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ABSTRACT

Multilevel autoregressive models are popular choices for the analysis of intensive longitudinal
data in psychology. Empirical studies have found a positive correlation between autoregressive
parameters of affective time series and the between-person measures of psychopathology, a
phenomenon known as the staging effect. However, it has been argued that such findings may
represent a statistical artifact: Although common models assume normal error distributions,
empirical data (for instance, measurements of negative affect among healthy individuals) often
exhibit the floor effect, that is response distributions with high skewness, low mean, and low vari-
ability. In this paper, we investigated whether—and to what extent—the floor effect leads to
erroneous conclusions by means of a simulation study. We describe three dynamic models which
have meaningful substantive interpretations and can produce floor-effect data. We simulate
multilevel data from these models, varying skewness independent of individuals’ autoregressive
parameters, while also varying the number of time points and cases. Analyzing these data with
the standard multilevel AR(1) model we found that positive bias only occurs when modeling
with random residual variance, whereas modeling with fixed residual variance leads to negative
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bias. We discuss the implications of our study for data collection and modeling choices

Introduction

In the past two decades, the collection of intensive
longitudinal data based on techniques like the experi-
ence sampling method, ambulatory assessments, and
daily diaries has become increasingly popular in psy-
chological research (Bolger & Laurenceau, 2013). To
study the dynamics in these data, multilevel versions
of the first-order autoregressive (AR(1)) model and
the multivariate version, known as the first-order vec-
tor autoregressive (VAR(1)) model, are often used
(Asparouhov et al, 2018; Bringmann et al, 2013;
Epskamp et al,, 2018). In these models, the current
observation is regressed on itself at the preceding
measurement occasion through the autoregressive or
inertia parameter (Cook et al, 1995 Koval &
Kuppens, 2012; Kuppens et al., 2010; Suls et al., 1998).
Research has shown that higher inertia in affective
measures tends to be associated with higher levels of
neuroticism (Koval et al., 2015;; Suls et al., 1998) and

depression (Houben & Kuppens, 2020), and lower lev-
els of psychological well-being (Ebner-Priemer et al,
2015; Houben et al., 2015). Other research has shown
that the cross-lagged parameters between symptoms
measured at subsequent occasions are positively corre-
lated to severity of psychopathology (see, e.g.,
Bringmann et al., 2013), and may distinguish between
stages of mental disorders, which has been referred to
as the staging effect (Wigman et al., 2013). Together,
these results have been interpreted to mean that
stronger lagged relations are a sign of maladaptive
regulation: Higher autoregressions are thought to
reflect emotional rigidity and imply a longer recovery
time, whereas higher cross-regressions may imply a
faster flow of activation through a network of emotions
or symptoms (Bringmann et al, 2022, Bringmann
et al,, 2015, Bringmann et al., 2016).

Recently, however, concerns have surfaced about
the mismatch between the multilevel models that are
typically used in this line of research, and the
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distributional features of the empirical data. The
multilevel models are typically based on the assump-
tion that all the data are normally distributed.
However, for variables such as psychological symp-
toms or negative affect, individuals with relatively low
average scores often display the floor effect, character-
ized by less variability and more skewness, while indi-
viduals with higher average scores tend to have wider
and more symmetric distributions (Falcaro et al.,
2013; Peeters et al., 2006; von Klipstein et al., 2022).
Ignoring these distributional differences may have ser-
ious consequences for studying staging, according to
Terluin et al. (2016): They argued that lower variabil-
ity will lead to underestimation of the autoregressive
parameter, and since lower variability is associated
with lower means, this would imply that the staging
effect may be nothing but a statistical artifact, result-
ing from a failure to account for individual differences
in distributions. Although Terluin et al. (2016) did
not provide rigorous analytical support for this claim,’
they did present some empirical evidence, based on
reanalyzing a dataset that had been used to show stag-
ing before. When using a multilevel model based on
the inverse Gaussian regression model, which is often
proposed to handle right-skewed data, they found that
there was no evidence for staging anymore.

The results of Terluin et al. (2016) have spurred
widespread concerns among the inertia and psycho-
logical networks researchers (see, e.g., Forbes et al,
2017; McNally, 2021; Rodebaugh et al., 2018; Wright &
Zimmermann, 2019). However, it is not clear yet why
the autoregression for individuals with a stronger floor
effect would be underestimated—a premise to conclude
that the staging effect is an artifact. Moreover, Terluin
et al. (2016) did not discuss whether the inverse
Gaussian regression model could be considered a
plausible  data-generating mechanism underlying
skewed empirical time series. This makes it hard—if
not impossible—to tell whether their approach provides
valid results, or that it actually overcorrects for the
floor effect in the data (Schmidt & Finan, 2018) and in
doing so fails to uncover the staging effect that is actu-
ally present. The goal of the current paper is therefore
to: (a) present alternative data-generating models, for
which we provide substantive explanations, and that

Terluin et al. (2016) relied on previous findings that the “restriction of
range” due to data selection based on an external criteria (Linn, 1968)
can lead to the underestimation of the correlations among the variables
affected by certain types of missing data mechanism (Wiberg &
Sundstrom, 2019). However, it is unclear whether this phenomenon
applies to the floor effect in affective time series, as the floor effect itself
does not necessarily arise from a missingness mechanism (Falcaro et al.,
2013; Oord & Ark, 1997).

can produce different degrees of skewness in the auto-
correlated time series of different individuals; and (b)
use these data-generating models to simulate data with
the floor effect and without the staging effect, to deter-
mine whether using an analysis technique that ignores
individual differences in the floor effect erroneously
detects a staging effect.

This paper is organized as follows. In the first sec-
tion, we begin with the single-person AR(1) model,
and show how this is a building block in the multi-
level AR(1) model. Moreover, we present empirical
data that show how the assumptions of normally dis-
tributed scores within and between individuals can be
violated in practice. In the second section, we present
three alternative time series models that represent dis-
tinct assumptions regarding the nature of the proc-
esses that may explain various forms of the floor
effect surfacing in empirical data collected using dif-
ferent scales. In these models, the mean—and conse-
quently, the variance and skewness—of the processes
can be specified independently from their autoregres-
sion. Subsequently, in the third section, we perform a
simulation study where we use the proposed alterna-
tive time series models to generate multilevel data
with lag-1 autocorrelation. We analyze the data using
the multilevel AR(1) model to explore the conditions
under which neglecting the floor effect might result in
mistakenly detecting a staging effect, and investigate
the extent to which this may occur. Finally, we con-
clude the paper by reflecting on the implications of
our findings for empirical researchers.

Background

In this section, we provide a brief introduction to the
AR(1) model and the multilevel AR(1) model
Subsequently, we discuss the main assumptions that
underlie the multilevel AR(1) model, which are violated
when there is a floor effect. Furthermore, we demon-
strate the presence of the floor effect in an empirical
dataset based on self-reported measures of affect.

The first-order autoregressive (AR(1)) model

The AR(1) model is a popular choice for the analysis
of univariate time series data (Gottman, 1981;
Shumway & Stoffer, 2017), in which the variable at
the current measurement occasion X; is regressed on
that same variable at the preceding measurement
occasion X;; (Krzysztofowicz & Evans, 2008). The
AR(1) model has also gained popularity in psycho-
logical research (Hamaker & Dolan, 2009; Koval et al.,
2021), particularly due to its substantive appeal: Many



psychological time series, for instance, of emotions,
are persistent, self-predictable, and manifest a relative
resistance to change (Frijda, 1992; Koval et al., 2021)
as well as considerable autocorrelation (Gottman
et al., 1969; Huba et al., 1976).

The AR(1) model can be written as

Xy =c+ ¢Xio1 + € (1

where ¢ represents an intercept or constant term, ¢ is
called the autoregressive parameter, and ¢, represents
a residual term or random perturbation called the
innovation, which is typically assumed to be normally
distributed with ¢ ~ N(0,02). In psychological set-
tings, where the variable X, may represent, for
instance repeated measures of momentary distress, the
parameter ¢ is often referred to as inertia, because the
closer it is to 1, the more carry-over there is of cur-
rent distress to distress at the next time point (Koval
et al., 2021). The predictable part is sometimes called
the conditional expectation and is formed by

E{Xt|Xt71] =c+ X1 (2)

The innovation term represents the random or unpre-
dictable part of the model. In psychology, the variance
of the innovations (¢?) is interpreted as capturing the
actual variability of perturbations as well as the sensi-
tivity of the person to external perturbations
(Jongerling et al., 2015).

A core assumption of the AR(1) model is that the
process under investigation is stationary, which means
that the mean and the variance do not change over
time. To ensure stationarity, the absolute value of ¢
should be smaller than 1, that is, |¢| < 1 (Box et al,
2016). Under this assumption the long-run mean of
the AR(1) process, E[X;| = u, is determined by both
the intercept and the autoregressive coefficient,
through

c

h=1g (3)

The distribution of X, values, in the long-run, is
called the marginal, or stationary, distribution. The
marginal distribution of the AR(1) process is Gaussian
(or normal) with mean p and a variance that is a
function of the autoregressive parameter and the
innovation variance, that is

c o’
XtNN<ﬂ)1_—¢2>' (4)

This implies that the variability of a person’s distress
is not only determined by variability of the external
events (or the person’s sensitivity to them), but also
the individual’s inertia. Furthermore, as the normal
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distribution is symmetrical, the AR(1) model has a
skewness of y=0.

One final way in which we can characterize the
AR(1) process is by defining how current observations
(Xy) correlate to observations in the past
(X¢—1,X¢—3,...). This is given by the autocorrelation
function (ACF), which is the correlation of the
sequence with its lagged versions. For the AR(1)
model of Equation 1, the autocorrelation for lag [ > 0
is given by

p(l) = ¢', (5)
such that as I gets larger, p(I) gets smaller exponen-
tially. These properties of the AR(1) model are derived
in the Supplemental Materials.”

