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Selective lipid recruitment by an archaeal
DPANN symbiont from its host

Su Ding 1,4 , Joshua N. Hamm 1,4 , Nicole J. Bale 1,
Jaap S. Sinninghe Damsté 1,2 & Anja Spang 1,3

The symbiontCa. Nanohaloarchaeum antarcticus is obligately dependent on its
hostHalorubrum lacusprofundi for lipids andothermetabolites due to its lackof
certain biosynthetic genes. However, it remains unclear which specific lipids or
metabolites are acquired from its host, and how the host responds to infection.
Here, we explored the lipidome dynamics of the Ca. Nha. antarcticus – Hrr.
lacusprofundi symbiotic relationship during co-cultivation. By using a compre-
hensive untargeted lipidomic methodology, our study reveals that Ca. Nha.
antarcticus selectively recruits 110 lipid species from its host, i.e., nearly two-
thirds of the total number of host lipids. Lipid profiles of co-cultures displayed
shifts in abundances of bacterioruberins and menaquinones and changes in
degree of bilayer-forming glycerolipid unsaturation. This likely results in
increased membrane fluidity and improved resistance to membrane disrup-
tions, consistent with compensation for higher metabolic load and mechanical
stress on host membranes when in contact with Ca. Nha. antarcticus cells.
Notably, our findings differ from previous observations of other DPANN
symbiont-host systems, where no differences in lipidome composition were
reported. Altogether, our work emphasizes the strength of employing untar-
geted lipidomics approaches to provide details into the dynamics underlying a
DPANN symbiont-host system.

Members of the DPANN archaea, originally named after the initials of its
first five identified groups (Diapherotrites, Parvarchaeota, Aenigmarch-
aeota, Nanoarchaeota, and Nanohaloarchaeota), are characterized by
small cell and genome sizes1. Since their discovery, additional lineages
such as Woesearchaeota2 and Pacearchaeota2, Huberarchaeota3,
Micrarchaeota4, Altiarchaeota5, Undinarchaeota6, and Mamarchaeota7

have been identified and incorporated into the DPANN superphylum.
These archaea arewidely distributed in diverse environments, including
hypersaline lakes8,9, marine6,10 and freshwater1,2 bodies, sediments11,12,
acid mine drainage sites4, and hot springs13. Apart from Altiarchaeota,
most DPANN archaea exhibit limited catabolic capabilities necessary to
sustain a free-living lifestyle2,14 and themajority of themare predicted to

rely on symbiotic interactions with other organisms14,15. Indeed, the few
cultivated DPANN have symbiotic lifestyles, with representatives from
three lineages (Nanoarchaeota, Nanohaloarchaeota, andMicrarchaeota)
available in co-culture with specific host archaea9,13,16–24.

Due to incomplete biosynthetic pathways for nucleotides, amino
acids, and lipids, most DPANN representatives are predicted to be
dependent on metabolites from their hosts. Our current knowledge
regarding the identity of those metabolites and the molecular basis for
the exchangeand/or uptakeof these compounds is limited. TwoDPANN
representatives (i.e., Nanoarchaeum equitans and Ca. Micrarchaeum
harzensis) are thought to acquire lipids from their hosts (Ignicoccus
hospitalis25 and Ca. Scheffleriplasma hospitalis21, respectively). Lipid
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analyses of pure host and symbionts as well as symbiont-host co-
cultures have revealed no significant qualitative difference in the lipid
compositionprofilesbetween those cultures, indicating that theprocess
of lipid uptake from the host is non-selective. However, it remains
unclear whether non-selective lipid uptake from host organisms is a
common feature among the various DPANN representatives.

In this study, we conducted a comprehensive analysis of the lipi-
dome of the DPANN symbiont-host system consisting of Ca. Nanoha-
loarchaeum antarcticus – Halorubrum lacusprofundi9,26. Ca. Nha.
antarcticus has so far not been obtained in a stable pure co-culture
with Hrr. lacusprofundi (long term co-cultivation results in loss of Ca.
Nha. antarcticus or death of the culture) andmust bemaintained in an
enrichment culture (CLAC2B) containing multiple Hrr. lacusprofundi
strains along with a Natrinema sp9. Recent work has shown that the
instability of pure co-culturesmay be due toCa. Nha. antarcticus being
a parasite that invades the host cytoplasm leading to host cell lysis26.
Ca. Nha. antarcticus lacks identifiable genes encoding proteins
involved in lipid biosynthesis and metabolism and is thus hypothe-
sized to relyon lipids of its host for survival9. Through the investigation
of the lipidome of Ca. Nha. antarcticus and its host, we aimed to (1)
determine whether the lipids of Ca. Nha. antarcticus closely resemble
those of the host or exhibit differences; and (2) assess potential
changes in the host’s membrane lipid composition upon infection by
Ca. Nha. antarcticus. Notably, our analyses reveal that Ca. Nha. ant-
arcticus selectively takes up a specific set of lipids from its host.
Moreover, in co-cultures, the lipidome composition undergoes chan-
ges that are likely compensating for an elevatedmetabolic load as well
as enhanced mechanical stress on the host membrane.

Results
Molecular network of lipidome in the Hrr. lacusprofundi-Ca.
Nha. antarcticus system
To determine the lipidome composition of Ca. Nha. antarcticus and
Hrr. lacusprofundi, pureCa. Nha. antarcticus cells were harvested from
the nanohaloarchaeal enrichment culture9 CLAC2B and inoculated
into pure cultures of Hrr. lacusprofundi in mid-exponential phase at a
ratio of 1:10 (Ca. Nha. antarcticus to Hrr. lacusprofundi cells). Biomass
of co-cultures and pure Hrr. lacusprofundi was harvested at regular
timepoints coveringmid- to late- exponential phase of culture growth,
whilst pure Ca. Nha. antarcticus cells were harvested pre- and post- co-
culture growth experiments (Fig. 1a, details in theMethod section). To
account for potential variation in lipid profiles between Hrr. lacu-
sprofundi strains and the possibility for acquisition of lipids from the
Natrinema sp. present in the enrichment, biomass from 5 additional
isolated Hrr. lacusprofundi strains and an isolate of the Natrinema sp.
were used as quality controls (QCs), harvested at mid-exponential
phase and subjected to lipidomics. Additionally, to assess whether
differences in the Ca. Nha. antarcticus lipid profile were due to dif-
ferences in lipid abundances within the enrichment culture, biomass
from the enrichment culture was harvested for lipidomic analysis.

