating the additive value of IMU-based 
outcome measures on the walking ability in people 
after stroke. We found that the estimation of measures 
of walking ability with a gait-speed-only linear mixed 

Fig. 1  Distributions of gait speed in daily life. This figure illustrates the distribution of gait speed of all measurements of all participants (A), 
and a stacked distribution of three measurements of one randomly selected participant (B). In figure 1B, it is visible that the distribution 
of gait speed shifts to the right over time, indicating that the average and maximal gait speed increased over time. Gait speed measured 
with the corresponding 2MWT was 0.75m/s at T0, 1.16m/s at T2, and 1.28m/s at T3. Gait epochs with gait speed ≤0.05 m/s were excluded 
from the analysis, as gait characteristics below this speed could not be determined reliably
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model resulted in a weak estimation of the average and 
maximum gait speed in daily life, and a moderate estima-
tion of the number of steps per day. Moreover, we found 

that adding IMU-based gait features did not consider-
ably improve these estimations. These findings suggest 
the existence of other factors, which may not be directly 

Fig. 2  Correlation between the Principal components. Heatmap containing the Pearson’s correlation coefficients between measures of walking 
ability in daily life, the principal components (PCs) and the gait speed assessed using the 2MWT

Table 2  Description of the coefficients and model fit of the gait-speed-only model and the definitive model

Abbreviations: Coeff Coefficient, SE Standard error, CI Confidence interval, nRMSE normalised root mean square error, AIC Akaike information criterion, BIC Bayesian 
information criterion, m meter, s seconds

The definitive model included gait speed and all PCs that were significant confounders or effect modifiers

Gait-speed-only model Final model

Fixed Coeff SE CI [95%] Coeff SE CI [95%]

Average gait speed [m/s] Gait speed 2MWT [m/s] 0.067 0.031 [0.006,0.128] -0.021 0.117 [-0.250,0.207]

Intensity (PC6) - - - 0.106 0.042 [0.025,0.188]

NRMSE AIC BIC NRMSE AIC BIC
0.507 291 302 0.501 287 301

Fixed Coeff SE CI [95%] Coeff SE CI [95%]
Max gait speed [m/s] Gait speed 2MWT [m/s] 0.280 0.05 [0.189,0.379] 0.175 0.068 [0.040,0.306]

Intensity (PC6) - - - 0.088 0.071 [-0.05,0.227]

Gait speed 2MWT *PC6 0.034 0.015 [0.004,0.064]

NRMSE AIC BIC NRMSE AIC BIC
0.641 449 461 0.640 445 463

Fixed Coeff SE CI [95%] Coeff SE CI [95%]
Number of steps Gait speed 2MWT [m/s] 288 48 [193,383] 281 67 [150,412]

Intensity (PC6) - - - -40 65 [-167,-87]

Gait speed 2MWT *PC6 30 14 [4,57]

nRMSE AIC BIC nRMSE AIC BIC
0.347 2253 2264 0.343 2251 2269
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measurable from gait kinematics, that cause variability 
in the walking ability. Consequently, a simple measure-
ment of gait speed, for instance with a 2MWT, might 
result in inaccurate estimations of someone’s ability to 
safely ambulate in daily life. Future research is essential 
to investigate factors, not directly measurable in gait, that 
are related to the ability to walk in daily life.

The principal component analysis, used to reduce the 
dimensionality of the gait features, resulted in nine prin-
cipal components (PCs), with the first PC explaining 
56.5% of the variance in the data. This high amount of 
explained variance in the first PC indicates that a large 
portion of the included gait features measured a similar 
construct, namely gait speed. Additionally, five of the 
eight remaining PCs were also strongly correlated to gait 
speed (Fig.  2). The prominent presence of gait speed in 
the data was to be expected since many of the included 
gait features measured a construct in the spatio-temporal 
domain and were highly correlated (Table A1). Moreover, 
the study of Huijben et al. demonstrated that gait speed 
affects many gait features, which strengthens this find-
ing [37]. The first component being strongly correlated to 
gait speed is in line with the study of Olney et al., Morris 
et al. and Arcolin et al. [29–31]. A major difference with 
these studies is that we found more PCs, which might 
be due to a higher number of included gait features. For 
example, in the study of Arcolin et  al. (2019) only eight 
gait features were included in the principal component 
analysis.