In Figure 1 we show three simulated AR(1) proc-
esses with different parameters; the left column
shows the time series generated by the model, the
middle column shows the marginal distributions of
the time series, and the right column includes the
sample ACF of each process. We can see that proc-
esses may differ in some properties while being simi-
lar in others; comparing the second and third
processes, we see that, for instance, two processes
can have similar marginal variance, while being very
different in all other aspects (the mean, residual vari-
ance and autoregressive parameters). In the remain-
der of the paper we will use these properties to
compare the alternative data-generating models to
the AR(1) model.

The multilevel AR(1) model

In psychological research, the multilevel AR(1) model
has been a popular choice for the analysis of intensive
longitudinal data from multiple individuals (Koval
et al, 2015; Kuppens et al, 2010; Rovine & Walls,
2006). While there are various ways to specify this
model (Jongerling et al., 2015), here we will start with
decomposing the observed variable of individual i at
occasion t (i.e., X;;) into a person-specific mean u;
that can be interpreted as the person’s home-base or
equilibrium score, and a temporal, person-specific
deviation from this mean, which we denote by Xi,t.
Specifically, we can write

X,',t = ,ui+Xi,t~ (6)

The temporal, person-specific deviation from their
mean, X;; is used in the level 1 or within-person
equation of the multilevel model, which is modeled

’The Supplemental Materials can be found on the Open Science
Framework via https://osf.io/ngxdc.
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Figure 1. Time series plots, marginal distributions, and the sample ACF of three simulated AR(1) processes with different model-
implied means (u), residual variances (af), autoregressive parameters (¢). In the first process, we have p =85, o—f =20, and ¢ =
0.4, which produce a distribution with marginal variance ¢? = 23.69 and marginal skewness y = 0.01; the second process has
w=>55, 6> =20, and ¢ = 0.8, resulting in ¢*> = 55.37 and y =0; and the last process has u=20, 6> = 47, and ¢ = 0.4, lead-
ing to 62 = 55.51 and y = —0.01. The dashed lines in the first two columns mark the mean, and in the right column trace the

exponential decay of the theoretical ACF.

with the first-order autoregressive model of Equation
1 (with ¢=0, since X;; is centered), that is,

Xit=¢iXi—1+ €

€it NN(O, O'g,'>. (7)

At the between-person level (level 2), individual
differences in the means p;, the autoregressive param-
eters ¢;, and the residual variances ¢?; are modeled.
Typically, it is assumed that p;, ¢;, and log(d?) (ie.,
the natural logarithm of the residual variance), come
from a multivariate normal distribution (Asparouhov
et al, 2018). This implies that the individual mean,
inertia, and residual variance can be correlated with
each other. Furthermore, the multilevel framework
allows us to model these parameters in tandem with
other variables. That is, they can be predicted from
person characteristics, such as personality traits, psy-
chological well-being, sex, or age, and they can be
used to predict later outcomes, such as future health
or happiness (for a comprehensive overview, see
Koval et al., 2021).

Normality assumptions

The multilevel AR(1) model as presented above is
based on several assumptions (Epskamp et al., 2018;
Hamaker et al., 2018), two of which are of particular
interest to us here: (a) the residuals at level 1 are nor-
mally distributed, and as a result, the within-person
fluctuations of X, are characterized by the normal

distribution; and (b) the random effects, including
level-2 means, are assumed to come from a multivari-
ate normal distribution. However, these assumptions
are not always met in practice (Haslbeck et al., 2023).
The broader literature on linear (multilevel) models
suggest that regression models are mostly robust
against the violation of normality at level 1 (for an
overview and discussion, see Knief & Forstmeier,
2021). Furthermore, it has been shown that the viola-
tion of the level-2 normality may bias fixed-effect esti-
mates (McCulloch & Neuhaus, 2011), reduce the
estimation efficiency and accuracy (Agresti et al,
2004; Schielzeth et al., 2020), and if there is skewness
at level 2, make the standard error estimates particu-
larly unreliable (Maas & Hox, 2004). However, to our
knowledge, the consequences of such violations in
multivariate time series models have not been system-
atically studied.

To illustrate the violation of normality assumptions
in empirical data, we make use of the intensive longi-
tudinal dataset collected in the COGITO study
(Schmiedek et al., 2010), in which 204 adults were
measured once a day on various affective and cogni-
tive items for up to 109 days. We focus on the variable
distress which was measured on a 0-7 Likert scale,
resulting in discrete scores. To verify the above
assumptions, we look at the individual histograms of
X, and the histogram of u;. Figure 2 shows individ-
ual histograms of all participants, ordered by individ-
ual means. It shows that the distributions of responses
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Figure 2. Individual histograms of distress scores (X; ;) of individuals in the COGITO dataset, sorted by individual means (u;).

gradually become more symmetric as the mean
increases. As evident from these plots, the distress
score of most of the individuals are remarkably
skewed, and furthermore, almost two-thirds of them
exhibit a strong floor effect in their scores. This,
together with the discreteness of the scores, is a clear
indication of the violation of the first assumption of
the multilevel AR(1) model. To check the level-2 nor-
mality of u;, we show the distribution of the sample
means in Figure 3. The skewed distribution of person
means indicates a violation of the second assumption
of the multilevel AR(1). These two assumptions can
also be more efficiently verified using summary statis-
tics of the data, as detailed in Appendix A.

Despite the above violations, we may analyze the
data using a multilevel AR(1) model and investigate
the relationship between the individual differences in
the autoregressive parameter and the mean. To this
end, we made use of Mplus version 8.6 (Muthén &
Muthén, 2017). Given that the individuals have differ-
ent degrees of variability (see the middle panel of
Figure Al), we included random residual variance in

Number of individuals

4 5 6
Sample means

Figure 3. Distribution of sample means of distress scores of
204 individual in the COGITO dataset.

our model. We found a positive association between
the random mean and the random autoregressive par-
ameter at level 2 (Corr(p, ¢) = 0.551, 95% credible
interval (CI) [0.415,0.659]). We also analyzed the data
using a model with fixed residual variance (a common
practice in the psychological literature), which resulted
in a  larger  positive  correlation  estimate
(Corr(u, ) = 0.636, 95% CI [0.517,0.728]). These
results are in agreement with other findings, in that
individuals with more severe negative conditions (here:
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higher average distress) tend to be characterized by
higher autoregression in their distress scores. However,
based on the findings of Terluin et al. (2016), we may
be concerned that this positive correlation between the
mean and the autoregression might have actually been
(partly) due to the floor effect, which is clearly present
in the dataset.

Alternative data-generating models

To be able to study whether individual differences in
the floor effect can lead to an inflated correlation
between mean and inertia, we need to simulate multi-
level data that are characterized by the features dis-
cussed in the previous section. Hence, the data from
plausible alternative data-generating models (DGMs)
should have: a) an autocorrelation function akin to an
AR(1) process at the within-person level; b) individual
differences in skewness (and variability), which
depends on the person-specific mean (i.e., lower mean
has more skewness and less variability), but not on
the person-specific autoregression; and c¢) person-spe-
cific means that can come from a normal or a skewed
distribution at level 2. Additionally, it is important
that the DGM can mimic the measurement scales that
are typically used in psychological self-report data:
Oftentimes such measurements are based on using a
Likert scale with a limited number of ordinal scale
points (Likert, 1932), or with a (practically) continu-
ous scale, like a 0-100 visually assisted scale (VAS).
Finally, we believe it is important to consider DGMs
whose parameters and behavior can be explained from
a substantive perspective, as this contributes to their
credibility as plausible alternatives.

In this section, we present three parsimonious alter-
native DGMs that meet the above criteria. The reason

on, to determine whether particular results in the simu-
lation study are generic to these kinds of skewed data
(i.e., shared by all three DGMs), or that certain results
are specific to a particular DGM. All of these models, as
we will see, can approximate the AR(1) model when
specific parameter values are chosen, such that they may
produce Gaussian-looking marginal distributions—which
motivates using them for skewed and non-skewed time
series alike. Below we present the alternative DGMs,
which are: a) a generalized AR(1) model with ¥ resid-
uals (Tiku et al, 1999), which is suitable for generating
skewed continuous-valued time series; b) the binomial
AR(1) model (McKenzie, 1985), that can generate
bounded time series of counts with the floor effect; and
¢) the discrete AR(1) model (Jacobs & Lewis, 1978) that
treats the discrete observations as states, and can pro-
duce data with any discrete marginal distribution. To
ease comparison, the properties of these DGMs are
summarized in Table 1.

