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Abstract
Bladder cancer, a common neoplasm, is primarily caused by tobacco smoking. Epigenetic alterations including DNA meth-
ylation have the potential to be used as prospective markers of increased risk, particularly in at-risk populations such as 
smokers. We aimed to investigate the potential of smoking-related white blood cell (WBC) methylation markers to contribute 
to an increase in bladder cancer risk prediction over classical questionnaire-based smoking metrics (i.e., duration, intensity, 
packyears) in a nested case–control study within the prospective prostate, lung, colorectal, and ovarian (PLCO) Cancer 
Screening Trial and the alpha-tocopherol, beta-carotene cancer (ATBC) Prevention Study (789 cases; 849 controls). We 
identified 200 differentially methylated sites associated with smoking status and 28 significantly associated (after correction 
for multiple testing) with bladder cancer risk among 2670 previously reported smoking-related cytosine–phosphate–guanines 
sites (CpGs). Similar patterns were observed across cohorts. Receiver operating characteristic (ROC) analyses indicated 
that cg05575921 (AHHR), the strongest smoking-related association we identified for bladder cancer risk, alone yielded 
similar predictive performance (AUC: 0.60) than classical smoking metrics (AUC: 0.59–0.62). Best prediction was achieved 
by including the first principal component (PC1) from the 200 smoking-related CpGs alongside smoking metrics (AUC: 
0.63–0.65). Further, PC1 remained significantly associated with elevated bladder cancer risk after adjusting for smoking 
metrics. These findings suggest DNA methylation profiles reflect aspects of tobacco smoke exposure in addition to those 
captured by smoking duration, intensity and packyears, and/or individual susceptibility relevant to bladder cancer etiology, 
warranting further investigation.
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Introduction

Tobacco smoking is the most important risk factor for 
bladder cancer causing the majority of bladder cancers in 
both men and women [1]. Smokers are at least 3 times as 
likely to get bladder cancer as non-smokers [2]. This asso-
ciation is thought to be more driven by smoking duration 
than intensity of smoking with individuals that smoke a 
long duration at a low intensity having a greater risk than 
individuals smoking for a short duration at a high intensity 
within equal pack-year categories [3]. Although smoking 
is a well-established risk factor for bladder cancer, current 
prediction algorithms perform only modestly and predic-
tion improvement could be yielded by including additional 
risk factors and potential effect modifiers [4–6].

It is well accepted that a history of smoking results 
in an epigenetic signature of altered DNA methylation at 
multiple cytosine–phosphate–guanine sites (CpGs). The 
identification of these smoking-related CpGs allows sub-
sequent investigation of their association with smoking-
related morbidities either as independent smoking prox-
ies or as mediators [7–12]. Yu et al. (2021) explored if a 
risk score based on smoking-related CpGs could increase 
prediction of bladder cancer as compared to using classi-
cal smoking metrics (i.e., duration, intensity, packyears) 
[6]. Although blood-based DNA methylation markers for 
smoking were found to be associated with risk of bladder 
cancer independently of self-reported smoking history, the 
increase in disease prediction performance was negligible.

We report here on a nested case–control study of blad-
der cancer within two prospective cohorts. First, we 
explored the association between the previously reported 
methylation signature of smoking and compared these 
results with conventional metrics of smoking (i.e., dura-
tion, intensity, packyears). Subsequently, we performed an 
analysis of DNA methylation of all CpG sites to explore 
if there was evidence of CpGs or differential methylated 
regions (DMRs) that associate with bladder cancer risk 
that are not directly related to smoking.

Methods

Study population

Our study population consisted of two nested case–con-
trol studies, as described previously [13]: the prostate, 
lung, colorectal, and ovarian cancer (PLCO) screening 

Trial, a multi-centre intervention trial with recruitment 
between 1993 and 2001 including men and women aged 
55–74 years old [14, 15]; and the Alpha-Tocopherol, 
Beta-Carotene (ATBC) Cancer Prevention Study [16], 
a randomised placebo-controlled trial which took place 
in Finland between 1985 to 1988 and included men aged 
50–69 years old who were active smokers at enrollment. In 
PLCO incident bladder cancer cases (n = 307) were identi-
fied using the International Classification of Diseases for 
Oncology [ICD-O-3] codes C67.0-C67.9. Incident bladder 
cancer cases (n = 482) selected from the ATBC study were 
defined as histologically confirmed primary carcinoma of 
the urinary bladder (ICD9 codes 188.1–188.9). In both 
studies, healthy controls (N = 315 for PLCO and N = 534 
for ATBC) were frequency-matched to cases on sex and 
5-year age categories. All PLCO and ATBC participants 
completed a baseline questionnaire, which included infor-
mation on age, sex, and smoking. The self-reported smok-
ing information included: (i) the smoking intensity (num-
ber of cigarettes smoked per day), and (ii) the smoking 
duration (in years).

Biospecimen collection for PLCO participants was 
approved by the US National Cancer Institute (NCI) Spe-
cial Studies Institutional Review Board (IRB) (OH-C-N041), 
the US National Institutes of Health, and the IRB at each 
screening site. Written informed consent was obtained from 
each ATBC participant, and the study was approved by the 
IRB of the US NCI and the National Public Health Institute 
of Finland. The trial was registered as Clinical Trials.gov 
number NCT00342992 (ClinicalTrials.gov).