Growth of cultures was assessed by optical density, qPCR mea-
surements, and 16S rRNA-targeted FISH microscopy (Fig. 1b, c, Sup-
plementary Figs. 2–5). Optical density readings indicated active growth
of both pure Hrr. lacusprofundi and co-cultures with the latter exhi-
biting a slightly slower rate of increase in density than pure culture.
The qPCR data showed growth of Ca. Nha. antarcticus with an initial
doubling of 16S rRNA copy number in the first 12 h followed by an
approximately 100-fold increase between 24 and 48 h. Despite lower
optical density readings, co-cultures displayed slightly higher 16S
rRNAcopynumbers forHrr. lacusprofundi.Hrr. lacusprofundi 16S rRNA
copy number remained stable in both conditions across the 48 h
incubation consistent with previously reported genome copy number
dynamics reported for other Halobacteriales27. FISH microscopy
revealed multiple stages of interaction between Ca. Nha. antarcticus
and Hrr. lacusprofundi in co-cultures (Supplementary Discussion,

Supplementary Figs. 2–4). Hrr. lacusprofundi cells displayed statisti-
cally significant shifts in size across pure and co-cultures with a similar
trend in reduction in average cell size over time in both cultures
(Supplementary Fig. 5, SupplementaryData 1). Its cell shape also varied
significantly but trends were different between cultivation conditions,
i.e., pure cultures displayed a gradual trend towards increased circu-
larity, whilst co-cultures displayed a shift towardsmore elongated rod-
shaped cells between 12 and24 hbefore increasing in circularity at48 h
though to a lesser degree than in pure cultures.

We analyzed the lipidomes of the samples obtained in our
experimental approachwith ultra high-pressure liquid chromatography
coupled with high-resolution tandem mass spectrometry (UHPLC-
HRMS2) and handled the data obtained with a recently established
pipeline that provides a comprehensive analysis of the microbial lipi-
dome in both complex environmental samples and laboratory
cultures28,29. In total, 2533 distinct ion components with associated MS2

spectra were extracted and employed to build up a molecular network
(Supplementary Fig. 6). Within this dataset, 1773 ion components (70%)
occurred in structure-similarity groupings in the molecular network,
while 760 ion components (30%) existed as singletons (i.e., lacking
structurally related counterparts). The MS2 spectra of these ion com-
ponents did not retrieve any match to any related archaeal lipids in the
Global Natural Product Social Molecular Networking (GNPS) spectral
library. Lipidome annotation remains a challenge in lipidomic studies,
as public spectral databases are inadequately populated. Nevertheless,
by comparison with literature30–37, as well as tentative identification, we
were able to annotate 246 likely archaeal lipids (Supplementary Fig. 6).

These identified 246 lipids can be classified into two primary
groups (Fig. 1d). The first group consists of bilayer-forming glycer-
olipids based on (extended) archaeol (AR, consisting of two ether-
bound isoprenoid chains with either 20 or 25 carbon atoms). These
occur either as AR core lipids (8 species, likely biosynthetic or degra-
dation intermediates) or with a polar head group. The latter comprise
phospholipids like phosphatidylglycerosulfates (PGS; 13 species),
phosphatidylglycerols (PG; 25 species), phosphatidic acids (PA, 3 spe-
cies), and dimeric phospholipids such as phosphatidylglyceropho-
sphate methyl ester (PGP-Me, 22 species), biphosphatidylglycerols
(PGPG, 11 species), and cardiolipins (CL, 41 species), as well as non-
phospholipids, including other sulfur containing lipids than PGS (S,
e.g., sulphated diglycosyl 3 species), monoglycosyl (1 G, 2 species),
diglycosyl (2 G; 2 species) archaeol. The second group comprises non-
bilayer forming lipids like menaquinones (MK, 39 species), squalene,
and bacterioruberins (15 species).

Additionally, we found 60 unknown species associated with var-
iousmajor archaeal lipid classes. Due to the limited informationonMS2

fragmentation, we were unable to deduce their complete chemical
structures. Nonetheless, critical fragments indicated their affiliation
with archaeal lipids. For instance, within the 1 G/2 G/S subnetwork, two
unknown lipids were linked to 1G-AR and 2G-AR (Source Data Table),
featuring parent ions with m/z of 1324.385 and 1306.355. In their MS2

spectra, both lipids exhibited diagnostic fragment ions atm/z 653.681
and 373.368, corresponding to AR, with an assigned elemental
composition (AEC) of C43H89O

+
3 and lysoAR glycerol with AEC of

C23H49O
+
3 , respectively. Although their exact structures remained

elusive, these lipids were included in the overall statistical analysis.

Structural diversity and specificity of lipidome in the Hrr.
lacusprofundi-Ca. Nha. antarcticus system
To assess the similarity in lipidome composition between the hostHrr.
lacusprofundi, the symbiontCa. Nha. antarcticus, their co-cultures, and
corresponding QCs across multiple time series and replicates, we
performed a Principal Component Analysis (PCA) on the abundances
of lipid species (Fig. 1e). The first two principal components (PC1 and
PC2) accounted for 45.3%of the total lipid variance. Themajority of the
purehostHrr. lacusprofundi cultures harvested at different timepoints
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were closely clustered together, adjacent to the enrichment culture,
indicating their high similarity. In contrast, the co-cultures formed a
distinct cluster by scoring positively on PC1. The pure Natrinema sp.
which is the third species isolated from the enrichment and five
additional Hrr. lacusprofundi strains QC exhibited proximity to the
host (depicted in Fig. 1a and Methods section), underscoring the
robustness of the culturing experiment and lipidome analysis results.

Importantly, a clear separation of the lipidome of Ca. Nha. antarcticus,
scoring negatively of PC2, from all other samples was observed.

