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A B S T R A C T   

Background and Purpose: Application of different deformable dose accumulation (DDA) solutions makes insti
tutional comparisons after online-adaptive magnetic resonance-guided radiotherapy (OA-MRgRT) challenging. 
The aim of this multi-institutional study was to analyze accuracy and agreement of DDA-implementations in OA- 
MRgRT. 
Material and Methods: One gold standard (GS) case deformed with a biomechanical-model and five clinical cases 
consisting of prostate (2x), cervix, liver, and lymph node cancer, treated with OA-MRgRT, were analyzed. Six 
centers conducted DDA using institutional implementations. Deformable image registration (DIR) and DDA re
sults were compared using the contour metrics Dice Similarity Coefficient (DSC), surface-DSC, Hausdorff-dis
tance (HD95%), and accumulated dose-volume histograms (DVHs) analyzed via intraclass correlation coefficient 
(ICC) and clinical dosimetric criteria (CDC). 
Results: For the GS, median DDA errors ranged from 0.0 to 2.8 Gy across contours and implementations. DIR of 
clinical cases resulted in DSC > 0.8 for up to 81.3% of contours and a variability of surface-DSC values depending 
on the implementation. Maximum HD95%=73.3 mm was found for duodenum in the liver case. Although DVH 
ICC > 0.90 was found after DDA for all but two contours, relevant absolute CDC differences were observed in 
clinical cases: Prostate I/II showed maximum differences in bladder V28Gy (10.2/7.6%), while for cervix, liver, 
and lymph node the highest differences were found for rectum D2cm3 (2.8 Gy), duodenum Dmax (7.1 Gy), and 
rectum D0.5cm3 (4.6 Gy). 
Conclusion: Overall, high agreement was found between the different DIR and DDA implementations. Case- and 
algorithm-dependent differences were observed, leading to potentially clinically relevant results. Larger studies 
are needed to define future DDA-guidelines.   
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1. Introduction 

Online magnetic resonance-guided radiotherapy (MRgRT) enables 
optimal plan adaptation concerning the patient’s daily anatomy, 
allowing improved target coverage and organ at risk (OAR) sparing [1]. 
Deformable dose accumulation (DDA) is a method to evaluate doses 
from several treatment fractions deformed according to daily images to 
account for anatomical changes during treatment [2]. According to 
several recent studies, DDA promises precise adaption of delivered 
organ-specific doses to reduce OAR toxicity [3–5], more precisely 
determined dose tolerances [6], and/or additional target dose escalation 
[5]. However, DDA still requires investigation of dose mapping un
certainties and anatomical or contouring variations [7]. 

Deformable image registration (DIR) is performed as first step of 
DDA. Several DIR algorithms, categorized by matching criteria and 
deformation model, are available for clinical and research use, like in
tensity or hybrid methods and free-form deformations or diffusion/ 
deformation models [8]. As recently published, underlying algorithms 
itself typically works differently in various anatomical regions [9–12]. 
Additionally, different algorithms applied to one anatomical region can 
lead to different results [10,13], and algorithm settings such as different 
configuration values or optimization methods may change registration 
results [14]. 

The deformation vector field (DVF) generated by DIR is applied to 
the corresponding 3D dose map in the second step of DDA. In literature, 
several resampling and interpolation approaches are discussed, espe
cially direct dose mapping (DDM) and energy mass transfer (EMT) 
[2,15]. DDA algorithms are currently being applied using various 
implementations across institutions, which may provide different results 
for the same problem, as several studies show [16,17]. For MR-guided 
liver stereotactic body radiation (SBRT), Wahlstedt et al. [16] 
observed that DDA algorithms are highly patient- and fraction- 
dependent and recommend using numerous algorithms in tandem. 
Bosma et al. [17] found that in MRgRT of prostate cancer, EMT led to 
lower dose errors than DDM. 

This multi-institutional investigation aimed to assess several 
different implementations for DDA utilizing the same datasets including 
a gold standard (GS) case deformed using a biomechanical model and 
five clinical cases. The goal was to identify differences in results based 
on the algorithms used. 

2. Material and methods 

The multicenter DDA study was conducted by a working group of the 
Elekta MR-Linac consortium involving six institutions with clinical 
expertise in MRgRT using the 1.5 T MR-Linac (Unity, Elekta AB, 
Sweden). 