The generalized linear AR(1) model with y*
residuals

As we described in the previous section, the marginal
distribution of the AR(1) process (Equation 4) is
determined by the distribution of its innovations.
Thus, the simplest modification to the Gaussian
AR(1) model that may yield a non-Gaussian marginal
distribution is to replace its Gaussian innovations with
ones from another distribution (Akkaya & Tiku, 2001;
Tiku et al.,, 1999). To create data which can exhibit
the floor effect, we would pick a distribution which is
strictly non-negative (i.e., has a lower bound of zero)
and which can be more or less skewed depending on
the parameters chosen, for example, the 1> distribu-
tion or the Gamma distribution (Lloyd & Warren,

to consider multiple DGMs is that this allows us, later ~ 1982; Mathai, 1982a, 1982b). Such asymmetrical
Table 1. Comparing data-generating models.
Model

Properties AR(1) XZAR(U BinAR(1) PoDAR(1)
Data type Continuous Continuous Bounded discrete Discrete
Formula Xe =c+ PpXe1 + & Xt = X +a; Xt =S¢+ R Xe =PXeor + (1 — P)Z,

&~ N(0,0%) ar ~ 2(v) S¢ ~ Binom (X1, ) Z; ~ Poisson(/)

Re ~ Binom(k — X;_1, ) Py ~ Binom(1, 1)
Parameters ¢ ¢, a2 o, v % B 0= ﬁ T,
Marginal distribution N(ﬁ (122) No closed form Binom(k, 6) Poisson(/)
T
. v kB )
Marginal mean 1f(/) 5 kO = F(Lﬁ) A
. ) 2 2w _ _k(-w)p )
Marginal variance s T kO(1 —0) = T A
Marginal Skewness 0 2(1-¢2)*? 1-20 1/
V(-9 k0(1—-0)

Conditional expectation C+ PXeq v+ PXe Pk + (o — B)Xe1 (1 =1)A+ X
ACF (I > 0) pll) = ¢ pll) = ¢ pl) = (2= p) pll) =
Markov No No Yes (Equation S29) Yes (Equations S38, S39)




innovation distributions have been used to model, for
instance, the input, capacity and outflow or reservoirs
in hydrology (Phatarfod, 1989; Warren, 1986), or in
grain storage problems (Prabhu, 1965). In these sys-
tems, the external random input to the system is
strictly positive (e.g., more water enters a reservoir or
more grain is added to a silo), meaning that a mean-
zero Gaussian distribution—which can have negative
and positive contributions—would be inappropriate.

Some psychological researchers have suggested that
these types of models may be appropriate for modeling
variations in processes such as negative affect or dis-
tress, based on a reservoir analogy (Bergeman &
Deboeck, 2014; Deboeck & Bergeman, 2013). Following
Deboeck and Bergeman (2013), let us assume X, repre-
sents a person’s level of distress at time ¢, defined as a
continuous variable. As the person goes about their
daily life, stressful life events occur and contribute to
the person’s distress. This addition can be modeled by
a random term a,. Because the events can only add to
the person’s distress, a, should follow a distribution with
strictly non-negative values (Aksoy, 2000; Mathai,
1982b), which can be modeled, for example, using the
7 distribution with » degrees of freedom (Mulder,
2018). Rather than building up indefinitely, the individ-
ual attempts to regulate their distress by gradually dissi-
pating it over time. Their ability to regulate distress
away is determined by the parameter ¢, which controls
the dissipation rate; if ¢ is close to zero, then the person
is very good at regulating the distress levels, while if it is
close to 1, they struggle with it. To take the reservoir
analogy, we may imagine the distress process as a water
tank which contains a liquid representing distress, and
the amount of distress at any time ¢ can be measured by
the height of the liquid. Stressful events increase distress
in the system by randomly adding some liquid to the
tank, and the tank has a tap at the bottom which, at
each time point, dissipates a proportion (1 — ¢) of the
liquid that was in the tank at the previous time.” Put
together, the amount of distress in the system (i.e., the
height of the liquid) at time ¢ is given by

Xi=¢Xeo1+an, ar~ A (v), (8)

in which ¢X,_; is the leftover distress that stayed in
the system from the previous time point and g, is the
random added distress due to stressful events.

31t should be noted that the dissipation of water as explained here—as a
linear function of X;_;—cannot be achieved by a simple physical system
that is only under the influence of gravity. Importantly, the dissipation
rate of a real water tank is proportional to the square root of the height
of the liquid above the tap (see Safier, 2013), which cannot be modeled
using an AR-type difference equation like the one in Equation 8. Thus,
the water tank metaphor for the %?AR(1) model should only be taken as
a rough analogy rather than an accurate equivalent to a physical model.
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We call the model in Equation 8 the ¥’ AR(1)
model. Unlike the normally distributed innovations of
the AR(1) model, a, may not take negative values and
can only push the system further away from its mean.
Consequently, a, can no longer be thought of as
“random shocks” to the system, and the ¥’ AR(1)
model implies a new type of dynamics in which only
the passage of time can decrease the person’s distress.
The conditional expectation of this model, based on
its value at the previous time point, is given by

E[X;|X; 1] = E[¢pX; 1 + ar] Xi 1]
= PE[X;—1|Xi—1]) + Ela;|X; 1]
= ¢X;1 + E[a/]
= ¢Xiy + v,

which is comparable to Equation 2, in that both are
the sum of a constant (¢ or v) with a leftover from
the previous time point (¢X; ;). As proven in the
Supplemental Materials, the ACF of the »*AR(1)
model is identical to that of the AR(1) model, which
is p(I) = ¢' for lag [ > 0.

Since the (infinite) weighted sum of y*-distributed
random variables lacks an analytical probability dens-
ity function (see Di Salvo, 2008), the ¥*AR(1) model
does not have a closed-form marginal distribution
(Tiku et al., 1999). However, we may analytically cal-
culate its mean, variance, and skewness. As shown in
the Supplemental Materials, the marginal mean of the
7>AR(1) process of Equation 8 is given by

(9)

1%
E[X:] = pparq) = 1—¢ (10)

When comparing this to the marginal expected value
of the AR(1) model in Equation 3, it can be seen that
both consist of the constant term of the conditional
expectation (compare Equations 2 and 9) divided by
1 — ¢ (the dissipation rate). The marginal variance of
the y?AR(1) process is, akin to the AR(1) process,
equal to the variance of the stochastic term (here: 2v)
divided by 1 — ¢, that is
) 2v
Var[X,| = Tpar(l) = W (11)
Finally, the marginal skewness of the y’AR(1) pro-
cess can be calculated by
21 — b2)3?
Skewness[X:] = 7,2ar(1) = ﬁ (12)
Thus, the conditional expectation, ACF, and the
marginal mean and variance of the 7*AR(1) model
parallel those of the AR(1) model. It can further be
shown that, for large enough values of v, the %> distri-
bution can be approximated by a Gaussian
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Figure 4. Time series plots, marginal distributions, and the sample ACF of three simulated y?AR(1) processes with different
degrees of freedom (1) and autoregressive parameters (¢). In the first process, we have v =25 and ¢ = 0.4, which produce a

distribution with yu = 41.72, 6> = 58.53, and y = 0.48; the second process has v =5 and ¢ = 0.7, resulting in u =
and y = 0.62; and the last process has v=1 and ¢ = 0.4, leading to u = 1.67,62 = 2.32, and y = 2.26. The dashed

19.31,

16.68, 62 =

lines in the first two columns mark the mean, and in the right column trace the exponential decay of the theoretical ACF.

distribution with A/ (v,2v) (O’Neill, 2019), making the
input term a, of Equation 8 similar in shape to the
innovation term ¢, of the AR(1) model. In Figure 4
we show three simulated y?AR(1) processes with dif-
ferent parameters and their marginal distributions and
sample ACFs. As evident in the plots, increasing v
makes the marginal distribution more symmetrical
(which was expected, as v appears in the denominator
of skewness in Equation 12), making it more
Gaussian-like (see the Supplemental Materials).
Furthermore, because v and ¢ can be set independ-
ently, it is possible to have processes with the same
autoregressive parameter, while they differ in all their
distributional properties.

The binomial AR(1) model for bounded count time
series

In many contexts, we are faced with discrete-valued
time series that often concern the counts of things
(Campbell & Walker, 1977; Cardinal et al., 1999; Jung
et al., 2006). Here we consider the binomial AR(1)
(BinAR(1)), first presented by McKenzie (1985), which
can model count time series that have an upper
bound and may also be expressed with a parsimoni-
ous Markov model (see the Supplemental Materials).
To explain its usefulness in the context of clinical
psychology, we make use of the following metaphor.
Assume we are measuring a person’s distress by ask-
ing them to rate it on a Likert scale from 0 (not at
all) to k (very much). When using the BinAR(1)

model, this implies that we interpret such a scale as
representing the number of units of distress that the
person feels, and that they have an emotional capacity
of feeling a maximum of k units of distress. We can
think of each unit being represented by a light bulb
that can be either on or off; the person’s level of dis-
tress is then the brightness of their emotion, which is
determined by the number of distress bulbs that are
switched on. These light bulbs do not have any par-
ticular order, and hence only the number of light
bulbs switched on is of interest. When the participant
rates their distress on the Likert scale, this comes
down to them “counting” how many of those bulbs
are turned on, which is then represented by the score
X;. The temporal series of such measurements would
therefore comprise a time series of counts.

In the BinAR(1) model the number of lit light
bulbs X, is expressed as a function of the number of
light bulbs that were switched on at the previous occa-
sion (i.e., X, 1), and the number of light bulbs that
were switched off at the previous occasion (ie.,
k — X;_1). Specifically, X; can be expressed as the sum
of two binomially distributed variables, that is

S ~ Binom(X;_1, )
R; ~ Binom(k — X;_1, )
(13)

X; = S; + R;, where {

The component S, can be understood as the number
of light bulbs that were turned on at the previous
occasion X;_;, and that are still on at occasion ¢ (i.e.,
the “survivors”), with o being the probability of a light
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bulb to remain on (i.e., the survival probability). The
component R, is the number of light bulbs that were
off at the previous occasion (i.e, k — X;_;), but are
switched on at occasion t (i.e., the “revived” bulbs),
with f being the probability of switched-off light
bulbs to be turned on (i.e., the revival probability).
Figure 5 shows an illustration of the light bulb meta-
phor for a BinAR(1) process with k=09.