To access the lipidomeplasticity of theHrr. lacusprofundi-Ca. Nha.
antarcticus system, we also employed an information theory
framework38,39, quantifying lipidome diversity (Hj index) and speciali-
zation (δj index) based on the Shannon entropy of the lipidomic fre-
quency distribution. Upon plotting the lipidome specialization and
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Fig. 1 | Overview of the experimental design and the general lipidome com-
position in the Hrr. lacusprofundi-Ca. Nha. antarcticus system. a Schematic
overview of the experimental design. b qPCR-based growth measurements. Error
bars show the standard deviation of calculated 16S rRNA gene copy number.
c Optical density at 600 nm (OD600) growth measurements. Error bars show the
standard deviation of measured OD600 values. d The number of individual lipid
species in major lipid classes among all the samples. e Principal Component Ana-
lysis (PCA) based on the abundance of intact polar lipid species, showcasing the
variance in general lipidomic features among distinct cultures or over varying
culture durations. f Information theory analysis showing lipidome diversity (Hj

index) and specialization (δj index) based on the Shannon entropy of the lipidomic
frequency distribution. Error bars in the data represent variability across replicates.
g Hierarchical clustering heatmap depicting the distribution of major lipid classes
among distinct cultures or over varying culture durations. The color bar on the
right side represents Z-score normalization scale (ranges from −3 to +3 standard
deviation (SD)). Sample abbreviations: Ca. Nha. antarcticus (Nha), Hrr.

lacusprofundi (HP), co-cultures (Cc), Natrinema sp. (NATC283), Enrichment
(CLAC2B), otherHrr. Lacusprofundi strains (DL11, DL14, DL12MDS, R1A8, ACAM34).
The sample abbreviation with a number stands for its culturing time, for example,
CC_6 means co-cultures sampled at 6 h. In Fig. 1b, c, f, and e, data of Cc and HP
cultures correspond to the mean values ± SD of three technical replicates. Nha has
two replicates. Source data are provided as a Source Data file. Lipid abbreviations:
archaeol core lipids (AR), phosphatidylglycerol (PG), phosphatidylglycerosulfate
(PGS), phosphatidic acid (PA), phosphatidylglycerophosphate methyl ester (PGP-
Me), biphosphatidylglycerol (PGPG), cardiolipin (CL)monoglycosyl (1 G), diglycosyl
(2G), archeaol lipids containing a sulfur-containing head group except for PGS (S),
menaquinone (MK), an “extended” “archaeol chain”, i.e., with a C25 isoprenoid
carbon chain (EXT-AR), unsaturation in the archaeol chain (uns). The two “n” in MK
(n:n) stand for numbers of the isoprenoid unit in the side chain and unsaturation in
the isoprenoid chain, respectively. MK(n:n-1) signifies one less double bond in the
nth isoprenoid chain.
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diversity of the Hrr. lacusprofundi-Ca. Nha. antarcticus system and
QCs, we observed that the pure host Hrr. lacusprofundi and QC sam-
ples exhibited relatively high lipid diversity and specialization com-
pared to the symbiont (Fig. 1f). In contrast, the co-cultures showed
relatively low lipid diversity during the first 12 h of cultivation, which
subsequently increased from 24 to 48 h, resulting in a more diverse
lipidome profile which was comparable to the profiles of the pureHrr.
Lacusprofundi harvested at different time points. The enrichment
cultures displayed the highest lipid specialization, while the symbiont
exhibited the lowest lipid diversity and specialization, which may be
the result of the symbiont’s lack of identifiable unique genes respon-
sible for lipid biosynthesis9.

We further employed a hierarchical clustering heatmap to exam-
ine the distribution of approximately thirty major lipid classes in the
host Hrr. lacusprofundi, the symbiont Ca. Nha. antarcticus, and their
co-cultures (Fig. 1g). These lipid classes were categorized based on
their polar head groups, degrees of unsaturation, and chain lengths.
This method allowed us to evaluate the resemblance in lipid class
profiles across the cultures and provided an overall comparison of
culture similarity grounded in these lipid classifications. The thirty-
three major lipid classes were grouped into five distinct clusters. The
first cluster consisted of AR core lipids, MK with a high degree of
unsaturation [e.g.,MK(8:8) andMK(8:9), the number of the isoprenoid
unit in the side chain: the number of double bonds], PGPG and CLwith
varying degrees of unsaturation. The second cluster comprised
phospholipids PG and PGP-Me. The third cluster included PG
unknowns, PG-LysoAR (which featured only one C20 or C25 chain) and

bacterioruberins. The remaining clusters comprised highly unsatu-
rated phospholipids (e.g., CL with 10-13 double bonds), 1 G, 2 G, sulfur-
containing lipids, along with several less abundant lipids and
unknowns. The lipid class composition of the host sampled atdifferent
harvest times were similar to each other, as were lipid profiles of the
co-cultures obtained at different harvest times. Consistent with the
PCA analysis and characterization of the lipidome diversity and spe-
cialization, which are both based on the complete lipid species profile,
the hierarchical clustering based on themajor lipid class compositions
also revealed that the host, co-cultures, and the symbiont differed
from each other.

Changes in the molecular network of the lipidome over time. We
next analyzed the variation in the lipidomecompositions at the species
level by integrating molecular subnetworks of various lipid classes
(Fig. 2 and Supplementary Fig. 7) from the overall molecular networks
(Supplementary Fig. 6), based on their relative abundances. For some
lipid species, abundances displayed significant variation between both
cultivation conditions and time points of the same cultivation condi-
tion (Fig. 3a). The relative abundance of PGP-Me-AR comprised 44% of
total lipids in the symbiont, significantly higher (P <0.05, Tukey’s
Honest Significance Difference test, Fig. 3a) than in the pure culture of
the host (13–21%) and the co-culture (12–31%). In addition, bacterior-
uberins were underrepresented in symbiont biomass (0.2%) compared
to both pure culture of the host (1.2–2.9%) and co-culture (1.1–5.2%)
total lipids, irrespective of time. The pure Hrr. lacusprofundi culture
also displayed a significantly different lipid profiles compared to that
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Figure 2 offers an overview of themajor lipid compositions of Ca. Nha. antarcticus,
highlighting the significant difference in lipid types between our symbiont system
and others that primarily consist of monolayer membrane tetraether lipids21,25.
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of the co-culture with statistically significant differences in the relative
abundance of bacterioruberins, CL, PGP-Me, PG, and MKs of which
only the relative abundance of PGwas time-dependent (18.5–22.3% co-
cultures, 7.5–17.1%pureHrr. lacusprofundi). The remaining lipid classes
displayed time-dependent differences in relative abundance, whereby
CL was underrepresented in early-mid co-culture growth (6–24 h,
0.6–1.2% co-culture, 1.5–1.7% pureHrr. Lacusprofundi culture), PGP-Me

