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Abstract

The “flow” of electric currents and heat in standard metals is diffusive with
electronicmotion randomized by impurities.However, for ultracleanmetals,
electrons can flow like water with their flow being described by the equa-
tions of hydrodynamics. While theoretically postulated, this situation was
highly elusive for decades. In the past decade, several experimental groups
have found strong indications for this type of flow, especially in graphene-
based devices. In this review, we give an overview of some of the recent key
developments, on both the theoretical and experimental sides.
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1. INTRODUCTION

There are very few universal truths in physics.Hydrodynamic behavior is one of them.Themotion
of any substance at high enough temperature follows the laws of hydrodynamics. Hydrodynamics
in its original context describes the viscous motion of water. However, its principles apply in a
much wider setting: in the physics of stars and interstellar matter, and magnetohydrodynamics
of plasmas, but also in the dynamics of soft active matter. It can also be encountered in applied
disciplines, including engineering: ocean dynamics, weather modeling, aviation, the dynamics of
gas flowing through pipes, or traffic flow, to name a few examples. Hydrodynamic behavior even
applies to the physics of the early Universe: at energies high enough to melt protons and neutrons,
the constituent quarks form the quark–gluon plasma.When a particle collider creates this state, it
only lives a tiny fraction of a second. However, during that short spell, it moves according to the
laws of fluid mechanics.

The reason for this almost unreasonable versatility is the underlying simplicity and generality:
The basis of hydrodynamics is the relaxation of conserved quantities toward local equilibrium.
The conserved quantities are fundamental: mass, momentum, and energy (and charge in charged
systems).

For classical hydrodynamics, the set of differential equations that describes flow phenomena is
composed of the continuity equations and the Navier–Stokes equation (1). The role of the latter
in the description of fluid motion is comparable with the linear Maxwell equations in electrody-
namics. Taken together with appropriate boundary conditions, the continuity and Navier–Stokes
equations describe all features of viscous flow. Although these equations are basic, they are non-
linear and their solution is highly nontrivial: Proving some properties of their solutions is one of
the seven Millennium Prize Problems in mathematics (2).

A fundamental characteristic of fluids is their viscosity: Water flows faster than honey due to
its lower viscosity while having a similar density. Some classical fluids are so viscous, they appear
solid. The viscosity of pitch is 1011 times that of water. In the quantum world, one also encounters
viscous liquids in strongly interacting systems: the quark–gluon plasma is estimated to have a
dynamic viscosity 1016 times that of water, thereby rivaling glass. The corresponding density of
the system is enhanced by the same factor compared to water, meaning the ratio of dynamical
viscosity to density in water and the quark–gluon plasma are actually comparable.

In the context of condensedmatter physics, hydrodynamics has a successful history. It is applied
in the description of strongly interacting one-dimensional systems and spin excitations in insula-
tors, as well as in the dynamics in the vicinity of quantum critical points (3). As a rule of thumb, hy-
drodynamic behavior is most likely to be encountered and discussed in strongly correlated systems.

Metals fall into the class of weakly correlated systems. However, metals are also the systems
where we most often talk about the flow of charges and electrical currents. Until quite recently,
this flow was fundamentally different from the flow of water: It resembled the erratic movement
of balls on a tilted nail board with random positioning of the nails.

In this review, we summarize recent theoretical and experimental progress in (semi-)metals in
which diffusive movement is not the case and the flow of electrons resembles the flow of water
through a tube with all the associated phenomena.

1.1. Scope

This article reviews the advances in the field of electronic hydrodynamics that have taken
place over the past decade from the point of view of a theorist. It is geared toward a master/
PhD-level student, theoretical and experimental alike, who starts working in the field. Through-
out the text, if faced with the choice, we sacrifice mathematical rigor for a more intuitive and
concise presentation. There exist a number of recent excellent introductory texts to different
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subsets of the subject (4–10). They are either considerably more or less technical than this re-
view. For more technical details and/or mathematical rigor, we refer readers to References 4–8.
For a nontechnical bird’s-eye view on the subject, we recommend References 9 and 10.

1.2. Outline

In this review, we distinguish three different scenarios of hydrodynamic behavior in metallic sys-
tems: (I) Hydrodynamics in systems close to charge neutrality with a mixture of electrons and
holes as elementary excitations, such as graphene.We refer to the hydrodynamics in those systems
as electron–hole plasma hydrodynamics, henceforth EHPH. (II) Hydrodynamics in conventional
Fermi liquids, henceforth called FLH. (III) Hydrodynamics in systems with perfect electron–
phonon drag, henceforth called Fermi liquid–phonon hydrodynamics, FLPH. It is important
to note that there is in principle also room for electron–hole plasmas that are drag-coupled to
phonons or even to other collective modes.

In Section 2, we discuss generic features of hydrodynamics in metallic systems, the general
obstacles, and how they can be overcome. In Section 3, we introduce the Boltzmann equation,
the primary framework used throughout this review.We set it up in a generic manner that allows
for describing the formerly mentioned three versions of hydrodynamics in Section 4: EHPH,
FLH, and FLPH. We discuss the respective setups in Sections 4.1–4.3 and comment on their
most prominent signatures (or at least the ones that are accessible in experiments at the moment).
Afterward, we discuss the experimental status in Section 5 and conclude with a discussion and
some open questions in Section 6.

2. HYDRODYNAMIC BEHAVIOR IN ELECTRONIC LATTICE SYSTEMS

Concepts of fluid motion were introduced in studies of transport properties of fermionic many-
body systems 70 years ago: Fluid behavior was first observed in liquid 3He (11). The first
theoretical description goes back to Abrikosov & Khalatnikov in the late 1950s (12). They under-
stood that liquid 3He was an example of the then novel Landau Fermi liquid and that it exhibits
hydrodynamic behavior. The relaxation mechanism in that system is the scattering between
fermions, which conserves charge, mass, momentum, and energy. It leads to a length scale that
governs the relaxational processes: It is called the inelastic mean free path, lee. The hydrodynamic
description is accurate as long as the system is probed over length scales much larger than lee.

In a Fermi liquid, the inelastic mean free path diverges at low T as lee ∝ TF/T 2 (TF is the
Fermi temperature), which is a direct consequence of fermion–fermion scattering being strongly
suppressed due to phase space constraints.Whereas TF is on the order of a few kelvins for helium
at relevant pressures, it is on the order of 1–4 × 104 K for typical metals, which leads to a strong
suppression of electron–electron scattering.Later we discuss how, in systems like graphene close to
charge neutrality, the inelastic mean free path does not suffer from the same suppression: lee ∝ 1/T.
Either way, the important message is that having a higher temperature shortens the inelastic mean
free path lee and, therefore, takes the system potentially deeper into the hydrodynamic regime.

However, typical electronic solid state systems are different from 3He in one more crucial
aspect: the underlying lattice. It introduces two length scales and/or timescales that are absent
in 3He. One is due to structural disorder within the lattice, called ldis, and another one is due
to scattering from lattice vibrations (phonons), called lphon. Usually, these length scales, just as
previously discussed for lee, are temperature dependent. At low temperatures, electrons mostly
scatter from disorder, leading to the textbook residual resistance in metals that is predominantly
temperature-independent. At higher temperatures, the main scattering mechanism is due to
electron–phonon interactions. In typical three-dimensional metals, one finds lphon ∝ 1/T 3
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Figure 1

(a) In conventional metals relaxation is (i) disorder dominated, whereas in hydrodynamic metals it is
(ii) interaction dominated. (b) A two-band system consisting of electrons and holes. A chemical potential
allows “tuning” from Fermi liquid (|µ|/T k 1) to an electron–hole plasma |µ|/T j 1. Throughout this
article, we assume ϵ+ (⃗k) = −ϵ− (⃗k).

(or for transport rather 1/T 5) (13). Usually, at relevant temperatures, one of these two scattering
mechanisms is more effective in restricting electronic motion than electron–electron interaction.
This is sketched in Figure 1a, where subpanel i shows the conventional metallic regime.

So why do these relaxation mechanisms prevent hydrodynamic behavior? Both disor-
der and phonon scattering violate conservation laws: Disorder scattering violates momentum
conservation, whereas phonon scattering violates momentum and energy conservation.1

In the 1960s,Gurzhi realized that the absence of impurities and phonons is not a strict require-
ment for hydrodynamic behavior (14). If electron–electron interactions provide the dominant
scattering mechanism in a given temperature window, i.e., lee j lphon, ldis, andW (W is the sample
width), one can still speak of approximate conservation laws, opening the door for the observation
of hydrodynamic behavior (see Figure 1a, subpanel ii).

To summarize, two conditions are favorable to render the lattice sufficiently “invisible”:
strong interactions, which can be “boosted” by increasing temperature and exceptional sample
purity. Concerning phonons there needs to be a high characteristic phonon onset temperature
or phonons have to drag-lock with the electrons to form a more complex fluid, as in the FLPH
scenario. If all these factors come together, a hydrodynamic window can open at intermediate
temperatures.

For decades, lattice systems with those characteristics were not accessible. As a consequence,
the field of hydrodynamics received little attention in the study of electronic transport properties
in traditional solid state physics. In recent years, however, the situation has improved significantly,
and very purematerials have become accessiblemaking electronic hydrodynamics an experimental
reality. We discuss this growing list of systems in Section 5.

3. THEORETICAL BACKGROUND

There are two cornerstones of hydrodynamic behavior: conserved quantities and local thermal
equilibrium reached through relaxational mechanisms conserving said quantities. Both can be
described in the framework of the Boltzmann equation in a very elegant way. This makes the

1It is important to note that though phonons obstruct hydrodynamics in most systems, they can act as
facilitators in some cases, as discussed explicitly in the FLPH scenario; see Section 4.3.
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Boltzmann equation our method of choice. In the following section, we lay the foundation for all
the technical discussions that follow.