DNA methylation data

DNA methylation data was obtained using the Infinium 
HumanMethylation450 BeadChip assay. As detailed else-
where [17], genomic DNA was extracted from pre-diagnos-
tically collected blood samples and underwent hybridisation 
on HM450 BeadChips according to the manufacturer’s pro-
tocol after bisulphite conversion. Hybridised micro-arrays 
were scanned using Illumina HiScanSQ system, and raw 
intensity data were exported to Illumina GenomeStudio (ver-
sion 2011.1). Using control probes from the micro-array, 
we assessed the efficiency of the bisulphite conversion and 
excluded those with detection p-values greater than 0.05. 
Further data pre-processing was performed using in-house 
software for the R statistical computing environment. We 
censored DNA methylation measurements if obtained by 
averaging intensities over less than three beads, or if aver-
aged intensities were below detection thresholds estimated 



395A prospective study of smoking‑related white blood cell DNA methylation markers and risk of…

from negative control probes. Background subtraction and 
dye bias correction were also performed. DNA-methyl-
ation level at each CpG locus was measured as M-values 
(logit2-transformation of �-values, the per-site methylation 
fraction). We excluded (i) samples with methylation values 
missing for more than 30% of the assayed CpG sites, and 
(ii) CpG sites in which more than 30% of the measurements 
were missing. Methylation data from participants of both 
cohorts were generated in the same lab and pre-processed 
following the same unified protocol. This standardized 
approach has been used in previous analyses combining data 
from multiple studies and ensured comparability of meth-
ylation data across studies [18]. Variability due to batch/
technical confounding was accounted for using linear mixed 
models as detailed below.

Statistical analyses

To maximise the sample size and increase the exposure con-
trast all statistical analyses, unless otherwise stated, were 
performed on the pooled dataset including participants from 
both studies.

Univariate association study

As proposed previously [17], we sought to identify differ-
entially methylated CpG sites in bladder cancer cases and 
controls using the following linear mixed model:

where Yi is the measured methylation M value at a given 
CpG site. Xi is the (prospective) case control status for indi-
vidual i , and �1 represents the regression coefficient measur-
ing the effect of case–control status on methylation levels. 
FEi is a vector of fixed effect observations for individual i , 
including age at blood collection, gender, and recruitment 
center, and �2 represents a vector of regression coefficients 
measuring the effect of each of these factors on methylation 
levels. Nuisance variation due to technical differences while 
processing the biosamples was modelled by introducing a 
random intercept for the chip ID (159 modalities) ( uIDi ), 
and for the position of the sample on the chip (12 modali-
ties) ( uTi ) [8, 19–21]. For numerical stability, statistical sig-
nificance of the effect linking the case–control status ( �1) 
for each CpG site was inferred using a likelihood ratio test 
comparing models with and without the variable of inter-
est [19, 22, 23]. As a sensitivity analysis, we ran the same 
model adjusting for blood cell composition, estimated from 
a reference-free method.

(1)Yi = � + �1X
i + �2FE

i + uID
i

+ uT
i

+ �i,

Investigating the effect of smoking on bladder 
cancer

Using an unconditional logistic model, we evaluated the 
association between smoking metrics and risk of bladder 
cancer. These included smoking duration (in years), life-
long cumulative smoking exposure (in pack-years), smoking 
intensity (in packs/day). These were recoded into quartiles 
based on the control population to ensure that the reference 
distribution of the exposure to tobacco smoke was repre-
sentative of that in the overall cohort. To evaluate if the 
effect of the smoking metrics on the risk of bladder cancer 
could be explained fully by the smoking-related CpGs we 
fitted, for each of the three smoking metrics (duration, inten-
sity, or pack-years), a logistic model including the smoking 
metric alone, and subsequently adjusted for (i) methylation 
levels at the CpG site showing the strongest association with 
smoking in our data and (ii) the scores of the first principal 
component of all CpG sites found associated with smoking 
status in our data. Conversely, to assess if smoking-related 
CpG sites were reflecting disease-relevant information that 
was not captured by the classical smoking metrics, we fitted 
a logistic model with the (i) methylation levels at the CpG 
site showing the strongest association with smoking in our 
data and (ii) the scores of the first principal component of 
the CpG sites found associated with smoking status in our 
data as predictors. These models were subsequently adjusted 
for each of the smoking metrics (duration, intensity, or pack-
years). Model performances were evaluated through the area 
under the curve (AUC) of the received operating characteric 
(ROC) curve, which was derived using a sub-sampling pro-
cedure, where 80% of the population was used to train the 
model and the remaining 20% to test it. We report the AUC 
from the testing set for each model investigated.

Investigating previously identified smoking‑related 
CpGs and bladder cancer

We first restricted our univariate analyses to the CpG sites 
that were recently reported to be related to smoking sta-
tus (current or former versus never smokers) [9] and were 
assayed in our samples after probe filtering. These included 
a list of 2670 unique CpG sites of which 2,623 CpG sites 
were found differentially methylated in never vs. current 
smokers, and 273 in never vs. former comparisons. [9]

To facilitate results interpretation, the methylation levels 
(M-values) at each smoking-related CpG site found differ-
entially methylated in cases and controls were recoded into 
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quartiles, and odds ratios were calculated (setting the lowest 
quartile as reference). We also adjusted on the most signifi-
cant CpG associated with smoking in our dataset and on the 
first principal component (PC1) summarising the methyla-
tion levels at the 2670 smoking-related CpG sites.

Of the (N = 2670) smoking-related CpG sites, we inves-
tigated those that were differentially methylated in our data 
(at a Bonferroni corrected significance level ensuring a 
family-wise error rate of 0.05) and summarised them using 
a principal component analysis (PCA) of their methylation 
M values. Components derived from this analysis were sub-
sequently used as a proxy for our data's methylation response 
to smoking. They were either included in models as con-
founding factors or related to bladder cancer risk in logistic 
models.

To account for nuisance variation in the methylation data 
[21, 22, 24], we ran a linear mixed model setting technical 
confounders as random intercepts. We subtracted the esti-
mated random intercepts from the observed methylation lev-
els. We used these methylation data in subsequent analyses.

Epigenome‑wide analyses of bladder cancer

In a second stage, univariate analyses were extended from 
the smoking-related CpG sites to all assayed CpG sites. We 
corrected both analyses for multiple testing using Bonfer-
roni-corrected per test significance level �′ ensuring a FWER 
below 0.05 ( �� =

0.05

N1

, and
0.05

N2

= 1.09 × 10
−7
, whereN1andN2 

are the number of the smoking-related and total number of 
CpG sites assayed in our study population, respectively). As 
a series of sensitivity analyses, we further adjusted our mod-
els on the three different smoking exposure measures. We 
also stratified our analyses by study, running the model on 
PLCO and ATBC participants separately, and ran our model 
restricting the study population to current smokers only.