wasoverrepresented in early –mid culture growth (0–24 h, 20.3–31.4%
co-culture abundance, 13–21% pure Hrr. lacusprofundi abundance). In
contrast,MKs (12.6–12.7% co-culture, 7.7–9.2%pureHrr. lacusprofundi)
and bacterioruberins (3.6–3.7% co-culture, 2.1–2.4% pure Hrr. lacu-
sprofundi) both became significantly enriched in the late phases
(24–48 h) of the co-culture biomass compared to the pure culture of
Hrr. lacusprofundi. There were also statistically significant shifts in the
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degree of lipid saturation with both purified Ca. Nha. antarcticus cells
and co-cultures displaying higher rates of saturation in bilayer forming
glycerolipids when compared to pure Hrr. lacusprofundi cultures
(Supplementary Fig. 8). The degree of saturation of MK also varied
across samples with Ca. Nha. antarcticus and co-cultures in the late
growth phase showing increased abundance of MK with one less
saturation than the number of the isoprenoid unit in the side chain
[e.g., MK(8:7), Supplementary Fig. 8].

Lipid intersection in the Hrr. lacusprofundi-Ca. Nha.
antarcticus system. We next generated an UpSet plot40,41 (Fig. 3b) to
highlight the number of lipid species shared between samples, as well
as those unique to either. Furthermore, this analysis provides insight
into the number of lipid species potentially acquired by the symbiont
from the host. As shown in Fig. 3b, the symbiont Ca. Nha. antarcticus
contained 110 individual lipid species, while the pure culture of Hrr.
lacusprofundi consistently contained approximately 165 lipid species.
The co-cultures had around 140 lipid species in the first 12 h, pro-
gressively increasing to approximately 175 species by the end of the
experiment at 48 h. This trend aligns with the observed lipid diversity
Hj index in Fig. 1f, suggesting that Ca. Nha. antarcticus incorporated
only a limited number of lipid species from Hrr. lacusprofundi. More-
over, 86 lipid species across all major lipid classes were observed to be
commonly present in all cultures. There were 20 lipid species exclu-
sively found in both co-cultures and pureHrr. lacusprofundibut absent
in Ca. Nha. antarcticus. Notably, ten specific lipid species, were
detected exclusively in the co-cultures between 24 and 48 h. These
include two bacterioruberins, menaquinones with equal or additional
unsaturation relative to their isoprenoid unit chain length [MK(n:n),
MK(n:n + 1)], and specific phospholipids. Conversely, three menaqui-
noneswith oneunsaturation less than their number of isoprenoidunits
[MK(n:n-1)] were uniquely present in Ca. Nha. antarcticus and the
enrichment (Fig. 3b and Supplementary Fig. S9), specifically MK(7:6),
MK(4:3), and demethylmenaquinone DMK(7:6). This underscores a
notable distinction in lipid species composition among the host, co-
cultures, and Ca. Nha. antarcticus.

Discussion
Given the lack of key lipid biosynthesis pathways in the Ca. Nha. ant-
arcticus genome (as shown in Fig. 4), the difference in lipidome com-
position observed betweenHrr. lacusprofundi and Ca. Nha. antarcticus
indicates that Ca. Nha. antarcticus selectively acquires specific lipid
species from its host. These observations match with the lipid uptake
behavior noted for archaeal viruses42–45. For instance, the Sulfolobus
filamentous virus 1 selectively acquired lipids from its host Sulfolobus
shibatae for survial44. However, our results contrast those of previous
studies on two DPANN symbiont-host systems, which did not identify
differences between symbiont and host lipid profiles21,25. These dis-
crepancies may be attributed to natural differences between these
distantly related symbiotic partnerships or could stem from

differences in the methodologies. Specifically, our untargeted lipi-
dome approach provides higher resolution, enhancing the capacity to
discern and compare lipid profiles, surpassing traditional methods. It
will be important to address in future studies whether the application
of this technique to other DPANN symbiont host systems may reveal a
similar specificity in lipid uptake by those DPANN species. In terms of
natural differences, unlike the other reported host archaea which pri-
marily consist of monolayer membrane tetraether lipids, mostly gly-
cerol dialkyl glycerol tetraethers46, the cellular membranes of Hrr.
lacusprofundi are exclusively formed by bilayer AR lipids30,31,37. The
composition of bilayer-forming intact polar lipids in Halobacteriales
stands as one of the most extreme instances of negatively charged
membranes across the tree of life and is considered to be an adapta-
tion to the high cationic environment31. For instance, Halobacteriales
are the only archaea known for their unique capability to produceboth
PGP-Me and CLs33,35,47–49. This preference for bilayermembranes within
Halobacteriales confers ecological advantages and the energy-efficient
bilayer membrane structure observed in the host, Hrr. lacusprofundi,
could potentially offer greater flexibility for Ca. Nha. antarcticus to
selectively uptake specific lipids.

It has previously been shown that the distance between negative
charges on the head group structure of CL reduces the efficiency of
association with divalent cations such as Mg2+ and favors association
with monovalent cations such as K+, whilst PGP-Me more efficiently
associates with divalent cations31. The medium used for these cultiva-
tion experiments contains much higher concentrations of Mg2+ com-
pared to K+ (514mM combined MgSO4 and MgCl, 39mM KCl). In
addition, experiments in reconstituted phosphatidylcholine-based
membranes have shown that increased CL abundance reduces both
membrane stability and the force necessary for membrane piercing50.
Given that Ca. Nha. antarcticus lacks the capacity to regulate the
composition of its membrane; it is plausible that an increased abun-
dance of PGP-Me and a reduced abundanceof CL, compared to its host
(Fig. 3a), provides greater stability to the nanohaloarchaealmembrane
under such high divalent cation concentrations, reducing the energy
expenditure necessary for membrane maintenance.