2.1. Data characteristics 

Initially, DDA was conducted on a prostate case where deformations 
were created by biomechanical simulations. This process included 
loading clinical contours into finite element modeling software 
(FEBioStudio v1.7.1) [18], followed by assigning the physical attributes 
to each anatomical tissue [17]. Simulations of five clinically represen
tative bladder and rectal fillings were used to actuate surrounding tissue 
and apply displacements and deformations to a T2-weighted MR image 
(MRI) (Supplementary Fig. A.1). For each simulated anatomical situa
tion, RT plans were created by recalculating the dose on the new anat
omy, resulting in five total dose distributions. The known underlying 
deformations enabled the calculation of a GS accumulated dose (GS- 
DDA) using DDM. 

Subsequently, five clinical datasets of patients with different tumor 
entities were analyzed, including (I, II) two prostate, one (III) cervix, 
(IV) liver, and (V) lymph node cases, as detailed in Supplementary Table 
A.1 and Fig. A.2. Patients were treated at one participating institute with 

SBRT on the 1.5 T MR-Linac using the ’adapt-to-shape’ (ATS) workflow 
[1]. Experienced radiation oncologists re-contoured the MRI for each 
fraction offline to address minor issues eventually caused by the tight 
timeline for online contouring. Subsequently, wall contours for rectum, 
colon, and duodenum, likewise for bladder and stomach, were created 
using negative margins of 3 and 4 mm to investigate DIR and DDA re
sults in the hollow organs with homogeneous fillings. These fraction 
data sets, including MRI, re-delineated contours, and dose files, were 
shared using ProKnow D (Elekta AB, Sweden, V1.33.0). Clinical dosi
metric criteria (CDC) used for plan approval were provided by the 
institution for each specific case (Supplementary Table A.2). Ethical 
approval and data sharing agreement existed for all clinical cases. 

2.2. Deformable image registration, contour propagation, and dose 
accumulation 

Each institute performed DIR using the software available at their 
institute. Two institutes (A, C) had a hybrid intensity/structure-based 
algorithm (Monaco ADMIRE Research, Elekta, Sweden) [19] or 
ANACONDA (RaySearch Laboratories AB, Sweden) [20]. Mixed/hybrid 
and contour-guided DIR algorithms [21] (MIM Software Inc., USA, 
versions 6.8.5/7.0.6) were used by institutes B and D, respectively. 
Institute E used an in-house intensity-based DIR algorithm [22,23]. 
RTTracker (UMC, Utrecht, The Netherlands) [24,25] was used by 
institute F. Supplementary A, including Table A3, describes each algo
rithm in more detail. Five institutions used contour-guided DIR, while 
one institution (E) did not (cf. Table 1). All MRIs were deformably 
registered to the first fraction. Each institution propagated all offline re- 
delineated contours of fractions 2–5 to fraction 1 using the resulting 
DVF. 

Dose mapping was conducted by applying the DVF to the dose file of 
each fraction. For dose resampling, two distinct methods were used: 
DDM [26] (A-E) and EMT [27] (F). The software solutions Slicer3D 
(V4.11) [28], Raystation (8B), MIM, an in-house developed solution, 
and RTTracker (V4.0) were used, respectively. No additional DIR/DDA 
requirements were made for the institutes. 

2.3. Data analysis 

Each institute’s accumulated dose maps for the GS case were 
compared with the known GS-DDA, calculating voxel-wise absolute 
differences within the target volume and OARs. Median (interquartile 
range, IQR) were compared, as a normal distribution could not be 
assumed. Contour propagation of all cases was evaluated by the Dice 
Similarity Coefficient (DSC) [29], surface DSC (SDSC) with 2 mm 
threshold [30] and 95% Hausdorff-distance (HD95%) [31,32] using 
MATLAB (R2020b). Corresponding dose-volume-histograms (DVH) 
were generated to evaluate the accumulated doses. All relevant CDC 
derived from these DVHs were calculated and compared for all cases and 
institutions using ProKnow. Furthermore, the DVHs and CDCs for the 
wall structures were calculated. 

The Kruskal-Wallis test was used to determine whether there were 
significantly different in the dose errors reported by the six institutes for 
the GS. The institutes were also compared pairwise via a Mann-Whitney 
test [33]. A repeated measures ANOVA was conducted to ascertain 
variances among the means of distinct algorithms, while a post-hoc test 
was employed to discern specific group disparities. These analyses were 
undertaken to evaluate significant differences across institutes con
cerning DSC and CDC metrics. The tests were conducted at a significance 
level of 5%. 

Intraclass correlation coefficients (ICC) were computed to test the 
similarity of the different accumulated DVH curves, indicating the level 
of correlation and agreement between the DVHs determined using the 
various algorithms [34]. A high ICC indicates a high level of agreement 
between the DVHs, while a low ICC indicates a low level of agreement. 
ICC estimates and their 95% confidence intervals (CI) were computed 
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using SPSS statistical package version 23 (SPSS Inc, Chicago, IL), using a 
single-rating, consistency, 2-way mixed-effects model [34]. 