Since the number of light bulbs that are on at occa-
sion ¢t (i.e., X;) depends on the number of light bulbs
that were on at the previous occasion ¢t —1 (i.e., X;_;),
this process must be characterized by autocorrelation
over time. To see how the autocorrelation relates to
the probabilities o and f of the two binomial distribu-
tions in Equation 13, we derive the conditional
expectation of E[X;|X;_], that is,

E[Xt|Xt71] = E[St + Rthtfl]
= E[S¢|X;—1] + E[R;|X;-1]
=oX |+ plk—X,—1)
= Pk + (o — f)X;—1.

(14)
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Figure 5. An example of a BinAR(1) process with k=9 for
three measurement occasions. At each time point t, a number
of light bulbs are turned on (X;), and the rest (i.e., kK — X;) are
switched off. The number of lit light bulbs at time t depends
on two sets of light bulbs; those that were turned on at t - 1
and remained lit at t (S; for survivors), and those that were
switched off at t — 1 but turned on at t (R, for revived light
bulbs). Because the light bulbs are replaceable, at each time,
we rearranged them such that it becomes clear that S; is a
subset of X._ ; and R; is a subset of k — X;_;.
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The latter expressions shows great similarity to the
conditional expectation of the AR(1) model of
Equation 2: It contains a constant term (fk) compar-
able to the intercept ¢ of the AR(1) model, and an
autoregression term (o — ) comparable to the autore-
gressive parameter ¢ of the AR(1) model. It can be
shown that the autocorrelation function of the
BinAR(1) model is similar to that of an AR(1)
model, given by p(I) = (x— ) for 1>0 (see the
Supplemental Materials for derivations), which con-
firms the correspondence between the BinAR(1) mod-
el's o« — f and the regression coefficient ¢ in the
AR(1) model. The 0—k integer values of the
BinAR(1) process can be thought of as k+ 1 distinct
states, and the BinAR(1) model can also be expressed
as a special case of a first-order Markov model that is
fully characterized by model’s parameters, « and f:
See the Supplemental Materials for details.

The marginal distribution of the BinAR(1) model
follows a binomial distribution (cf. McKenzie, 1985;
Weif$ & Kim, 2013) with

X, ~ Binom(k,0), where 0 = L (15)

1= (x=p)
Given the binomial nature of X,, the marginal mean
of the BinAR(1) model is

E[X,] = HBinAR(1)
= k0
B
1= (a=p)’
which is akin to the mean of the AR(1) model in
Equation 3, as it is based on dividing the constant

term of the conditional expectation by 1 — ¢. The
marginal variance of the BinAR(1) model is given by

(16)

Var[X,] = G%inAR(l)
=k0(1 — 0)
k(1 —a)p
[1— (2= B

Finally, the marginal skewness is given by:

(17)

>

Skewness[X;| = Vpinar(1)
1—20 (18)

VkO(1 = 0)

It can be seen that the marginal properties of the
BinAR(1) model (Equations 15-18) can all be speci-
fied using a single parameter (0). Note that if we only
wish to specify a positive autoregressive parameter
(¢ = o — PB) without concern for the o and f values
themselves, then we can choose o and f values for a
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fixed ¢ that generate any desired value for 0 (see the
Supplemental Materials for details). In Figure 6 we
show three simulated BinAR(1) processes with differ-
ent parameters and their marginal distributions and
sample ACFs, which also demonstrate such independ-
ence; for instance, although the first and the third
processes have different marginal distributions, they
share the same autoregressive parameter. Like the
7*AR(1) model, the BinAR(1) model can approximate
the AR(1) model by generating Gaussian-like marginal
distributions. Specifically, the binomial distribution
with Binom(k, ) may be approximated by a Gaussian
distribution with A (k0,k0[1 — 0]) (Bagui & Mehra,
2017), and the approximation improves as k increases
(say, for k> 20; Box et al,, 1978). Given that the denom-
inator of Equation 18 contains k, the skewness of the
BinAR(1) model, regardless of 0—which is determined
by o and f—approaches zero for larger values of k,
leading to a symmetrical marginal distribution.

The discrete AR(1) model for ordinal time series

The second discrete-valued times series model we
consider is the discrete AR(1) (DAR(1)) model, which
was first presented by Jacobs and Lewis (1978) to
model autocorrelated interval or count variables. In
contrast to the BinAR(1) model (which was limited to
a binomial marginal distribution), the DAR(1) model
can be used for any type of count time series with any
desired marginal distribution. Later extensions of this

Time series
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model include versions that can handle, for instance,
ordinal (e.g., Biswas & Song, 2009; Pegram, 1980;
Weif, 2020) or categorical variables (see, e.g., Biswas
et al., 2014; Weif3, 2020). Here, we focus on the ori-
ginal DAR(1) model, which is suitable for integer-val-
ued time series. We start with presenting the DAR(1)
model in its general form, and demonstrate this model
via an illustrative example of modeling distress using
a version of the DAR(1) model with the Poisson mar-
ginal distribution, which is tailored for modeling
counts of stressful events occurring with a constant
rate.

Assume that, in a daily diary study, we measure the
daily distress of a person. To use the DAR(1) model,
we should assume that distress can be modeled by a
collection of small, independent distress units, mean-
ing that the person’s level of distress at any time
would be equal to the counts of such units that the
person is experiencing. We ask the person to report
their distress on a discrete scale of non-negative inte-
gers, which need not have an upper bound. At the
start of the experiment, the person starts with a dis-
tress level equal to some integer value of X;. Based on
Frijda’s “law of conservation of emotional
momentum,” which posits a resistance of one’s mental
states to change when nothing happens (Frijda, 1988,
1992), we may assume that the individual remains at
the same level of distress from one measurement
occasion to the next, unless some kind of influence
acts on their distress levels. The influence is
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Figure 6. Time series plots, marginal distributions, and the sample ACF of three simulated BinAR(1) processes on a 0 — 7 Likert
scale (k=7) with different survival («) and revival () probabilities. In the first process, we have o = 0.85 and 5 = 0.4, which pro-
duce a time series with ¢ = 0.45, u = 5.06, 6> = 1.37, and y = —0.40; the second process has o = 0.85 and f§ = 0.15 resulting
in ¢ =0.70,u = 3.51,62 = 1.78, and y =0; and the last process has « = 0.5 and = 0.05 leading to ¢ = 0.45, u = 0.65,5° =
0.59, and y = 1.09. The dashed lines in the first two columns mark the mean, and in the right column trace the exponential

decay of the theoretical ACF.
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independent of the stress levels that the person is
exposed to, and may be due to an external event (like
getting a call from a close friend or hearing sad
news), or an internal one (like a new thought about a
friend’s wedding, a traumatic memory that comes up,
or some hormonal changes). In the DAR(1) model,
whether or not such an influential event takes place
can be modeled using a binary variable P, which
models the persistence of the emotion. When such an
event is absent on day t=2 (i.e., the emotion persists,
P, = 1), the person will keep the same level of distress
as yesterday (X, = X;); in contrast, if such an event
took place (i.e., P, = 0), the person’s distress level will
be equal to the amount of stress to which the person
is exposed today. We assume that the amount of
external stress at any time ¢, denoted by Z,, can also
be modeled by a number of independent stress units;
thus, if P, =0, the person’s level of distress will be
X, = 2,.

By extending this process to other days, the DAR(1)
model for the person’s daily distress can be expressed as

_ Zt) lf Pt - 0
Xt N {th)

it P,=1"

Since the influential events are independent from each
other and independent from Z, we may model P; with a
Bernoulli process (or a binomial process with k=1), in
which the probability of an emotion persisting (and so,
the probability of no event occurring to impact the time
series) is equal to 7, meaning that P, ~ Binom(1, 7).

With the model for persistence in place, we must
now specify a model for the external stressful events, Z,.
We assume that the number of stress units over time
are independent from each other and follow a discrete
distribution I, that is, Z; ~ I1. Because X;, the person’s
felt distress today, is equal to either yesterday’s felt dis-
tress (X;_;) or today’s number of external stress units
(Z)), and given that Z, of today is independent of X, ;
of yesterday, we may conclude that X, and Z; are inde-
pendent from each other. Despite this independence, as
shown in the Supplemental Materials, the marginal dis-
tribution of person’s distress (X;) follows the same distri-
bution as Z, meaning that X; ~ II. Note that the
independences of Z,, P, and X; entail that the person, in
case an impact takes place (P, = 0) may or may not
experience the same level of distress as yesterday. In
total, the person’s felt distress is fully characterized by
two independent processes: Z, that captures the ten-
dency of being exposed to different number of stress
units; and P, the person’s tendency of not being
impacted by influential events. Consequently, individual
differences in felt distress is characterized by individual

(19)
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differences in the distribution of Z, (i.e., Il) and the
probability of persistence (i.e., 7).

To infer the properties of the DAR(1) process, we
rewrite Equation 19 as

Xt = PtXt—l + (1 - Pt)Zt' (20)

Given the said independences, we may find an expres-
sion for the conditional expectation of X, for the
DAR(1) model, that is
E[X|X;—1] = E[PeX;—1 + (1 — Pt) Zs| X 1]
= E[P:X;_1|X¢—1]) + E[(1 — Pr)Z¢| X¢—1]
= E[Py|X;_1)E[X¢-1|X¢—1] + Cov(Py, Xi—1]Xs-1)
+ E[1— Py|X;_1]E[Zi|X;—1] + Cov(1— Py, Zi|X;—1)
= E[P)X,_1 + 0+ E[1 — PJE[Z] + 0
= X, + (1 - 1)E[Z)].
21)
This is similar to the conditional expectation of an
AR(1) process (Equation 2) with an intercept ¢ =
(1 — 7)E[Z;] and a regression coefficient of ¢ = 7.