Investigating differentially methylated regions 
(DMRs)

As a multivariate alternative to our univariate screening, we 
investigated potential DMRs in relation to bladder cancer 
status using Gaussian kernel smoothing of the T-statistic 
measuring the per-CpG changes in methylation levels 
between two sup-populations (here prospective cases and 
controls) [25]. As implemented in the DMRcate R-package, 
limma was used to compute T-statistics measuring the asso-
ciation between each individual CpG sites and the variable 
of interest (here case–control status). Gaussian smoothing 
weighting of these statistics was performed to evaluate the 

per CpG site statistical significance, correcting for multiple 
testing. Per-site significance level was subsequently agglom-
erated to identify contiguous genomic regions (of variable 
size) that were enriched in outcome-relevant CpG sites. To 
account for nuisance variation we used the same ‘de-noised’ 
data, as described above. To preserve sample size, missing 
methylation levels were imputed using the K nearest neigh-
bours approach (setting k = 10) [26]. Assuming that the 
strength of association between two CpG sites is directly 
related to their functional proximity, we evaluated the rela-
tionship between the CpG sites involved in the DMRs and 
smoking by adopting a network approach. Our network 
approach was based on the pairwise correlation coefficients 
linking all CpG sites involved in the identified DMRs and 
smoking metrics. To induce sparsity in the graph, we only 
considered correlations (edges) with a Fisher z-test p-value 
b e l ow  t h e  B o n fe r ro n i  c o r r e c t e d  t h r e s h o l d 
(

p <
0.05

Ntest

];whereNtest =
N2×(N2+1)

2

)

 . We assumed that the 
‘distance’ to smoking, as measured by the length (i.e., steps) 
of the shortest path linking CpG sites in a DMR and smok-
ing reflected their functional proximity to the exposure. This 
resulted in the following classification of the CpG sites con-
tributing to the identified DMRs:

•	 The smoking-related CpG sites that are within the 2670 
established smoking-related CpG sites,

•	 The order 1 CpG sites correlated to at least one smoking-
related CpG but not directly to smoking,

•	 The order 2 CpG sites are correlated to at least one order 
1 CpG but not directly to any smoking-related site and 
not to smoking.

Results

Study population and methylation data

Of the 1638 participants included initially in our study, 40 
had more than 30% of the methylation data missing (14 from 
ATBC, and 26 from PLCO) and were excluded from the 
analyses, leaving us with a population size of 1598 partici-
pants. These included 766 bladder cancer cases (288 from 
PLCO and 478 from ATBC) and 832 controls (308 and 524 
in PLCO and ATBC, respectively). Their characteristics 
are summarised in Table 1 and show that participants were 
between 49 and 74 years old at recruitment. All 1002 ATBC 
participants were males and current smokers at recruit-
ment. In the full population, more than 90% of participants 
were males, and more than 65% were current smokers. As 
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expected, none of the frequency-matching criteria (age at 
recruitement, and gender) differed between cases and con-
trols and differences could only be observed for smoking 
exposure variables. After filtering CpG sites due to miss-
ing values, 25,393 were excluded (including one smoking-
related CpG site) leaving 2670 smoking-related CpG sites 
and 460,119 CpG sites for our analyses.

Investigating the effect of smoking on bladder 
cancer

Of the 2670 CpG sites assayed in our data that were previ-
ously reported to be smoking-related, 200 CpG sites were 
found to be differentially methylated at a Bonferroni cor-
rected significance level in our data. Principal component 

Table 1   Study population description by gender, age, age at recruitment and smoking exposure variables

Results are presented for the full 1598 included participants, and for each of the contributing study separately
p-values were derived from a chi-square test investigating potential differences in the distribution of each factors in cases and controls

Study Full sample PLCO ATBC

Characteristics Cases Controls Pa Cases Controls Pa Cases Controls Pa

N (%) N (%) N (%) N (%) N (%) N (%)