3. Results 

For the GS, very good agreement was achieved by 5/6 institutes. 
Institute E reported higher median (IQR) dose accumulation errors for 
clinical target volume (CTV) and rectum, 0.2 (0.7) and 2.8 (3.7) Gy, 
respectively, compared to the other institutes. In contrast, the highest 
median errors were found for bladder by institutes C and F with 0.2 (0.8) 
and 0.2 (0.7) Gy, respectively, whereas institute E presented the highest 

IQR of 1.1 Gy. Fig. 1 presents the full statistical distribution of the voxel- 
based dose differences, with further details available in Supplementary 
Table B.1. The Kruskal-Wallis test rejected the null hypothesis for all 
three contours, indicating statistically significant institution differences, 
only institutes C and F demonstrated statistically insignificant differ
ences within the CTV. Similar observations were obtained within the 
rectum for institutes A and D. 

Comparing DSC results per contour and institute for the GS and 
clinical cases, all DSC values were above 0.8 for GS, whereas a DSC > 0.8 
was met in 81.3%, 75.7%, 34.6%, 64.6%, and 68.8% of contours by 
institutes A, C, D, E, and F for the clinical cases. Fig. 2 illustrates the 

Table 1 
Overview of contours used for DIR guidance per institute (A-F) for the cases gold standard, (I) prostate 1, (II) prostate 2, (III) cervix, (IV) liver, (V) lymph node. 
Abbreviations; CTV: clinical target volume, GTV: gross tumor volume, CTVHR: high risk CTV, CTVIR: intermediate risk CTV, CTVR: right lymph node CTV, CTVL: left 
lymph node CTV.  

Institute A B C D E F 

Gold 
Standard 

Bladder, femurs, rectum CTV, bladder, 
rectum 

CTV, bladder, rectum CTV, bladder, rectum, sphincter None CTV, GTV, bladder, 
rectum 

(I) Prostate 
1  

(II) Prostate 
2  

(III) Cervix Bladder, rectum, sigmoid CTVHR, 
bladder 

Bladder, rectum, sigmoid CTVHR, CTVIR, GTV, bladder, rectum, 
sigmoid 

None CTVHR, bladder, 
rectum 

(IV) Liver Colon, duodenum, kidneysmall 
bowel, spinal cord, stomach 

GTV, liver GTV, duodenum, liver, 
pancreas, stomach 

GTV, colon, duodenum, kidney, 
pancreas, spinal cord, small bowel 

None GTV, duodenum, 
stomach 

(V) Lymph 
node 

Bladder, rectum, sigmoid Rectum CTVL, CTVR, bladder, 
rectum 

Bladder, femurs, pelvis, rectum, sacrum None CTVL, CTVR, 
bladder, rectum  

Fig. 1. Statistical distribution of the accumulated dose errors for each participating institute. The illustrations are made individually for the bladder, prostate, and 
rectum. For each of the boxplots, the box limits correspond to the 25th and the 75th percentiles of the set, while the whiskers are the 5th and the 95th percentiles. The 
red line inside each box indicates the median of the set, with the red markers beyond each whisker showcasing the outliers. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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DSCs for each patient. The ANOVA for repeated measures resulted in 
statistically non-significant DSC differences for GTV in case (I), and for 
sphincter and GTV in case (II). Similarly, in case (III), non-significant 
differences were found for CTVHR, CTVIR, and GTV, as well as for spi
nal cord in case (IV). Detailed DSC results for each case are summarized 
in Supplementary Tables B.2–B.7. The ANOVA and pairwise post-hoc 
test results are given in Supplementary Table B.8. The SDSC values for 
the GS case showed slight differences in the algorithm performances, 
with F consistently achieving higher SDSC values in most contours. 
Conversely, in the clinical cases, more pronounced disparities were 
noted in the SDSC values among different algorithms, notably with A, C, 
and E reaching higher values. For the GS, a maximum HD95% of 7.2 mm 
was found for femurL. In contrast, maximum HD95% of 73.3 mm was 
observed for duodenum in clinical case (IV), for details see Supple
mentary Tables B.2–B.7. The most challenging area seemed to be the left 
lymph node in case (V), where the target consisted of two independently 
moving lymph nodes. An in-depth motion analysis of the two lymph 
nodes is presented in Supplementary Fig. B.1. 