The significant decrease in bacterioruberin abundance within Ca.
Nha. antarcticus biomass compared to Hrr. lacusprofundi suggests a
counter-selection against recruitment of bacterioruberins into the
symbiont membrane (Fig. 3a). Bacterioruberin functions as an anti-
oxidant, increases membrane rigidity, and is associated with rho-
dopsins within membranes of members of the Halobacteriales51. The
exclusion of bacterioruberins from the nanohaloarchaealmembrane is
in agreement with the prediction of lower oxidative stress in the
symbiont due to its fermentative lifestyle or pressure to maintain
higher membrane fluidity. In addition, whilst Ca. Nha. antarcticus
possesses a rhodopsin gene, this is predicted to encode a sensory
rhodopsin, in contrast to the rhodopsins that are present in the Hrr.
lacusprofundi genome that likely generate proton gradients for ATP
production and may necessitate more bacterioruberins. Consistent

Fig. 3 | The presence, absence, and changes in lipid composition in the Hrr.
lacusprofundi-Ca. Nha. antarcticus system. a The relative abundance of repre-
sentative lipid specieswithin themost dominant lipid classes. Statistical differences
in lipid species among the samples were assessed using the one-sided Tukey’s
Honest Significance Difference test (TukeyHSD) with multiple comparisons, and
results were visualized with the Compact Letter Display (CLD) (P <0.05). b The
shared lipid species across samples is illustrated through an UpSet plot40,41. A
threshold of 0.01% relative abundance of total lipids was applied to determine the
presence of a lipid in a specific sample; lipids with less than 0.01% of total lipid
abundance were considered absent in that sample. The dark connected dots
denote lipid species shared among these samples. Sample abbreviations: Ca. Nha.
antarcticus (Nha), Hrr. lacusprofundi (HP), co-cultures (Cc) and Enrichment
(CLAC2B). Data of Cc and HP cultures correspond to the mean values ± SD of three
technical replicates. Nha has two replicates. Natrinema sp. (NATC283) and five

otherHrr. lacusprofundi strains (DL11, DL14, DL12MDS, R1A8, ACAM34) are used as
controls (n = 6). Lipid abbreviations: demethylmenaquinone (DMK)85, methylme-
naquinone (MMK), dimethylmenaquinone (DMMK). The representative lipid spe-
cies are 1G-AR (m/z 832.760, C49H102O8N

+), 2G-AR (m/z 994.813, C55H112O13N
+), AR

(m/z 653.681, C43H89O3
+), Bacterioruberin (m/z 741.581, C50H77O4

+), CL-AR-AR (m/z
1522.313, C89H183O13P2

+), MK(8:8) (m/z 717.560, C51H73O2
+), PG-AR (m/z 807.684,

C46H96O8P
+), PGP-Me-AR (m/z 901.666, C47H99O11P2

+), PG-PG-AR (m/z 961.687,
C49H103O13P2

+). PG, PG-AR, and unknown PG represent different lipid expressions.
PG-AR signifies a PG headgroup linked to an archaeol core lipid, characterized by a
lipid specieswith anm/z 807.684 and an elemental composition of C46H96O8P

+. The
term PG encompasses all PG lipid species, including PG-AR and PG-EXT-AR (which
has an additional isoprenoid unit), and others. The term ‘unknownPG’ is usedwhen
the core lipid is unidentified. Source data are provided as a Source Data file.
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with oxidative stress playing a role in determining membrane com-
position, Ca. Nha. antarcticus also displayed a preference forMKs with
increased degree of unsaturation, which has been suggested to oper-
atemore efficiently in hypoxic conditions52. MKs function as important
carrier molecules within the electron transport chain during respira-
tion, and have also been proposed to play a role in the regulation of
membrane permeability through increased packing within the bilayer
and oxidative stress through scavenging of free radicals31. Interest-
ingly, for Mycobacterium tuberculosis increased unsaturation of MKs
was proposed as an adaptation to intracellular environments, which
are often lower in oxygen content52. Recently it was reported that Ca.
Nha. antarcticus appears to invade host cells during the process of
interaction26 and the preference for increased MK desaturation may

similarly assist in survival during this stage of the symbiont’s lifecycle.
The contrasting metabolic strategies employed by this nanoha-
loarchaeumcompared to its hostmay favor the selective acquisition of
lipids seen in our data to maximize metabolic efficiency and survival.

In addition to the differences between Ca. Nha antarcticus and
host lipid profiles, there were significant shifts in lipidome composi-
tion of the co-culture biomass and pure Hrr. lacusprodundi. This indi-
cates a different membrane composition for host cells during co-
culture. Initially co-cultures showed low lipid species numbers and
lipid diversity during the first 12 h, which may partly be due to the
limited lipid diversity of the symbiont Ca. Nha. antarcticus but also
reflects changing lipid composition in the hostHrr. lacusprofundi. The
subsequent rise in the number of lipid species and diversity in co-
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Fig. 4 | A schematic figure showing lipid composition and biosynthetic path-
ways in Hrr. lacusprofundi, Ca. Nha. antarcticus, and co-cultures. Lipid bio-
synthetic pathways weremanually reconstructed using genome annotations ofHrr.
lacusprofundi andCa. Nha. antarcticus inferred usingKEGGorthology (List of genes
present in Supplementary Data 3 and 5). In some cases (marked by asterisks) the
correct KEGG annotation could not be identified but a related enzyme that may
carry out the reaction was present and is shown instead. Insets above cells show

abundance of different lipid classes in each condition at 24 h. Localization of MKs
within the bilayer is shown in two possible states in line with current uncertainty
regarding the exact positionMKsoccupieswithin themembrane31. A representative
16S rRNA target FISHmicroscopy image as an example of the interactions between
host and symbiont is included (Colors correspond to DNA: Blue,Hrr. lacusprofundi:
Yellow, Ca. Nha. antarcticus: Magenta).
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cultures over the following 36 h, along with the distinct lipid compo-
sition compared to the pure Hrr. lacusprofundi, suggests that Hrr.
lacusprofundi modifies its membrane composition in response to
interactions with Ca. Nha. antarcticus. Interestingly, lipid species
enriched in Ca. Nha. antarcticus (e.g., PGP-Me) showed a decrease in
abundance over the course of the time series in the co-cultures. In
contrast, the diversity and abundance of other lipids, such as bacter-
ioruberins andMKs, whichwere less prevalent in the nanohaloarchaeal
membrane, showed an increase in abundance in the co-cultures. The
increased abundance of bacterioruberins and MKs likely indicates a
response from Hrr. lacusprofundi to an increase in metabolic load due
to the presence of the symbiont. Similarly, bilayer-forming glycer-
olipids showed an increase in the rate of desaturation resulting in
increased membrane fluidity and likely enhanced permeability for
electron transport and therefore more efficient respiration31,53.