Total 766 47.9 832 52.1 288 48.3 308 51.7 478 47.7 524 52.3
Sex 0.568 0.604
Male 704 91.9 771 92.7 226 78.5 247 80.2 478 100 524 100
Female 62 8.1 61 7.3 62 21.5 61 19.8 0 0 0 0
Age at randomisation (years) 0.737 0.850 0.330
49–54 150 19.6 174 20.9 0 0 0 0 150 31.4 174 33.2
55–59 229 29.9 238 28.6 67 23.3 66 21.4 162 33.9 172 32.8
60–64 217 28.3 248 29.8 101 35.1 110 35.7 116 24.3 138 26.3
65–69 133 17.4 128 15.4 85 29.5 88 28.6 48 10.0 40 7.6
70–74 37 4.8 44 5.3 35 12.2 44 14.3 2 0.4 0 0
Smoking status 2.95E − 08 2.49E − 10
Never 69 9.0 153 18.4 69 24.0 153 49.7 0 0 0 0
Former 167 21.8 128 15.4 167 58.0 128 41.6 0 0 0 0
Current 530 69.2 551 66.2 52 18.1 27 8.8 478 100 524 100
Pack-years of Smoking 8.41E − 13 3.43E − 11 2.37E − 08
 < 1 70 9.1 154 18.5 70 24.3 154 50.0 0 0 0 0
1–20 116 15.2 201 24.2 50 27.4 48 15.6 66 13.8 153 29.2
21–40 270 35.2 235 28.2 56 29.4 51 16.6 214 44.8 184 35.1
41–60 198 25.8 154 18.5 55 29.1 35 11.4 143 29.9 119 22.7
 > 60 109 14.2 85 10.2 54 18.8 17 5.5 55 11.5 68 13.0
Missing 3 0.4 3 0.4 3 1.0 3 1.0 0 0 0 0
Smoking duration (years) 3.17E − 09 7.12E − 10 3.28E − 04
0 69 9.0 153 18.4 69 24.0 153 49.7 0 0 0 0
1–15 43 5.6 59 7.1 35 12.2 29 0.4 8 1.7 30 5.8
16–30 150 19.6 172 20.7 62 21.5 57 18.5 88 18.4 115 21.7
31–45 416 54.3 353 42.4 88 30.6 47 15.3 328 68.6 306 58.4
46–60 78 10.2 52 6.2 31 10.8 17 5.5 47 10.2 35 6.6
Missing 10 1.3 43 5.2 3 1.0 5 1.6 7 1.5 38 7.5
Smoking intensity (packs/day) 6.48E − 07 1.27E − 10 0.0246
0 69 9.0 153 18.4 69 24.0 153 49.7 0 0 0 0
 > 0 and ≤ 1 415 54.2 399 48.0 116 40.3 90 29.2 299 62.6 309 59.0
 > 1 and ≤ 2 244 31.9 211 25.4 80 27.8 59 19.2 164 34.3 152 29.0
 > 2 and ≤ 3 30 3.9 27 3.2 22 7.6 3 1.0 8 1.7 24 4.6
 > 3 and ≤ 4 1 0.1 2 0.2 1 0.3 1 0.3 0 0 1 0.2
Missing 7 0.9 40 4.8 0 0.0 2 0.6 7 1.5 38 7.3
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analysis of the methylation M-value at these CpG sites sug-
gested that 71 components were necessary to explain more 
than 80% of the total variance, and the first component 
(PC1), alone, explained more than 19.3% of the variance 
(and the first 10 PC explain jointly 47% of the variance). 
Hypothesizing that PC1 provided a reasonable summary of 
the 200 smoking-related CpG, we used it as a proxy for the 
smoking-related CpG sites in subsequent smoking-adjusted 
analyses (the score was used as an adjustment variable). All 

smoking metrics were associated with risk of bladder can-
cer with OR ranging from 1.8 to 3.75 (Table 2, OR > 1.8 
and p-value < 4.1 × 10

−14 ). After adjusting the model for 
the methylation level at cg05575921 (AHRR), the CpG site 
exhibiting the strongest association with smoking status in 
our data ( � =− 1.943, p   < 10−100 ), results were attenuated 
with OR for the questionnaire-based smoking metrics rang-
ing from 1.36 to 2.51, and corresponding p-values from  
6.9 × 10

−2 to 1.4 × 10
−6 (Table 2). After adjusting our model 

Table 2   Bladder cancer risk (Odd Ratio [OR] and 95% confidence intervals) by quartiles of smoking metrics

Results are also presented for the model additionally adjusted for the methylation level at cg05575921 (AHHR), the strongest CpG-site associ-
ated with smoking status in our dataset and on the first principal component (PC1) summarising the methylation levels at the 200 smoking-
related CpG sites in our data
Quartile definition (sample size):
Pack-years: Q1: [0, 15[ (n = 383); Q2: [15, 31[ (n = 378); Q3: [31, 46[ (n = 381); Q4: [46, 184] (n = 403)
Duration (years): Q1: [0, 20[ (n = 359); Q2: [20, 34[ (n = 391); Q3: [34, 40[ (n = 322); Q4: [40, 59] (n = 473)
Intensity (packs/day): Q1: [0, 0.5[ (n = 300); Q2: [0.5, 1[ (n = 334); Q3: [1, 1.27[ (n = 522); Q4: [1.27, 4] (n = 389)
a All models were adjusted for age, sex and centre
b PC1 explains 19.3% of the total variance

Crude Modela Adjusted on cg05575921 (AHRR) Adjusted on PC1b

OR p-value OR p-value OR p-value

Pack-years Q1 vs Q2 1.823 (1.33, 2.50) 1.75e − 04 1.36 (0.98, 1.90) 6.95e − 02 1.328 (0.98, 1.89) 9.09e − 02
Q1 vs Q3 2.981 (2.17, 4.11) 2.04e − 11 2.022 (1.43, 2.87) 7.38e − 05 2.013 (1.43, 2.87) 5.28e − 05
Q1 vs Q4 2.933 (2.16, 4.00) 9.08e − 12 1.817 (1.28, 2.59) 9.24e − 04 1.751 (1.28, 2.56) 1.31e − 03

Duration (years) Q1 vs Q2 2.283 (1.64, 3.20) 1.44e − 06 1.683 (1.18, 2.40) 3.97e − 03 1.628 (1.18, 2.40) 6.50e − 03
Q1 vs Q3 3.751 (2.67, 5.30) 4.10e − 14 2.51 (1.73, 3.65) 1.36e − 06 2.474 (1.73, 3.65) 1.06e − 06
Q1 vs Q4 3.465 (2.44, 4.95) 4.90e − 12 2.113 (1.42, 3.15) 2.36e − 04 2.061 (1.42, 3.15) 2.26e − 04

Intensity (packs/day) Q1 vs Q2 2.703 (2.03, 3.62) 1.77e − 11 1.985 (1.46, 2.70) 1.15e − 05 2.036 (1.46, 2.70) 4.04e − 06
Q1 vs Q3 2.636 (1.71, 4.07) 1.06e − 05 1.909 (1.22, 2.98) 4.43e − 03 1.913 (1.22, 2.98) 4.35e − 03
Q1 vs Q4 2.551 (1.87, 3.48) 3.15e − 09 1.694 (1.21, 2.37) 2.10e − 03 1.657 (1.21, 2.37) 2.80e − 03

Table 3   Bladder cancer risk (Odd Ratio [OR] and 95% confidence intervals) by quartiles of methylation methylation level at cg05575921 
(AHHR) and the first principal component (PC1) summarising the methylation levels at the 200 smoking-related CpG site