In Fig. 3, DDA DVHs for every case and contour are displayed. ICC >
0.90 indicated excellent correlation for all DVHs, except for CTVL and 
CTVR in case (V), with ICCs (95% CI) of 0.84 (0.84–0.85) and 0.72 
(0.71–0.73), respectively. However, significant differences (ANOVA, p 
< 0.05) were found for all contour DVHs, except for CTV case (I), GTV 
and spinal cord case (IV), and bladder case (V). ICC, ANOVA and pair
wise post-hoc test results are summarized in Supplementary Table B.9. 
Fig. 4 visualizes the different deformed accumulated dose distributions 
exemplarily for case (IV). Resulting DHVs of the deformed fraction doses 
are shown in Supplementary Fig. S2. The DVHs of the wall structures are 
shown in Supplementary Fig. S3. 

The largest range of OAR CDC values in the GS was observed for 

rectum V32Gy with 4.1% [3.5%–7.6%]. In clinical cases (I) and (II), 
largest OAR CDC range was found for bladder V28Gy with 10.2% 
[5.9%–16.1%] and 7.6% [22.4%–30.0%], respectively. Similarly, the 
range of rectum D2cm3 in case (III) was 2.8 [16.5–19.3] Gy. For the 
duodenum, case (IV), differences in Dmax of up to 7.1 [16.6–23.7] Gy 
were observed. For case (V), the largest range of CDC values was found 
for rectum D0.5cm3 with 4.6 [14.1–18.7] Gy. CTV CDC showed largest 
variation for GS V34.3 Gy and case (V) D98% (CTVR and CTVL) with 
9.5% [86.3%-95.8%], 8.1 [31.9–40.0] Gy, and 6.5 [33.1–39.6] Gy, 
respectively. Details on CDC results are given in Supplementary Table 
B2, results of wall structures are summarized in Supplementary Table 
B10. 

4. Discussion 

In this study, DDA was performed on a GS with known deformations 
based on simulations using a biomechanical modelling, in addition to 
five distinct clinical cases. A total of six different DDA approaches were 
investigated, using various contour guiding methods and two different 
dose resampling techniques, DDM and EMT. In general, a high degree of 
agreement was found between the different DIR and DDA assessments. 
However, absolute differences of potentially clinically relevant magni
tude were found depending on the clinical cases and algorithms. 

The finite element simulation enabled the calculation of GS-DVF of 
both forward and backward transformations, which are nearly inverse to 
each other within the size of a voxel. GS-DVF enabled consistent map
ping of image and dose from the first fraction to the others and vice 
versa, allowing accuracy evaluation of the different DDA solutions 
compared to the GS-DDA. It is crucial to note that while the simulated 
deformations show a high level of anatomical accuracy [17], they do not 

Fig. 2. Illustration of the dice similarity coefficient (DSC) results for the cases gold standard (a), (I) prostate 1 (b), (II) prostate 2 (c), (III) cervix (d), (IV) liver (e), and 
(V) lymph node (f). Case-related deformed contours are listed on the x-axis. The results of the institutes (A, C, D, E, F) are shown in different colors, institute B did not 
provide deformed contours. The results of the different fractions are shown in different marker types. Abbreviations; CTV: clinical target volume, GTV: gross tumor 
volume, CTVHR: High risk clinical target volume, CTVIR: Intermediate risk clinical target volume, CTVR: right lymph node, CTVL: left lymph node. 

M. Murr et al.                                                                                                                                                                                                                                   



Physics and Imaging in Radiation Oncology 30 (2024) 100588

5

completely replicate the intricacy of the true deformations in the pelvis. 
Nevertheless, the DIR solution without contour guidance (E) resulted for 
CTV and rectum in notably higher DDA errors and for bladder in the 
highest IQR but showed similar contour propagation performance to 
other solutions. This might be due to algorithm regularization and poor 
anatomical contrast inside the contour boundaries, causing large un
certainty in the estimated deformations and in turn leading to dose 
wrapping/accumulation errors. This highlights the need for DIR and 
DDA QA metrics that detect errors not just in high-contrast image areas 
like organ boundaries but also in near-isointense areas often seen in soft 
tissue boundaries [35,36]. Statistical testing has largely shown signifi
cant differences in dose accumulation accuracy among the institutions. 

On the other hand, it is worth noting that such differences are often 
between 1 and 2% of the maximum prescribed dose and thus their 
clinical relevance depends on the specific requirements. 

By nature, for the clinical cases no DDA ground truth was available. 
A DVF and dose distribution analysis would provide a precise estimation 
of deformation results [7]. Unfortunately, this analysis was not possible 
due to export and reading issues and requires additional investigation. 
Alternatively, the percentages of contours yielding DSC > 0.8 were re
ported per algorithm, in addition to SDSC and HD95% were calculated. 
Nevertheless, it is worth noting that DSC may have restricted sensitivity 
to local registration errors, particularly for volumes of varying sizes. The 
clinical cases presented more variations in SDSC values among different 

Fig. 3. Results of the accumulated DVH per structure and institutes; for the cases gold standard (a), (I) prostate 1 (b), (II) prostate 2 (c), (III) cervix (d), (IV) liver (e) 
and (V) lymph node (f). The institutes (A-F) are presented in different colors, the case-related contours are presented in different line styles. Contours of fraction one 
were used for the respective DVH calculation. 