Similar to Ca. Nha antarcticus, the CL abundance in the co-culture
biomass also decreased, which likely reflects decreased abundance in
both species’ bilayers. Asmentioned above, incorporation of CLwithin
phosphatidyl-choline membranes reduces stability of the membrane
and the energy necessary for membrane puncture50 Reduced abun-
dance within co-culture biomass may reflect an increase in membrane
stability and resistance to mechanical stress. DPANN archaea that take
up nutrients directly from host cells require access to their host’s
cytoplasm for nutrient acquisition and have been observed to form
channels in host membranes as part of interactions54. Therefore, it
seems possible that the decreased CL content in theHrr. lacusprofundi
membrane fortifies themembrane, whichmay impede predation by its
symbiont (through increased resistance to membrane puncture) and/
or enhance survival of infected cells by reducing the chance of mem-
brane destabilization.

Due to the nature of the Hrr. lacusprofundi – Ca. Nha. antarcticus
system it was not logistically feasible to isolate the two organisms from
each other during these experiments. As a result, the co-culture lipi-
dome data reflects the composition of both organisms combined and
our capacity to attribute shifts within it to either organism is limited.
Despite this, the lipid profiles of Ca. Nha. antarcticus biomass pre- and
post-incubation were comparable (Fig. 1e, f, Ca. Nha. antarcticus data
point anderrorbars represent both samples) indicatingmost changes in
co-culture lipids were likely host derived. However, it remains possible
that during intermediate timepoints Ca. Nha. antarcticus is responsible
for some of the variation in lipid abundance observed. Development of
novel techniques for isolating Ca. Nha. antarcticus from Hrr. lacu-
sprofundi in the futuremay provide greater clarity regarding the source
of changes in the lipidomes of the two organisms in co-culture.

Our study revealed that the DPANN archaeon Ca. Nha. antarcticus
selectively acquires specific lipids from its host Hrr. lacusprofundi.
Additionally, during co-cultivation, Hrr. lacusprofundimodified its own
lipid composition likely resulting in changes inmembrane integrity that
may constitute a lipid defense mechanism to restrict the exploitability
of host cells by the symbiont. This study also emphasizes the strengthof
employing computational untargeted lipidomics approaches to eluci-
date lipid interactions within a host-symbiont culture system. Further
research is needed todelve into themechanismsunderlying the specific
selection of lipids and lipid defensive functions by the symbiont and

host, respectively. Understanding these mechanisms will deepen our
knowledge of archaeal host-symbiont interactions at a molecular level,
especially in the context of lipid exchange and survival strategies in
extreme environments.

Methods
Purification of nanohaloarchaeal cells
To acquire Ca. Nha. antarcticus cells for use in co-culture experiments,
nanohaloarchaeal cells were purified via filtration following previously
described methods26. Briefly, 1 L of nanohaloarchaeal enrichment
culture9 was filtered sequentially through 0.8 µm (3x) and 0.2 µm (3x)
polycarbonate filters (Isopore, Merck Scientific). Purified cells were
then pelleted by centrifugation at 20,000 g for 10min and resus-
pended in 4mLofDBCM2media55. 100 µLof purified cellswere stained
with MitoTracker Green (as previously described26) and Nile Red (1 µg/
mL in 30% Salt Water (SW)mix55) for 1 h and imaged on an Axio Imager
M2 microscope to assess purity and possible contamination of cell
debris. 100 µL of purified cells were pelleted, DNA extracted using a
PeqGold DNA Blood and Tissue Extraction kit following the manu-
facturer’s instructions (VWR), and PCR performed targeting both Ca.
Nha. antarcticus and Hrr. lacusprofundi (primer details in Table 1) to
confirm purity of cells. Remaining Ca. Nha. antarcticus cells were
divided into four aliquots (~5 × 107 cells): one aliquot was pelleted and
used as biomass for lipidomic analyses, whilst the other three aliquots
were inoculated into pure cultures of Hrr. lacusprofundi R1S1 for co-
culture experiments.

Cultivation experiments
Cultures ofHrr. lacusprofundiR1S1Bwere grown in DBCM2 in triplicate
by shaking (120 r.p.m.) at 30 °C in volumes of 250mL to late expo-
nential phase. Cultureswere then split intoduplicates anddiluted to an
OD600 of 0.2 in 250mL. Infected cultures were inoculated with ~5 × 107

purified nanohaloarchaeal cells (see above). Samples for downstream
analyseswere harvested at 0 h, 6 h, 12 h, 24 h, and 48 h. Culture density
was measured using OD600 in triplicate with fresh DBCM2 media as
blank at each timepoint. For lipidomics samples, 10mL of culture was
pelleted at 6000 g for 30min then washed in 30% SW and pelleted at
20,000 g for 10min three times to remove excessmedia components.
Samples for qPCR were acquired by pelleting 1mL of culture at
20,000 g, and removal of supernatant, and DNA extraction were per-
formedas above. Samples for FISHwerefixedwith 2.5%glutaraldehyde
at 4 °C overnight, washed with milliQ water and stored at −20 °C. In
addition to Hrr. lacusprofundi R1S1 cultures and Hrr. lacusprofundi
R1S1B – Ca. Nha. antarcticus co-cultures, lipidomics samples were
collected from the nanohaloarchaeal enrichment culture, a pure
Natrinema sp. isolated from the enrichment, and five additional and
distinct Hrr. lacusprofundi strains as controls.

