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Abstract 

Background  Glucose-6-phosphate isomerase deficiency is a rare genetic disorder causing hereditary nonsphero-
cytic hemolytic anemia. It is the second most common glycolytic enzymopathy in red blood cells. About 90 cases 
are reported worldwide, with symptoms including chronic hemolytic anemia, jaundice, splenomegaly, gallstones, 
cholecystitis, and in severe cases, neurological impairments, hydrops fetalis, and neonatal death.

Case presentation  This paper details the case of the first Danish patient diagnosed with glucose-6-phosphate 
isomerase deficiency. The patient, a 27-year-old white female, suffered from lifelong anemia of unknown origin 
for decades. Diagnosis was established through whole-genome sequencing, which identified two GPI missense 
variants: the previously documented variant p.(Thr224Met) and a newly discovered variant p.(Tyr341Cys). The patho-
genicity of these variants was verified enzymatically.

Conclusions  Whole-genome sequencing stands as a potent tool for identifying hereditary anemias, ensuring opti-
mal management strategies.
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Introduction
Glucose-6-phosphate isomerase (GPI) deficiency is a rare 
autosomal recessive disorder caused by homozygous or 
compound heterozygous variations in the GPI gene [1]. 
It is the second most common glycolytic enzymopa-
thy in red blood cells (RBCs) after pyruvate kinase defi-
ciency. GPI plays a crucial role in glycolysis by converting 

glucose-6-phosphate into fructose-6-phosphate. The 
resulting imbalance disrupts RBC metabolism and leads 
to hemolysis [2].

Most cases are diagnosed in neonatal and early child-
hood, causing hereditary nonspherocytic hemolytic ane-
mia with chronic hemolysis and possible acute crises due 
to infections [1].

Symptoms are mild-to-severe anemia with fatigue, 
tachycardia, dyspnea, and pallor. Other symptoms 
include jaundice, splenomegaly, gallstones, and cholecys-
titis, and in a few severe cases, it has been shown to cause 
neurological deficits, hydrops fetalis, and neonatal death 
[1, 3].

The first report of the disease was described in 1968 
by Baughan et al. [4], and since then about 90 patients 
have been diagnosed from a variety of ethnic groups and 
populations throughout the world, and over 100 different 
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variations associated with GPI deficiency have been iden-
tified [1].

Diagnosis involves measuring GPI activity in RBCs and 
genetic testing with detection and confirmation of patho-
genic variants of GPI [5, 6].

Treatment is primarily supportive, involving transfu-
sions and chelation therapy, and often necessitates sple-
nectomy [2].

In this case report, we describe the presentation and 
diagnosis of the first patient in Denmark diagnosed with 
GPI deficiency.

Case presentation
The patient is a 27-year-old woman of Venezuelan and 
Italian descent who was referred to our institution in 
2018 owing to lifelong macrocytic hemolytic anemia.

As a newborn, she had jaundice and dilated bile ducts, 
leading to a diagnosis of chronic hemolytic anemia. Her 
gallbladder was subsequently removed. The patient was 
previously tested in other countries without explanation 
for the etiology and was initially misdiagnosed as having 
hereditary spherocytosis.

She experienced worsening symptoms during peri-
ods of stress, menstruation, and infections, including 
increased fatigue, yellowing of the eyes, dark urine, dif-
ficulty breathing, and chest pain. Episodes of jaundice 
decreased with a shift to a more plant-based diet, and 
they no longer occur during menstruation.

There is no family history of chronic hemolysis, but her 
grandmother had gallstones, and her grandfather was 
diagnosed with chronic myeloid leukemia.

Clinical findings
Physical examination revealed no pathological findings 
or neurological impairment. Blood tests showed moder-
ate hemolytic anemia with macrocytosis, reticulocytosis, 
hyperbilirubinemia, and decreased haptoglobin, consist-
ent with hemolysis (Table 1).