Fig. 4. Sagittal plane view of institutional deformed dose accumulation (DDA) distribution results of the liver case (subfigures A-F are presenting the different 
institutes A-F). The gross tumor volume (GTV) contour of fraction one is presented in all images. 
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algorithms as in the GS. Algorithms A, C, and E presented higher SDSC 
values compared to others in the clinical cases, indicating their rela
tively better performance in clinical scenarios. 

The largest HD95% of 73.3 mm was found for duodenum in case (IV) 
which was not clinically concerning as this contour region was far from 
the high- or near-high-dose area. Nevertheless, this indicates remaining 
registration uncertainties underlining the need for appropriate regis
tration strategies depending on clinical priorities. In contrast, for the 
CTVs of case (V), a maximum HD95% of 4.3 mm was reported, showing 
more robust results in high-dose regions. 

In our study, offline re-delineations were used for DIR and DDA 
analysis. Instead of using propagated contours used for DIR guidance, re- 
delineation of deformed images and subsequent comparison to reference 
contours may be an alternative approach for investigating DIR quality. 
Unfortunately, such contours were not available for our analysis. 
However, it should be noted that the contours from the first fraction 
were used as guidance. Consequently, observed DSC reduction may be 
caused by registration errors or delineation variation. We acknowledge 
that manual contouring is subject to inter- and intra-observer variability 
[37,38]. However, this may also be observed in clinical practice and thus 
requires thorough retrospective analysis. In contrast, re-delineation in 
online adaptive RT must be fast and accurate to satisfy the precision 
standards for DDA analysis. Automated deep-learning algorithms are 
currently developed for fast and robust auto-contouring [39–41]. These 
tools may soon be available for online adaptive RT, enabling contour- 
guidance for online DIR. 

Analysis of DSC, SDSC and HD95% showed that the DIR algorithm 
relaying on contours only performed poorest overall. This algorithm 
generally works well in regions near contours but deteriorates signifi
cantly in more distant regions, such that the distance between the 
assessed OAR and the guiding contours can lead to significantly 
decreased registration results. Furthermore, the accuracy of this algo
rithm seems to decrease if more contours are used for guidance, most 
likely due to overfitting and increasing model complexity. However, the 
study of Wahlstadt et al. [16] revealed best performance for contour- 
only and hybrid algorithms in terms of DSC and HD95%, while the 
hybrid and intensity-based algorithms performed best for image simi
larity metrics in liver. In our study, consistent DIR results were found for 
hybrid intensity/structure-based algorithms, suggesting this might be 
well suited for clinical DDA. Similar results were found by Bosma et al. 
[37], who showed that contour-guidance significantly increased regis
tration accuracy. However, due to the low number of investigated ap
proaches no conclusion about the optimal registration strategy can be 
derived from this study. 

An alternative comparison of DDA strategies was performed by 
comparing resulting DVHs of the different strategies using ICC and 
ANOVA. Even though ICCs indicated high correlation of DVHs, absolute 
differences in CDC were observed. Although the CDC presents a single 
DVH point, it may be of clinical relevance and observed differences 
require further clinical evaluation as they might impact toxicity and 
target coverage after online adaptive RT DDA. Low ICCs were observed 
for left and right CTV in case (V), due to inter-fraction motion of the 
lymph nodes [38], their very small volumes [42], and image resolution 
[43]. As an alternative approach, separate rigid registration of each 
lymph node with dose summation might be considered. Nevertheless, to 
estimate potential toxicity in the genitourinary system, DDA should be 
preferred. 

The evaluation of the largest differences in the considered OAR CDC 
showed that the algorithm without contour-guidance (E) yielded mini
mum or maximum values, even though demonstrating better DSC, SDSC 
and HD95% results compared to the contour-only algorithm (D). This 
might be related to registration uncertainties near the high-dose 
gradient, i.e. a larger distance between points in high-dose areas re
sults in small dose differences as opposed to points in gradient areas near 
the high-dose [7]. 

Regarding DDM and EMT, no valid statement can be made, as there 

was not enough variation in dose mapping approaches in this study. 
Furthermore, the decision about EMT or DDM can become rather com
plex, depending on the deformation characteristics over the course of 
the treatment [7,17]. For the GS simulation, DDM- and EMT-based 
accumulated doses did not show any significant differences. Thus, for 
the institutional comparison DDM was employed, as it is currently the 
more commonly used approach. 