3.1. The Setup

We start with a setup that allows describing all three types of hydrodynamic behavior discussed
in this review in one unified framework. Our setup consists of electrons (+) and holes (−) as
well as phonons.2 Electrons have dispersion ϵ+ (⃗k) and holes ϵ− (⃗k) = −ϵ+ (⃗k). A chemical potential
µ allows tuning from an electron–hole plasma to a Fermi liquid at a given temperature T: For
|µ|/T≤ 1, we have an electron–hole plasma, whereas for |µ|/Tk 1 we are in a Fermi-liquid limit
(see also discussion in Section 4.1). Throughout the text, we make the simplifying assumption of
isotropy, i.e., ϵ± (⃗k) = ϵ±(|⃗k|). The formalism, however, can easily accommodate a more generic
dispersion, it only leads to more complicated expressions. A sketch of such a two-band model is
shown in Figure 1b. The phonons have a dispersion ω(⃗k).

3.2. Boltzmann Equation

The Boltzmann equation is a fundamental equation of statistical physics (15). It accommodates
the two most important aspects of hydrodynamic behavior: (a) One can easily identify conserved
quantities and derive continuity equations, and (b) it describes the slow relaxation toward local
equilibrium in the presence of conserved quantities. At its core, it is a differential equation for the
distribution functions of the (quasi-)particles in the system.

We introduce the distribution functions f+(ϵ+ (⃗k), k⃗) = f (ϵ+ (⃗k), k⃗, x⃗) for the electrons and
f−(ϵ− (⃗k), k⃗, x⃗) = f (ϵ− (⃗k), k⃗, x⃗) − 1 for the holes. Subtracting 1 from the hole distribution amounts
to subtracting the filled lower band. This ensures that we can refrain from using a cutoff
when calculating physical quantities from the distribution functions. In equilibrium, the distri-
bution functions for the electrons and holes reduce to the standard Fermi–Dirac distributions
f 0±(ϵ± (⃗k)) = ±(exp (±(ϵ± (⃗k) − µ)/(kBT )) + 1)−1, where kB is the Boltzmann constant. Further-
more, we introduce the distribution function b(ω(⃗k)) for the phonons. In equilibrium, it is
the Bose–Einstein distribution b0(ω(⃗k)) = (exp ((ω(⃗k) − µ)/(kBT )) + 1)−1.We find three coupled
Boltzmann equations (from now on, we use ℏ = kB = 1 ),

∂t f+ + ∂k⃗ϵ+ (⃗k)∂r⃗ f+ + ∂r⃗ϵ+ (⃗k)∂k⃗ f+ = Cee+ + Ceh+ + Cphon
+ + Cdis

+ ,

∂t f− + ∂k⃗ϵ− (⃗k)∂r⃗ f− + ∂r⃗ϵ− (⃗k)∂k⃗ f− = Chh− + Che− + Cphon
− + Cdis

− ,

∂tb+ ∇⃗k⃗ω(⃗k)∂r⃗b+ ∂r⃗ω(⃗k)∂k⃗b = C int
phon + C+

phon + C−
phon. 1.

The left-hand sides are the so-called streaming terms resulting from forces, inhomogeneities,
and temporal changes (we neglect Berry-phase terms that are potentially present in two-band sys-
tems because we are interested in diagonal response and metallic systems). The right-hand sides
describe the collisions of distinct physical origin, all encoded in the collision integrals C. Collisions
enable the system to relax toward local thermal equilibrium, a requirement of hydrodynamic be-
havior.They also couple the three Boltzmann equations and allow the three subsystems, electrons,
holes, and phonons, to exchange charge, particles, momentum, and energy.3

2The phonon could be a collective excitation of the electronic system itself; the formalism looks identical in
that case.
3The magnetic part of the Lorentz force is included in Equation 1 if the momentum is replaced by the
canonical momentum according to the minimal coupling prescription (13).
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3.2.1. Relaxational processes. Equation 1 is a coupled set of integrodifferential equations.
There are two main difficulties in solving them, all rooted in the collision terms: The collision
terms are nonlinear and couple all three equations. We split the collision terms into four groups
of physically distinct scattering processes:

1. Cee+ and Chh− describe scattering events in which either only electrons or only holes are in-
volved.The processes conserve the number of electrons and holes, as well as themomentum
and energy of both the electron and hole subsystems, respectively.These terms are the terms
conventionally associated with hydrodynamic behavior in Fermi liquids (see Section 4.2).

2. Ceh+ and Che− describe scattering events between electrons and holes. The processes do not
necessarily conserve the number of electrons and holes individually. Furthermore, they
transfer momentum and energy between the electron and hole subsystems. Physically, they
correspond to drag terms between the electrons and holes. Overall, the combined sys-
tem of electrons and holes still conserves total charge, total momentum, and total energy.
These terms allow for drag-coupled hydrodynamics in multicomponent systems, such as
electron–hole plasmas (Section 4.1).

3. Cphon
± and C±

phon describe the scattering among electrons, holes, and phonons. They allow
transferring momentum and energy from electrons and holes to phonons and vice versa.
Taken together, they conserve total charge, total momentum, and total energy. Again, these
terms allow for drag-coupled hydrodynamics in multicomponent systems and are important
in Fermi liquid–phonon setups (Section 4.3).

4. Cdis
± and C int

phon describe the scattering of electrons and holes from the disorder as well as
the internal relaxation of the phonon system. In the case of Cdis

± , it conserves the individ-
ual number of electrons and holes and consequently total charge as well as energy, but it
breaks momentum conservation. The internal phonon term, C int

phon, accounts for a variety
of effects: nonlinear phonon scattering, Umklapp scattering, and the scattering from dis-
order in the phonon sector. Potentially, it breaks all conservation laws associated with the
phonons. These terms are classified as nonhydrodynamic.

A graphical representation of the role of the aforementioned scattering terms is shown in
Figure 2. We explicitly distinguish hydrodynamic terms from nonhydrodynamic terms.

One of the critical features of the Boltzmann equation description is that it allows for iden-
tifying conserved quantities in a straightforward manner. Formally, one needs to construct the
so-called collisional invariants. For a pedagogical discussion of this subject, we recommend
consulting Reference 15 or similar textbooks about kinetic theory.

In hydrodynamics, we are always concerned with the conservation of particles/charge,
momentum, and energy. The collisional invariants that correspond to these quantities are in-
tegrals over the respective quantity and the Boltzmann equation. Concretely, they read as∫ ddk

(2π )d (1, k⃗, Energy(⃗k))C = (N ,K ,E ), and if a quantity is conserved, they equate to zero. The first
integral refers to particle number (N), the second to momentum (K), and the last one to energy
(E). For our setup, not all of those quantities have to be zero for the system to be hydrodynamic.
Instead, they have to obey sum rules. The quantities are summarized inTable 1 for the respective
particle type and scattering process.

These collisional invariants directly connect to the discussion above and the sketch in
Figure 2. We observe that some of the quantities are not generically zero, meaning they cor-
respond to a quantity that is not conserved. To make this very concrete, we consider K eh

+ ̸= 0. This
implies that in a collision between electrons and holes, the momentum in the electron sector is
not conserved. However, there is a sum rule that reads as K eh

+ + Khe
− = 0. This implies that the
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In the most general case, Equation 1 describes the interplay among electrons (blue), holes (red), and phonons
(green). Besides the “classical nonhydrodynamic” metallic transport regime in which Cdis± and Cintphon dominate,
there exist two specific hydrodynamic transport regimes, which are discussed in this article. The more
conventional one is when electron–electron (hole–hole) collisions are dominant (Cee+ or Chh+ dominate,
depending on whether it is a hole- or electron-type metal). Furthermore, there is a situation of drag-coupled
hydrodynamics that accounts for both electron–hole and electron–phonon hydrodynamics. In this situation,
scattering processes that “lock” different particle types have to be dominant. A graphical representation of
how the different scattering terms act within and between particle species is given in the figure.

total momentum of the combined system of electrons and holes is conserved, in analogy with the
previous discussion. We find a set of six sum rules according to

X eh
+ + X he

− = 0 and

X phon
+ + X phon

− + X+
phon + X−

phon = 0, 2.

where X is (N, K, E). These sum rules can be derived explicitly for rather generic interactions, but
we content ourselves with interpreting them: (a) The combined system of electrons and holes can
exchange particles, momentum, and energy between the subsystems. However, the combined sys-
tem conserves charge, total momentum, and total energy. (b) The combined system of electrons,
holes, and phonons can exchange particles, momentum, and energy between them. Again, charge,
phonon number, total momentum, and total energy are conserved in the combined system. There
are only three terms that break these important conservation laws: Cdis

+ and Cdis
− break momen-

tum conservation of the electrons and holes, respectively, and C int
phon, depending on details, breaks

phonon number conservation, momentum, and energy.