Results are also presented for the model additionally adjusted for smoking metrics
Number of observations per quartile:
cg055792: Q1 (n = 386); Q2: (n = 386); Q3 (n = 386); Q4: (n = 387)
PC1: Q1 (n = 386); Q2: (n = 386); Q3 (n = 386); Q4: (n = 387)
a All models were adjusted for age, sex and centre
b PC1 explains 19.3% of the total variance

Crude Modela Adjusted on pack-years Adjusted on duration 
(years)

Adjusted on intensity 
(packs/day)

OR p-value OR p-value OR p-value OR p-value

cg05575921 
(AHRR)

Q2 vs Q1 1.41 (1.08, 1.85) 1.3e − 02 1.36 (1.04, 1.79) 2.6e − 02 1.36 (1.04, 1.79) 2.6e − 02 1.39 (1.06, 1.82) 1.8e − 02
Q3 vs Q1 1.47 (1.12, 1.93) 5.4e − 03 1.29 (1.03, 1.7) 7.8e − 02 1.20 (1.12, 1.6) 2.3e − 01 1.39 (1.06, 1.84) 1.8e − 02
Q4 vs Q1 2.58 (1.91, 3.48) 5.7e − 10 1.87 (1.34, 2.62) 2.8e − 04 1.47 (1, 2.19) 5.2e − 02 2.09 (1.52, 2.89) 7.5e − 06

PC1b Q2 vs Q1 1.25 (1.04, 1.63) 1.0e − 01 1.18 (1.11, 1.54) 2.3e − 01 1.18 (1.11, 1.54) 2.2e − 01 1.21 (1.08, 1.57) 1.7e − 01
Q3 vs Q1 1.89 (1.43, 2.5) 9.5e − 06 1.64 (1.23, 2.19) 8.7e − 04 1.58 (1.18, 2.12) 2.1e − 03 1.75 (1.31, 2.33) 1.3e − 04
Q4 vs Q1 2.48 (1.85, 3.34) 1.6e − 09 1.90 (1.38, 2.63) 9.2e − 05 1.63 (1.15, 2.32) 6.3e − 03 2.07 (1.52, 2.84) 4.5e − 06
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for PC1, results were further attenuated (OR ranging from 
1.32 to 2.47 and p-values from 9.1 × 10

−2 to 1.1 × 10
−6) . 

Conversely, the risk of bladder cancer by quartiles of 
cg05575921 (AHRR) showed ORs ranging from 1.41 to 2.58 
and p-values from 1.3 × 10

−2 to 5.7 × 10
−10 and for PC1 ORs 

ranging from 1.25 to 2.48, and corresponding p-values from 
1.0 × 10

−1 to 1.6 × 10
−9 . When adjusting for smoking metrics 

the ORs attenuated for both AHRR and PC1, which was 
most pronounced for smoking duration (2.58 to 1.47 and 
2.48 to 1.63 when comparing Q4 versus Q1 for AHRR and 
PC1, respectively) (Table 3).

Investigating 2670 previously identified 
smoking‑related CpGs and bladder cancer

Linear mixed models identified 28 differentially meth-
ylated smoking-related CpG sites in relation to bladder 
case–control status at a Bonferroni corrected significance 
level ( p =

0.05

2670
= 1.87 × 10 − 05 ) (Fig.  1a). Of these, 

27 were hypo-methylated in prospective cases, and only 
cg08035323 (YWHAQ) was found hyper-methylated ( � = 
0.261 and p-value = 2.89e − 08). Stratifying the analyses 
by study (Supplementary Fig. 1a) we found that 8 of these 
28 associations were significant in PLCO only, none in 
ATBC only, 3 in both PLCO and ATBC separately, and 17 
were found statistically significant in the pooled analysis. 
The sign of the effect size estimates was highly consistent 
between the two studies (Supplementary Fig. 1b). Similarly, 
analyses restricted to current smokers from both PLCO and 
ATBC studies (N = 1100 participants) identified 5 differen-
tially methylated sites at p < 1.87 × 10

−5 , all of which were 
also identified in the full study population (Supplementary 
Fig. 2a). The strong consistency in the effect size estimates 
from the stratified analysis by study (Supplementary Fig. 2b) 
suggests that the signal attenuation we observe for smoking-
associated CpGs between studies, may, at least partially, be 
attributed to less contrast in tobacco use due to the lack of 
non-smokers in ATBC.

Figure 1B represents smoking p-values (Y-axis) as a 
function of bladder cancer p-values (Y-axis) for the 2670 
smoking-related CpG sites. The 6 most highly significant 
smoking CpGs were also the most highly associated with 
bladder cancer (smoking p-value < 10−40 , bladder cancer 
p-value < 10−10 ). As indicated in Fig. 1b and c there were 
only 4 smoking-related CpG sites that were associated 
with bladder cancer but not smoking status in our data 
(p-ranging from 2.19 × 10

−5 to 1.47 × 10
−3 ): cg11314684 

(AKT3), cg19583819 (NRG2), cg13038618 (IRF2BPL), 
and cg14074174 (SNAPC2). We observed an additional 9 
CpG sites with smoking p-values ranging from 1.7 × 10

−20 

to 1.74 × 10
−5 that were borderline significantly associ-

ated with bladder case–control status (Fig.  1c p-value 
ranging from 1.97 × 10

−5 to 8.17 × 10
−5 ): cg18146737 

(GFI1), cg10255761 (KLHDC8B), cg19859270 (GPR15), 
cg03991871 (AHRR), cg11902777 (AHRR), cg01901332 
(ARRB1), cg01513913 (MIR4539), cg00310412 
(SEMA7A), cg01127300 (TMEM184B). This repre-
sents a very small proportion (< 0.2%) of the CpG sites 
with smoking p-values > 10−5 . That proportion dramati-
cally increases for CpG sites with stronger associations 
with smoking. In particular, while 7/136 (5.15%) of the 
CpG sites with smoking p-values < 10–10 were associated 
with bladder cancer, 4/12 (33%) of the CpG sites in the 
[10−15, 10−20] smoking p-value bracket were associated 
with bladder cancer status, and all CpG sites with smok-
ing p-values below 10−20 (N = 7) were associated with 
bladder cancer (Fig. 1b). Similarly, all CpG sites with 
bladder p-values below 10−7 (N = 11) were also associated 
with smoking status. Among the 36 CpG sites with blad-
der cancer p-values ranging from 3.16 × 10

−4 and 10−5 , 
22 were associated with smoking, and 4 were border-
line significantly associated with smoking: cg04517079 
(FOXP4), cg04263702 (FBXL18), cg15187398 (MOB3A), 
cg11436113 (SLC24A3) (Fig. 1d).