The study is subject to limitations; only one of the institutions used 
EMT for dose warping and one used DIR without contour guidance. This 
makes the comparison of algorithms challenging but also reflects the 
present clinical situation without clear recommendations for DDA usage. 
Furthermore, some of the employed software solutions lack regulatory 
approval, thereby restricting their clinical use. 

In conclusion, the compared algorithms for DIR and DDA yielded a 
generally high level of agreement. Nevertheless, absolute differences of 
potentially clinically relevant magnitude were observed depending on 
the clinical cases and algorithms. Before using DDA for online adaptive 
MRgRT in clinical practice, further studies are needed to provide rec
ommendations and guidelines. In addition, robust methods for uncer
tainty quantification should be further investigated to determine areas 
of variation in the future. 

Declaration of Competing Interest 

The authors declare the following financial interests/personal re
lationships which may be considered as potential competing interests: 
MM and DT report institutional collaborations including financial and 
non-financial support by Elekta AB, Philips, TheraPanacea, Dr. Senne
wald, Brainlab and PTW Freiburg. 

MM acknowledges funding through the German Research Council 
(DFG), grants no. MU 4603/1-1 (PAK997/1) and ZI 736/2-1. 

HZ is partly supported by the grant R01-EB028324 from National 
Institute of Biomedical Imaging andBioengineering, NIH. 

All other authors do not declare financial interests/personal 
relationships. 

Acknowledgments 

We acknowledge the support of the following physicians who 
checked/drew the contours, Daniel Wegener (Tübingen), Tine Schytte 
(Odense), Thomas Willigenburg (UMC Utrecht), William Hall (Mil
waukee), and Nicole O’Conner (Elekta) for technical support and Elekta 
for providing the software ProKnow. We thank Dr. Blumenstock (Uni
versity Tübingen) for statistical analysis support. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.phro.2024.100588. 

References 

[1] Winkel D, Bol GH, Kroon PS, van Asselen B, Hackett SS, Werensteijn-Honingh AM, 
et al. Adaptive radiotherapy: The Elekta Unity MR-linac concept. Clin Transl Radiat 
Oncol 2019;18:54–9. https://doi.org/10.1016/j.ctro.2019.04.001. 

[2] Chetty IJ, Rosu-Bubulac M. Deformable Registration for Dose Accumulation. Semin 
Radiat Oncol 2019;29:198–208. https://doi.org/10.1016/j. 
semradonc.2019.02.002. 

[3] Bohoudi O, Bruynzeel AME, Tetar S, Slotman BJ, Palacios MA, Lagerwaard FJ. 
Dose accumulation for personalized stereotactic MR-guided adaptive radiation 
therapy in prostate cancer. Radiother Oncol 2021;157:197–202. https://doi.org/ 
10.1016/j.radonc.2021.01.022. 

[4] Chen J, Bissonnette J-P, Craig T, Munoz-Schuffenegger P, Tadic T, Dawson LA, 
et al. Liver SBRT dose accumulation to assess the impact of anatomic variations on 
normal tissue doses and toxicity in patients treated with concurrent sorafenib. 
Radiother Oncol 2023;182:109588. https://doi.org/10.1016/j. 
radonc.2023.109588. 

[5] Alam S, Veeraraghavan H, Tringale K, Amoateng E, Subashi E, Wu AJ, et al. Inter- 
and intrafraction motion assessment and accumulated dose quantification of upper 
gastrointestinal organs during magnetic resonance-guided ablative radiation 

M. Murr et al.                                                                                                                                                                                                                                   

https://doi.org/10.1016/j.phro.2024.100588
https://doi.org/10.1016/j.phro.2024.100588
https://doi.org/10.1016/j.ctro.2019.04.001
https://doi.org/10.1016/j.semradonc.2019.02.002
https://doi.org/10.1016/j.semradonc.2019.02.002
https://doi.org/10.1016/j.radonc.2021.01.022
https://doi.org/10.1016/j.radonc.2021.01.022
https://doi.org/10.1016/j.radonc.2023.109588
https://doi.org/10.1016/j.radonc.2023.109588


Physics and Imaging in Radiation Oncology 30 (2024) 100588

7

therapy of pancreas patients. Phys Imaging Radiat Oncol 2022;21:54–61. https:// 
doi.org/10.1016/j.phro.2022.02.007. 