To identify whether the IMU-based gait features con-
tain new relevant information, the PCs were added to the 
linear mixed models with the number of steps, average 
gait speed, and maximal gait speed as dependent vari-
ables. Our hypothesis was that new objective informa-
tion about gait, such as asymmetry and variability, would 

improve the estimation the walking ability in daily life. 
The goodness of fit measures indicated that the model 
did not considerably improve with the added PCs. A 
possible explanation for the limited improvement of the 
models is that gait speed in itself is already determined 
by (and determines) several of the gait features that we 
assessed (as also shown by the high correlation between 
gait speed and the PC’s) [37–41]. This would suggest that 
a model including only the PC’s, would perform similar 
to a model containing only gait speed, which was con-
firmed in post-hoc analysis. Nevertheless, it remains 
unclear if gait after stroke influences the recovery trajec-
tory in the long-term. Moreover, measuring gait might be 
used to personalize rehabilitation, since it allows moni-
toring of gait features, such as asymmetry, which in turn 
can be used to set accurate rehabilitation goals and tai-
lor interventions. Overall, the estimations of measures 
walking ability in daily life of the definitive models were 
weak to moderate, including the gait-speed-only models. 
The absence of an association between gait speed and 
walking ability in daily life was unexpected, as previous 
studies reported an evident link between gait speed and 
walking ability [4–7]. Notably, prior studies categorized 
walking ability, while our approach involved continuous 
outcome measures. As a result, we made the assumption 
of a linear relationship between gait features and walking 
ability across all levels of gait, which may not hold true 
for all people after stroke. Moreover, a possible explana-
tion for the weak-moderate estimation in general is that 
the dependent variables were an assessment of their 
performance, whereas the input can be considered a 
measurement of their capacity. These constructs are not 
necessarily correlated since a strong behavioral element 
is present in daily life [42]. Therefore, one could question 
the ecological validity of the 2MWT if it is used to esti-
mate someone’s ability to walk in daily life [43].

Fig. 3  Difference between the observed and estimated values. Scatterplot of the estimated versus the observed value of the average gait speed 
(A), the maximum gait speed (B), and the number of steps (C) in daily life
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In our study, the evaluation was limited to gait-related 
information for estimating daily life walking ability. How-
ever, it’s conceivable that patient characteristics, such as 
age, balance, cognitive function, and fear of falling, also 
influence an individual’s walking ability in their daily 
routine [44–46]. Therefore, future research could benefit 
from incorporating a more diverse range of variables to 
enhance the accuracy of model estimations.

The methods used in this study have several limitations. 
First, the principal component analysis and the linear 
mixed models are both linear models, thereby assum-
ing that the data can be modelled with a linear function. 
With the number of gait features that we included in the 
PCA, it is likely that this does not hold true for all fea-
tures. As an alternative, non-linear techniques, such as a 
kernel-principal component analysis or a self-organizing 
map, could be explored to analyze and reduce the dimen-
sionality of the data, without the assumption of linearity. 
The disadvantage of these techniques is that the results 
are often more difficult to interpret. Second, the prin-
cipal component analysis resulted in nine PCs with an 
eigenvalue of greater than one. Based on previous stud-
ies, we expected to find fewer PCs, which would make it 
easier to label and interpret the outcomes [29–31]. Third, 
we used the PCA to reduce the amount of overlapping 
information from an IMU-based gait measurement and 
maintained a limited number of principal components. 
Specifically, nine principal components were maintained 
and these accounted for a large percentage (85%) of the 
variance in our data. However, the magnitude of the 
explained variance is not necessarily related to the clini-
cal relevance. For example, it is theoretically possible that 
a relatively small principal component contains informa-
tion that is clinically relevant. Nevertheless, including 
more variables in hypothesis testing increases the prob-
ability of finding false positives. Finally, a relatively small 
number of participants was used to compute the linear 
mixed model. As a result, the goodness of fit measures 
might lack precision. In future work, a larger sample size 
is recommended.

Our overarching goal is to develop an instrumented 
test that clinicians can use to monitor individual pro-
gression during stroke rehabilitation. Therefore, to 
increase the interpretability of the outcomes, we 
reduced the dimensionality of the data with more than 
90% while maintaining 85% of the variance. The result-
ing PCs might be easier to use in clinical practice to 
evaluate and monitor gait in comparison to the raw 
gait features. However, additional research is required 
to demonstrate the clinical relevance of measuring gait 
with IMUs compared to conventional testing methods. 
Further work is in progress to indicate if the PCs are 

responsive to gait rehabilitation and can thus be used to 
monitor progression. Additionally, further work should 
indicate if the PCs have added predictive value with 
respect to other relevant outcomes during recovery, 
such as fall risk during and after rehabilitation, and gait 
independence at six months after stroke.

Conclusions
We evaluated the relevance of measuring gait after 
stroke in addition to gait speed for the estimation of 
their walking ability in daily life. We found that gait 
speed measured with a 2MWT in people in clini-
cal stroke rehabilitation results in a weak to moderate 
estimation of the walking ability in daily life. Measur-
ing gait after stroke using inertial measurement units 
does not improve this estimation. Therefore, estimating 
the walking ability in daily life using only gait features 
measured in clinical practice, might be inaccurate. 
Future research is needed to explore these discrepan-
cies across various walking tests and settings to better 
understand the differences between clinical gait assess-
ments and walking ability in daily life. Moreover, future 
research should identify non-gait factors that influence 
the walking ability in daily life.
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