Methylation M-values of the 28 bladder-related CpG 
sites were recoded into quartiles, from which odds ratios 
were calculated (Supplementary Table 1). For each CpG 
site a clear risk gradient (p-trend < 0.001) across methyla-
tion quartiles was observed. ORs for the highest methylation 
quartile range from 1.58 to 2.63 for the 27 CpG sites found 
hypomethylated in cases, and OR = 2.17 for cg08035323 
(YWHAQ) (Fig. 2a).

We conducted a principal component analysis (PCA) 
on the methylation M values at the 28 bladder-related CpG 
sites. Loading coefficients of the first component (explain-
ing more than 37% of the original variance) were positive 
for all CpG sites except cg08035323 (YWHAQ) (Fig. 2b). 
We observed the same trend in ORs across the quartile of 
the scores of the first PC as with individual CpGs (Q4-Q1 
OR = 3.01), and ORs by quartiles for the other PCs were 
weaker and did not exhibit any significant trend (except for 
PC5 and PC7) (Fig. 2c). ORs from the scores of the first 
component were further adjusted for smoking duration, 
cumulative smoking exposure (in packyears) and smoking 
intensity (Fig. 2d). All showed a similar pattern across quar-
tiles and were slightly attenuated, in particular after adjust-
ing for smoking duration. Analyses restricted to current 
smokers (N = 1100) showed similar results (Supplementary 
Fig. 3), but the attenuation upon adjustment for smoking 
duration was even less (Supplementary Fig. 3d, OR for the 
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last quartile of PC1 scores adjusted on duration is 2.93 while 
it was 3.01 in the full population).

As a sensitivity analysis, we calculated the OR for each 
of the 28 bladder-related CpG sites (Supplementary Fig. 4), 
adjusting for smoking duration, cumulative smoking expo-
sure, and smoking intensity. Results suggest that ORs are 
attenuated for all 28 CpG sites upon adjustment for smoking 
exposure, and that the attenuation is stronger while adjusting 
for smoking duration, irrespective of the CpG site.

Epigenome‑wide analyses of bladder cancer

We compared bladder cancer cases with controls using the 
same univariate linear mixed model on the full set of CpGs 
and identified 11 differentially methylated CpG sites at a 
B o n f e r r o n i  s i g n i f i c a n c e - c o r r e c t e d  l e v e l 
( p =

0.05

460,119
= 1.09 × 10

−7 ), and 18 differentially methylated 
CpG sites while controlling the false discovery rate at 0.05 
(Fig. 3). Of these 18 CpG sites, 15 were among those identi-
fied in our smoking-related analyses, while the remaining 3 
cg09317508 (MIR4689), cg18826637 (ZEB2), and 
cg05845217 (LOC101929153) have not been systematically 
reported as being smoking-related in the literature. Epige-
nome-wide analyses restricted to current smokers 

(Supplementary Fig. 5) did not identify any differentially 
methylated CpGs (irrespective of the multiple testing cor-
rection used). However, the CpG sites identified in the full 
population were among the strongest associations in current 
smokers with consistent effect estimates compared to the full 
population with p-values ranging from 1.82 × 10

−6 to 
1.24 × 10

−2 (Supplementary Table 2). Further adjustement 
for blood cell composition did not affect our conclusions 
(result not shown).

Investigating differentially methylated regions 
(DMRs)

Differentially methylated regions analyses performed on the 
entire 450k CpG dataset identified 19 Differentially Meth-
ylated Regions containing 77 CpGs sites at an FDR level 
below 0.05 (Fig. 4a).

DMR included between 2 and 9 CpG sites each, with a 
length ranging from 18 to 2125 base pairs, and were located 
on chromosomes 1, 2, 5, 6, 7, 11, 14, 15, 16, 19, 21, 22 and 
X. Of these 19 DMRs, 5 included at least one of the 11 dif-
ferentially methylated CpG sites identified in our univariate 
analyses; altogether 9 of the 11 genome-wide differentially-
methylated CpG sites were located within the 19 DMRs.

The 19 DMRs included 77 CpG sites, of which 68 were 
not identified in our univariate analyses. Among these 77 
CpG sites, 37 were among the 2670 smoking-related CpG 
sites, and the p-value for their association with smoking sta-
tus in our data ranged from 5.17 × 10

−102 to 1.34 × 10
−1 . For 

example, DMRs 4 and 6 contain cg21566642 near ALPPL2 
and cg05575921 in AHRR, the two most highly significant 
CpGs for smoking. The remaining 40 CpG sites (located in 
DMRs 3–5, 10, 11,13, 15–19) were not directly related to 
smoking, and of these 35 ‘first order’ CpG sites were sig-
nificantly correlated with at least one of the 2670 smoking-
related CpG site, and 5 ‘second order’ CpG sites were cor-
related with at least one ‘first order’ CpG site but not directly 
with any smoking-related CpG site. Twelve DMRs include 
at least one smoking-related CpG site, and these may drive 
their association with bladder cancer. However, for the other 
7 DMRs (i.e., numbers 5 (Chr2), 11 (Chr 11), 13 (Chr 14), 
15 (Chr 16), 17 (Chr 21), 18 (Chr 22) and 19 (Chr X)), the 
distance to the smoking-bladder cancer-related CpGs within 
the DMR is equal to or more than 2 orders away from smok-
ing, suggesting more distal, potentially non-tobacco associ-
ated processes related to bladder cancer (Fig. 4b).