PCR and qPCR
All PCR and qPCR reactions were performed using the same primer
pairs for either Ca. Nha. antarcticus or Hrr. lacusprofundi (Table 1).
Purity offilteredCa. Nha. antarcticus cellswas assessedby standardPCR
with both sets of primers using DreamTaq polymerase (ThermoFisher)
for 35 cycles at 55 °C annealing temperature. Standards for qPCR were

Table 1 | Detail of FISH Probes and PCR Primers used in this study

Name Purpose Target Organism Sequence

Lacus-FISH-Cy3 FISH Probe Hrr. lacusprofundi /5Cy3/TTATTACAGTCGACGCTGGTGAGATGTCCG

Nha-FISH-Cy5 FISH Probe Ca. Nha. antarcticus /5Cy5/GTGTATCCCAGAGCATTCG

H_lac_qpcrF qPCR Primer Hrr. lacusprofundi GGATTGTGCCAAAAGCTCCG

H_lac_qpcrR qPCR Primer Hrr. lacusprofundi ACTCTCATGACCCGTACCGA

Nanohalo_qpcrF qPCR Primer Ca. Nha. antarcticus ACTTAAAGGAATTGACGGGGG

Nanohalo_qpcrR qPCR Primer Ca. Nha. antarcticus CATGCAGCTCCTCTCAGCG
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produced by PCR amplification of both Ca. Nha. antarcticus and Hrr.
lacusprofundi 16S rRNA genes followed by cloning of amplified pro-
ducts into a pGEM-T easy vector (Promega), transformation of JM109
competent cells (Promega), and subsequent plasmid purification using
a peqGOLD Plasmid Miniprep Kit, all steps were carried out as per the
manufacturer’s instructions. qPCR reactions were performed in a
CFX96 Real-Time PCRDetection System (Bio-Rad) for 40 cycles with an
annealing temperature of 55 °C.

Fluorescence microscopy
Fluorescence in-situ Hybridization reactions were carried out as pre-
viously described9,56. Briefly,fixed sampleswerepelleted at 20,000 g for
10min, resuspended in hybridization buffer with probes (100pM
working concentration, probe details in Table 1) specific to Ca. Nha.
antarcticus and Hrr. lacusprofundi and incubated at 46 °C for 3 h. Cells
were then pelleted at 20,000 g for 10min, resuspended in wash buffer,
and incubated at 48 °C for 30min. Cells were then pelleted again at
20,000g for 10min, resuspended in PBS with 300nM DAPI for coun-
terstaining, and incubated for 1 h. Stained cells (30 µL) were mounted
ontoglass slideswith antifadant and imagedonanAxio ImagerM2.Data
analysis and image processing was conducted using Fiji57.

Genomic analyses
To identify lipid biosynthesis capacities within Ca. Nha. antarcticus and
Hrr. lacusprofundi genomes were annotated with a suite of functional
annotation tools and manually curated. Due to rapid genome rearran-
gement within Hrr. lacusprofundi strains Hrr. lacusprofundi strain R1S1
was re-sequenced and assembled prior to conducting experiments. To
avoid confusion with the existing Hrr. lacusprofundi R1S1 genome, we
designate this as Hrr. lacusprofundi R1S1B. DNA was extracted as
described above and sent for sequencingwith Illumina 2 × 150bppaired
end reads (Eurofins). Raw reads were trimmed with trimmomatic58

(v0.36, settings: SLIDINGWINDOW:5:22 MINLEN:100), assembly was
performed using SPAdes59 (v3.15.0, settings: -t 10 -k 21,39,59,99,127) and
assembly was quality assessedwith quast60 (v4.6.3). Genomic analysis of
Ca. Nha. antarcticus was carried out on the published genome accessed
from IMG (IMG Genome ID: 2643221421). For both genomes the
approach from ref. 6 was followed. Briefly, coding sequences were
predicted using Prokka v1.1461 (settings: --kingdom Archaea --addgenes
--force --increment 10 --compliant --centre UU --cpus 20 --norrna
–notrna). For functional annotation of genes several additional data-
bases were used including COGs62 (downloaded October 2020),
arCOGs63 (2018 version), KO profiles from the KEGG Automated Anno-
tation Server64 (downloaded April 2021), the Pfam database65 (release
34.0), the TIGRFAM database66 (release 15.0), the Carbohydrate-Active
enZymes (CAZy) database67 (v7, downloaded August 2020), the Trans-
porter Classification Database68 (downloaded April 2021), the Hydro-
genase database69 (HydDB, downloaded July 2020), and NCBI_nr
(downloaded Aug 2021). In addition to this, protein domain predictions
were carried out using InterProScan70 (v5.62-94.0, setting: --iprlookup
--goterms).

Annotations for the respective databases were carried out as
follows. COGs, arCOGs, KOs, PFAMs, TIGRFAMs, and CAZymes were
all identified using hmmsearch v3.1b2 (settings: -E 1e-5). The Trans-
porter Classification Database and Hydrogenase Database were
queried using BLASTp71 v2.7.1 (settings: -evalue 1e-20). For database
searches the best hit was selected based on highest e-value and bit-
score and summarized in Supplementary Data 2 and 4. Multiple hits
were allowed for InterProScan domain annotations using a custom
script for parsing results (parse_IPRdomains_vs2_GO_2.py). Best blast
hits against the NCBI_nr database were identified using DIAMOND72

(settings: blastp --more-sensitive --evalue 1e-5 --no-self-hits). Identi-
fication of lipid biosynthesis genes was performed manually by
screening annotated genes for KEGG annotations associated with
synthesis of relevant lipids.

Lipidome extraction and analysis
Themethodology for lipid extraction andmeasurement in this study is
detailed in ref. 29 To eliminate background lipids and contaminants,
both medium blanks and extraction blanks were utilized. Briefly, the
samples and blanks were extracted using a modified Bligh-Dyer
extraction method73,74. They were subjected to ultrasonic extraction
for 10min, twice using amixtureofmethanol, dichloromethane (DCM)
and ½PO3�

4 � buffer (2:1:0.8, v/v/v) and twicewith amixture ofmethanol,
DCM, and aqueous trichloroacetic acid solution at pH 3 in the same
ratio. The organic phase was separated by adjusting the solvent mix-
ture to a final ratio of 1:1:0.9 (v/v/v) with additional DCM and buffer.
This organic phase was then subjected to three further extractions
using DCM and then dried under a stream of N2 gas. The dry extract
was re-dissolved in amethanol andDCMmixture (9:1, v/v), followed by
filtration through 0.45μm regenerated cellulose syringe filters (4mm
diameter; Grace Alltech). The filtered extracts were subsequently
analyzed using an Agilent 1290 Infinity I UHPLC system coupled to a Q
Exactive Orbitrap MS (Thermo Fisher Scientific, Waltham, MA). The
generated output data from the UHPLC-HRMS2 analysis were pro-
cessed with MZmine software75 to extract MS1 and MS2 spectra as
well as quantify peaks. This processing included several steps: mass
peak detection, chromatogram building, deconvolution, isotope
grouping, feature alignment, and gapfilling (https://ccms-ucsd.github.
io/GNPSDocumentation).