3.2.2. Densities and currents. Besides the collisional invariants and associated conservation
laws,we can also use the Boltzmann equations to derive continuity equations.This can be achieved

Table 1 Collisional invariants

Particle number Momentum Energy

Electron N ee+ ,Ndis+ = 0 K ee+ = 0 Eee+ ,Edis+ = 0

Nphon
+ ,N eh+ ̸= 0 K eh+ ,Kdis+ ,Kphon

+ ̸= 0 Eeh+ ,Ephon
+ ̸= 0

Hole Nhh− ,Ndis− = 0 Khh− = 0 Ehh− ,Edis− = 0

Nphon
− ,Nhe− ̸= 0 Khe− ,Kdis− ,Kphon

− ̸= 0 Ehe− ,Ephon
− ̸= 0

Phonon N int
phon,N

±
phon ̸= 0 K int

phon,K
±
phon ̸= 0 E int

phon,E
±
phon ̸= 0
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Table 2 Densities, forces, and Joule heating

Density Momentum density Energy density Force

n+ = +f+ n⃗k⃗+ = ∫
k⃗ f+ nϵ+ = ∫

ϵ+ (⃗k) f+ F⃗+ = ∫ ˙⃗k f+

n− = +f− n⃗k⃗− = ∫
k⃗ f− nϵ− = ∫

ϵ− (⃗k) f− F⃗− = ∫ ˙⃗k f−

nphon = +b n⃗k⃗phon = ∫
k⃗ b nϵ

phon = ∫
ω(⃗k)b F⃗phon = ∫ ˙⃗k b

Table 3 Currents

Particle current Momentum flux Energy current Heating

j⃗+ = ∫
∂k⃗ϵ+ (⃗k) f+ 5+

i j = ∫
ki∂k j ϵ+ (⃗k) f+ j⃗ϵ+ = ∫

∂k⃗ϵ+ (⃗k)ϵ+ (⃗k) f+ hϵ+ = ∫
∂k⃗ϵ+ (⃗k) · ˙⃗k f+

j⃗− = ∫
∂k⃗ϵ− (⃗k) f− 5−

i j = ∫
ki∂k j ϵ− (⃗k) f− j⃗ϵ− = ∫

∂k⃗ϵ− (⃗k)ϵ− (⃗k) f− hϵ− = ∫
∂k⃗ϵ− (⃗k) · ˙⃗k f−

j⃗phon = ∫
∂k⃗ω(⃗k) b 5

phon
i j = ∫

ki∂k jω(⃗k)b j⃗ϵphon = ∫
∂k⃗ω(⃗k)ω(⃗k) b hϵ

phon = ∫
∂k⃗ω(⃗k) ·

˙⃗kb

by integrating the streaming terms of Equation 1 over the same quantities. There, we find
densities, currents, forces, and heating terms (see Table 2).

In the same way, we find generalized currents. These are shown in Table 3.

4. SCENARIOS OF ELECTRONIC HYDRODYNAMICS

In this review, we consider three different scenarios of electronic hydrodynamics.Our setup can in
principle accommodatemore complex scenarios, but we focus on three scenarios that are currently
most discussed.The three scenarios are: (I) electron–hole plasma hydrodynamics, (II) Fermi-liquid
hydrodynamics, and (III) Fermi liquid–phonon hydrodynamics. The difference between the three
scenarios can be made quite pictorial (see Figure 3): In scenario I, the fluid is composed of elec-
trons and holes; in scenario II, it is just electrons or just holes, and in scenario III, it is electrons or
holes but with phonons. The individual constituents in the multicomponent fluid cases, scenar-
ios I and III, are glued together by the aforementioned drag effects. In the following, we review
the three scenarios in some detail using the Boltzmann equation as the workhorse. In each of the
scenarios,we also discuss one or two key signatures in detail.Those signatures usually also apply to
the other scenarios, but we assign them in a way that is mostly motivated by the main experiments
in the specific group.

4.1. Scenario I: EHPH

The prime representatives of the class of electron–hole plasmas are mono- and bilayer graphene
in the vicinity of their charge neutrality point. However, all Dirac-type systems and potentially

I   EHPH II   FLH III   FLPH

Electrons Holes Phonons

Figure 3

In this review, we distinguish three different scenarios of hydrodynamic behavior. The main difference
between the scenarios is what the fluid is composed of in terms of particles. In scenario I, we consider
electron–hole hydrodynamics, meaning the fluid is composed of drag-locked electrons and holes. In
scenario II, we consider the most conventional form of electronic hydrodynamics, where the fluid is just
composed of electrons (or just holes, equivalently). Scenario III is the case of electrons or holes but with
phonons, again drag-locked into one collective fluid. Abbreviations: EHPH, electron–hole plasma
hydrodynamics; FLH, Fermi-liquid hydrodynamics; FLPH, Fermi liquid–phonon hydrodynamics.
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Figure 4

(a) Schematic of the dispersion relation of graphene near its Dirac point. (b) Phase diagram of clean
graphene at finite temperature. The region above µ = 0 is referred to as the Dirac liquid. At µ ≈ T it crosses
over to a Fermi liquid.

even semiconductors at elevated temperatures fall into this category, albeit with modifications.
In the following discussion, we mainly concentrate on graphene as the most commonly studied
system.

Monolayer graphene is a two-dimensional system of carbon atoms on the honeycomb lattice. In
its undoped state, it is neither a metal nor an insulator, but a semimetal (16, 17). Its density of states
is linear in the deviation from theDirac point.This originates from the low-energy band structure,
shown in Figure 4a. Two bands, of electron and hole type, touch in isolated points in the Brillouin
zone. In the vicinity of these points, the system can effectively be described by the massless Dirac
equation. Consequently, the spectrum is linear in momentum according to ϵ± = ±vF |⃗k|, where +
refers to electrons and − to holes, and vF is the Fermi velocity (see Figure 4a).

Concerning the plasma character of charge-neutral graphene, the key insight came in a paper
by Sheehy & Schmalian in 2007 (18). The essence is summarized in Figure 4b. It shows the
phase diagram of graphene as a function of the chemical potential µ (x axis) and temperature T
(y axis). The chemical potential controls the filling of the Dirac cones: The charge density nc ∝ µ2.
Consequently, atµ = 0,we have nc = 0.However, there are still excitations at finite temperatureT.
A quantity that is sensitive to that is the imbalance density nimb = n+ − n−,which behaves according
to nimb ∝ T 2. This quantity is a measure for the density of excitations, i.e., a thermal cloud of
electrons and one of holes, both of equal density, which ensures nc = 0. The finite temperature
region above µ has been dubbed the Dirac liquid, and it has thermodynamic properties that are
very different from Fermi liquids. The crossover region is defined by the condition |µ| ≈ T. For
|µ| k T, the system behaves like a Fermi liquid of electron or hole type.4

The Dirac liquid or Dirac plasma has a number of curious experimental signatures. Some of
them become apparent in the bulk thermodynamic quantities, whereas others can be observed
in transport probes. Concerning this review, in the case of the electron–hole plasma, we mostly
concentrate on bulk transport properties.

4.1.1. Theoretical description. The starting point is the Boltzmann equation, Equation 1. To
describe the EHPH scenario, we consider the Boltzmann equation of electrons and holes and dis-
regard the contribution due to phonons (a justification of this is mostly of an experimental nature

4This discussion is valid in not only graphene but also any Dirac-type two-band system including bilayer
graphene. If the temperature is larger than the respective gap, it even applies to semiconductors.
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Table 4 Conservation laws of electrons and holes

Electrons Holes

Particle number ∂tn+ + ∇⃗ j⃗+ = N eh+ ∂tn− + ∇⃗ j⃗− = N eh+
Momentum ∂t n⃗k⃗+ + ∇⃗5+ − F⃗+ = K eh+ + Kdis+ ∂t n⃗k⃗− + ∇⃗5− − F⃗− = K eh− + Kdis−

Energy ∂tnϵ+ + ∇⃗ · j⃗ϵ+ − hϵ+ = Eeh+ ∂tnϵ− + ∇⃗ j⃗ϵ− − hϵ− = Ehe−

and discussed in Section 5), i.e., Cphon
± ≈ 0. The remaining coupled Boltzmann equations read as

∂t f+ + ∂k⃗ϵ+ (⃗k)∂r⃗ f+ + ∂r⃗ϵ+ (⃗k)∂k⃗ f+ = Cee+ + Ceh+ + Cdis
+ ,

∂t f− + ∂k⃗ϵ− (⃗k)∂r⃗ f− + ∂r⃗ϵ− (⃗k)∂k⃗ f− = Chh− + Che− + Cdis
− . 3.

The corresponding conservation laws are shown in Table 4. It shows that electrons and holes,
individually, are not conserved, whereas the total charge density, nc = n+ + n−, is. The same
statement applies to the energy, where only the total energy, nϵ

c = nϵ
+ + nϵ

−, is conserved, whereas
energy can be exchanged between the subsystems. The momentum density is different in that the
total momentum, nk⃗c = nk⃗+ + nk⃗−, is not conserved if disorder is present. In the case of the EHPH,
it is useful to introduce imbalance densities according to nimb = n+ − n− and, correspondingly,
momentum and energy. This leads to the continuity equations shown in Table 5.

4.1.2. The thermoelectric response of EHPH. One of the hallmarks of the hydrodynamic
behavior of EHPH can be seen in the bulk thermoelectric response. We discuss below that it
has two key properties: an interaction-dominated bulk electric conductivity (impossible in Fermi
liquids) and an extreme violation of the Wiedemann–Franz law (13).

The thermoelectric response of a system is the combined response of the system to an applied
electric field E⃗ and a temperature gradient ∇⃗T captured by the thermoelectric response tensor
according to (13) (

j⃗c
j⃗Q

)
=
(

σ α

Tα κ

)(
E⃗

−∇⃗T

)
. 4.

Below we discuss how to calculate the response coefficients σ , α, and κ .