As shown in the Supplemental Materials, the auto-
correlation function of the DAR(1) model is similar to
that of the AR(1) model, and is given by p(I) = 7' for
[ >0 (Jacobs & Lewis, 1978). Note that, as 7 is a
probability between 0 and 1, unlike the AR(1) model,
the DAR(1) model cannot account for negative autor-
egressive parameters.

The DAR(1) model, as we formulated above, does
not impose any restrictions on the distribution of Z,
as long as it is integer-valued; IT may be bounded,
like the binomial distribution (alluding to the light
bulb metaphor of the BinAR(1) model) or the beta-
binomial distribution, or unbounded, like the
Poisson distribution or the negative binomial distri-
bution. Here we assume that Z, follows a Poisson
distribution, that may produce marginal distributions
with varying degrees of skewness, and furthermore,
it has a substantive appeal based on the metaphor of
stress units: If we assume that, on any given day, the
person is exposed to, on average, A stress
units, Z, (and consequently, X;) would follow a
Poisson distribution with rate parameter A (ie,
Z; ~ X; ~ Poisson(2)). In this case, the probability of
the person being experiencing a distress level equal
to u is given by the probability mass function of the
Poisson distribution, that is,

Jle

u!

P(X;=u) = (22)

We call this model the Poisson DAR(1) model, or
the PoODAR(1) model in short. Based on the properties
of the Poisson distribution, the marginal mean,
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variance, and skewness of the PoDAR(1) model can
be calculated given the rate parameter /:

E[X:] = tpopar(1) = 4

Var[X,] = J%ODAR(I) =4, and (23)

Skewness[X;| = popar(1) = V' 1/ 4

Like the previous two models, the PODAR(1) model
can also approximate the AR(1) model and produce
Gaussian-like marginal distributions; it is known
that a Poisson distribution with rate parameter A may
be approximated by a Gaussian distribution with
N (2, 4), especially for larger values of A (Bagui &
Mehra, 2017; Govindarajulu, 1965). In that case, given
that A appears in the denominator of skewness
(Equation 23), for relatively large rates (e.g., A > 10)
the skewness becomes negligible (y < 0.32). In Figure
7 we show three simulated PODAR(1) processes with
different parameters and their marginal distributions
and sample ACFs. Comparing the first and the third
process shows that with the same autoregressive par-
different marginal properties can be
achieved by different values of A, which confirms the
independence of the dynamic and marginal properties
of the PoDAR(1) model. Furthermore, it is worth not-
ing that the PoDAR(1) model, like the BinAR(1)
model (of Equation 13), can also be expressed as a
special case of a first-order Markov process character-
ized by only two parameters, T and A. See the
Supplemental Materials for details.
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Simulation study

It has been argued that the staging effect may be an
artifact due to modeling skewed data (Terluin et al.,
2016). In the context of time series data and autore-
gressive models, this may imply that we find lower
autoregression for individuals with lower means, sim-
ply because their data are more impacted by the floor
effect, and thus have lower variability and more skew-
ness. As a result, a positive association (correlation or
covariance) between an individual’s mean and their
autoregressive parameter may not reflect a meaningful
property that requires a substantive interpretation, but
could simply be a result of using a model that does
not properly account for such distributional differen-
ces which characterize the data from different individ-
uals. We focus on skewness as an effective indicator
for the strength of the floor effect (see Appendix A),
which also directly quantifies the degree of non-nor-
mality in time series data.

To investigate whether the failure to account for
skewness results in bias in the estimation of the autor-
egressive parameter in a multilevel AR(1) model, we
simulated data where individuals were characterized
by different degrees of skewness (violating the first
assumption of the multilevel AR(1) model), and
studied whether there was an artifactual relationship
between the estimated mean and autoregression.
Specifically, their skewness was related to their mean,
in that individuals with lower means were character-
ized by more severe skewness, whereas individuals
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Figure 7. Time series plots, marginal distributions, and the sample ACF of three simulated PoDAR(1) processes with different rate
(4) and persistence (t) parameters. In the first process, we have A=40 and 7 = 0.4, which produce a time series with ¢ =

0.40, u = 40.17,6% = 40.11,

and y = 0.16; the second process has A=10 and 7 = 0.8, resulting in ¢ = 0.80,u =

10.08, 6% =

9.90, and y = 0.35; and the last process has A=1 and 7 = 0.4, leading to ¢ = 0.40, u = 0.98,6%2 = 0.99, and y = 1.05. The
dashed lines in the first two columns mark the mean, and in the right column trace the exponential decay of the theoretical ACF.
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with higher means had more symmetric distributions.
We used the various models described before to gen-
erate such data: The AR(1) model (which has nor-
mally-distributed residuals; Equation 1); the ¥*AR(1)
model (Equation 8); the BinAR(1) model (Equation
13); and the PoDAR(1) model (Equations 20 and 22).
Furthermore, in each dataset, we randomly sampled
the autoregressive parameters of individuals from a
normal distribution, independent of the means. This
necessarily implies that the autoregressive parameter
is not associated with any other distributional feature
(i.e., mean, variance, or skewness). Hence, when using
a multilevel AR(1) model to estimate a random mean
and a random autoregressive parameter, the correct
result would be to find a correlation of zero between
these two parameters, whereas a positive correlation
would form evidence for the hypothesis that staging is
an artifact of skewed data.

We took a Bayesian multilevel analysis approach—
rather than multiple paralldl N=1 analyses—to
estimate both within- and between-person dynamics
simultaneously. This had two advantages: (a) it
allowed us to include random (i.e., person-specific)
residual variance to investigate whether this affected
the possible bias; and (b) it minimizes Nickell’s bias
in the estimation of the autoregressive parameter
(Nickell, 1981) that arises when using a frequentist
multilevel modeling approach with observed mean
centering (Hamaker & Grasman, 2014). In general, we
opted for a modeling approach that could be consid-
ered common in this area; that is, we assumed all ran-
dom effects had a normal distribution, even though
this may have deviated from our data-generating
mechanism. The goal was to investigate whether these
typical assumptions would lead to artificial positive
correlations. To this end, we examined the right-sided
Type-1 error rate, that is, the estimated probability of
discovering a positive correlation (between the esti-
mated mean and autoregressive parameter) while the
true correlation, per our simulation design, was zero.
Furthermore, we estimated the bias in the estimated
correlation by studying how far off were the point
estimates of the correlation from its true value (of
Zero).

Generating the datasets

To generate multilevel data according to the various
DGMs, we first chose the level-2 parameters, and then
simulated the data per person. Throughout, we
sampled the model-implied autoregressive parameter
for each individual in each DGM from a normal
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distribution with ¢; ~ N(0.4,0.01). By doing so, the
assumption of normality for the distribution of the
level-2  autoregressive = parameter was  upheld
(Asparouhov et al., 2018). At level 2, we considered
two distributions for individual means: a Gaussian
distribution, and a y* distribution. The first matched
the assumptions in standard multilevel software, but
the disadvantage of using a Gaussian distribution for
the individual means was that only very few people
would get very low means, and as a result, only a few
people in the sample would be characterized by ser-
ious degrees of skewness in their data. The x> distri-
bution allowed for a larger proportion of individuals
with a mean close to zero, such that they were charac-
terized by less variability and more skewness due to a
floor effect. Note, however, that this level-2 distribu-
tion violated the assumptions of multilevel software.
Comparing these results with those estimated in the
level-2 normal condition allowed us to investigate the
impact of this form of violation.

After sampling the autoregressive parameter of the
models (which is equal to the ACF at lag 1, i.e., p(1)),
together with the independently sampled mean per
person, we determined each model’s parameters per
person using the expressions in Table 1. Based on
these parameters, time series with varying degrees of
skewness were generated using the respective DGM,
and this was repeated for all other cases. Hence, we
had two level-2 distributions (i.e., Gaussian- and y*-
distributed), combined with four different level-1
data-generating models (i.e., the AR(1), ¥*AR(1),
BinAR(1), and PoDAR(1) models), resulting in eight
different DGMs. For each DGM we considered three
samples sizes at level-2 (i.e., N=25, 50, 100), com-
bined with three sample sizes at level-1 (ie., T=25,
50, 100), resulting in nine combinations, totaling
8 x 9 =72 different conditions. For each condition, we
created 1000 replications using R Statistical Software
(v.4.1.1; R Core Team, 2021). Figures S1, S2, S4, and
S5 show person histograms and distributions of sum-
mary statistics of sample simulated datasets of
each DGM.

Analyzing the simulated data

We used Mplus version 8.6 (Muthén & Muthén, 2017)
to analyze each of the 72,000 simulated datasets with
two different models. First, we estimated a multilevel
AR(1) model with random mean and random autore-
gressive parameter (allowing individual differences in
means and autoregressions) and a fixed residual vari-
ance, such that all individuals would have the same
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residual variance, and estimated the level-2 correlation
of the random means and autoregressions. This model
is commonly used in clinical research (see, e.g.,
Hamaker et al., 2018). Since the marginal variance of
the AR(1) model is determined by the autoregressive
parameter and residual variance (Equation 4), given
that the marginal variance varied across individuals,
individual differences in marginal variance could
result in biased autoregressive parameter estimates per
person (cf., Jongerling et al., 2015). Consequently, this
might lead to bias in the estimated correlation
between the estimated mean and the estimated autore-
gressive parameter. To eliminate this possible source
of bias, we analyzed each dataset with a second model
that included random residual variance, allowing indi-
viduals to have different means, autoregressive param-
eters, and residual variances. We used the R packages
MplusAutomation, snow, future, and doFuture to
interface Mplus from R and run codes in parallel
(Bengtsson, 2021; Hallquist & Wiley, 2018; Tierney
et al., 2021).