Molecular networking
The MS/MS spectra dataset was further processed using the Feature-
Based Molecular Networking tool on the GNPS platform76,77. Molecular
networking is a key data analysis methodology in untargeted metabo-
lomics studies based onMS/MS analysis, arrangesMS/MS spectra into a
network-like map. In this map, molecules with similar spectral patterns
are clustered together, indicating their structural similarities. The ana-
lysis involves calculating vector similarities comparing pairs of spectra
based on at least fivematching fragment ions (peaks). This comparison
not only considers the relative intensities of the fragment ions but also
the difference in precursor m/z values between the spectra77,78. The
molecular network is constructed using MATLAB scripts, where each
spectrum is linked to its top K scoring matches, usually allowing up to
10 connections per node. Connections (edges) between spectra are
retained if they rank among the top K matches for both spectra and if
the vector similarity score surpasses a predetermined threshold. The
similarity score is quantified as a cosine value, where a score of 1.0 sig-
nifies identical spectra. In this study, a cosine value of 0.5 was used to
define significant spectral similarities, indicating a moderate to high
level of structural resemblance between the analyzed molecules.

In the molecular networking analysis of the MS/MS spectra, when
an ion component displayed both protonated [M+H]+ and ammo-
niated [M+NH4]

+ ions, the overall abundance of that component was
calculated as the combined total of the abundances of these two ion
forms. For the construction of the molecular network, a minimum of
five shared fragment ions was established as the criterion for con-
necting pairs of relatedMS/MS spectra with an edge. Each node within
the networkwaspermitted to connect to amaximumof ten analogs. In
addition, consensus spectra were compared against the GNPS spectral
library77,79, allowing for amaximum analogmass difference ofm/z 500.
Themaximum size of nodes allowed in a single connected subnetwork
was capped at 100. In scenarios where the dataset contained a sig-
nificant number of related lipids (exceeding 100), these lipids were
segregated into different subnetworks.

Themolecular networks derived from the analysis were visualized
using Cytoscape version 3.9.180,81. It is important to note that since
many of the lipids detected in this study have not been previously
characterized, authentic standards for absolute quantification were
not available. The lipids were corrected for sample recovery with a 1,2-
dipalmitoyl-sn-glycero−3-O-4’-[N,N,N-trimethyl(d9)]-homoserine
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(DGTS-d9) internal standard then examined based on their normalized
peak area responses. Consequently, the relative peak areas calculated
abundance do not indicate the actual relative abundance of different
lipids in samples. Nevertheless, this method allowed comparison of
lipids between different cultures or cultivation conditions, rather than
determining the absolute quantities of each lipid present82.

Information theory framework
The lipidome’s diversity and specialization, along with the specificity
of individual lipid species, were defined and analyzed using an infor-
mation theory framework38,39,83. Lipids were characterized via their
distinct tandemMS2 spectra and their relative occurrence frequencies
across various cultures. The lipidome diversity, the Hj index, was cal-
culated using the Shannon entropy based on the frequency distribu-
tion of lipid species as determined by the abundance of their MS2

precursor ions. The equation is as follows

Hj = �
Xm

i = 1

Pijlog2ðPijÞ ð1Þ

wherePij correspond to the relative frequency of the ithMS2 (i = 1, 2,…,
m) in the jth sample (j = 1, 2,…, t), to illustrate how abundant a specific
MS2 spectrum is relative to all others.

The average frequency of the ith MS2 among samples was calcu-
lated as

Pi =
1
t

Xm

j = 1

Pij ð2Þ

Individual lipid species specificity, the Si index, was defined as the
identity of a given MS2 regarding frequencies among all the cultures.
The lipid species specificity was calculated as

Si =
1
t

Xt

j = 1

Pij

Pi
log2

Pij

Pi

 !

ð3Þ

Individual lipid species specificity of specific cultures, was defined
as Sij index.

Sij =
Xt

j = 1

Pij

Pi
log2

Pij

Pi
ð4Þ

The lipidome specialization δj index wasmeasured as the average
of the MS2 specificities using the following formula

δj =
Xm

i = 1

PijSi ð5Þ

Statistical analysis
For PCA, the abundancedata of lipid specieswere initially transformed
using the Hellinger distance method84 to mitigate bias arising from
zero values. This data was then processed and visualized using R
software, version 4.1.2. Hierarchical clustering was performed using
the “ggplot2” and “pheatmap” packages in R, version 4.3.2.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. The processed data (.mgf
and.csv) with the molecular network and detailed parameter settings
used in this study are available at the GNPS platform under accession
code https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=

c75ddcdd8d2e426e9d537ee1037a2b43. The raw data of lipidome used
in this study is available in MassIVE under accession code https://
massive.ucsd.edu/ProteoSAFe/dataset.jsp?accession=MSV000094377.
The Halorubrum lacusprofundi R1S1B genome used in this study has
been deposited at DDBJ/ENA/GenBank under the accession
JAXGGM000000000, BioProject: PRJNA1046704, BioSample:
SAMN38507334. The version described in this paper is version
JAXGGM010000000. Databases used for genome annotation can be
found at: COGs 2020 update https://ftp.ncbi.nlm.nih.gov/pub/COG/
COG2020/data/, arCOGs 2018 https://ftp.ncbi.nlm.nih.gov/pub/wolf/
COGs/arCOG/ KEGG 2021 https://www.kegg.jp/kegg/download/, TIGR-
FAMs 15.0 https://ftp.ncbi.nlm.nih.gov/hmm/TIGRFAMs/release_15.0/,
CAZy Database 7 http://www.cazy.org/spip.php?rubrique59, Hydro-
genase Database 2020 https://services.birc.au.dk/hyddb/browser/,
NCBI_nr 2021 https://ftp.ncbi.nlm.nih.gov/blast/db/, Transporter Classi-
fication Database 2021 https://www.tcdb.org/download.php. The source
data for all the figures are provided either in the Supplementary infor-
mation or in the extended dataset in our data repository on zenodo
https://doi.org/10.5281/zenodo.10851289.

Code availability
All custom scripts and workflows used to generate data in this study
are available in zenodo under accession code https://doi.org/10.5281/
zenodo.10851289.
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