4.1.2.1. The relaxation time approximation. Solving the Boltzmann equation is very tedious:
The collision terms are integral expressions involving the distribution functions themselves.
Usually, there is no analytical solution, apart from in thermal equilibrium. Here, we consider
near-equilibrium transport phenomena. Those can usually be described within linear-response
theory, which eventually leads to solving linear equations. To that end, one linearizes the distribu-
tion functions according to f± ≈ f 0± + δ f± and b ≈ b0 + δb, where δf± and δb are deviations from
equilibrium. These deviations are linear in the applied perturbations. In the case of thermoelec-
tric transport, Equation 4, those are the field E⃗ and the temperature gradient ∇⃗T . The solution

Table 5 Conservation laws of charge and imbalance

Charge (I)+(II) Imbalance (I)

Particle number ∂tnc + ∇⃗ j⃗c = 0 ∂tnimb + ∇⃗ j⃗imb = N ee
imb

Momentum ∂t n⃗k⃗c + ∇⃗5c − F⃗c = Kdis
c ∂t n⃗k⃗imb + ∇⃗5imb − F⃗imb = K eh

imb + Kdis
imb

Energy ∂tnϵ
c + ∇⃗ · j⃗ϵc − hϵ

c = 0 ∂tnϵ
imb + ∇⃗ j⃗ϵimb − hϵ

imb = Eehimb
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of the linearized coupled Boltzmann equations, while standard, is still a rather technical exercise
that usually requires mode-expansion involving potentially complicated numerics (19). Although
this is required in some situations (for instance, as discussed in Section 4.2), we can here use the
relaxation time approximation (15). In this approximation, all the specifics of the collision process
are condensed into one quantity: the relaxation time τ .

In general, the relaxation time approximation violates conservation laws. For the purpose of
this discussion, we set it up such that it respects all the conservation laws and collisional invariants
introduced inTables 4 and 5 in a straightforward way.Furthermore,we checked that it reproduces
the characteristic qualitative features of an actual numerical solution.

Assuming an applied electric field E⃗ and a temperature gradient ∇⃗T , we find linearized
Boltzmann equations in the relaxation time approximation according to

∂tδ f+ − ∇⃗T ϵ+ − µ

T
∇⃗k⃗ f

0
+ − eE⃗∇⃗k⃗ f

0
+ = − δ f+

τ+−
+ δ f−

τ−+
− δ f+

τ dis

∂tδ f− − ∇⃗T ϵ− − µ

T
∇⃗k⃗ f

0
− − eE⃗∇⃗k⃗ f

0
+ = − δ f−

τ−+
+ δ f+

τ+−
− δ f−

τ dis
. 5.

The relaxation times play distinct physical roles: 1/τ+− and 1/τ−+ refer to electron–hole
drag, mediated by interactions (we specify this in Section 5), whereas 1/τ dis

± accounts for disorder
scattering of electrons and holes, respectively.5

Using the expressions introduced in Table 3, we can formulate the charge current j⃗c and en-
ergy current j⃗ϵ (the heat current follows from this according to j⃗Q = j⃗ϵ − µ/e j⃗c). To that end, we
combine both Boltzmann equations and assume momentum-independent scattering times. We
exploit ∇⃗k⃗ϵ+ = −∇⃗k⃗ϵ− and ∇⃗ϵ+ = ∇⃗ϵ− and integrate the Boltzmann equation. In total, we find

∂t j⃗c − ∇⃗TTc − eE⃗Ec = − j⃗c
τ+

− j⃗imb

τ−
− j⃗c

τ dis
,

∂t j⃗imb − ∇⃗TTimb − eE⃗Eimb = − j⃗imb

τ dis
. 6.

We can do the same for the energy current, which leads to

∂t j⃗ϵ − ∇⃗TT ϵ − eE⃗E ϵ = − j⃗ϵ

τ dis
,

∂t j⃗ϵimb − ∇⃗TT ϵ
imb − eE⃗E ϵ

imb = − j⃗ϵ

τ−
− j⃗ϵimb

τ+
− j⃗ϵimb

τ dis
. 7.

In the above expressions, we introduced 1/τ+ = 1/τ+− + 1/τ−+, 1/τ− = 1/τ+− − 1/τ−+.
The quantities E and T can be obtained from straightforward integrals over the Boltzmann
equation and are shown in Table 6 (note that for notational convenience we have introduced
E± = ϵ± − µ). The hydrodynamic limit is reached for 1

τ+ ≫ 1
τdis

(this is equivalent to lee j ldis).
One can bring these four equations into the more conventional form (Equation 4),(

j⃗c
j⃗Q

)
=


eEc+ τ+

τ− eEimb

−iω+ 1
τ+

+ τ+
τ−

eEimb
−iω+ 1

τdis

Tc+ τ+
τ− Timb

−iω+ 1
τ+

+ τ+
τ−

Timb
−iω+ 1

τdis

T
(

Tc+ τ+
τ− Timb

−iω+ 1
τ+

+ τ+
τ−

Timb
−iω+ 1

τdis

)
T ϵ− µτ+

eτ− Timb

−iω+ 1
τdis

− µ

e

Tc+ τ+
τ− Timb

−iω+ 1
τ+


(
E⃗

∇⃗T

)
. 8.

5From Equation 5, one can explicitly check that the sum rules (Equation 2) hold.
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Table 6 Driving term integrals

Electric field Thermal gradient

Electrical
Ec = ∫

k⃗ ∇⃗k⃗ϵ+∇⃗k⃗

(
f 0+ − f 0−

)
Eimb = ∫

k⃗ ∇⃗k⃗ϵ+∇⃗k⃗

(
f 0+ + f 0−

) Tc = ∫
k⃗ ∇⃗k⃗ϵ+

(
E+∇⃗k⃗ f

0+ − E−∇⃗k⃗ f
0−
)

Timb = ∫
k⃗ ∇⃗k⃗ϵ+

(
E+∇⃗k⃗ f

0+ + E−∇⃗k⃗ f
0−
)

Thermal
Eϵ
c = ∫

k⃗ ∇⃗k⃗ϵ+ϵ+∇⃗k⃗

(
f 0+ + f 0−

)
Eϵ
imb = ∫

k⃗ ∇⃗k⃗ϵ+ϵ+∇⃗k⃗

(
f 0+ − f 0−

) T ϵ = ∫
k⃗ ∇⃗k⃗ϵ+ϵ+

(
E+∇⃗k⃗ f

0− + E−∇⃗k⃗ f
0−
)

T ϵ
imb = ∫

k⃗ ∇⃗k⃗ϵ+ϵ+
(
E+∇⃗k⃗ f

0− − E+∇⃗k⃗ f
0−
)

We are interested in two particular transport coefficients: the electrical conductivity, σ , and the
thermal conductivity, κ = κ − Tα2σ . The latter corresponds to j⃗Q = −κ∇⃗T under the condition
of no electric current flow.

4.1.2.2. The hydrodynamic electrical conductivity. A key signature of electron–hole plasmas is
their electrical conductivity, which becomes most apparent at charge neutrality. It revolves around
a seemingly paradoxical situation.The system has a total charge of zero,nc = 0.Nevertheless, there
is a finite dc conductivity.Most surprisingly, this even holds true in the clean limit with no disorder
at all. On the level of Equation 8 and Table 6, this has the following origin: Eimb = 0 and 1/τ− =
0. However, Ec ̸= 0, which implies

σdc(µ = 0,T ) = e2Ecτ+, 9.

where 1/τ+ is the inverse drag scattering time. As mentioned, this expression is finite even in the
absence of disorder, i.e., for 1/τ dis = 0. The key to understanding this situation is summarized as
a sketch in Figure 5.

At the Dirac point,Figure 5a, subpanel ii, the charge density is nc = 0.However, the imbalance
density is nimb ̸= 0: At finite temperature, there are two thermal clouds of equal density, one of
the electrons and one of the holes. Thus, the total charge is zero. However, an applied electric
field pulls electrons and holes in opposite directions. Consequently, the total momentum of the
system remains zero, but there is a current induced. Because there is no net momentum induced,
there is no disorder required to relax momentum. The electric current, by contrast, can decay.

TE

TE

a b
i   Fermi liquid

ii   Dirac liquid

˙

Before scattering
After scattering

k ≠ 0
˙
k ≠ 0

˙
k = 0

˙
k ≠ 0

k = 0 k = 0

j = j0 ≠ 0 j = –j0

∆

∆

Figure 5

(a) In (i) a Fermi liquid, an applied electric field as well as a temperature gradient excite finite momentum. In
(ii) the Dirac liquid, a temperature gradient excites a finite momentum, whereas an electric field does not.
(b) In the Dirac liquid, momentum and current decouple. One can relax current without relaxing momentum.
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This is sketched in Figure 5b, where an electron–hole pair scatters into another electron–hole
pair of opposite “current.” The momentum, as discussed, is unchanged in this process. Overall,
interactions provide a drag mechanism between electrons and holes that effectively “glues” them
together andmakes them behave as one fluid.This is sufficient to establish a finite electric current,
even without disorder. This is markedly different in a Fermi liquid (see Figure 5a, subpanel i).
There, an applied field induces momentum and current at the same time (in Section 4.2, we see
that they are directly proportional). This discussion strictly speaking only applies to the charge
neutrality point.

Tuning away from charge neutrality, µ ̸= 0, both Ec and Eimb ̸= 0 become finite. There is also
an effect on the scattering times: 1/τ+− ̸= 1/τ−+, which implies that 1/τ− ̸= 0. Consequently, the
dc conductivity reads as

σd.c.(µ = 0,T ) = e2
(
Ec + τ+

τ−
Eimb

)
τ+ + e2

τ+
τ−

Eimbτ
dis. 10.

It is easy to see that this diverges in the absence of disorder (1/τ dis → 0) as one would expect. The
reason is that the finite charge density, nc ̸= 0, activates the Drude peak, which is associated with
momentum transport. Consequently, disorder is required to relax the current, just like in a Fermi
liquid.