Various tests, including direct anti-globulin test, 
osmotic gradient ektacytometry [7, 8], PKLR sequenc-
ing, blood smear, and hemoglobin electrophoresis [9], 
ruled out other diagnoses such as hereditary spherocy-
tosis, pyruvate kinase deficiency, autoimmune hemolytic 
diseases, glucose-6-phosphate dehydrogenase deficiency, 
thalassemia, and sickle-cell disease. Peripheral blood 
smear was unremarkable aside from mild stomatocytosis 
(Fig. 1).

Similar to a previous report, the patient’s ektacytom-
etry (Fig. 2) curve was right-shifted and did not support a 
diagnosis of hereditary spherocytosis [10].

Whole-genome sequencing (WGS) was performed 
at the Danish National Genome Center (https://​eng.​
ngc.​dk) according to their standard procedures, and 

variants were subsequently filtered using a custom 
anemia in silico gene panel (Additional file  1). WGS 
revealed two likely disease-causing variants in the GPI 
gene (NM_000175.5, NP_000166.2). The first detected 
missense variant (c.671C > T, p.(Thr224Met)) has an 
overall allele frequency in the background population 
of 0.0039% (gnomAD v3.1.2) and alters a moderately to 
highly conserved amino acid.

In silico analysis (REVEL [11]) indicated an increased 
likelihood that the variant is pathogenic (score: 0.852), 
and it has been documented in patients with GPI defi-
ciency in both homozygous (Kanno et al., 1996 [12]) 
and compound heterozygous forms (Xu et al., 1994 
[13]). The variant has also been shown to co-segregate 
with the disease in a family [12]. The variant was clas-
sified as pathogenic according to  American College of 
Medical Genetics and Genomics (ACMG) guidelines 
[14].

The second detected missense variant (c.1022A > G, 
p.(Tyr341Cys)) in GPI has an overall allele frequency 
of 0.0026% (gnomAD v3.1.2) and modifies a highly 
conserved amino acid. Despite its absence in prior lit-
erature or functional studies, in silico analysis (REVEL) 
suggested a high probability of pathogenicity (score: 
0.987), leading to its classification as likely pathogenic 
according to ACMG and ClinGen guidelines [15].

Enzymatic assays showed a GPI activity of 7 U/g Hb 
(normal range 32–72 U/g Hb) and elevated hexokinase 
(HK) activity of 3.4 U/g Hb (normal range 0.8–1.5 U/g 
Hb). The strongly decreased GPI activity supports the 
diagnosis of GPI deficiency. The absence of available 
relatives for testing impeded our ability to clearly dis-
cern the distinct impacts of the two GPI variants. Ide-
ally, we would have preferred this to comprehensively 

Table 1  Patient’s hematological and biochemical parameters, 
compared against standard reference ranges

Hemoglobin (Hgb), mean corpuscular volume (MCV), mean corpuscular 
hemoglobin concentration (MCHC), absolute reticulocyte count (Reticulocytes), 
haptoglobin, bilirubin, lactate dehydrogenase, platelet count (platelets), and red 
cell distribution width (RDW)

Parameter Value Reference value

Hgb (g/dL) 10.3 11.8–15.3

MCV (fL) 113 82–98

MCHC (g/dL) 30.29 31.7–35.8

Reticulocytes (× 109/L) 256 25–99

Reticulocytes (%) 9.0 0.5–2.2

Haptoglobin (g/L) 0.18 0.35–1.85

Bilirubin (mg/dL 2.63 0.29–1.46

Lactate dehydrogenase (U/L) 187 105–205

Platelets (× 109/L) 400 145–390

RDW (%) 13%  < 16

https://eng.ngc.dk
https://eng.ngc.dk
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Fig. 1  Peripheral blood smear. Peripheral blood smear using a Sysmex DI-60 digital imaging analyzer and CellaVision 7.0 with Advance Red red 
blood cell application. Mild stomatocytosis is noted

Fig. 2  Ektacytometry. Osmotic gradient ektacytometry was performed on ethylenediaminetetraacetic acid–blood on a LoRRca ektacytometer 
(RR Mechatronics, Zwaag, Netherlands) within 48 h of venipuncture according to manufacturer’s instructions. The patient’s ektacytometry curve 
was right shifted (Omin = 161 mOsm/kg, Omax = 338 mOsm/kg) but with normal maximal deformability (EImax = 0.605)
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authenticate the novel Tyr431Cys variant. The HK 
activity is measured as a reference to evaluate mean red 
cell age.