Results

To evaluate whether differences in the floor effect among
individuals led to positive associations between the esti-
mated random autoregressive parameter ¢; and the ran-
dom mean u;,—a statistical artifact which would be
mistaken as evidence for the staging effect—we studied
the estimated level-2 correlation between the random
mean and random autoregressive parameter. Based on
this, we determined the right-sided Type-I error rate
(which we call positive error, as it was in the positive dir-
ection), which is the probability of mistakenly deducing
that the correlation is positive, resulting in erroneous
evidence in favor of the staging effect. To quantify this,
for each of the condition, we counted the number of
times that the 95% credibility interval (CI) of the esti-
mated correlation lied above zero (suggesting a positive
association), and divided it by the number of converged
replications in the same condition.* Although not

“The 95% CI (and not other value) as a decision rule is often used in
Bayesian modeling to parallel the common decision threshold of o =
0.05, a conventionally accepted threshold for Type-l error—the
probability of mistakenly assuming a non-zero estimate for a parameter
that, in reality, is zero—in null-hypothesis significant testing in the
context of frequentist modeling.

The overall convergence rate in our simulation was 99.75%. More
specifically, among 144 conditions, there were 66 conditions that had a
convergence rate of 100%, and 76 other conditions had convergence
rates of at least 98.1%. The two remaining conditions had y*-distributed
means and were analyzed with the model with random residual variance,
and belonged to the BinAR(1) model with N =100,7 =100 and the
PoDAR(1) model with N =100,T = 25, which had convergence rates of
95.9 and 91.9%, respectively.

directly related to the hypothesized staging effect, we
also considered the left-sided Type-I error rate (which
we call negative error, as it is in the negative direction),
to estimate the probability of mistakenly inferring a
negative, rather than zero, value for the correlation
between the means and the autoregressive parameters.

Furthermore, we quantified the strength of the
errors by estimating how far off the estimates of the
correlation were from its true value (of zero). To do
so, we estimated the empirical bias and the empirical
root mean squared error (RMSE). The empirical bias
was calculated by taking the average point estimate of
the correlation across all of the converged replications
within the same condition minus the true value.
Similarly, we estimated the empirical RMSE by squar-
ing the difference between the estimated correlation
and its true value in each replication, and we calcu-
lated the square root of their average among the con-
verged replications within each condition.

One-sided Type-I error

As the 95% CI was used to determine whether the
estimated random effect correlation between y; and ¢,
was zero, we considered 5% to be the acceptable
threshold for the Type-I error rate; a higher estimated
error rate would provide evidence for the hypothesis
that the random effect correlation was an artifact.
Because we were interested in the directional Type-I
error rates, we used 2.5% as the acceptable threshold
for such errors (and as the sampling distribution was
not necessarily symmetrical, we furthermore consid-
ered a more lenient threshold of 5% for the positive
and negative error rates; see Appendix B for details).
Below we first discuss the results in case of normally
distributed means, and then for the more realistic case
with y*-distributed means.

Gaussian-distributed means. The upper half of
Figure 8 includes the positive errors for each condi-
tion (i.e., where the correlation is erroneously esti-
mated to be positive). We begin with the model with
fixed residual variance on the left. For the AR(1)
model, regardless of the sample size N and time series
length T, this rate was below 2.5%, which means that
in more than 97.5% of the converged datasets, the
95% CI of the estimated correlations either included
zero or was totally below zero. This was expected, as
the AR(1) model is identical to the fitted model. For
this reason, we regard the results of the AR(1) model
as a benchmark, and we assess the results of the other
DGMs (also for bias and RMSE) relative to this
model. We observe a similar pattern for other DGMs,
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Figure 8. Right-sided (top) and left-sided (bottom) Type-I error rates in the estimated correlation between ; and ¢;.
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that is, for all N and T, the positive error was
below 2.5%.

By extending the model with random residual vari-
ance (see the upper half of the second column of
Figure 8), positive errors of the AR(1) and the
¥*AR(1) models remained under 2.5%. In the
BinAR(1) model, we observe elevated positive errors
for N=50, 100 (getting as high as 4.5 and 6.5%,
respectively) which very slightly decreased as T
increased, but increased as N increased. The latter can
be explained by the 95% credible intervals of the esti-
mates of the correlations which narrow as the sample
size grows, thus making them less likely to cover zero
(see Figure Bl in Appendix B). The PoDAR(1) model,
in most cases, resulted in positive error rates less than
2.5%, and the increase in N elevated positive error for
this DGM to around 3.7%.

When considering the negative errors for the
model with fixed residual variance (the first column
in the lower half of Figure 8), we see that the negative
errors of the AR(1) model remained close or under
2.5%. In all other models, the error rates were mostly
above 2.5% and reached as high as 15.9, 6.9, and 18.3.
In all cases, increasing T brought down the error
rates, though an increase in N noticeably increased
them. By using a model with random residual vari-
ance (see the second column), the error rate of the
AR(1) and the y*AR(1) models remained under 3.9%.
In the BinAR(1) model, we observe that the negative
error, in all conditions, increased noticeably by a fac-
tor of up to 3.9 compared to the first column. In the
PoDAR(1) model, increasing T increased the negative
error up to 7.6%. As before, in all cases, an increase
in N noticeably increased the error rates, though
increasing T slightly decreased the errors in most
cases.

y°-distributed means. When considering the positive
error rates in the model with fixed residual variance
for the cases with y’-distributed sample means (see
the third column of the upper half of Figure 8), we
see that they consistently remained under 2.5% (and
very close to zero), with one exception (i.e., the AR(1)
model with T=25, 50). By extending the model to
include random residual variance (see the fourth col-
umn), for the AR(1) model, we observe a similar pat-
tern compared to the third column. For other DGMs,
we observe that an increase in N remarkably increased
the positive errors (which can be attributed to shrunk
CIs for larger sample sizes; see, e.g., Figure B2),
whereas increasing T reduced the positive error in all
cases. In these models, the positive error often

exceeded the 5% threshold, getting as high as 26.2%
in the PoDAR(1) model.

When considering the negative errors for the
model with fixed residual variance (the third column
in the lower half of Figure 8), we see that the negative
errors of the AR(1) model remained under 2.5%, but
were above 5% for the other DGMs in most cases,
reaching as high as 55.6%. Increasing T was associated
with a lower error rate while increasing N had a
strong opposite effect. When we extended the model
with random residual variance (see the fourth col-
umn), the negative errors shrunk noticeably in all
models, and were below 2.5% for the AR(1) and
¥*AR(1) models, and reached up to around 10% in
other models. As before, increasing T or decreasing N
reduced the error.

Bias and RMSE

Gaussian-distributed means. When we consider the
bias for the model with fixed residual variance (the
first column in the upper half of Figure 9), we see
that for the AR(1) model there is no bias in estimat-
ing the correlation between the random intercept and
the random autoregression, regardless of T and N. In
all other DGMs, we observe bias. However. in contrast
to what we had hypothesized based on Terluin et al.
(2016), there was a negative rather than a positive bias
in the correlation. This negative bias became as large
as —0.24. Bias decreased as T increased, but N had no
noticeable effect. When we extended the model to
have random residual variance (see the second col-
umn), for all alternative DGMs, the bias was consider-
ably smaller than when a fixed residual variance was
modeled; in some cases, the bias became slightly posi-
tive but remained small (i.e., less than 0.04). In all
cases, an increase in N reduced the bias, but increas-
ing T, overall, had little effect on it.

When considering the RMSE for these scenarios
(see the lower left panel of Figure 9), we observe that,
in all DGMs, the RMSE of the estimated correlations
consistently dropped when either N or T increased,
and the effect of the former was stronger than that of
the latter. We observe that, generally, including ran-
dom residual variance decreased the RMSE somewhat.

y’-distributed means. When comparing the results
for the model with fixed residual variance when the
means followed the y* distribution (see the upper half
of the third column of Figure 9), we observe that the
bias was up to 60% higher compared to the cases
were the means were normally distributed. In the
AR(1) model, the bias was equal to 0.114 at its highest
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Figure 9. Bias (top) and RMSE (bottom) in the estimated correlation between y; and ¢;.
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(for N =100,T =25). In this model, increasing T
reduced the bias, while increasing N increased the
bias, and the effect of the latter was rather small. For
the other DGMs, the bias was always negative (reach-
ing —0.342), and increasing T (and to a much lesser
degree, N) brought the bias closer to zero. When we
included random residual variance in our model (see
the fourth column), the bias in the AR(1) model was
comparable to the case analyzed using a model with
fixed residual variance. In other DGMs, the bias
switched from being negative to being positive, yet
smaller in magnitude (ranging from 0.002 to 0.179) in
comparison to the model with a fixed residual vari-
ance. In these models, an increase in T reduced the
bias, while an increase in N increased bias, which was
unexpected. When looking at the RMSEs, we see con-
sistent patterns that were similar to those for
Gaussian-distributed means: Increasing either T or N
decreased the RMSE; an increase in N had a stronger
effect on reducing the RMSE; and including random
residual variance in the model reduced the RMSE.