4.1.2.3. The heat conductivity. Here, we discuss the response j⃗Q = −κ∇⃗T , which involves the
coefficient κ that is not part of Equation 4. It is related to heat conductivity in the absence of
current flow. At the charge neutrality point, we can again consider Equation 8 in combination
with Table 6: Realizing that Tc = 0, T ϵ ̸= 0, and 1/τ− = 0 directly leads to

κ = T ϵτ dis. 11.

Just like in the case of the electric current, there is a finite current induced despite having
nc = 0. The reason is the same as before, nimb ̸= 0. However, contrary to the case of an elec-
tric field, a temperature gradient makes both thermal clouds, electrons and holes, diffuse into the
same direction.Consequently, it excites momentum (but induces no electric current). This implies
that a finite response coefficient κ ̸= 0 requires a momentum-relaxing process. This is exactly the
interpretation of Equation 11, which becomes infinite in the clean limit where τ dis → ∞. This
situation is again depicted in Figure 5.

4.1.2.4. The Wiedemann–Franz ratio. An important quantity in the study of metals is the
ratio between heat conductivity κ and the electric conductivity Tσ . It was already established in
1853 (20) by Wiedemann & Franz. They observed that for a variety of metals, the ratio κ/(Tσ )
tends to a constant value at low temperatures. Later, this was called the Lorenz number (13). It
was experimentally found that it is universal and given by

L = κ

Tσ
= L0 = π2

3

(
kB
e

)2

, 12.

whichwas later explained by Sommerfeldt (13).Whether a system tends to this value or not is often
taken as empirical evidence of whether the system is a Fermi liquid.The intuitive understanding of
the universality of this ratio is that both heat and electrical current are transported by the same type
of (quasi-)particle. Additionally, both heat and electrical current undergo the same relaxational
mechanisms. In the case of a standard metal, this means that both heat and electrical current are
limited by the same scattering time, 1/τ dis, which is due to the disorder.
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Considering the above situation, we find

L = T ϵ

e2Ec
τ dis

τ+
13.

at the charge neutrality point. Not only does this ratio diverge for a clean system but it is also not
a universal quantity: In general, one should expect a strong violation of the Wiedemann–Franz
law close to charge neutrality as well as a strong variation across different samples. However, it is
a very good measure of the relative strength of elastic and inelastic scattering in the system. To
finish this discussion, it is worthwhile mentioning that the bulk thermoelectric response measures
properties of the homogeneous flow of the degrees of freedom of the fluid. Therefore, it is not
related to the viscosity, which is sensitive to the friction of adjacent fluid layers moving at different
speeds. Consequently, it is not entirely straightforward to express the viscosity in terms of the
scattering times introduced above, which are tailored to describe the thermoelectric response.

4.1.2.5. Navier–Stokes. Most experiments on EHPH so far target bulk thermoelectric trans-
port properties and therefore do not directly probe the viscosity (we discuss one exception in
Section 5). We proceed to sketch the derivation of the Navier–Stokes equation in an EHPH
system.

In the case of classical hydrodynamics, the Navier–Stokes equation can be derived from the
set of equations introduced in Table 4. The missing ingredient is to assume that there is a slow
uniform flow u⃗ of the fluid that is related to a local equilibrium distribution function,

f± = 1

e
ϵ±−µ−u⃗·⃗k

T + 1
. 14.

Expanding this to linear order in u⃗, we find j⃗c = ncu⃗, j⃗ϵ = (nϵ + 5c )u⃗, j⃗imb = nimbu⃗, and j⃗ϵimb =
(nϵ

imb + 5imb )u⃗, which is true for any type of electronic dispersion. However, the specifics of the
dispersion enter in the momentum densities n⃗k⃗c = −u⃗ ∫k⃗ k⃗ · k⃗(∂ϵ+ f 0+ + ∂ϵ− f 0− ) and n⃗

k⃗
imb = −u⃗ ∫k⃗ k⃗ ·

k⃗(∂ϵ+ f 0+ − ∂ϵ− f 0− ), which are not a priori related to a specific thermodynamic quantity.This implies
that the Navier–Stokes equations must be derived on a case-by-case basis for different dispersions.
The general strategy, however, is that one uses the expressions shown inTable 4 and closes the sys-
tem of equations by relatingmomentum current to either charge or heat currents, or combinations
thereof.

For graphene close to the charge neutrality point as well as in the Fermi liquid regime, this
procedure is presented in great detail in References 4–6. At the time of writing this review, we are
not aware of an explicit derivation in the case of bilayer graphene or other dispersions.

4.2. Scenario II: FLH

Hydrodynamics for Fermi liquids was first discussed by Abrikosov & Khalatnikov (12) in the con-
text of liquid helium and by Gurzhi (14) in the context of electrons in solids. We focus here on
the latter case, which has attracted renewed interest in the past few years (4, 5, 7, 14, 21–62).

4.2.1. Boltzmann equation. The starting point is again Equation 1. In a conventional Fermi
liquid, we have |µ|/T k 1 and only one type of charge carrier, either electrons or holes.Without
loss of generality, we henceforth concentrate on electrons and consequently drop the ± index.
The equation of interest in that case is

∂t f + ∇⃗k⃗ϵ (⃗k)∂r⃗ f + ∂r⃗ϵ+ (⃗k)∂k⃗ f = Cee + Cphon + Cdis. 15.
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We now discuss some of the properties of this equation. Contrary to the case of EHPH for
which the essence of Coulomb scattering could be simplified down to the electron–hole drag
term in the relaxation time approximation (see Equation 5), in this case we need to include the
electron–electron scattering term and keep track of its momentum dependence in order to ensure
momentum conservation.

Let us adapt the notation slightly and rewrite the Boltzmann equation as

∂t f + vk · ∇r f − |e|E · ∇k f = C[ f ], 16.

where E is an external electric field, and C = Cee + Cphon + Cdis. In linear response, using f = f0 +
δf, the force term is approximated as E · ∇k f ≃ E · ∇k f0 = d f0

dϵ E · vk. This leads to the linearized
Boltzmann equation

∂tχ + vk · ∇rχ + |e|E
mvF

· vk = C[χ ], 17.

where we have defined χ by δ f = d f0
dϵ mvF χ for later convenience.Note that the massm is defined

here as m a kF/vF and thus behaves at
√
n for graphene, whereas it is a constant for a parabolic

band. In the limit T j TF, one approximates d f0
dϵ ≃ −δ(ϵ − ϵF ). This means χ only needs to be

defined at the Fermi surface.
For the sake of simplicity, we use the example of a two-dimensional circular Fermi surface in

the rest of the discussion. In this case, one can parameterize the Fermi surface by an angle θ , with
k = kF(cos(θ ), sin(θ )) and v = vF(cos(θ ), sin(θ )). It is then advantageous to decompose χ in a
Fourier series (see Figure 6),

χ (r, θ ) = χ0(r) +
∑
n>0

(χn,x(r) cos(nθ ) + χn,y(r) sin(nθ )). 18.

Three Fourier components are of note: χ0, which gives the density and is conserved due to charge
conservation, and χ1,x and χ1,y, which give the drift velocity u⃗ (and thus the current j⃗ = neu⃗) along
x and y:

ux = χ1,x, uy = χ1,y. 19.

Note that we use interchangeably current and momentum in this section, because they are pro-
portional in the case of a highly degenerate Fermi liquid (T j TF) with a circular Fermi surface
(because vk ∝ k for all k at the Fermi surface).

n = 0 n = 1 n = 2 n = 3

Figure 6

Examples of Fourier components (χ0, χ1,x, χ2,y, and χ3,x) contributing to the out-of-equilibrium distribution of electrons at the Fermi
surface in a channel geometry. Pink and gray areas denote positive and negative values, respectively.
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Physically, we know that a perturbation χ (θ ) away from the Fermi–Dirac distribution tends to
decay with time due to scattering. However, certain Fourier components of χ might decay faster
than others. This is captured by writing the scattering integral as C[χ ] = −∑n>0 γnχn, where γ n

is the decay rate of the nth harmonic. The set of rates γ n makes it possible to define the scattering
integral of any rotationally invariant system, regardless of the microscopic source of scattering.

For concreteness, let us consider a channel of finite width W along y and of infinite length
along x, where one applies an electric field E⃗ = Ex̂. In the Fourier basis, Equation 17 takes the
form of an infinite set of equations:

∂tχ1 + 1
2
vF∂y(χ2 ) = −γ1 χ1 + eE

m
,

∂tχ2 − 1
2
vF∂y(χ3 − χ1 ) = −γ2 χ2,

∂tχ3 + 1
2
vF∂y(χ4 − χ2 ) = −γ3 χ3,

...

∂tχn − (−1)n

2
vF∂y(χn+1 − χn−1 ) = −γn χn, 20.

where χn is shorthand notation for χn,x (respectively, χn,y) if n is odd (respectively, even). This
means the contributing Fourier components are χ1, x, χ2,y, χ3,x, . . . . Also, we dropped all the �x

terms, because we assume an infinitely long channel.
Naively, one might expect that the only relaxation rate relevant to charge transport is γ 1, be-

cause χ1 is the mode corresponding to the charge current. This is indeed the case for a spatially
uniform system for which one can neglect all �y terms in Equation 20. In that case, the first line
of Equation 20 is decoupled from the others and gives a closed formula for χ1 from which the
conductivity is found to be σ = ne2/mγ1. We thus recover the Drude formula in that case.

However, in a spatially nonuniform case (e.g., for the finite-momentum conductivity σ (q) or
for a sample with boundaries), the spatial gradient terms in Equation 20 generate a coupling to
higher harmonics. In that case, a knowledge of all the γ n>1 becomes crucial to understand trans-
port properties (63). It is thus the interplay between the spatial nonuniformity and the relaxation
of higher harmonics through scattering that leads to interesting effects for Fermi-liquid hydro-
dynamics. This is in contrast to the electron–hole plasma of the previous section for which bulk
properties are already hydrodynamic.