[6] Rabe M, Palacios MA, van Sörnsen de Koste JR, Eze C, Hillbrand M, Belka C, et al. 
Comparison of MR-guided radiotherapy accumulated doses for central lung tumors 
with non-adaptive and online adaptive proton therapy. Med Phys 2023;50: 
2625–36. https://doi.org/10.1002/mp.16319. 

[7] Murr M, Brock KK, Fusella M, Hardcastle N, Hussein M, Jameson MG, et al. 
Applicability and usage of dose mapping/accumulation in radiotherapy. Radiother 
Oncol 2023;182:109527. https://doi.org/10.1016/j.radonc.2023.109527. 

[8] Sotiras A, Davatzikos C, Paragios N. Deformable Medical Image Registration: A 
Survey. IEEE Trans Med Imaging 2013;32:1153–90. https://doi.org/10.1109/ 
TMI.2013.2265603. 

[9] Pukala J, Johnson PB, Shah AP, Langen KM, Bova FJ, Staton RJ, et al. 
Benchmarking of five commercial deformable image registration algorithms for 
head and neck patients. J Appl Clin Med Phys 2016;17:25–40. https://doi.org/ 
10.1120/jacmp.v17i3.5735. 

[10] Kadoya N, Nakajima Y, Saito M, Miyabe Y, Kurooka M, Kito S, et al. Multi- 
institutional Validation Study of Commercially Available Deformable Image 
Registration Software for Thoracic Images. Int J Radiat Oncol Biol Phys 2016;96: 
422–31. https://doi.org/10.1016/j.ijrobp.2016.05.012. 

[11] Fukumitsu N, Nitta K, Terunuma T, Okumura T, Numajiri H, Oshiro Y, et al. 
Registration error of the liver CT using deformable image registration of MIM 
Maestro and Velocity AI. BMC Med Imaging 2017;17:30. https://doi.org/10.1186/ 
s12880-017-0202-z. 

[12] Nenoff L, Amstutz F, Murr M, Archibald-Heeren B, Fusella M, Hussein M, et al. 
Review and recommendations on deformable image registration uncertainties for 
radiotherapy applications. Phys Med Biol 2023;68:24TR01. https://doi.org/ 
10.1088/1361-6560/ad0d8a. 

[13] Miura H, Ozawa S, Nakao M, Furukawa K, Doi Y, Kawabata H, et al. Impact of 
deformable image registration accuracy on thoracic images with different 
regularization weight parameter settings. Phys Med 2017;42:108–11. https://doi. 
org/10.1016/j.ejmp.2017.09.122. 

[14] Ziegler M, Nakamura M, Hirashima H, Ashida R, Yoshimura M, Bert C, et al. 
Accumulation of the delivered treatment dose in volumetric modulated arc therapy 
with breath-hold for pancreatic cancer patients based on daily cone beam 
computed tomography images with limited field-of-view. Med Phys 2019;46: 
2969–77. https://doi.org/10.1002/mp.13566. 

[15] Li HS, Zhong H, Kim J, Glide-Hurst C, Gulam M, Nurushev TS, et al. Direct dose 
mapping versus energy/mass transfer mapping for 4D dose accumulation: 
fundamental differences and dosimetric consequences. Phys Med Biol 2014;59: 
173–88. https://doi.org/10.1088/0031-9155/59/1/173. 

[16] Wahlstedt I, George Smith A, Andersen CE, Behrens CP, Nørring Bekke S, Boye K, 
et al. Interfractional dose accumulation for MR-guided liver SBRT: Variation 
among algorithms is highly patient- and fraction-dependent. Radiother Oncol 
2022:109448. https://doi.org/10.1016/j.radonc.2022.109448. 

[17] Bosma LS, Zachiu C, Ries M, de Senneville BD, Raaymakers BW. Quantitative 
investigation of dose accumulation errors from intra-fraction motion in MRgRT for 
prostate cancer. Phys Med Biol 2021;66:065002. https://doi.org/10.1088/1361- 
6560/abe02a. 

[18] Maas SA, Ellis BJ, Ateshian GA, Weiss JA. FEBio: Finite Elements for Biomechanics. 
J Biomech Eng 2012;134:11005 -NaN. https://doi.org/10.1115/1.4005694. 

[19] Han X, Hibbard LS, Willcut V. An Efficient Inverse-Consistent Diffeomorphic Image 
Registration Method for Prostate Adaptive Radiotherapy. In: Madabhushi A, 
Dowling J, Yan P, Fenster A, Abolmaesumi P, Hata N, editors. Prostate Cancer 
Imaging Comput.-Aided Diagn. Progn. Interv., Berlin, Heidelberg: Springer; 2010, 
p. 34–41. https://doi.org/10.1007/978-3-642-15989-3_5. 