Treatment and follow‑up
Currently, the patient’s therapeutic intervention consists 
only of folic acid. Although her hemoglobin has been 
steadily low, blood transfusions or splenectomy have 
not been necessary. Activators of the glycolytic path-
way such as mitapivat, etovapivat, and AG946 are either 
approved or under clinical investigation for other heredi-
tary anemias. However, these activators target pyruvate 
kinase (PK), which acts downstream of GPI in the gly-
colytic pathway. Presuming that PK activation would 
have an impact, this could potentially reduce hemolysis 
by enhancing the availability of adenosine triphosphate 
(ATP) in GPI-deficient RBCs. Nevertheless, PK activa-
tors are also known to decrease the level of the glycolytic 
intermediate 2,3-Diphosphoglycerate (2,3-DPG). This in 
turn elevates the oxygen affinity of hemoglobin, which 
subsequently diminishes oxygen delivery to tissues.

Discussion
GPI deficiency is the second most common glycolytic 
enzymopathy in RBCs after PK deficiency, but its exact 
frequency is unknown, and it is likely underdiagnosed 
owing to the lack of awareness and availability of test-
ing. Diagnosis of GPI deficiency can be challenging, and 
genetic testing has become an important tool in the diag-
nostic process. Enzymatic assays are scarcely available 
and most often require fresh blood shipment to highly 
specialized laboratories. Contrarily, next-generation 
sequencing (NGS)-based methods such as WGS are 
becoming increasingly available for hemolytic anemia 
owing to a decrease in cost and do not require special 
handling.

Lack of knowledge about rare anemias as well as 
cumbersome testing can delay or prevent diagnosis of 
rare anemias. Furthermore, the clinical presentation of 
chronic hemolytic anemia can be similar, requiring mul-
tiple tests to exclude other diagnoses [6].

This patient exhibited consistently low hemoglobin, 
moderate hemolysis, intermittent jaundice, and hyper-
bilirubinemia, but no splenomegaly. It remains uncertain 
whether a splenectomy may become necessary in the 
future. Splenectomy has shown to reduce hemolysis and 
dependence on transfusion [16].

The implementation and advancement of next-gen-
eration sequencing have improved routine diagnostic 
workup of hereditary anemias. It can certainly aid in 
diagnosing and thereby correctly managing GPI defi-
ciency as well as other ultrarare hereditary anemias. 

However, it is important to note that genetic testing 
may not always identify the specific variant responsible 
for GPI deficiency, and for novel variants, estimation of 
pathogenicity is usually based on prediction. Therefore, 
additional testing, such as enzymatic assays, in this 
case, remains necessary [17].

No curative or targeted treatments exist for this dis-
order. Regular blood transfusions may be necessary for 
patients, including monitoring for iron overload. Prom-
ising new treatment options, including activators of the 
glycolytic pathway, are currently being clinically inves-
tigated for numerous other hereditary anemias, but to 
date, no clinical studies have targeted GPI deficiency. 
Establishing diagnosis and mapping patients with rare 
anemias is pivotal for research into these debilitating 
diseases and a prerequisite for clinical trials on novel 
treatment options.

Conclusion
This case report underscores the significance of diag-
nosing and managing GPI deficiency. The complexity 
and rarity of this condition often lead to misdiagnosis, 
emphasizing the value of advanced diagnostic tools 
such as WGS. While supportive care is the current 
approach, potential treatments targeting the glycolytic 
pathway offer hope. Establishing accurate diagnosis 
and understanding of rare anemias remains crucial for 
advancing research and exploring innovative therapies.
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