After having motivated the importance of γ n>1, let us discuss their values. The simplest ap-
proximation is the textbook relaxation time approximation, which assumes a single relaxation rate
γ n = γ . This assumes that an electron can be scattered anywhere on the Fermi surface with equal
probability. Although this approximation is standard, it actually misses a very important piece of
the physics in several important cases. Notably, electron–electron scattering only contributes to
γ n>1 and not to γ 1 due to momentum conservation. This had led to a two-rate model (12, 64) that
separates momentum-relaxing scattering from momentum-conserving scattering:

γ1 = γMR,

γn>1 = γMR + γMC, 21.

where γMR is the momentum-relaxing scattering rate and receives contribution from impurity,
phonon, and electron Umklapp scattering, whereas γMC is the momentum-conserving rate and
receives contribution from electron non-Umklapp scattering. When γMR j γMC, one finds a
separation of timescales between the slow relaxation of current and the fast relaxation of higher
harmonics (γ 1 j γ n>1), which justifies a hydrodynamic expansion as explained below.
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Remarkably, strong electron–electron scattering is not the only way to realize a substantial
separation between γ 1 and γ n>1. For example, small-angle impurity scattering or certain types of
boundary scattering can also lead to a sizable γ n>1/γ 1 ratio, leading to a “para-hydrodynamic”
regime (65, 66).

We should note that even the two-rate model given above is a fairly crude approximation to
electron–electron scattering close to a two-dimensional Fermi surface. As shown in References 67
and 68, kinetic constraints in two dimensions lead to an anomalously long lifetime for all odd
harmonics, which has important consequences for transport. Furthermore, the special form of the
collision integral at the charge neutrality point of graphene also leads to an anomalous kinetic
theory (69).

4.2.2. From Boltzmann to Navier–Stokes. Let us now show how to go from the Boltzmann
Equation 20 to the Navier–Stokes equation, using an expansion that relies on the fast relaxation
of higher harmonics. As long as we probe the system at scales much larger than lMC = vFγ

−1
MC, we

can do an expansion in a small parameter, ϵ = lMC/W, and use an ansatz of the form χn ∝ ϵn. To
leading order in ϵ, one finds that the first two equations decouple from the rest, giving

∂tχ1 + 1
2
vF∂y(χ2 ) = −γ1 χ1 + eE

m
,

1
2
vF∂y(χ1 ) = −γ2 χ2. 22.

Based on the second equation, we can recognize χ2 as a component of the viscous stress tensor,
which is proportional to the spatial derivative of the flow, as in all Newtonian fluids. By plugging
it into the first equation, we obtain a closed equation for the current χ1:

∂tχ1 + η∂2
y (χ1 )= −γ1 χ1 + e

mE, 23.

where the viscosity η = 1
4v

2
Fτ2 is proportional to the relaxation time of the second harmonic, τ 2 =

1/γ 2. Finally, by using ux = χ1 and generalizing the previous analysis to a two-dimensional flow
u⃗, we find:

∂t u⃗+ η∇2u⃗ = −γ1 u⃗+ e
m
E⃗, 24.

which is almost the standard Navier–Stokes equation except for the addition of a momentum-
relaxing term −γ1u⃗. The viscous term dominates over the momentum-relaxing one if the channel
width W is much smaller than the Gurzhi length: W ≪ √

l lMR. When that is the case, the
resistivity is proportional to the viscosity: ρ ∝ η/W 2 ∝ τ 2 (14).

By “integrating out” the fast microscopic dynamics of the nonconserved higher harmon-
ics χn>1, we have obtained a closed equation for the slow dynamics of the current χ1. The
only remaining information about the higher harmonics in this equation is τ 2, which enters the
viscosity.

In theory, one could now simply solve Navier–Stokes with the appropriate geometry to study
experimental systems and forget about Boltzmann altogether. In practice, this is not always
justified, because experimental setups do not always have such a large separation of scale between
W and lMC. It is therefore sometimes necessary to solve the full Boltzmann equation. Furthermore,
the question of appropriate boundary conditions for the velocity field also requires going back to
a kinetic theory (70, 71).
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4.3. Scenario III: FLPH

The phenomenon of electron–phonon drag is in principle not restricted to the situation with only
electrons and phonons; there could also be a mixture of electrons, holes, and phonons coupled
together. In view of the experimental situation, we concentrate on electrons and phonons here;
however, the other situation could easily be described within the outlined framework.

This case of hydrodynamic behavior, FLPH, goes against the standard lore of hydrodynamics
in electronic solid state systems: In conventional metals, phonons prevent hydrodynamic behavior.
They usually invalidate momentum and energy conservation because they have faster relaxation
mechanisms within their subsystems (see discussion below). However, there is a way out, and
phonons can act as facilitators that conspire with the electrons and make up one perfectly drag-
coupled fluid. The conditions for that are the subject of this section.

There have been relatively recent review-style articles on the theoretical status of this scenario
in References 7 and 8.We keep our discussion more superficial and concentrate on a couple of, in
our view, important aspects.

4.3.1. Theoretical description. As usual, we start from Equation 1. In a system with electrons
and phonons, we have to consider two coupled Boltzmann equations, one for the electrons and
one for the phonons (note that we again drop the ± subscript without loss of generality):

∂t f + ∇⃗k⃗ϵ (⃗k)∂r⃗ f + ∂r⃗ϵ (⃗k)∂k⃗ f = Cee + Cphon
e + Cdis,

∂tb+ ∇⃗k⃗ω(⃗k)∂r⃗b+ ∂r⃗ω(⃗k)∂k⃗b = C int
phon + Cephon. 25.

The scattering terms in the electron sector fall into three classes. Cee corresponds to electron–
electron scattering that conserves all quantities. Cphon

e corresponds to electron–phonon scattering
and can transfer momentum and energy between electrons and phonons. Finally, there is Cdis,
which relaxes momentum due to disorder breaking translational symmetry. The scattering terms
for phonons fall into two classes: there is scattering between phonons and electrons, called Cephon,
which is the counterpart to Cphon

e and plays the same role. There is also scattering within the
phonon system itself, C internal. The latter comprises a number of different effects: nonlinear terms
in the phonon sector, phonon disorder coupling, and Umklapp scattering. In the conventional
picture of the electron–phonon problem (see Reference 13), C int

phon ≫ Cephon. This means the fol-
lowing: Phonons relax very quickly on the timescale of electronic processes. Consequently, the
phonon system effectively decouples from the electrons and relaxes on its own timescale, usually
a lot faster than electronic timescales. This implies that one can treat the phonons as effectively
equilibrated in the Boltzmann equation of the electrons. As a consequence, the electronic sys-
tem has no momentum and no energy conservation because it can dissipate both in the phonon
subsystem. Consequently, the electrons do not show hydrodynamic behavior, and the transport
characteristics are diffusive.

From the point of view of hydrodynamics, there is another very interesting limit: C int
phon ≪ Cephon,

meaning electron–phonon scattering together with electron–electron interaction determines the
equilibration of the combined system. In the clean limit,Cdis = 0, the combined system of electrons
and phonons conserves charge, total momentum, and total energy. Hence, the behavior can be
expected to be hydrodynamic. Pictorially speaking, the combined system of electrons and phonons
is drag-locked into one fluid (see sketch in Figure 3).

4.3.2. Signatures of FLPH. We again concentrate here on bulk transport properties, espe-
cially thermoelectric transport because this gives a rather direct signal. We distinguish bulk from
boundary signatures in the following.
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4.3.2.1. Bulk signatures. The bulk signatures are again best seen in thermoelectric measure-
ments that measure both electric and heat conductivity.There is an intricate competition of effects
that comes to life in that situation. First of all, an electric field only couples to the electrons and
not the phonons. The electric current is entirely carried by electrons, although phonons are drag-
coupled and also move (this is quite similar to the effect of Coulomb drag in double-layer setups).
In contrast, the heat current is carried by both the electrons and the phonons. Explicitly, we find
that the charge current j⃗c and the heat current j⃗Q are given by

j⃗c = −e
∫
k⃗
∂k⃗ϵδ f and j⃗Q =

∫
k⃗
∂k⃗ϵ (ϵ − µ) δ f +

∫
k⃗
∂k⃗ω ω δb. 26.

It is important to note that in a Fermi liquid, the charge current is proportional to the momen-
tum current (see discussion in Section 4.2). This implies that an electric field not only excites an
electrical current but also immediately excites momentum.The electron–electron interaction, en-
coded in Cee, consequently is ineffective in relaxing the electrical current. However, electrons can
transfer momentum to phonons in the above setup. The phonons themselves cannot dissipate it,
and all they can do is give it back to the electrons before the cycle repeats. This implies that in the
absence of disorder the electrical conductivity is infinite. For a finite electrical conductivity in a
Fermi liquid with perfect phonon drag, one thus needs disorder to relax momentum. To summa-
rize this, the electrical conductivity is expected to be of the form σ = σ0τ

dis
e , where σ 0 is a prefactor.

The thermal conductivity is more complicated than that. The reason is that the thermal current
of the electrons is not conserved in inelastic collisions as well as in electron–phonon collisions.
The total inverse scattering time of the electronic heat current consists of three terms: 1/τ eff

e =
1/τ dis

e + 1/τ eee + 1/τ phon
e . There is another direct contribution of the phonons to the heat current.