Prediction of bladder cancer

ROC analyses (Fig. 5) showed that, irrespective of the 
smoking metric, cg05575921 (AHHR) alone (AUC 0.60) 
yielded similar predictive performances than the classical 

Fig. 1   Results from the univariate analysis relating the methylation 
M-value at each of the 2,670 smoking-related CpG sites and the blad-
der cancer case/control status. The volcano plot (a) represents, for each 
of the 2670 CpG site separately, the effect size estimate (β; X-axis) repre-
senting the estimated methylation difference (on the logit scale) between 
cases and controls, and the p-value (Y-axis) for the null hypothesis of 
no association ( H

0
∶ � = 0 ) on the log10 scale. Horizontal red dashed 

line represents the Bonferroni-corrected significance level ensuring an 
FWER < 0.05 (n = 28). CpG sites found differentially methylated at an 
FDR level of 0.05 (N = 191) are presented in yellow. The associations 
between the 2670 smoking-related CpG sites and smoking status in our 
data are summarised in panel B by their p-values and are plotted against 
the p-value for the association with bladder cancer status. The (n = 200) 
CpG sites associated to smoking status are above the horizontal dashed 
line, which represent the Bonferroni-corrected significance level ensur-
ing an FWER < 0.05. The (N = 24) CpG found associated to both smok-
ing and bladder cancer status are presented in dark red, those exclusively 
associated to bladder cancer (N = 4) and smoking (N = 176) are plotted in 
light red and orange respectively. The marginal histogram along the axis 
summarise the number of CpG sites associated to bladder cancer (along 
the Y-axis) or to smoking (along the X-axis) in a given range of p-values 
for smoking (Y axis) and bladder cancer (X-axis). Panel C represents the 
37 CpG sites with bladder p-values ranging from 10−10 and 10−4 , and 
smoking p-values between 10−23 and 10−1 . Among these, 17 are associ-
ated with both smoking and bladder cancer status, 4 are associated with 
bladder cancer but not smoking and 9 are associated with smoking but 
not bladder. Panel D represents the 92 CpG sites with bladder cancer 
p-values between 10−5 and 10−2 and smoking p-values between 10−17 
and 10−4.5 . Among these, 3 are associated with both smoking and bladder 
cancer and 82 are associated with smoking but not bladder cancer

◂
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questionnaire-based smoking metrics (AUC 0.62. 0.59, 
0.62 for duration, intensity, and packyears, respectively). A 
model including the PC1 from the 200 CpG sites differen-
tially methylated in relation to smoking status in our study 
outperformed all other models (AUC 0.62). The best predic-
tion was achieved by including PC1 and the smoking metrics 
in the model, resulting in an AUC slightly higher than those 
with PC1 only (Range AUC 0.63 to 0.65).

Discussion

We conducted the largest prospective WBC DNA EWAS of 
bladder cancer, to the best of our knowledge, and found that 
CpG sites associated with risk of this tumor were predomi-
nantly related to smoking behaviour. We observed that the 
strongest smoking-associated DNA methylation CpGs were 
universally associated with future bladder cancer and that 

Fig. 2   Odds ratios (ORs) calculated from the methylation M value at 
the 28 bladder-related CpG sites, which was recoded into quartiles. 
a The loadings coefficients of the first component of the Principal 
Component Analysis of the 28 methylation levels are presented in 
panel b. Using the same quartile discretisation for the scores of the 
13 first components (jointly explaining 80.69% of the total variance), 
we calculated the OR for each component (panel c). The OR derived 
from the score of the first component were further adjusted for smok-
ing duration, cumulative smoking exposure (in packyears), and smok-
ing intensity (panel d). For all calculated OR, a linear model was 
used to test for a trend in the OR across methylation quartiles. For 

readability, corresponding p-values were coded as * for p-values 
in [0.05, 0.01], ** for p-values in [0.01, 0.001], and *** for p-val-
ues < 0.001. To ensure comparability across OR estimates, these were 
calculated setting the lowest quartile as reference, and derived the OR 
from the absolute value of the effect size estimate. As such, for CpG 
sites (or PC scores) found inversely associated to bladder cancer risk 
(marked in blue), the reported OR represents the risk change per-unit 
loss in methylation (or score), and for CpG sites found directly asso-
ciated to disease risk (marked with a red), the OR represents the risk 
change per unit increase in methylation level (or score)
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the majority of the identified differential methylation regions 
(DMRs) were directly or indirectly associated with smoking.

We identified 18 differentially methylated CpG sites of 
which 15 were among the smoking- related CpGs reported 
by Joehannnes et al. [9]. Of the three CpGs not included in 
our a-priori smoking-related CpGs, cg05845217 has been 
reported by Joehannes et al. to be differentially expressed 
with smoking status although with relatively lower statistical 
significance. cg18826637 has been reported by Yu et al. to 
be related to smoking status [6]. As such, only cg09317508 
has not been previously reported to be associated with smok-
ing. cg09317508 is positioned near the Nephrocytin 4 gene 
(NPHP4), a WNT pathway gene and is upstream of micro-
RNA MIR4689, which has been reported to interact with 
KRAS and AKT in colorectal cancer [27].

We observed that adjusting the effect of the smoking-
related CpGs on bladder cancer risk were only marginally 
attenuated when including questionnaire-based smoking 
metrics, similar to the report by Dugue et al. [28]. Simi-
larly, we showed that the risk estimates of tobacco smok-
ing duration, intensity, and packyears only marginally 
changed when including smoking-related CpGs, while pre-
diction is improved. As such, smoking-related CpGs and 
clusters seem to capture other aspects of smoking behav-
ior, exposure and biology that are not reflected by classical 

questionnaire-based metrics of smoking behavior that is rel-
evant for bladder cancer risk. Notably, the largest attenuation 
in the effect of smoking-related CpGs on bladder cancer 
risk was seen when adjusting for duration of smoking with 
an attenuation effect that was about twice as strong as with 
intensity of smoking, consistent with the observation that 
tobacco smoking duration is the most important component 
of smoking behavior for bladder cancer risk [3].