Conclusion

In the simulation study described here, we considered
multiple DGMs to investigate whether the violation of
normality due to skewness at levels 1 and 2 would
lead to mistakenly finding a positive relationship
between the estimated means and autoregressive
parameters in multilevel AR(1) models, when in real-
ity such a relation is absent. Our results provide no
evidence for the statistical artifact hypothesis when
modeling with fixed residual variance, which is the
standard in most empirical applications of multilevel
time series models: In all cases we studied, there
appeared to be either negligible or a negative, rather
than a positive, bias in the estimated correlation
between the persons’ means and their autoregressions.
Furthermore, the probability of making a positive
one-sided Type-I error (ie., incorrectly concluding
there was a positive correlation when the effect was
zero) was less than 2.5% in almost all conditions in
which the estimated model had fixed residual vari-
ance. In contrast though, our results showed that—at
least when data were generated with the DGMs con-
sidered here—extending the model with random
residual variance can lead to positively biased esti-
mates and an elevated probability of making a positive
Type-1 error. The violation of the normality assump-
tion due to the floor effect always inflated the positive
or the negative Type-I error rates, and the two-sided
Type-I error rate (that is, the sum of the positive and

negative errors) was mostly off the conventionally
expected threshold of 5%, reaching up to 55.6% (see
Figure 10). We also found that including random
residual variance in the multilevel AR(1) model con-
sistently led to decreases in the absolute values of bias
and RMSE of the correlation between random effect
means and autoregressions, thereby reducing the effect
of violating the normality assumptions. Lastly, we
observed that an increase in T (i.e., longer time series)
consistently improved all aspects of estimation,
whereas increasing N (larger sample size) increased
the Type-I error rate and had an inconsistent effect
on the bias and RMSE.

Before concluding this section, it is worthwhile to
put the magnitude of bias we found in the results into
context. In our simulation study, the magnitude of
bias in the presence of the floor effect reached up to
0.34, 0.22, and 0.14 in, respectively, short (T=25),
moderately long (T=50), and long (T=100) time
series, which are considerable when compared with
the estimated random effect correlations found in
empirical data. For instance, in the distress time series
of the COGITO dataset (with around 100 measure-
ments per person), the random effect correlations esti-
mated with the AR(1) model with fixed and random
residual variance were, respectively, 0.636 and 0.551; if
we can assume that these data were generated by the
PoDAR(1) model (where we had the strongest bias),
based on our simulation results in the cases with y*-
distributed means (that are close to the sample means
in the distress dataset; see Figure 3) and T=100
(close to the number of measurements per person in
the COGITO dataset), we may conclude that the
“true”, unbiased random effect correlations estimated
by the models with fixed and random residual vari-
ance could have been around 0.976 and 0.542.

Discussion

The autoregressive parameter of the AR(1) model has
been used to capture the rigidity or inertia of an emo-
tion or symptom over time, and a rich body of litera-
ture has suggested that it is associated with, and can
be predictive of, a variety of person characteristics
(see Koval et al., 2021). Particularly, it has been sug-
gested that the autoregressive effect in certain affective
items is positively correlated with the severity of psy-
chiatric disorders or the mean of the emotion, which
has been called the staging effect (Wigman et al.,
2013). However, some researchers have raised con-
cerns that this observed association may be a statis-
tical artifact of using the multilevel AR(1) model
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Figure 10. Two-sided Type-l error rate in the estimated correlation between y; and ¢;.

(which assumes the data is Gaussian at level 1 and 2)
on time series data that are, especially for negative
symptoms of healthier individuals, highly skewed and
are characterized by a floor effect (Terluin et al,
2016).

In this paper, we investigated this issue by means
of a simulation study. We simulated time series of
individuals with with varying degrees of the floor
effect and autoregressive parameters that were ran-
domly sampled (independent of the strength of the
floor effect), and studied whether analyzing the data
with the multilevel AR(1) model could lead to a spuri-
ous positive association between the estimated mean
and autoregressive parameter at level 2. We consid-
ered two versions of the multilevel AR(1) models,
with fixed or random residual variance, which have
been used in psychological research on inertia. Based
on the simulation results, we may conclude that if a
model with fixed residual variance is used—a com-
mon practice in the psychological literature—the floor
effect actually leads to negative, rather than the antici-
pated positive, bias in the estimated correlation

between the random mean and random autoregressive
parameter. In contrast, a high right-sided Type-I error
rate and a positive bias was found for high N and low
T when a random residual variance was included in
the model. However, it should be noted that, to our
knowledge, this model type is rarely used in the psy-
chological literature so far, and it is therefore not an
explanation for previous empirical findings supporting
the staging effect. Notably, this same model, compared
to the model with fixed residual variance, has less bias
and RMSE in the presence of non-normally distrib-
uted level-2 parameters.

While investigating the association between indi-
vidual means and autoregression has substantive rele-
vance, in order to draw conclusions about what
design and analysis choices researchers should make
in practice, it is necessary to specify more specific
research goals. For instance, if researchers are con-
ducting a confirmatory hypothesis test regarding the
presence of a non-zero correlation between the mean
and the autoregressive parameter, then the one- or
two-sided Type-I error rates are primarily of interest.
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For example, when the staging effect hypothesis (a
positive correlation) is specifically put to test, the
researcher should focus more on the positive Type-I
error rate, thus a model with fixed residual variance
should be favored over a model with random residual
variance, and, perhaps counter-intuitively, researchers
should favor collecting long time series (high T) over
larger N; when the model is misspecified, we have
seen that high N and low T lead to high Type-I errors
due to a combination of bias and too narrow CIs. On
the other hand, if the study is more exploratory or
descriptive in nature, researchers may care less about
hypothesis tests, and care more about the generaliz-
ability of their parameter estimates to new samples. In
that situation, researchers may care about obtaining
estimates which have both low bias and low variabil-
ity, as indicated by a low RMSE in our simulation
study. In that case, researchers might choose to use
models with random residual variance, and both suffi-
ciently large N and large T are important (though
researchers should favor higher N). Of course, sub-
stantive knowledge and beliefs can also play a role in
guiding analysis choices, such as expecting partici-
pants to have random residual variance, or having
reasons to believe that some of the data-generating
models we have studied here are more or less plaus-
ible than others.

Given that the above decisions have notable conse-
quences and may lead to contrasting conclusions,
researchers should be clear about the hypotheses they
put to test and communicate them transparently, and
if possible, pre-register their studies to prevent
hypothesizing after the results are known (HARKing;
Kerr, 1998) or other questionable research practices
(John et al., 2012; Nosek et al., 2019, Nosek et al,
2018). Finally, given that the strength of the potential
bias in the results depends on data characteristics,
importantly, the amount of skewness at level 1 and 2,
the researchers are advised to investigate—and
report—individual histograms and the distributions of
means, variances, and skewnesses in the sample (see
Appendix A for details). This would help them to
have a rough idea about the size of the bias in the
results; for instance, if most of the individuals have
relatively symmetrical distributions, there is no need
to be greatly concerned about over- or underestimat-
ing the random effect correlation.

It should be noted, however, that by focusing on
different aspects of model fit in isolation from each
other, we might fail to see the forest for the trees: In
the presence of individuals with skewed response pat-
terns—even if the level-2 normality is not violated—

the two-sided Type-I error rates (i.e., the probability
of mistakenly detecting a non-zero correlation, when
in reality it is zero) is hardly negligible. Furthermore,
as discussed in Appendix A, the violation of level-1
normality due to the floor effect often brings about a
violation of level-2 normality, which in turn substan-
tially inflates the Type-I error rate (especially for
larger sample sizes) and leads to less accurate esti-
mates. One may consider such violations of the assump-
tions of the multilevel AR(1) model in certain affective
time series—and the biases and errors thereof—to be an
inevitable consequence of fitting a simple, parsimonious
mathematical model to real-world phenomena; neverthe-
less, the fact that “all models are wrong” does not neces-
sarily undermine their usefulness in abstracting complex
phenomena (Box, 1979). On the other hand, the above
issues could also be taken to imply that the said affective
processes are indeed generated by other kinds of mecha-
nisms that have different substantive explanations.

In this paper, we presented three alternative data-
generating models with lag-1 serial dependence which
can produce marginal distributions that arise in
empirical data (i.e., skewed and often times discrete-
valued) that the AR(1) model with Gaussian innova-
tions fails to generate. Additionally, their dynamic and
distributional properties can be fully specified, inde-
pendently, using only two parameters—making them
more parsimonious than the AR(1) model (which is
identified with three parameters). Each of these alter-
native models is based on different modeling assump-
tions about the processes underlying empirical data
that parallel various substantive interpretations: The
¥*AR(1) model assumes that the external events can
only affect the system in one direction (by increasing
the levels of the variable) and the decrease in levels is
only achieved via a deterministic process (of
“dissipation”); the BinAR(1) model assumes that the
level of the variable, which is measured as an integer,
is determined by the aggregate activity of a set of
independent latent units that contribute equally to the
level of the variable; and the PoDAR(1) model, allud-
ing to Frijda’s hypothesized law of conservation of
emotional momentum (Frijda, 1988), posits that a
person has a tendency of experiencing different levels
of an affective variable, though the level of this vari-
able only changes under the influence of other
(unmeasured or random) factors, which determine the
temporal dynamics of the measurements. We did not
explore whether these assumptions hold for the
underlying data-generating mechanism of specific
empirical time series, thus we had no reason to
choose one model over the others in our simulation



study. Yet, although the results varied across models,
they all painted a coherent picture of the effect of the
floor effect on the parameter estimates of the multi-
level AR(1) model.

These alternative models (and other time series
models with non-Gaussian or discrete marginal distri-
butions; see, e.g., Davis et al., 2021; Grunwald et al.,
1995; Inouye et al., 2017) not only may lead to more
accurate abstractions of affective time series, but also
afford the researchers the opportunity of empirically
testing alternative explanations for the mechanisms
governing psychological processes—for instance, the
previously-mentioned hypothesis of the conservation
of emotional momentum (Frijda, 1992; Smedslund,
1992)—which are otherwise not possible with the
AR(1) model with Gaussian innovations. Furthermore,
the extensions of these models may be used for differ-
ent kinds of time series, such as those with inherently
quantitative discrete variables, either ordinal or cat-
egorical (see, e.g., Biswas et al., 2014; Pegram, 1980;
Weif3, 2020), and connect them to the greater body of
literature on dynamical processes, importantly, state-
space models (Davis & Dunsmuir, 2016), Markov
chains (Joe et al.,, 2016), and generalized linear models
(Fokianos et al., 2016).