Through drag effects, the phonons experience the effects of disorder and electron–electron inter-
action, meaning the effective scattering time reads 1/τ eff

phon = 1/τ dis
phon + 1/τ eephon + 1/τ phon

phon . In total
this implies that the Wiedemann–Franz ratio reads as

L =
κ0e

(
1

τdise
+ 1

τ eee
+ 1

τ
phon
e

)−1

+ κ0phon

(
1

τdisphon
+ 1

τ eephon
+ 1

τ
phon
phon

)−1

Tσ0τ dis
e

, 27.

where we defined κ0e and σ 0 such that L0 = κ0e/(Tσ 0) is the Lorenz number. In the very clean
limit, this is given by

L ≈
κ0e

(
1

τ eee
+ 1

τ
phon
e

)−1

+ κ0phon

(
1

τ eephon
+ 1

τ
phon
phon

)−1

Tσ0τ dis
e

. 28.

Although the exact value of L obviously depends on all kinds of details, one must expect that the
Wiedemann–Franz law is, possibly strongly, violated.The twomain reasons are (a) the heat current
undergoes relaxational processes differently from the charge current and (b) there is an additional,
potentially very big, direct contribution to the heat conductivity coming from the phonons.

It is important to point out that the discussion about the violation of the Wiedemann–Franz
law also applies in the case of FLH (Section 4.2). In that case, the Wiedemann–Franz ratio reads
as

L =
κ0e

(
1

τdise
+ 1

τ eee

)−1

Tσ0τ dis
e

. 29.

Importantly, this implies that L < L0, as discussed in References 72 and 73.
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4.3.2.2. Boundary signatures. In the picture of a strongly coupled electron–phonon fluid, it
is obvious that all the quantities involving energy and momentum are heavily influenced by the
presence of the phonons. Consequently, the phonons make a direct contribution to the viscosity,
and thus all quantities that are sensitive to viscosity are different from a Fermi liquid, even if the
Fermi liquid is hydrodynamic.6

5. EXPERIMENTS

In the following discussion, we first discuss the conditions for interactions, disorder, and phonons
in some of the relevant systems. Eventually, we discuss the key experiments in the respective
groups.

5.1. Favorable Conditions

From the discussions in Section 3 and the ensuing ones in Sections 4.1–4.3, it has become obvious
that one key requirement for the experimental observation of solid state hydrodynamics is to
have a very clean system (this is important in all three scenarios I–III). Furthermore, the electrons
should be strongly interacting.We find that this is easier to achieve in scenario I than in scenarios II
and III. Finally, there is the question about phonons. While in scenarios I and II their absence is
required, in scenario III they are explicitly part of the fluid.

5.1.1. Coulomb interaction. In all the scenarios, Coulomb interactions are vital to achieve hy-
drodynamic behavior. The Coulomb interaction is fundamental to all charged fermionic systems.
Most importantly, overall it conserves total charge, total momentum, and total energy. Neverthe-
less, it leads to relaxation of the underlying electronic system. The associated relaxation time, τ ,
can be very large in Fermi liquids.The reason for that is found in phase space arguments that make
relaxation through interactions inefficient (see Reference 13 or similar textbooks).Without going
through the details of the derivation, usually one has τ ∝ TF/T 2, where TF is the Fermi tempera-
ture. This quantity is huge in typical metals, often on the order of ×104 K. However, low-density
metals can have a much lower TF, which makes them very attractive. Two of the front-runners are
mono- and bilayer graphene. In those systems, the filling and consequently TF can be controlled
with great precision. It can even be tuned to zero. In that situation, temperature itself takes over
the role of TF because it controls the number of thermally excited charge carriers. In that case,
the scattering time behaves according to τ ∝ 1/T. This allows realization of the Planckian limit,
which is the limit in which relaxation is entirely determined by temperature itself (3, 77).

We see that also in the other systems that are currently investigated, the electron density is
usually quite low (except for a few cases like PdCoO2), which allows boosting the role of Coulomb
scattering. Additionally, it is beneficial to consider two-dimensional systems that also increase the
relative interaction strength when compared to kinetic energy.

5.1.2. The role of disorder. Disorder is the number one enemy of hydrodynamic behavior.
Usually, disorder provides the shortest relaxation/scattering time in metals, and the only way to
increase that is to make the system ever cleaner. There has been tremendous progress in that
regard. Especially remarkable is the progress in the field of graphene-based devices. Throughout
the past six years, it was possible to fabricate encapsulated devices in which mono- or bilayer (or
even twisted versions of it) are sandwiched in between boron nitride. This leads to very clean

6All the mentioned properties of FLPH can also be observed in the scenario in which electrons are coupled
to their own internal collective modes (see References 74–76).

36 Fritz • Scaffidi



CO15_Art02_Fritz ARjats.cls February 20, 2024 9:50

devices in which the effects of disorder scattering can be subdominant to, for instance, Coulomb
scattering, especially if the temperature exceeds ≈80 K.

5.1.3. The role of phonons. Finally, we have to worry about phonons. As explained in detail
before, they play a special role in this review. There are two scenarios. In one, phonons equili-
brate within their own subsystem and their relaxation is decoupled. In that situation, they are in
principle detrimental to hydrodynamic behavior. In the case of EHPH and FLH, phonons should
be absent. Again, graphene has very favorable properties. Among other things, graphene and bi-
layer graphene have gained fame for their structural properties. They are very stiff, which implies
that phonons become important at relatively elevated temperatures around T = 100 K (16). In
the scenario of FLPH, phonons fail to relax within their own subsystem, and they build a fluid in
which the electrons and phonons are locked into one fluid, a scenario which has for instance been
discussed in antimony and PtSn4.

To summarize this discussion, graphene takes a leading role, mostly due to three properties.
(a) TF can be made very small, (b) disorder levels can be suppressed, and (c) the onset of phonon
scattering is above 100 K. Nevertheless, there are also other, possibly three-dimensional, material
systems, andwe discuss some of the key experiments below.Taken together, this leads to an unusual
situation. In condensed matter systems, the most spectacular things usually happen upon cooling
down the system.Here, the most interesting transport window opens up at elevated temperatures.
It has by now been demonstrated by several groups that the hydrodynamic window sits firmly
between 10 and 100 K (78, 79). This statement applies to both mono- and bilayer graphene.

5.2. Scenario I: EHPH

Over the past decade, mono- and bilayer graphene have taken leading roles in the quest for the
observation of hydrodynamic electronic flow phenomena of the EHPH type. There have been a
number of measurements in which the hydrodynamics of the electron–hole plasma was probed.

5.2.1. The hydrodynamic conductivity. Wediscussed in Section 4.1 that systems of the EHPH
type have a finite electric conductivity even in the perfect system. This is due to the electron–hole
drag from Coulomb interactions that enables a current relaxation process. This is a very direct
manifestation of hydrodynamics since the hydrodynamic relaxation time is directly related to a
measurable bulk quantity. That way it allows a direct measurement of the Planckian dissipation
time τ ∝ 1/T (3), a quantity that has received a lot of attention in the context of non–Fermi liquids
in recent years (77).

5.2.1.1. Monolayer graphene. In the case of monolayer graphene, the strength of Coulomb
scattering is controlled by a dimensionless coupling constant. In analogy with the fine structure
constant in QED, it is denoted α = e2/(4πεvF). In QED, this is a small number, but not in
graphene. There are two reasons for that: The Fermi velocity vF is much smaller than the speed
of light, i.e., vF/c ≈ 1/300, and the dielectric constant ε depends on the substrate. For practical
purposes, this leads to a value of α = 0.2−2 (2 is the extreme case of suspended samples), depend-
ing on the details of the setup. The resulting drag scattering rate 1/τ at the Dirac point is found
to be of the general form 1/τ = Cα2T, whereC = O(1) (80–86). The constant C can be calculated
from either a solution of the Boltzmann equation or the Kubo formula. Contrary to a standard
metal, it is not suppressed by a factor T/TF, where TF is the Fermi temperature. Gallagher et al.
managed to measure the critical conductivity in monolayer graphene in an optical conductivity
measurement and obtained remarkable agreement with the theory results of σ ≈ 0.7e2/(α2h) (87).

5.2.1.2. Bilayer graphene. In bilayer graphene in Bernal stacking, the situation is different.This
is rooted in the fact that bilayer graphene has a finite density of states at charge neutrality. As a
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consequence, there is temperature independent Thomas–Fermi screening in the limit of low mo-
menta, and the strength of Coulomb interaction does not depend on the fine structure constant.
Contrary to the monolayer case, this leads to a temperature independent universal conductivity
at the charge neutrality point (79, 88–91). Universal in this context means that it is independent
of details of the sample. To our knowledge, the first direct measurement of the interaction domi-
nated conductivity thatmatched theory predictions was done in the context of encapsulated bilayer
graphene (92). The result was a temperature-independent interaction-limited conductivity of σ ≈
20e2/h that compared favorably to theory predictions from 2013 (88; see also 79, 89–91). This was
confirmed in a 2022 paper by Tan et al. In that paper, it was furthermore shown that the plasma-
type physics can even be observed if the bilayer is gapped through the application of an electric
field, provided the temperature is large enough. In parallel, this measurement also allowed deduc-
tion of the dielectric constant of the BN-C-BN structure, again in good agreement with theory.

This has been measured in two independent experiments that are in excellent agreement and
also observed this universality across a number of samples (79). As expected from theory, the find-
ings are consistent with a Planckian relaxation time τ ∝ ℏ/(kBT), which is entirely determined by
the constants of nature, ℏ, and kB (3).