[20] Weistrand O, Svensson S. The ANACONDA algorithm for deformable image 
registration in radiotherapy. Med Phys 2015;42:40–53. https://doi.org/10.1118/ 
1.4894702. 

[21] Piper JW, Richmond JH, Nelson AS. VoxAlign Deformation Engine® n.d. 
[22] Wang H, Dong L, Lii MF, Lee AL, de Crevoisier R, Mohan R, et al. Implementation 

and validation of a three-dimensional deformable registration algorithm for 
targeted prostate cancer radiotherapy. Int J Radiat Oncol 2005;61:725–35. https:// 
doi.org/10.1016/j.ijrobp.2004.07.677. 

[23] Ger RB, Yang J, Ding Y, Jacobsen MC, Fuller CD, Howell RM, et al. Accuracy of 
deformable image registration on magnetic resonance images in digital and 

physical phantoms. Med Phys 2017;44:5153–61. https://doi.org/10.1002/ 
mp.12406. 

[24] Zachiu C, Denis de Senneville B, Willigenburg T, Voort van Zyp JRN, de Boer JCJ, 
Raaymakers BW, et al. Anatomically-adaptive multi-modal image registration for 
image-guided external-beam radiotherapy. Phys Med Biol 2020;65:215028. 
https://doi.org/10.1088/1361-6560/abad7d. 

[25] de Senneville BD, Zachiu C, Ries M, Moonen C. EVolution: an edge-based 
variational method for non-rigid multi-modal image registration. Phys Med Biol 
2016;61:7377. https://doi.org/10.1088/0031-9155/61/20/7377. 

[26] Heath E, Seuntjens J. A direct voxel tracking method for four-dimensional Monte 
Carlo dose calculations in deforming anatomy. Med Phys 2006;33:434–45. https:// 
doi.org/10.1118/1.2163252. 

[27] Siebers JV, Zhong H. An energy transfer method for 4D Monte Carlo dose 
calculation. Med Phys 2008;35:4096–105. https://doi.org/10.1118/1.2968215. 

[28] Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, et al. 
3D Slicer as an image computing platform for the Quantitative Imaging Network. 
Magn Reson Imaging 2012;30:1323–41. https://doi.org/10.1016/j. 
mri.2012.05.001. 

[29] Dice LR. Measures of the Amount of Ecologic Association Between Species. Ecology 
1945;26:297–302. https://doi.org/10.2307/1932409. 

[30] Nikolov S, Blackwell S, Zverovitch A, Mendes R, Livne M, De Fauw J, et al. Deep 
learning to achieve clinically applicable segmentation of head and neck anatomy 
for radiotherapy 2021. 

[31] Huttenlocher DP, Klanderman GA, Rucklidge WJ. Comparing images using the 
Hausdorff distance. IEEE Trans Pattern Anal Mach Intell 1993;15:850–63. https:// 
doi.org/10.1109/34.232073. 

[32] Rong Y, Rosu-Bubulac M, Benedict SH, Cui Y, Ruo R, Connell T, et al. Rigid and 
Deformable Image Registration for Radiation Therapy: A Self-Study Evaluation 
Guide for NRG Oncology Clinical Trial Participation. Pract Radiat Oncol 2021;11: 
282–98. https://doi.org/10.1016/j.prro.2021.02.007. 

[33] Mann HB, Whitney DR. On a Test of Whether one of Two Random Variables is 
Stochastically Larger than the Other. Ann Math Stat 1947;18:50–60. 

[34] Koo TK, Li MY. A Guideline of Selecting and Reporting Intraclass Correlation 
Coefficients for Reliability Research. J Chiropr Med 2016;15:155. https://doi.org/ 
10.1016/j.jcm.2016.02.012. 

[35] Yeo UJ, Supple JR, Taylor ML, Smith R, Kron T, Franich RD. Performance of 12 DIR 
algorithms in low-contrast regions for mass and density conserving deformation. 
Med Phys 2013;40:101701. https://doi.org/10.1118/1.4819945. 

[36] Shi L, Chen Q, Barley S, Cui Y, Shang L, Qiu J, et al. Benchmarking of Deformable 
Image Registration for Multiple Anatomic Sites Using Digital Data Sets With 
Ground-Truth Deformation Vector Fields. Pract Radiat Oncol 2021;11:404–14. 
https://doi.org/10.1016/j.prro.2021.02.012. 

[37] Bosma LS, Ries M, Denis de Senneville B, Raaymakers BW, Zachiu C. Integration of 
operator-validated contours in deformable image registration for dose 
accumulation in radiotherapy. Phys Imaging Radiat Oncol 2023;27:100483. 
https://doi.org/10.1016/j.phro.2023.100483. 
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