The current study may be improved and extended
in a few ways. Since the association between the
autoregressive parameter of the AR(1) model and per-
son characteristics has been the core topic of interest
in inertia research, in this paper, we only studied uni-
variate time series. Furthermore, we took a very spe-
cific simulation strategy, namely, sampling the
autoregressive parameters of individuals independent
from their means, thus making the individual differ-
ences in means (and skewness) uncorrelated with the
individual differences in the autoregressive parameter.
This decision was made based on practical considera-
tions, importantly, to minimize the degrees of free-
dom (and thus the number of conditions) in our
simulation design. Finally, we only considered three
alternative DGMs (and for the last model, we consid-
ered a very specific marginal distribution). Thus,
future research may extend our study by investigating
the effect of skewness and the floor effect on cross-
lagged effects in bivariate and multivariate VAR(1)
models, considering other simulation strategies (e.g.,
sampling the autoregressive parameters such that they
have a fixed, non-zero correlation with the means),
and exploring other (multivariate) non-Gaussian time
series models as data-generating mechanisms.

In this paper, we only estimated the multilevel
AR(1) model based on the assumption of normally
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distributed residuals at level 1 and 2. The reason for
this was that the statistical software commonly used
by psychological researchers does not yet include the
non-Gaussian multilevel time series models that we
used to generate the skewed data with. While these
models have been largely overlooked in the psycho-
logical literature so far, they have been widely studied
in other fields, such as hydrology or econometrics, for
more than half a century. We believe there is merit to
the use of these models in psychological research. The
widespread use of them in modeling psychological
time series requires a body of literature that is more
accessible to empirical psychologists, and developing
software packages capable of modeling such time ser-
ies. Currently, the software packages dedicated to ana-
lyzing discrete-valued time series—for instance, the R
packages glarma (Dunsmuir & Scott, 2015), tscount
(Liboschik et al., 2017), acp (Vasileios, 2015), and
ZIM (Yang et al, 2018)—are suited for a narrow set
of count processes (that do not include, e.g., the parsi-
monious models we introduced) and can only analyze
single subject (N=1) time series. Thus, there is a
need for developing software that would fill the gaps,
importantly, multilevel modeling of a wider set of dis-
crete-valued time series models, like the BinAR(1) or
DAR(1) models. We hope that future research would
address these issues and help popularize such models
in psychological research.
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Appendix A. Detecting and characterizing the
floor effect in empirical data

In the main text, we established the likely presence of the
floor effect using visual inspection of person-specific histo-
grams of empirical data (see Figure 2). Recall that the floor
effect is defined by the co-occurrence of low mean, small
variance, and a strong positive skewness of an individual’s
response (i.e., marginal) distribution (Falcaro et al., 2013;
Tachina & Bilenberg, 2012; Vermeersch et al., 2000). Since
each of these sample statistics can be estimated directly
from empirical data, we may also investigate the presence
of the floor effect in an empirical dataset by computing the
mean, variance and skewness value of each individual, and
examining both their distributions and correlations across
individuals. If the floor effect is present, we expect to see a
positive correlation between the mean and the variance
(low means coincide with low variance), negative correla-
tions between the skewness and the mean (low means coin-
cide with high positive skewness), and negative correlations
between the skewness and the variance (low variance coin-
cides with high positive skewness). Note that positive skew-
ness values indicate clustering around the lower end of the
response scale, while negative skewness values indicate clus-
tering around the upper end of the rating scale, so we
would also expect to observe positive skewness values in
data with the floor effect.

In Figure Al we show the relevant sample statistics and
their correlations for the distress variable from the COGITO
dataset (Schmiedek et al.,, 2010). The diagonal panels show
the distribution of individual means, variances and skewness
values, lower off-diagonal panels show pairwise scatter plots
of the summary statistics, and the upper panels show their
Pearson correlations. It can be seen from Figure Al that
lower means of distress very often coincide with smaller

Mean

‘ Corr: 0.592++*

variability (leading to a positive correlation between mean
and variances) and more asymmetry (leading to a negative
correlation between mean and skewness), which is charac-
teristic of data with a floor effect. The lower left panel of
this figure (the scatter plot of skewness given mean) shows
that most of the individuals have very low means and very
high skewnesses, indicating that the floor effect in individu-
als (at level 1) brings about skewness in means (at level 2).

The same methodology can be applied to investigate the
presence of a possible ceiling effect, the phenomenon
whereby responses cluster near the top end of a rating scale.
In the ceiling effect we would expect to see high negative
skewness values coinciding with high means (in contrast to
the floor effect, which is defined by low means), producing
a negative correlation between skewness and mean. We
would also expect a negative correlation between mean
and variance (distributions with higher means have lower
variances) and a positive correlation between skewness and
variance. In Figure A2 we show the individual histograms
of the Positive Affect (PA) from the COGITO dataset
(Schmiedek et al., 2010), which is the unweighted average
of 10 positive emotion items. It can be seen that some
individuals are characterized by the floor effect, and some
with the ceiling effect. Figure A3 shows the distribution of
summary statistics of PA. We observe that the distribution
of means is more symmetrical (upper left panel); however,
as the histogram of skewnesses shows (lower right panel),
some individuals have either positively or negatively
skewed responses (notice that many of the skewnesses are
either more than 1 or less than —1, typically used as
thresholds for high positive and negative skewness). We
observe a negative correlation between mean and skew-
ness, and mean and variance, which likely indicates that
more individuals are characterized by the ceiling effect for
this variable.

Corr: -0.692***

Variance

Corr: -0.511%*

Skewness

Figure A1. Histograms and pair-wise scatter plots of the individual summary statistics (u;, a2, 7;) of distress scores in the COGITO
dataset, and the Pearson correlations between them (with *, **, and *** respectively denoting p < 0.05, p < 0.01, and p < 0.001).
The dotted and dashed lines, respectively, mark the conventional thresholds of moderate (y = +0.5) and high (y = £1) skewness.
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Appendix B. Additional notes on the
simulation study

B.1. Credibility intervals and the Type-I error
rates

As discussed in the results section, increasing T reduces
bias, RMSE, and Type-I error rates. However, an increase in
N only decreases bias and RMSE, but leads to an increase
in Type-I error rates. To study the reason for this behavior,
we look at the confidence intervals of the estimated correl-
ation between the estimated mean and autoregression at
level 2. Figure Bl shows the point estimates of the correl-
ation (white) and the corresponding 95% CIs for the
BinAR(1) model with normally distributed means at level 2
for different Ns and Ts, either estimated with a model with
fixed or random residual variance. The CIs are ordered
based on the corresponding point estimates. As we can see,
by an increase in N or T the point estimates, on average,
get closer to zero (consequently reducing bias). The CIs also
shrink when N or T increases, and the effect of N on this
shrinkage is more noticeable. Given that by increasing N
ClIs shrink faster than the decrease of bias, for larger sample
sizes, fewer Cls cover zero, which leads to an increase in
Type-I error rates. As we can see, in the model with fixed
residual variance, most of the errors fall below zero, and in
the model with random residual variance, there are more
errors, most of which, again, are below zero.

We also look at a similar plot for the PoDAR(1) model
with *-distributed level-2 means in Figure B2. Here we
observe that increasing N or T shrinks the CIs, and the
shrinkage is faster when N increases. Compared to Figure

Bl, we observe that there are more errors for this DGM;
the model with fixed residual variance has only negative
Type-I errors, whereas the model with random residual
variance has both positive and negative errors, though the
number of positive ones is more than the negative ones.

B.2. Estimation variance

In the main text, we presented Type-I error rates, bias, and
RMSE in our estimates. Here, we present estimation vari-
ance which is another commonly used measure for the
quality of estimators that quantifies the precision of the esti-
mates (or how variable they are). The estimation variance
contributes to the total estimation error (quantified by
RMSE) via RMSE = +/Bias* + Variance.

We calculated the empirical estimation variance directly
by calculating the variance of the estimated correlations in
each condition, which are shown in Figure B3. As we see,
increasing N or T reduced variance in all cases, regardless
of the modeling technique, and the effect of the former
was stronger. The modeling technique had an effect on the
estimation variance; except for the AR(1) model (and
N=25 in other models), the estimation variance was
always higher if a model with random residual variance
(which is more complex than the model with fixed
residual variance) was used. By comparing the estimation
variance with the bias in the estimated correlations (Figure
9), we notice the bias-variance tradeoff: A more complex
model may decrease the absolute value of the estimation
bias, but it comes at the cost of increasing the variability
in the estimates.
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Modeled with fixed residual variance

Estimated Correlation

Estimated Correlation

== Sjgnificant negative estimates === Non-significant estimates === Significant positive estimates

Figure B1. Point estimates (in white) and the corresponding 95% Cls of random effect correlation between p; and ¢; for the
BinAR(1) model with Gaussian level-2 means. The black line represents the correct value of the correlation (zero). The Cls are
ordered based on the point estimates and are colored depending on whether they are below zero (negative Type-l error), overlap-
ping with zero (non-significant estimates), or above zero (positive Type-| error).
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Modeled with fixed residual variance
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Figure B2. Point estimates (in white) and the corresponding 95% Cls of the random effect correlation between ; and ¢; for the
PoDAR(1) model with y-distributed level-2 means. The black line represents the correct value of the correlation (zero). The Cls are
ordered based on the point estimates and are colored depending on whether they are below zero (negative Type-l error), overlap-
ping with zero (non-significant estimates), or above zero (positive Type-I error).
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Figure B3. Estimation variance of the random effect correlation between y; and ¢;.
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