5.2.2. Thermoelectric response. A unique signature of the thermoelectric response of
electron–hole plasmas can be found in a maximal violation of the Wiedemann–Franz law, as dis-
cussed in Section 4.1. In 2016, Crossno et al. managed to measure the thermoelectric response
of monolayer graphene (40; see also 6) at and in the vicinity of the charge neutrality point. One
of the key findings was a strong violation of the Wiedemann–Franz law, which was later fit with
a two-fluid hydrodynamic theory. In order to find quantitative agreement, a careful modeling
of the electron–hole puddle disorder structure was required. Nevertheless, this was a strong in-
dication that the hydrodynamic regime was indeed reached (however, see 93). Since then, a new
series of thermoelectric transport measurements inmonolayer and bilayer graphene are under way
( J. Waissman, private communication).

5.3. Scenario II: FLH

In contrast to the bulk hydrodynamics observed for the electron–hole fluid, one needs to consider
finite-size samples to see hydrodynamic effects in transport in the Fermi-liquid regime. Indeed,
because the viscous term in the Navier–Stokes equation (see Equation 24) is given by η∇2v⃗, vis-
cosity can only contribute to the resistance when the flow is nonuniform in space and reveal itself
through size-dependent contributions to transport properties. The nonlocal relation between the
electric field and the current means that the sample geometry also has a drastic impact on transport
properties. We therefore classify experiments according to their geometry.

There is one general caveat though, which is that transport in the ballistic regime (for which all
mean free paths aremuch longer than the sample size) also leads to a nonlocal relationship between
current and electric field. In fact, in both regimes, momentum loss and thus resistance occur due
to boundary scattering. Hydrodynamics, however, distinguishes itself by the fact that momentum
needs to diffuse through the bulk (which happens microscopically due to frequent momentum-
conserving collisions) before reaching the boundary where it can be relaxed. A challenge for most
experiments has therefore been to clearly distinguish between ballistics and hydrodynamics.

5.3.1. Channel. The channel geometry is probably the simplest one and was used in a se-
ries of experiments (24, 41, 50, 53, 55, 62, 94). In this geometry, one can either measure how
the conductance G scales with the width W of the channel (with G ∼ W 3 in the hydrodynamic
regime) or use local probes to visualize the Poiseuille flow. Size-dependent effects in the (negative)
magnetoresistance and in the Hall effect also allow in principle a measurement of the shear and
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Hall viscosities, respectively (30, 44). The profile of the Hall electric field across the channel is
actually a very useful signature that can discriminate between ballistics and hydrodynamics (56),
and which was measured with a local voltage probe (single-electron transistor) (53).

5.3.2. Widening. In the hydrodynamic regime, injecting current through a narrow aperture
into a wide chamber can lead to vorticity laterally from the current. This vorticity can be mea-
sured as a nonlocal negative resistance (32, 39, 95). A similar geometry was also used to measure
the Hall viscosity of graphene (52). More recently, the emergence of vorticity was also directly
imaged with a scanning SQUID (superconducting quantum interference device), with the ap-
pearance of multiple vortices in a circular chamber placed laterally to the flow given as a unique
signature of hydrodynamics (65). One can even consider more complicated geometries for which
a channel forks into several subchannels forming a nonsimply connected geometry, like the Tesla
valve studied in Reference 96.

5.3.3. Constriction. A striking hydrodynamic effect is the appearance of superballistic conduc-
tance for the flow through constrictions (43, 57). For a constriction of length L and widthW, one
can distinguish different regimes depending on the scaling of the resistance R with L and W. In
the presence of strong momentum relaxation, the Ohmic regime is of course given by R ∝ L/W.
In the absence of any scattering, one finds the Landauer–Sharvin resistance: R ∝ 1/W, because
the number of conducting channels is proportional to W. Remarkably, adding strong electron–
electron scattering to the latter case leads to a hydrodynamic regime for which the resistance
is inversely proportional to the constriction length: Rhydro ∝ lee/LW (97). Superballistic flows
were first studied in the case of sharp constrictions (L → 0), for which the resistance goes like
R ∼ lee/W 2 (42, 43) (see also related earlier work in References 98–100). These formulas for the
resistance have a simple explanation, because in the hydrodynamic regime, the resistance comes
from the viscous term η∇2v⃗, whereas the viscosity always leads to a factor of lee, and �2 leads to a
factor of 1/LW or 1/W 2 for a smooth or sharp constriction, respectively.

5.3.4. Corbino. The Corbino (or annular) geometry leads to remarkable manifestations of the
hydrodynamic regime of transport. For currents flowing radially, a Corbino device has effectively
no edges (i.e., no boundaries lateral to the flow), which means the usual Poiseuille profile due
to nonslip boundary conditions is absent, and the bulk resistance in the hydrodynamic regime is
actually zero (54). However, the total resistance is actually nonzero due to a voltage drop localized
at the contacts, which gives a contribution of the type R ∝ η/r2min, where rmin is the smaller radius
of the annulus.

The Corbino geometry makes the physical origin of superballistic flows particularly transpar-
ent. In this geometry, the Landauer–Sharvin resistance is delocalized into the bulk, because the
number of channels decreases gradually with the radial coordinates when going from the outer to
the inner contact. In the ballistic regime, only transmitted channels carry current, whereas in the
hydrodynamic regime, strong scattering between electrons makes it possible for electrons to hop
from reflected to transmitted channels, leading to an increased conductance (97, 101). Addition-
ally, the annular geometry leads to unique effects in thermoelectric (102) as well as nonlinear (103)
transport.

5.3.5. Skin effect. It is possible to probe the nonlocal conductivity at varying length scales
without varying the size of the device by studying AC currents, for which the current density
is localized within a frequency-dependent skin depth of the sample edges. Ohmic, ballistic, and
hydrodynamic regimes exist for the skin effect, with differing power laws for the surface resistance
dependence on frequency. A study of these various regimes in PdCoO2 was recently reported in
Reference 104.
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5.3.6. Nonlinear transport. Although there already exists theoretical work on the prospect
of reaching higher Reynolds number flows and the instabilities that can result (103, 105–110),
only few experiments have studied this nonlinear regime so far. An early example was given in
GaAs (24), in which Ohmic heating due a large dc current was used to increase the electronic
temperature without increasing the lattice temperature, thereby taking the system deeper in the
hydrodynamic regime (lee j lphon). However, a more recent experiment in graphene showed that
electron–phonon coupling can actually become dominant for nonlinear transport, leading to a
“phonon Cerenkov” instability that creates a striking exponential dependence of the resistivity
along the current direction (111). This electron–phonon instability shows that the physics of
nonlinear electron hydrodynamics is even richer than previously thought and certainly deserves
further study in the years to come.

5.3.7. Crossover between FLH andEHPH. A few experiments have also studied the crossover
between the Fermi-liquid and electron–hole plasma regimes, by measuring either channel
flow (55) or the Wiedemann–Franz ratio (40).

5.4. Scenario III: FLPH

As we mentioned before, the FLPH scenario has a very peculiar setup in which electrons and
phonons “lock” into one fluid. The main proponents of this unusual type of hydrodynamics are
currently Sb (112, 113), PtSn4 (114), and WP2 (50, 115). This scenario is complicated to prove
or rule out in experiments and requires a careful separation of phonon and electron contribu-
tions. One theoretical prediction is a strong temperature dependence of the viscosity. Another
important feature shows up in thermoelectric measurements together with thermodynamic mea-
surements. According to theory, a hallmark experimental observation that is consistent with an
electron–phonon scenario is to see a reduction of theWiedemann–Franz ratio L below L0 (see the
discussion in Section 4.3). However, this requires a good knowledge of the phonon contribution
to the thermal current.

6. CONCLUSION AND OUTLOOK

Recent years have seen spectacular progress in the study of the hydrodynamic regime in electronic
solid state systems. Monolayer and bilayer graphene have taken a leading role but many other
systems have emerged.Within this article, we concentrate on three different scenarios of hydrody-
namics that are currently most discussed: electron–hole plasmas, Fermi liquids, and drag-coupled
Fermi liquid–phonon systems. We base the technical parts of the discussion on a phenomeno-
logical Boltzmann equation. We devise an easy-to-follow recipe that allows the derivation of the
thermoelectric response as well as the Navier–Stokes equation for a relatively generic setup that
can accommodate electrons and holes as well as phonons (and in principle other collective modes).
The central ingredients in this setup are global conservation laws and drag, which transfers mo-
mentum and energy between the individual components of the fluid. In the first example, we
discussed the electron–hole plasma that is relevant for Dirac-type systems, such as graphene, bi-
layer graphene, and also the Weyl system. One of the main findings is that such systems have
finite bulk electric conductivity at charge neutrality, even in the clean limit, which is directly re-
lated to the relaxation time of hydrodynamic processes, the Planckian time. The second example
was that of a strongly coupled electron–phonon system. We also discuss the more conventional
Fermi-liquid-type hydrodynamics that can best be observed in systems with restricted geometries,
as they are sensitive to the viscosity.

In the future, it will be interesting to see to which extent experiments can make smoking-
gun observations in the respective systems. Ideally, one would like to see real space images of
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turbulences or other nonlinear effects that cannot be explained with more conventional transport
theories.

SUMMARY POINTS

1. Several recent experiments find indications for hydrodynamic flow in electronic systems.

2. When comparisons are possible, the agreement between theory and experiment is quite
convincing.

3. Monolayer and bilayer graphene are the prime candidates for the observation of
hydrodynamic flow phenomena, but many new materials are joining the list.

4. Contrary to common lore, lattice degrees of freedom can help to reach the hydrodynamic
electronic limit.

FUTURE ISSUES

1. Can one create and detect turbulence or other nonlinear effects, maybe using novel
material systems?

2. What are smoking-gun signatures of hydrodynamic behavior?

3. Are there interesting novel effects in the crossover from a Fermi liquid to the electron–
hole plasma regime?
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