Another interesting observation is that about 7% of the 
smoking-related CpGs were not associated with bladder can-
cer risk (n = 176 CpGs) in our study. Most of these CpGs had 
a weaker association with smoking in our dataset and as such 
the result can be partially explained by the lack of power 
to identify associations with bladder cancer. At the same 
time, several CpGs displayed relatively strong associations 
with smoking in our dataset but still were not associated 
with bladder cancer risk (i.e., cg06644428, cg23079012, 
cg19572487, cg14580211) suggesting that there might be 
some degree of specificity between CpG sites related to 
tobacco use and bladder carcinogenesis.

We searched for evidence of CpGs that are not related to 
smoking but did increase the risk of bladder cancer, although 
there was limited power to detect such associations given the 
small number of never-smokers in our study (Table 1) and 
the large contribution that smoking makes to bladder cancer 

Fig. 3   Manhattan plot summarising the full resolution association 
study relating the methylation M value at the 460,119 assayed CpG 
sites and bladder cancer case–control status. CpG sites that were 
found in the smoking-related analyses are represented by a triangle. 

Name and corresponding gene are only represented for the 11 differ-
entially methylated CpG sites at a Bonferroni-corrected significance 
level and for the additional 7 differentially methylated sites with an 
FDR < 0.05
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etiology among smokers. We found that CpGs rs8102137 
and rs224008 were marginally associated with bladder can-
cer risk but not with smoking, suggesting that CpG meth-
ylation might reflect other exogenous or endogenous expo-
sures or biological processes relevant for bladder cancer 
etiology. Further, we identified 7 DMRs that did not con-
tain any smoking-related CpG but included CpGs correlated 
in the 1st or 2nd order to smoking-related CpGs. DMR 18 
on Chr 22 is linked to genes SEPT3 and WBP2NL. CpGs 
in both genes have not previously been linked to smoking 
behavior. Septine 3 (SEPT3) is highly expressed in brain 
tissue and plays a role in malignant brain tumors. Septine 
3 forms together with septine 9 and 12 a sub-family of sep-
tins. Interestingly, SEPT9 has been proposed as a potential 
diagnostic target for the detection of urological cancers [29, 
30]. WWP2 N-terminal-like (WBP2NL) is a testis-specific 

signaling protein that induces meiotic resumption and oocyte 
activation events and has been linked to breast cancer.

Our study has several limitations. We used a single biologi-
cal sample that may not optimally represent the disease's expo-
sure status and etiological time-window. In addition, although 
this is the largest study to date on the association between 
smoking, WBC DNA methylation, and bladder cancer the 
sample size is still relatively small for a study investigating 
a large number of hypotheses and we therefore cannot rule 
out that some of our findings are false-positives. We tried to 
protect against false-positive results by focusing our analyses 
on an established set of smoking-related markers, employing 
proper thresholds accounting for multiple comparisons, and 
testing consistency between the two studies. Our population 
comprised a relatively low number of never-smokers thus 
reducing exposure contrast in our study. Although this could 
have limited our analyses, it resulted in our reference category 
(1st quartile) not being solely non-smokers. The latter could 
have resulted in an increased probability of confounding as 
never and ever-smokers may differ in other factors that could 
not be taken into account in our analysis. Furthermore, as par-
ticipants of both the PLCO Trial and the ATBC Study in this 
paper are Caucasian results may not be generalizable to popu-
lations with other demographic backgrounds.

In conclusion, our results confirm previous reports that 
blood-based DNA methylation markers related to future blad-
der cancer risk are largely driven by smoking behavior. How-
ever, these methylation markers also capture other aspects of 
smoking behavior than are typically assessed in questionnaires. 
We also identified some putative markers that are not related 
to smoking but yet appear to be associated with future bladder 

Fig. 4   Description of the 19 identified Differentially Methylated 
Regions (DMR) in relation to Bladder cancer case–control status (a). 
For each of the 77 CpG sites included in the 19 DMRs, we report 
their p-value in relation to (i) smoking (inner circle), and bladder can-
cer (outer circle). CpG sites that are among the 2670 smoking-related 
CpG sites are coloured in dark red, CpG sites that are one order away 
from smoking are coloured in orange, and those two orders away 
from smoking, in blue. As depicted in panel b, of the 77 CpG sites 
included in the 19 identified DMRs, 37 are related to smoking, 36 
one order away from smoking (i.e. correlated to at least one smok-
ing-related CpG site but not smoking directly), and 4 correlated to at 
least one ‘order 1’ CpG site (second order). For clarity we represent 
all CpG sites that are not within the identified DMR and correlated 
to any CpG site in the identified DMRs as a single node in B (large 
nodes)

◂

Fig. 5   Receiver-Operating-Curve (ROC) analyses summarising the 
logistic model for smoking duration (a), smoking intensity (b), and 
pack-years (c), ROC curves are presented for the model including (i) 
the smoking metrics alone (green), (ii) the scores of the first princi-
pal component of the 28 CpG sites found differentially methylated in 
relation to smoking status (PC1 explaining 37.7% of the total vari-
ance, in blue), (iii) methylation levels at cg05575921 (AHRR), the 

CpG site exhibiting the strongest association with smoking status 
in our data (orange), (iv) methylation levels at cg05575921 and the 
smoking exposure metric (brown), and (v) PC1 scores and the smok-
ing exposure measurement (dark red). We report the area under the 
curved from the testing set (20% of the total population) for each of 
the model investigated
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cancer risk. These findings, which require replication, can fur-
ther our understanding of the etiology of bladder cancer and 
potentially contribute to future risk prediction models that 
incorporate other environmental as well as genetic risk factors.
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